
Anomalous Vacillatory Learning

Achilles Beros

Department of Mathematics,
UW - Madison

November 15, 2012

Background

Learning Theory is concerned with the identification of collections
of c .e. sets by computable functions from enumerations of the sets.

A first definition.

• A machine, M, identifies an enumeration, (an)n∈N, for a set A
if limi→∞M(a0a1 . . . ai) = h and Wh = A.

• M learns a set, A, if it identifies every enumeration.

• M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

learning machine: ↓ ↓ ↓ ↓ . . .

hypothesis stream: h0 h1 h2 h3 . . .

Background

Learning Theory is concerned with the identification of collections
of c .e. sets by computable functions from enumerations of the sets.

A first definition.

• A machine, M, identifies an enumeration, (an)n∈N, for a set A
if limi→∞M(a0a1 . . . ai) = h and Wh = A.

• M learns a set, A, if it identifies every enumeration.

• M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

learning machine: ↓ ↓ ↓ ↓ . . .

hypothesis stream: h0 h1 h2 h3 . . .

Background

Learning Theory is concerned with the identification of collections
of c .e. sets by computable functions from enumerations of the sets.

A first definition.

• A machine, M, identifies an enumeration, (an)n∈N, for a set A
if limi→∞M(a0a1 . . . ai) = h and Wh = A.

• M learns a set, A, if it identifies every enumeration.

• M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

learning machine: ↓ ↓ ↓ ↓ . . .

hypothesis stream: h0 h1 h2 h3 . . .

Background

Learning Theory is concerned with the identification of collections
of c .e. sets by computable functions from enumerations of the sets.

A first definition.

• A machine, M, identifies an enumeration, (an)n∈N, for a set A
if limi→∞M(a0a1 . . . ai) = h and Wh = A.

• M learns a set, A, if it identifies every enumeration.

• M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

learning machine: ↓ ↓ ↓ ↓ . . .

hypothesis stream: h0 h1 h2 h3 . . .

Background

Learning Theory is concerned with the identification of collections
of c .e. sets by computable functions from enumerations of the sets.

A first definition.

• A machine, M, identifies an enumeration, (an)n∈N, for a set A
if limi→∞M(a0a1 . . . ai) = h and Wh = A.

• M learns a set, A, if it identifies every enumeration.

• M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

learning machine: ↓ ↓ ↓ ↓ . . .

hypothesis stream: h0 h1 h2 h3 . . .

Background

Examples

1. {A} is learnable for any c .e. set A.

2. {F : F is a finite set} is learnable by M(σ) = e where
We = content(σ).

3. {F : F is a finite set} ∪ {N} is not learnable.

4. {A ∪ {x} : x ∈ N} is not learnable for any non-computable,
c.e. set A.

Learning with errors is called anomalous learning.

Background

Examples

1. {A} is learnable for any c .e. set A.

2. {F : F is a finite set} is learnable by M(σ) = e where
We = content(σ).

3. {F : F is a finite set} ∪ {N} is not learnable.

4. {A ∪ {x} : x ∈ N} is not learnable for any non-computable,
c.e. set A.

Learning with errors is called anomalous learning.

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex∗∗
and TxtFext∗∗.

TxtFex∗∗
M TxtFex∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a ∈ S)(M(T [n]) ∈ S ∧Wa =∗ content(T)).

TxtFext∗∗
M TxtFext∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a, b ∈ S)(M(T [n]) ∈ S∧Wa = Wb =∗ content(T)).

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex∗∗
and TxtFext∗∗.

TxtFex∗∗
M TxtFex∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a ∈ S)(M(T [n]) ∈ S ∧Wa =∗ content(T)).

TxtFext∗∗
M TxtFext∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a, b ∈ S)(M(T [n]) ∈ S∧Wa = Wb =∗ content(T)).

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex∗∗
and TxtFext∗∗.

