Fields and Galois Theory

Rachel Epstein

September 12, 2006

All proofs are omitted here. They may be found in Fraleigh’s *A First Course in Abstract Algebra* as well as many other algebra and Galois theory texts. Many of the proofs are short, and can be done as exercises.

1 Introduction

Definition 1. A field is a commutative ring with identity, such that every non-zero element has a multiplicative inverse. That is, a field is a commutative division ring.

Some people prefer to think of fields in terms of the field axioms:

1. Addition is commutative: \(a + b = b + a \)
2. Addition is associative: \((a + b) + c = a + (b + c) \)
3. There is an additive identity 0: \(0 + a = a = a + 0 \)
4. Every element has an additive inverse: \(a + (-a) = 0 = (-a) + a \)
5. Multiplication is associative: \((ab)c = a(bc) \)
6. Multiplication is commutative: \(ab = ba \)
7. There is a multiplicative identity 1: \(1a = a = a1 \)
8. Every non-zero element has a multiplicative inverse: \(a(a^{-1}) = 1 = (a^{-1})a \)
9. The distributive law holds: \(a(b+c)=ab+ac \)

Definition 2. A field \(E \) is an extension field of a field \(F \) if \(F \leq E \).

2 Conjugate Elements

Definition 3. Let \(F[x] \) be the ring of polynomials with coefficients in \(F \). A polynomial \(p(x) \in F[x] \) is irreducible over \(F \) if it cannot be expressed as the product of two polynomials in \(F[x] \) of strictly lower degree.
Example 4. $x^2 - 2$ is irreducible over \mathbb{Q}.
$x^2 + 1$ is irreducible over \mathbb{R}.
$x^2 - 1$ is reducible over \mathbb{Q}.

Definition 5. Let $F \leq E$, let $\alpha \in E$ be algebraic over F. Then the irreducible polynomial of α over F, $\text{irr}(\alpha, F)$, is the unique monic polynomial $p(x)$ such that $p(x)$ is irreducible over F and $p(\alpha) = 0$.

Example 6. The irreducible polynomial of $\sqrt{2} \in \mathbb{R}$ over \mathbb{Q} is $x^2 - 2$.

Definition 7. Let $F \leq E$. Two elements $\alpha, \beta \in E$ are conjugate over F if they have the same irreducible polynomial over F.

Example 8. In \mathbb{C}, some conjugates over \mathbb{Q} are:
$i, -i, p(x) = x^2 + 1$
$\sqrt{2}, -\sqrt{2}, p(x) = x^2 - 2$
$2^{1/3}, 2^{1/3}e^{2\pi i/3}, 2^{1/3}e^{4\pi i/3}, p(x) = x^3 - 2$

Theorem 2.1. If α is algebraic over F, with $\text{irr}(\alpha, F)$ having degree $n \geq 1$, then the smallest field containing α and F, denoted $F(\alpha)$, consists exactly of elements of the form
$\gamma = b_0 + b_1\alpha + \cdots + b_{n-1}\alpha^{n-1}, b_i \in F$.

Theorem 2.2. Let α, β be algebraic over F. Then the map $\psi_{\alpha, \beta} : F(\alpha) \rightarrow F(\beta)$ given by
$\psi_{\alpha, \beta}(b_0 + b_1\alpha + \cdots + b_{n-1}\alpha^{n-1}) = b_0 + b_1\beta + \cdots + b_{n-1}\beta^{n-1}$
is an isomorphism if and only if α and β are conjugate.

Example 9. $\psi_{\sqrt{2}, \sqrt{3}} : \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{3})$ is not an isomorphism since $\sqrt{2}$ is not conjugate to $\sqrt{3}$ over \mathbb{Q}.
$\mathbb{Q}(2^{1/3}) \simeq \mathbb{Q}(2^{1/3}e^{2\pi i/3})$ via the irreducible polynomial $x^3 - 2$.

3 Finite Extensions and Isomorphisms

Definition 10. If E is an extension field of F, then E is a vector space over F. If it has finite dimension n as a vector space over F, then E is a finite extension of degree n over F. We denote the degree of E over F as $[E : F]$.

Example 11. \mathbb{C} is a 2-dimensional vector space over \mathbb{R}, so $[\mathbb{C} : \mathbb{R}] = 2$.
$\mathbb{Q}(\sqrt{2}, \sqrt{3})$, the smallest field containing \mathbb{Q}, $\sqrt{2}$, and $\sqrt{3}$, is generated by $\{1, \sqrt{3}\}$ over $\mathbb{Q}(\sqrt{2})$. $\mathbb{Q}(\sqrt{2})$ is generated by $\{1, \sqrt{2}\}$ over \mathbb{Q}. So we can see that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is generated by $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ over \mathbb{Q}, and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$.

Definition 12. An isomorphism of a field onto itself is called an automorphism of the field.
Definition 13. Let \(\sigma \) be an isomorphism of \(E \) on to some field, and let \(\alpha \in E \) and \(F \leq E \). Then \(\sigma \) fixes \(\alpha \) if \(\sigma(\alpha) = \alpha \), and \(\sigma \) fixes \(F \) if \(\sigma \) fixes each element in \(F \).

