WOMP 2006 Linear Algebra-Rough Outline

Karen Lange

1 References

1. Hoffman and Kunze, Linear Algebra
2. Halmos, Finite Dimensional Vector Spaces
3. Helson, Linear Algebra

2 Outline

I’ll try to use Greek letters for scalars ($\alpha, \beta, ...$) and English letters for vectors ($a, b, v, ...$).

Definition 2.1. A vector space is a set V with an addition operation $+$ and a scalar multiplication over a field k such that

1. $(V, +)$ is a commutative group,
2. $1_k a = a \ \forall a \in V$
3. $(\alpha \beta)a = \alpha(\beta a) \ \forall \alpha, \beta \in k, \forall a \in V$
4. $\alpha(a + b) = \alpha a + \alpha b \ \forall \alpha \in k, \forall a, b \in V$
5. $(\alpha + \beta)a = \alpha a + \beta a \ \forall \alpha, \beta \in k, \forall a \in V$

Definition 2.2. [Briefly]

* Subspace

* Linear combination and Span

 Note finiteness in definition.

* Linearly independent set
* Direct sum

* Basis
 Theorem: Every vector space has a basis.

* Dimension
 Theorem: Dimension is well defined.
 Theorem: For vector spaces over the same field, dimension determines isomorphism.

Definition 2.3. $T : V \to W$ where V and W are vector spaces over k is a linear transformation if for all $\alpha, \beta \in k$ and $a, b \in V$,

$$T(\alpha a + \beta b) = \alpha T(a) + \beta T(b).$$

The set of all such T forms the vector space $\text{Hom}_k(V, W)$.

If $T : V \to k$ is a linear transformation, T is called a linear functional, and $\text{Hom}_k(V, k)$ is called the dual of V.

Definition 2.4. [More briefly!]

* $\ker(T) = \{v \in V \mid Tv = 0\}$, $\text{nullity}(T) = \dim(\ker(T))$
* $\im(T) = \{w \in W \mid (\exists v)Tv = w\}$, $\text{rank}(T) = \dim(\im(T))$

Theorem (Rank/Nullity) For finite dimensional V,

$$\dim(V) = \text{rank}(T) + \text{nullity}(T).$$

Theorem 2.5 (Change of Basis). Suppose V is an n-dimensional vector space over k. Let B_1 and B_2 be two bases for V. Then there exists an n by n invertible matrix S (called the change of basis matrix) such that for all $v \in V$,

$$[v]_{B_2} = S[v]_{B_1}.$$

Using the same methods,

Theorem 2.6. Let V be an n-dimensional vector space and W be an m-dimensional one. Then every linear transformation $T : V \to W$ has the form T_A for some m by n dimensional matrix A where T_A is matrix multiplication with respect to given bases for V and W.

Definition 2.7. n by n matrices A and B (with coefficients in the same field) are similar if there exists an invertible matrix S such that $A = SBS^{-1}$.
Theorem 2.8 (Motivation for Similarity). A and B represent the same linear transformation with respect to different bases for \(V \) if and only if A and B are similar.

We now restrict our attention to \(V = \mathbb{C}^n \) over \(\mathbb{C} \) and to a linear transformation \(T : \mathbb{C}^n \to \mathbb{C}^n \) represented by the matrix \(A \) with respect to the standard basis. Note \(\mathbb{C} \) is algebraically closed.

Definition 2.9. [Again briefly.]
* \(\text{trace}(A) \)
* \(\text{determinant}(A) \)

Theorem 2.10 (Existence and Uniqueness of Determinants).
\[
\det(A) : (\mathbb{C}^n)^n = \text{Mat}_{n,n}(\mathbb{C}) \to \mathbb{C} \text{ is the only complex function of } n \text{ variables (the columns) that is multi-linear, skew-symmetric, and normalized so that } \det(I_n) = 1.
\]

Definition 2.11. [Eigenvalues, Preparation for JCF]
* Eigenvalue: \(\lambda \) is an eigenvalue for \(T \) if \(Tv = \lambda v \) for \(v \neq 0 \). \(v \) is called an eigenvector associated to \(\lambda \).
* Characteristic polynomial: \(p_A(t) = \det(tI - A) = \prod_{i=1}^{k}(t - \lambda_i)^{m_i} \) for \(\lambda_i \) distinct. We call \(m_i \) the algebraic multiplicity of \(\lambda_i \). Cayley’s Theorem: \(p_A(A) = 0 \)
* Eigenspace: \(V_{\lambda} = \{ v \in V | Tv = \lambda v \} \), \(\dim(V_{\lambda}) \) is the geometric multiplicity of \(\lambda \). Note: \(\dim(V_{\lambda}) \leq m_i \).
* Diagonalizable: A is diagonalizable if it is similar to a diagonal matrix. Theorem: A is diagonalizable if and only if A has \(n \) linearly independent eigenvectors. Note: Failure to be diagonalizable is a discrepancy between geometric and algebraic multiplicity.

Theorem: Any A as above is similar to an upper triangular matrix.
* Generalized eigenspace: \(U_{\lambda} = \{ v \in V | (\exists k > 0)(T - \lambda I)^kv = 0 \} \)
* Minimal polynomial: \(m_A(t) = \prod_{i=1}^{k}(t - \lambda_i)^{j_i} \) is the monic polynomial of least degree which annihilates A.
Theorem 2.12 (Jordan Canonical Form). Let A be an n by n complex matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then A is similar to a matrix which is the direct sum of Jordan blocks $J_m(\lambda_i)$ (unique up to a reordering of the blocks) with at least one block for each λ_i where $J_m(\lambda)$ is an m by m matrix of the form:

\[
\begin{pmatrix}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
0 & 0 & \lambda & 1 & \ldots \\
0 & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 0 & \lambda
\end{pmatrix}
\]

Summary of Properties of JCF

- A and B are similar iff they have the “same” JCF.
- Algebraic Multiplicity:
 \[m_i = dim U_{\lambda_i} = \text{sum of sizes of all Jordan blocks for } \lambda_i.\]
- Geometric Multiplicity:
 \[dim V_{\lambda_i} = \text{number of Jordan blocks for } \lambda_i.\]
- The exponent of $(t - \lambda_i)$ in $m_A(t)$ is the size of largest Jordan block for λ_i (We called this exponent j_i). This is also the index of the nilpotent transformation $(A - \lambda_i I)|_{U_{\lambda_i}}$.