Math 312, Autumn 2008
Problem Set 6

Reading. Rudin, Chapter 6; Probability notes: Section 6.

Rudin, Chapter 6: 1,3,4,9,10 (this is very long, the equivalent of about three problems), 13

Exercise 1 Suppose that X_1, X_2, \ldots are independent, mean zero, variance one random variables not necessarily identically distributed. Let $Z_n = (X_1 + \cdots + X_n)/\sqrt{n}$. Give an example to show that it is not necessarily true that for all $a < b$,

$$
\lim_{n \to \infty} P\{a \leq Z_n \leq b\} = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx.
$$

(Hint: try a modification of the example in Exercise 4.5 of the probability notes.)

Exercise 2 Suppose in the last exercise we also assume that there is a $K < \infty$ such that $E[|X_j|^3] \leq K$ for all j. Let ϕ_j denote the characteristic function of X_j.

1. Show that there is a c such that for all j and all $t \in \mathbb{R}$,

$$
|\phi_j(t) - \left[1 - \frac{t^2}{2}\right]| \leq c |t|^3.
$$

2. Show that the central limit theorem holds in this case, i.e., for all $a < b$, (1) holds.