Theorem 3.1. Let \(F \leq E \), and let \(\sigma \) be an automorphism of \(E \) leaving \(F \) fixed. Let \(\alpha \in E \). Then \(\sigma(\alpha) = \beta \) where \(\beta \) is a conjugate of \(\alpha \) over \(F \).

Theorem 3.2. Let \(F \leq E \). The set \(G(E/F) \) of all automorphisms of \(E \) leaving \(F \) fixed forms a subgroup of the group of all automorphisms of \(E \). We call \(G(E/F) \) the group of \(E \) over \(F \).

Theorem 3.3. Let \(\sigma \) be an isomorphism from a field \(F \) to a field \(F' \), and let \(\bar{F}' \) be an algebraic closure of \(F' \). Let \(F \leq E \). Then there exists at least one isomorphism \(\tau \) of \(E \) onto a subfield \(\bar{F}' \) such that for all \(\alpha \in F \), \(\tau(\alpha) = \sigma(\alpha) \).

Theorem 3.4 (Isomorphism Extension Theorem). Let \(\sigma \) be an isomorphism from a field \(F \) to a field \(F' \), and let \(\bar{F}' \) be an algebraic closure of \(F' \). Let \(F \leq E \). Then there exists at least one isomorphism \(\tau \) of \(E \) onto a subfield \(\bar{F}' \) such that for all \(\alpha \in F \), \(\tau(\alpha) = \sigma(\alpha) \).
Example 16. \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \) is the splitting field of \(\{x^2 - 2, x^2 - 3\} \), and also of \(\{x^4 - 5x^2 + 6\} \).

\(\mathbb{Q}^{2/3} \) is not a splitting field because it does not contain the other two roots of \(x^3 - 2 \), which is irreducible.

Theorem 3.8. Let \(F \leq E \leq \bar{F} \). Then \(E \) be a splitting field over \(F \) if and only if every automorphism of \(\bar{F} \) leaving \(F \) fixed maps \(E \) onto itself.

Corollary 3.9. If \(E \leq \bar{F} \) and \(E \) is a splitting field over \(F \) of finite degree, then \(\{E : F\} = |G(E/F)| \).

Theorem 3.10 (Primitive Element Theorem). Let \(F \leq E \leq \bar{F} \). Then \(E \) be a splitting field over \(F \) if and only if every automorphism of \(\bar{F} \) leaving \(F \) fixed maps \(E \) onto itself.

Corollary 3.9. If \(E \leq \bar{F} \) and \(E \) is a splitting field over \(F \) of finite degree, then \(\{E : F\} = |G(E/F)| \).

Theorem 3.11. If \(E \) is a finite extension of \(F \) and is a separable splitting field over \(F \), then \(\{E : F\} = [E : F] \).

Definition 17. A finite extension \(K \) of \(F \) is a finite normal extension of \(F \) if \(K \) is a separable splitting field over \(F \). In such a case, we call \(G(K/F) \) the Galois group of \(K \) over \(F \).

4 Fundamental Theorem of Galois Theory

Theorem 4.1 (Fundamental Theorem of Galois Theory). Let \(K \) be a finite normal extension of \(F \). For all \(E \) such that \(F \leq E \leq K \), let \(\lambda(E) = G(K/E) \). Then \(\lambda \) is a one-to-one map from the set of all intermediate fields onto the set of subgroups of \(G(K/F) \). The following properties hold:

1. \(E = K_{G(K/E)} = K_{\lambda(E)} \). This is just saying that the field fixed by the set of automorphisms of \(K \) that fix \(E \) is \(E \).

2. For \(S \leq G(K/F) \), \(\lambda(K_S) = S \). That is, \(G(K/K_S) = S \), or the set of automorphisms fixing the field fixed by \(S \), is \(S \).

3. \([K : E] = |G(K/E)|\), and \([E : F] = (G(K/F) : G(K/E))\).

4. \(E \) is a normal extension of \(F \) if and only if \(G(K/E) \) is a normal subgroup of \(G(K/F) \). If so, then \(G(E/F) \cong G(K/F)/G(K/E) \).

5. The diagram of subgroups of \(G(K/F) \) is the inverted diagram of the intermediate fields between \(F \) and \(K \).

Example 18. Let \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \), and let \(F = \mathbb{Q} \). Then each automorphism of \(K \) is determined by where it takes \(\sqrt{2} \) and \(\sqrt{3} \). Since each automorphism must take elements to their conjugates, the automorphisms are:

\[
\begin{align*}
i(\sqrt{2}) &= \sqrt{2}, i(\sqrt{3}) = \sqrt{3} \\
i_1(\sqrt{2}) &= -\sqrt{2}, i_1(\sqrt{3}) = \sqrt{3} \\
i_2(\sqrt{2}) &= \sqrt{2}, i_2(\sqrt{3}) = -\sqrt{3} \\
i_3(\sqrt{2}) &= -\sqrt{2}, i_3(\sqrt{3}) = -\sqrt{3}
\end{align*}
\]
Here are the subgroup and intermediate field diagrams: