Anomalous Vacillatory Learning

Achilles Beros

Department of Mathematics, UW - Madison

November 15, 2012

Background

Learning Theory is concerned with the identification of collections of $c . e$. sets by computable functions from enumerations of the sets.

Background

Learning Theory is concerned with the identification of collections of $c . e$. sets by computable functions from enumerations of the sets.

A first definition.

- A machine, M, identifies an enumeration, $\left(a_{n}\right)_{n \in \mathbb{N}}$, for a set A if $\lim _{i \rightarrow \infty} M\left(a_{0} a_{1} \ldots a_{i}\right)=h$ and $W_{h}=A$.
- M learns a set, A, if it identifies every enumeration.
- M learns a family of sets if it learns each set in the family.

Background

Learning Theory is concerned with the identification of collections of $c . e$. sets by computable functions from enumerations of the sets.

A first definition.

- A machine, M, identifies an enumeration, $\left(a_{n}\right)_{n \in \mathbb{N}}$, for a set A if $\lim _{i \rightarrow \infty} M\left(a_{0} a_{1} \ldots a_{i}\right)=h$ and $W_{h}=A$.
- M learns a set, A, if it identifies every enumeration.
- M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

Background

Learning Theory is concerned with the identification of collections of $c . e$. sets by computable functions from enumerations of the sets.

A first definition.

- A machine, M, identifies an enumeration, $\left(a_{n}\right)_{n \in \mathbb{N}}$, for a set A if $\lim _{i \rightarrow \infty} M\left(a_{0} a_{1} \ldots a_{i}\right)=h$ and $W_{h}=A$.
- M learns a set, A, if it identifies every enumeration.
- M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

| input data stream: | a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$a_{8} \quad a_{9} \ldots$

Background

Learning Theory is concerned with the identification of collections of $c . e$. sets by computable functions from enumerations of the sets.

A first definition.

- A machine, M, identifies an enumeration, $\left(a_{n}\right)_{n \in \mathbb{N}}$, for a set A if $\lim _{i \rightarrow \infty} M\left(a_{0} a_{1} \ldots a_{i}\right)=h$ and $W_{h}=A$.
- M learns a set, A, if it identifies every enumeration.
- M learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

```
input data stream: }\mp@subsup{a}{0}{}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{
    learning machine: \downarrow \downarrow & .. 
hypothesis stream: ho hl l
```


Background

Examples

1. $\{A\}$ is learnable for any c.e. set A.
2. $\{F: F$ is a finite set $\}$ is learnable by $M(\sigma)=e$ where $W_{e}=$ content (σ).
3. $\{F: F$ is a finite set $\} \cup\{\mathbb{N}\}$ is not learnable.
4. $\{A \cup\{x\}: x \in \mathbb{N}\}$ is not learnable for any non-computable, c.e. set A.

Background

Examples

1. $\{A\}$ is learnable for any c.e. set A.
2. $\{F: F$ is a finite set $\}$ is learnable by $M(\sigma)=e$ where $W_{e}=$ content (σ).
3. $\{F: F$ is a finite set $\} \cup\{\mathbb{N}\}$ is not learnable.
4. $\{A \cup\{x\}: x \in \mathbb{N}\}$ is not learnable for any non-computable, c.e. set A.

Learning with errors is called anomalous learning.

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex** and TxtFext**.

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex* and TxtFext**.

TxtFex*
M TxtFex**-identifies a text T if, and only if,
$(\exists S$ finite $)\left(\forall^{\infty} n\right)(\forall a \in S)\left(M(T[n]) \in S \wedge W_{a}={ }^{*} \operatorname{content}(T)\right)$.

Key Definitions

We consider two types of anomalous vacillatory learning, TxtFex* and TxtFext**.

TxtFex**
M TxtFex**-identifies a text T if, and only if, $(\exists S$ finite $)\left(\forall^{\infty} n\right)(\forall a \in S)\left(M(T[n]) \in S \wedge W_{a}={ }^{*} \operatorname{content}(T)\right)$.

TxtFext*
M TxtFext**-identifies a text T if, and only if,
$(\exists S$ finite $)\left(\forall^{\infty} n\right)(\forall a, b \in S)\left(M(T[n]) \in S \wedge W_{a}=W_{b}={ }^{*} \operatorname{content}(T)\right)$.

Key Definitions

Superficially, the hypothesis streams look quite similar:

Key Definitions

Superficially, the hypothesis streams look quite similar:
TxtFex ${ }_{*}^{*}: h_{0} h_{1} h_{2} h_{3} h_{4} h_{5} h_{6} h_{5} h_{6} h_{4} h_{5} \ldots$ TxtFext*: $k_{0} k_{1} k_{2} k_{3} k_{4} k_{5} k_{6} k_{5} k_{6} k_{4} k_{5} \ldots$

Colored hypotheses are repeated infinitely often

Key Definitions

Superficially, the hypothesis streams look quite similar:

$$
\begin{aligned}
\mathrm{TxtFex}_{*}^{*}: & h_{0}
\end{aligned} h_{1} h_{2} h_{3} h_{4} h_{5} h_{6} h_{5} h_{6} h_{4} h_{5} \ldots .
$$

Colored hypotheses are repeated infinitely often

$$
\begin{aligned}
\mathrm{TxtFex}_{*}^{*}: & h_{0} \\
h_{1} & h_{2}
\end{aligned} h_{3} h_{4} h_{5} h_{6} h_{5} h_{6} h_{4} h_{5} \ldots
$$

Colored hypotheses are repeated infinitely often and hypotheses of different colors code different sets.

Question

- In 1986, Osherson, Stob and Weinstein asked whether TxtFex** and $\mathrm{TxtFext}_{*}^{*}$ are equivalent.

Question

- In 1986, Osherson, Stob and Weinstein asked whether TxtFex** ${ }_{*}^{*}$ and xtFext** are equivalent.
- In 1994, Fulk, Jain and Osherson proved that $(\forall j \in \mathbb{N})\left(\mathrm{TxtFex}_{*}^{j} \subseteq \mathrm{TxtFext}_{*}^{*}\right)$.

Question

- In 1986, Osherson, Stob and Weinstein asked whether TxtFex** ${ }_{*}^{*}$ and xtext** are equivalent.
- In 1994, Fulk, Jain and Osherson proved that $(\forall j \in \mathbb{N})\left(\mathrm{TxtFex}_{*}^{j} \subseteq \mathrm{TxtFext}_{*}^{*}\right)$.
- Earlier this year, I proved $T x t F e x_{2}^{*} \neq T x t F e x t *$. This proves TxtFex ${ }_{*}^{*} \neq \mathrm{TxtFext}_{*}^{*}$ in the strongest possible way.

The Result

Theorem
There is a u.c.e. family that is TxtFex*-learnable, but not TxtFext*-learnable.

The Result

Theorem
There is a u.c.e. family that is TxtFex*-learnable, but not TxtFext***earnable.

In particular,
Corollary
TxtFex** $=$ TxtFext**

The Result

Theorem
There is a u.c.e. family that is TxtFex*-learnable, but not TxtFext***earnable.

In particular,
Corollary
TxtFex** $=$ TxtFext**

The proof started as an infinite-injury priority argument, but the tree collapsed.

The Result

Theorem
There is a u.c.e. family that is TxtFex*-learnable, but not TxtFext**-learnable.

In particular,
Corollary
$T x t F e x_{*}^{*} \neq$ TxtFext $_{*}^{*}$

The proof started as an infinite-injury priority argument, but the tree collapsed.

We diagonalize against every possible machine by forcing machines to commit to a finite number of hypotheses.

The Proof

Proof.

- A single step of the argument diagonalizes against a machine, M_{e}, by building a family, \mathcal{L}_{e}.

The Proof

Proof.