TxtFex∗∗
M TxtFex∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a ∈ S)(M(T [n]) ∈ S ∧Wa =∗ content(T)).

TxtFext∗∗
M TxtFext∗∗-identifies a text T if, and only if,

(∃S finite)(∀∞n)(∀a, b ∈ S)(M(T [n]) ∈ S∧Wa = Wb =∗ content(T)).

Key Definitions

Superficially, the hypothesis streams look quite similar:

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often and hypotheses of
different colors code different sets.

Key Definitions

Superficially, the hypothesis streams look quite similar:

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often and hypotheses of
different colors code different sets.

Key Definitions

Superficially, the hypothesis streams look quite similar:

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often

TxtFex∗∗: h0 h1 h2 h3 h4 h5 h6 h5 h6 h4 h5 . . .

TxtFext∗∗: k0 k1 k2 k3 k4 k5 k6 k5 k6 k4 k5 . . .

Colored hypotheses are repeated infinitely often and hypotheses of
different colors code different sets.

Question

• In 1986, Osherson, Stob and Weinstein asked whether
TxtFex∗∗ and TxtFext∗∗ are equivalent.

• In 1994, Fulk, Jain and Osherson proved that
(∀j ∈ N)(TxtFexj∗ ⊆ TxtFext∗∗).

• Earlier this year, I proved TxtFex∗2 6= TxtFext∗∗. This proves
TxtFex∗∗ 6= TxtFext∗∗ in the strongest possible way.

Question

• In 1986, Osherson, Stob and Weinstein asked whether
TxtFex∗∗ and TxtFext∗∗ are equivalent.

• In 1994, Fulk, Jain and Osherson proved that
(∀j ∈ N)(TxtFexj∗ ⊆ TxtFext∗∗).

• Earlier this year, I proved TxtFex∗2 6= TxtFext∗∗. This proves
TxtFex∗∗ 6= TxtFext∗∗ in the strongest possible way.

Question

• In 1986, Osherson, Stob and Weinstein asked whether
TxtFex∗∗ and TxtFext∗∗ are equivalent.

• In 1994, Fulk, Jain and Osherson proved that
(∀j ∈ N)(TxtFexj∗ ⊆ TxtFext∗∗).

• Earlier this year, I proved TxtFex∗2 6= TxtFext∗∗. This proves
TxtFex∗∗ 6= TxtFext∗∗ in the strongest possible way.

The Result

Theorem
There is a u.c .e. family that is TxtFex∗2-learnable, but not
TxtFext∗∗-learnable.

In particular,

Corollary

TxtFex∗∗ 6= TxtFext∗∗

The proof started as an infinite-injury priority argument, but the
tree collapsed.

We diagonalize against every possible machine by forcing machines
to commit to a finite number of hypotheses.

The Result

Theorem
There is a u.c .e. family that is TxtFex∗2-learnable, but not
TxtFext∗∗-learnable.

In particular,

Corollary

TxtFex∗∗ 6= TxtFext∗∗

The proof started as an infinite-injury priority argument, but the
tree collapsed.

We diagonalize against every possible machine by forcing machines
to commit to a finite number of hypotheses.

The Result

Theorem
There is a u.c .e. family that is TxtFex∗2-learnable, but not
TxtFext∗∗-learnable.

In particular,

Corollary

TxtFex∗∗ 6= TxtFext∗∗

The proof started as an infinite-injury priority argument, but the
tree collapsed.

We diagonalize against every possible machine by forcing machines
to commit to a finite number of hypotheses.

The Result

Theorem
There is a u.c .e. family that is TxtFex∗2-learnable, but not
TxtFext∗∗-learnable.

In particular,

Corollary

TxtFex∗∗ 6= TxtFext∗∗

The proof started as an infinite-injury priority argument, but the
tree collapsed.

We diagonalize against every possible machine by forcing machines
to commit to a finite number of hypotheses.

The Proof

Proof.

• A single step of the argument diagonalizes against a machine,
Me , by building a family, Le .

