Math 27300
Winter 2006

Instructor: Jesenko Vukadinovic
Office: Eckhart 331
Office Hours: TBA and by appointment
Email: vukadino (at) math.uchicago.edu
URL: http://www.math.uchicago.edu/~vukadino

Course Reader: Jonathan Sparling
Office: MS301 (just south of the tennis courts)
Office Hours: TBA
Email: sparling (at) math.uchicago.edu
URL: http://www.math.uchicago.edu/~sparling

Text: The notes for the course are available at
http://people.cs.uchicago.edu/~lebovitz/winter06.html
Website: http://www.math.uchicago.edu/~vukadino/m273.html

General policies: There will be an in-class midterm and a final exam. Homework will be posted to the web-page and will be due on Fridays. Selected problems will be graded and the solution will be posted to the web-page. No late homeworks will be accepted. You are encouraged to work together on homework assignments, but you should write up your solutions independently (clearly and legibly, showing your work). Here is how these items will be weighted:

Homework: 20%
Midterm: 30%
Final Exam: 50%

Tests: Midterm 1: Wednesday, Feb 8
Final Exam: Thursday March 26: 4.00-6.00

Important Note: It is the policy of the Department of Mathematics that the following rules apply to final exams in all undergraduate mathematics courses:

1. The final exam must occur at the time and place designated on the College Final Exam Schedule. In particular, no final examinations may be given during the tenth week of the quarter, except in the case of graduating seniors.
2. Any student who wishes to depart from the scheduled final exam time for the course must receive permission from Paul Sally (office: RY 350, phone: 2-7388, email: sally@math.uchicago.edu). Instructors are not permitted to excuse students from the scheduled time of the final exam except in the cases of an Incomplete.

Topics:

1. Introduction and first-order equations
2. The general, linear equation
3. Linear equations with constant coefficients
4. Analytic equations
5. Equations with regular singular points
6. Existence and regularity of solutions
7. Boundary-value problems
8. Oscillation theory
9. Eigenvalue expansions