Proposition 12.3.
1) If \(0 \in S \), then \(S \) is linearly dependent.
2) If \(S \) is linearly dependent and \(S \subset T \subset V \), then \(T \) is linearly dependent.
3) If \(S \) is linearly independent and \(U \subset S \subset V \), then \(U \) is linearly independent.
4) \(S \subset V \) is a basis for \(V \) iff each element of \(V \) is a unique linear combination of elements of \(S \).
5) If \(A = \{v_1, \ldots, v_m\} \) spans \(V \), then some subset of \(A \) is a basis for \(V \).
6) Let \(W \) be a subspace of the finite-dimensional vector space \(V \). Then any basis for \(W \) can be extended to a basis for \(V \).

Theorem 12.1. The Rank Theorem. For a linear map \(\phi : V \to W \), we have

\[
\dim V = \dim (\ker \phi) + \dim (\im \phi)
\]

Corollary 12.1. Let \(V \) and \(W \) be finite-dimensional vector spaces. Then we have

1) \(\phi \in \text{End}(V) \) is an isomorphism iff \(\phi \) is injective iff \(\phi \) is surjective.
2) \(V \cong W \) iff \(V \) and \(W \) have the same dimension.

13. DIRECT SUMS, EXACT SEQUENCE, AND QUOTIENTS

Given two vector spaces \(V \) and \(W \), we can form the (external) direct sum of \(V \) and \(W \), denoted \(V \oplus W \): \(V \oplus W \) is a vector space with canonical structure induced from those of \(V \) and \(W \), along with natural injection and projection mappings

\[
\begin{align*}
V & \xrightarrow{i_1} V \oplus W \xrightarrow{p_1} V \\
& \xrightarrow{i_2} V \oplus W \xrightarrow{p_2} W \\
W & \xrightarrow{p_1 \circ i_1 = \text{id}_V} V \oplus W \xrightarrow{p_2 \circ i_2 = \text{id}_W} W
\end{align*}
\]

Proposition 13.1.
1) If \(\{v_1, \ldots, v_n\} \) is a basis for \(V \) and \(\{w_1, \ldots, w_m\} \) is a basis for \(W \), then \(\{(v_1, 0), \ldots, (v_n, 0), (0, w_1), \ldots, (0, w_m)\} \) is a basis for \(V \oplus W \).
2) \(\dim(V \oplus W) = \dim(V) + \dim(W) \).

Now, given two subspaces \(A \) and \(B \) of a vector space \(V \), we can consider a natural mapping \(\eta : A \oplus B \to V \) defined by \(\eta(a, b) = a + b \). We have

Proposition 13.2.
1) \(\eta \) is a linear map.
2) \(\eta \) is injective if and only if \(A \cap B = \{0\} \).
3) \(\eta \) is surjective if and only if \(A \cup B \) spans \(V \).
In case \(\eta \) is an isomorphism, we say that \(V \) is an internal direct sum of \(A \) and \(B \). One useful concept is the exact sequence: Given vector spaces \(U, V, W \) and linear maps \(\rho : U \to V \) and \(\sigma : V \to W \), we say that the sequence \(U \xrightarrow{\rho} V \xrightarrow{\sigma} W \) is exact if \(\text{im}(\rho) = \ker(\sigma) \).

Moreover the exact sequence \(0 \to U \xrightarrow{\rho} V \xrightarrow{\sigma} W \to 0 \) is said to split if there is a linear mapping \(\gamma : W \to V \) such that \(\sigma \circ \gamma \) is the identity mapping on \(W \).

Proposition 13.3.

1) For finite-dimensional vector spaces, the above exact sequence splits.

2) In the above situation, \(V \) is represented as an internal direct sum

\[
V = \rho(U) \oplus \gamma(W)
\]

Given a subspace \(W \) of a vector space \(V \), we can form the quotient space \(V/W \) using the equivalence relation. For finite-dimensional vector spaces, we have

Proposition 13.4.

1) \(V/W \) is a vector space.

2) The natural projection mapping \(\eta : V \to V/W \) is a surjective linear map.

3) For a linear map \(\phi : U \to V \), we have \(U/\ker(\phi) \cong \phi(U) \)

14. **Eigenvectors and Eigenvalues**

Definition 14.1.

1) Let \(\phi : V \to V \) be linear. A subspace \(W \) of \(V \) is said to be \(\phi \)-stable if \(\phi(W) \subset W \). If \(W \) is \(\phi \)-stable, then \(\phi|_W \in \text{End}(W) \).

2) A nonzero vector \(v \in V \) is an eigenvector for \(\phi : V \to V \) if \(\text{Span}(v) \) is \(\phi \)-stable. The unique \(\lambda \) such that \(\phi(v) = \lambda v \) is called an eigenvalue for \(\phi \) corresponding to \(v \).

3) Let \(V(\lambda) = \{ v \in V \mid \phi(v) = \lambda v \} \) and call it the eigenspace belonging to \(\lambda \). The dimension of \(V(\lambda) \) is the geometric multiplicity of \(\lambda \).

For example, the set \(E \) of elementary functions in the real vector space \(D \) of \(C^\infty \)-functions from \([0, 1]\) to \(\mathbb{R} \) is stable under differentiation, but is not stable under integration.

Proposition 14.1.

1) If \(v \) is an eigenvector for \(\phi \), then \(rv \) for any scalar \(r \in k \) is an eigenvector for \(\phi \) with the same eigenvalue as \(v \).

2) If \(\lambda, \mu \in k \) and \(\lambda \neq \mu \), then \(V(\lambda) \cap V(\mu) = \{0\} \).

3) There exists a linear map \(\phi : \mathbb{R}^2 \to \mathbb{R}^2 \) such that \(V(\lambda) = \{0\} \) for each \(\lambda \in \mathbb{R} \).

4) If \(v \) is an eigenvector for \(\phi \) with eigenvalue \(\lambda \), then \(\psi(v) \) is an eigenvector for \(\psi \phi \psi^{-1} \) with eigenvalue \(\lambda \).