• Let Le = {e, e + 1, e + 2, . . .}
• We consider the tree of strings whose content is contained in
Le . All cones referred to subsequently will be subsets of this
tree.

• Define σ to be an (e, k)-stabilizing sequence iff
[e, e + k] ⊆ content(σ) ⊂ Le and for τ in the cone below σ

1. Me(τ) ≤ |σ|
2. WMe(σ) ∩ [0, k) = WMe(τ) ∩ [0, k)

• “σ is not an (e, k)-stabilizing sequence” is Σ0
1.

The Proof

Proof.

• A single step of the argument diagonalizes against a machine,
Me , by building a family, Le .

• Let Le = {e, e + 1, e + 2, . . .}

• We consider the tree of strings whose content is contained in
Le . All cones referred to subsequently will be subsets of this
tree.

• Define σ to be an (e, k)-stabilizing sequence iff
[e, e + k] ⊆ content(σ) ⊂ Le and for τ in the cone below σ

1. Me(τ) ≤ |σ|
2. WMe(σ) ∩ [0, k) = WMe(τ) ∩ [0, k)

• “σ is not an (e, k)-stabilizing sequence” is Σ0
1.

The Proof

Proof.

• A single step of the argument diagonalizes against a machine,
Me , by building a family, Le .

• Let Le = {e, e + 1, e + 2, . . .}
• We consider the tree of strings whose content is contained in
Le . All cones referred to subsequently will be subsets of this
tree.

• Define σ to be an (e, k)-stabilizing sequence iff
[e, e + k] ⊆ content(σ) ⊂ Le and for τ in the cone below σ

1. Me(τ) ≤ |σ|
2. WMe(σ) ∩ [0, k) = WMe(τ) ∩ [0, k)

• “σ is not an (e, k)-stabilizing sequence” is Σ0
1.

The Proof

Proof.

• A single step of the argument diagonalizes against a machine,
Me , by building a family, Le .

• Let Le = {e, e + 1, e + 2, . . .}
• We consider the tree of strings whose content is contained in
Le . All cones referred to subsequently will be subsets of this
tree.

• Define σ to be an (e, k)-stabilizing sequence iff
[e, e + k] ⊆ content(σ) ⊂ Le and for τ in the cone below σ

1. Me(τ) ≤ |σ|
2. WMe(σ) ∩ [0, k) = WMe(τ) ∩ [0, k)

• “σ is not an (e, k)-stabilizing sequence” is Σ0
1.

The Proof

Proof.

• A single step of the argument diagonalizes against a machine,
Me , by building a family, Le .

• Let Le = {e, e + 1, e + 2, . . .}
• We consider the tree of strings whose content is contained in
Le . All cones referred to subsequently will be subsets of this
tree.

• Define σ to be an (e, k)-stabilizing sequence iff
[e, e + k] ⊆ content(σ) ⊂ Le and for τ in the cone below σ

1. Me(τ) ≤ |σ|
2. WMe(σ) ∩ [0, k) = WMe(τ) ∩ [0, k)

• “σ is not an (e, k)-stabilizing sequence” is Σ0
1.

The Proof

• If there is an (e, n)-stabilizing sequence, there is a computable
sequence of strings that converges to an (e, n)-stabilizing
sequence in the limit.

• More generally, define σe,k,s to be an array of strings, with
lims→∞ σe,k,s = σe,k , if it exists, such that:

I σe,k,s ≺ σe,k+1,s for all k, s ∈ N.
I If σe,0, . . . σe,n are defined and there is an (e, n + 1)-stabilizing

sequence extending σe,n, then (σe,n+1,s)s∈N converges to such
a string.

• Let ae,k be the least even number such that σe,h,s = σe,h,s+1

for h ≤ k and s ≥ ae,k . Define be,k = ae,k + 1.

The Proof

• If there is an (e, n)-stabilizing sequence, there is a computable
sequence of strings that converges to an (e, n)-stabilizing
sequence in the limit.

• More generally, define σe,k,s to be an array of strings, with
lims→∞ σe,k,s = σe,k , if it exists, such that:

I σe,k,s ≺ σe,k+1,s for all k , s ∈ N.
I If σe,0, . . . σe,n are defined and there is an (e, n + 1)-stabilizing

sequence extending σe,n, then (σe,n+1,s)s∈N converges to such
a string.

• Let ae,k be the least even number such that σe,h,s = σe,h,s+1

for h ≤ k and s ≥ ae,k . Define be,k = ae,k + 1.

The Proof

• If there is an (e, n)-stabilizing sequence, there is a computable
sequence of strings that converges to an (e, n)-stabilizing
sequence in the limit.

• More generally, define σe,k,s to be an array of strings, with
lims→∞ σe,k,s = σe,k , if it exists, such that:

I σe,k,s ≺ σe,k+1,s for all k , s ∈ N.
I If σe,0, . . . σe,n are defined and there is an (e, n + 1)-stabilizing

sequence extending σe,n, then (σe,n+1,s)s∈N converges to such
a string.

• Let ae,k be the least even number such that σe,h,s = σe,h,s+1

for h ≤ k and s ≥ ae,k . Define be,k = ae,k + 1.

The Proof

• Define Re = Le \ {ae,i : i ∈ N} and R∗e = Le \ {be,i : i ∈ N},
both of which are c .e.

• Let Le = {Re ∪ (F ∩ Le) : F is a finite set} ∪ {R∗e ∪ (F ∩ Le) :
F is a finite set}.

• We must prove two claims:

1. Le is not TxtFext∗∗-learnable by the fixed machine, Me .
2.

⋃
e∈N Le is TxtFex∗2-learnable.

The Proof

• Define Re = Le \ {ae,i : i ∈ N} and R∗e = Le \ {be,i : i ∈ N},
both of which are c .e.

• Let Le = {Re ∪ (F ∩ Le) : F is a finite set} ∪ {R∗e ∪ (F ∩ Le) :
F is a finite set}.

• We must prove two claims:

1. Le is not TxtFext∗∗-learnable by the fixed machine, Me .
2.

⋃
e∈N Le is TxtFex∗2-learnable.

The Proof

• Define Re = Le \ {ae,i : i ∈ N} and R∗e = Le \ {be,i : i ∈ N},
both of which are c .e.

• Let Le = {Re ∪ (F ∩ Le) : F is a finite set} ∪ {R∗e ∪ (F ∩ Le) :
F is a finite set}.

• We must prove two claims:

1. Le is not TxtFext∗∗-learnable by the fixed machine, Me .
2.

⋃
e∈N Le is TxtFex∗2-learnable.

The Proof

1. Me does not TxtFext∗∗-learn Le

• Suppose there is a minimal k 6= 0 such that σe,k is undefined.

I There is no σ � σe,k−1 such that, in the cone below σ, all
hypotheses code sets that agree on [0, k).

I Inductively build an enumeration of Le on which Me infinitely
often outputs codes for two sets that are not equal.

• Suppose σe,0 is undefined.

I If possible, build an enumeration as above.
I If not, then build an enumeration on which Me nevers settles

upon a finite list of hypotheses.

The Proof

1. Me does not TxtFext∗∗-learn Le

• Suppose there is a minimal k 6= 0 such that σe,k is undefined.

I There is no σ � σe,k−1 such that, in the cone below σ, all
hypotheses code sets that agree on [0, k).

I Inductively build an enumeration of Le on which Me infinitely
often outputs codes for two sets that are not equal.

• Suppose σe,0 is undefined.

I If possible, build an enumeration as above.
I If not, then build an enumeration on which Me nevers settles

upon a finite list of hypotheses.

The Proof

1. Me does not TxtFext∗∗-learn Le

• Suppose there is a minimal k 6= 0 such that σe,k is undefined.

I There is no σ � σe,k−1 such that, in the cone below σ, all
hypotheses code sets that agree on [0, k).

I Inductively build an enumeration of Le on which Me infinitely
often outputs codes for two sets that are not equal.

• Suppose σe,0 is undefined.

I If possible, build an enumeration as above.
I If not, then build an enumeration on which Me nevers settles

upon a finite list of hypotheses.

The Proof

1. Me does not TxtFext∗∗-learn Le

• Suppose there is a minimal k 6= 0 such that σe,k is undefined.

I There is no σ � σe,k−1 such that, in the cone below σ, all
hypotheses code sets that agree on [0, k).

I Inductively build an enumeration of Le on which Me infinitely
often outputs codes for two sets that are not equal.

• Suppose σe,0 is undefined.

I If possible, build an enumeration as above.
I If not, then build an enumeration on which Me nevers settles

upon a finite list of hypotheses.

The Proof

• Suppose σe,k is defined for all k ∈ N.

I Re and R∗e are both coinfinite and have infinite symmetric
difference.

I By the definition of σe,0, there is a finite list, h0, h1, . . . , hn, of
distinct hypotheses Me outputs on extensions of σe,0.

I Pick k large enough so that
(∀i , j ≤ n)(∃x ≤ k)(Whi 6= Whj → x ∈Whi4Whj).

I All hypotheses made on extensions of σe,k contained in Le
must agree up to k − 1, thus be equal.

I A = content(σe,k) ∪ Re and B = content(σe,k) ∪ R∗e extend
σe,k and have infinite symmetric difference.

The Proof

• Suppose σe,k is defined for all k ∈ N.

I Re and R∗e are both coinfinite and have infinite symmetric
difference.

I By the definition of σe,0, there is a finite list, h0, h1, . . . , hn, of
distinct hypotheses Me outputs on extensions of σe,0.

I Pick k large enough so that
(∀i , j ≤ n)(∃x ≤ k)(Whi 6= Whj → x ∈Whi4Whj).

I All hypotheses made on extensions of σe,k contained in Le
must agree up to k − 1, thus be equal.

I A = content(σe,k) ∪ Re and B = content(σe,k) ∪ R∗e extend
σe,k and have infinite symmetric difference.

The Proof

• Suppose σe,k is defined for all k ∈ N.

I Re and R∗e are both coinfinite and have infinite symmetric
difference.

I By the definition of σe,0, there is a finite list, h0, h1, . . . , hn, of
distinct hypotheses Me outputs on extensions of σe,0.

I Pick k large enough so that
(∀i , j ≤ n)(∃x ≤ k)(Whi 6= Whj → x ∈Whi4Whj).

I All hypotheses made on extensions of σe,k contained in Le
must agree up to k − 1, thus be equal.

I A = content(σe,k) ∪ Re and B = content(σe,k) ∪ R∗e extend
σe,k and have infinite symmetric difference.

The Proof

• Suppose σe,k is defined for all k ∈ N.

I Re and R∗e are both coinfinite and have infinite symmetric
difference.

I By the definition of σe,0, there is a finite list, h0, h1, . . . , hn, of
distinct hypotheses Me outputs on extensions of σe,0.

I Pick k large enough so that
(∀i , j ≤ n)(∃x ≤ k)(Whi 6= Whj → x ∈Whi4Whj).

I All hypotheses made on extensions of σe,k contained in Le
must agree up to k − 1, thus be equal.

I A = content(σe,k) ∪ Re and B = content(σe,k) ∪ R∗e extend
σe,k and have infinite symmetric difference.

The Proof

2.
⋃

e∈N Le is TxtFex∗2-learnable

• Let xe and x∗e code Re and R∗e , respectively.

• Re is co-even and R∗e is co-odd above e, hence the sets are
recognizable by the types of numbers they do not contain.

• For an input string, σ, we define the following:

I mσ = min(content(σ)).
I nσ = min({y > mσ : y /∈ content(σ)}).

• Define a learning machine, M, by

M(σ) =

xe e = mσ ∧ (nσ is even)
x∗e e = mσ ∧ (nσ is odd)
0 otherwise

The Proof

2.
⋃

e∈N Le is TxtFex∗2-learnable

• Let xe and x∗e code Re and R∗e , respectively.

• Re is co-even and R∗e is co-odd above e, hence the sets are
recognizable by the types of numbers they do not contain.

• For an input string, σ, we define the following:

I mσ = min(content(σ)).
I nσ = min({y > mσ : y /∈ content(σ)}).

• Define a learning machine, M, by

M(σ) =

xe e = mσ ∧ (nσ is even)
x∗e e = mσ ∧ (nσ is odd)
0 otherwise

The Proof

2.
⋃

e∈N Le is TxtFex∗2-learnable

• Let xe and x∗e code Re and R∗e , respectively.

• Re is co-even and R∗e is co-odd above e, hence the sets are
recognizable by the types of numbers they do not contain.

• For an input string, σ, we define the following:

I mσ = min(content(σ)).
I nσ = min({y > mσ : y /∈ content(σ)}).

• Define a learning machine, M, by

M(σ) =

xe e = mσ ∧ (nσ is even)
x∗e e = mσ ∧ (nσ is odd)
0 otherwise

The Proof

2.
⋃

e∈N Le is TxtFex∗2-learnable

• Let xe and x∗e code Re and R∗e , respectively.

• Re is co-even and R∗e is co-odd above e, hence the sets are
recognizable by the types of numbers they do not contain.

• For an input string, σ, we define the following:

I mσ = min(content(σ)).
I nσ = min({y > mσ : y /∈ content(σ)}).

• Define a learning machine, M, by

M(σ) =

xe e = mσ ∧ (nσ is even)
x∗e e = mσ ∧ (nσ is odd)
0 otherwise

The Proof

• M recieves an enumeration for Re ∪ F .

• If Re is cofinite, then both xe and x∗e are correct hypotheses.

• If Re is coinfinite, then the least element of Le \ (Re ∪ F) is an
even number.

• Cofinitely, M will output the hypothesis xe .

Other Learning Criteria

TxtFin
Fix a symbol “?”. M TxtFin-identifies a text T if, and only if,
∃n∀n′ < n(M(T [n′]) = ?∧M(T [n]) 6= ?∧WM(T [n]) = content(T)).

TxtEx
M TxtEx-identifies a text T if, and only if,
∃n(limi→∞M(T [i])→ n ∧Wn = content(T)).

TxtBC
M TxtBC-identifies a text T if, and only if,
∃n∀i > n(WM(T [i]) = content(T)).

TxtEx∗

M TxtEx∗-identifies a text T if, and only if,
∃n(limi→∞M(T [i])→ n ∧Wn =∗ content(T)).

Other Learning Criteria

Index Sets

1. Let FINL denote the index set of all Σ0
1 codes for u.c.e.

families such that e ∈ FINL if, and only if, e codes a
TxtFin-learnable family.

2. Let EXL denote the index set of all Σ0
1 codes for u.c .e.

families such that e ∈ EXL if, and only if, e codes a
TxtEx-learnable family.

3. Let BCL denote the index set of all Σ0
1 codes for u.c .e.

families such that e ∈ BCL if, and only if, e codes a
TxtBC-learnable family.

4. Let EXL∗ denote the index set of all Σ0
1 codes for u.c .e.

families such that e ∈ EXL∗ if, and only if, e codes a
TxtEx∗-learnable family.

Arithmetic Hierarchy

Theorem
FINL is Σ0

3-complete

Theorem
EXL is Σ0

4-complete

Theorem
BCL is Σ0

5-complete

Theorem
EXL∗ is Σ0

5-complete

Thank You