- A single step of the argument diagonalizes against a machine, M_{e}, by building a family, \mathcal{L}_{e}.
- Let $L_{e}=\{e, e+1, e+2, \ldots\}$

The Proof

Proof.

- A single step of the argument diagonalizes against a machine, M_{e}, by building a family, \mathcal{L}_{e}.
- Let $L_{e}=\{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_{e}. All cones referred to subsequently will be subsets of this tree.

The Proof

Proof.

- A single step of the argument diagonalizes against a machine, M_{e}, by building a family, \mathcal{L}_{e}.
- Let $L_{e}=\{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_{e}. All cones referred to subsequently will be subsets of this tree.
- Define σ to be an (e, k)-stabilizing sequence iff $[e, e+k] \subseteq \operatorname{content}(\sigma) \subset L_{e}$ and for τ in the cone below σ

1. $M_{e}(\tau) \leq|\sigma|$
2. $W_{M_{e}(\sigma)} \cap[0, k)=W_{M_{e}(\tau)} \cap[0, k)$

The Proof

Proof.

- A single step of the argument diagonalizes against a machine, M_{e}, by building a family, \mathcal{L}_{e}.
- Let $L_{e}=\{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_{e}. All cones referred to subsequently will be subsets of this tree.
- Define σ to be an (e, k)-stabilizing sequence iff $[e, e+k] \subseteq \operatorname{content}(\sigma) \subset L_{e}$ and for τ in the cone below σ

1. $M_{e}(\tau) \leq|\sigma|$
2. $W_{M_{e}(\sigma)} \cap[0, k)=W_{M_{e}(\tau)} \cap[0, k)$

- " σ is not an (e, k)-stabilizing sequence" is Σ_{1}^{0}.

The Proof

- If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e,n)-stabilizing sequence in the limit.

The Proof

- If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e,n)-stabilizing sequence in the limit.
- More generally, define $\sigma_{e, k, s}$ to be an array of strings, with $\lim _{s \rightarrow \infty} \sigma_{e, k, s}=\sigma_{e, k}$, if it exists, such that:
- $\sigma_{e, k, s} \prec \sigma_{e, k+1, s}$ for all $k, s \in \mathbb{N}$.
- If $\sigma_{e, 0}, \ldots \sigma_{e, n}$ are defined and there is an ($e, n+1$)-stabilizing sequence extending $\sigma_{e, n}$, then $\left(\sigma_{e, n+1, s}\right)_{s \in \mathbb{N}}$ converges to such a string.

The Proof

- If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e,n)-stabilizing sequence in the limit.
- More generally, define $\sigma_{e, k, s}$ to be an array of strings, with $\lim _{s \rightarrow \infty} \sigma_{e, k, s}=\sigma_{e, k}$, if it exists, such that:
- $\sigma_{e, k, s} \prec \sigma_{e, k+1, s}$ for all $k, s \in \mathbb{N}$.
- If $\sigma_{e, 0}, \ldots \sigma_{e, n}$ are defined and there is an ($e, n+1$)-stabilizing sequence extending $\sigma_{e, n}$, then $\left(\sigma_{e, n+1, s}\right)_{s \in \mathbb{N}}$ converges to such a string.
- Let $a_{e, k}$ be the least even number such that $\sigma_{e, h, s}=\sigma_{e, h, s+1}$ for $h \leq k$ and $s \geq a_{e, k}$. Define $b_{e, k}=a_{e, k}+1$.

The Proof

- Define $R_{e}=L_{e} \backslash\left\{a_{e, i}: i \in \mathbb{N}\right\}$ and $R_{e}^{*}=L_{e} \backslash\left\{b_{e, i}: i \in \mathbb{N}\right\}$, both of which are c.e.

The Proof

- Define $R_{e}=L_{e} \backslash\left\{a_{e, i}: i \in \mathbb{N}\right\}$ and $R_{e}^{*}=L_{e} \backslash\left\{b_{e, i}: i \in \mathbb{N}\right\}$, both of which are c.e.
- Let $\mathcal{L}_{e}=\left\{R_{e} \cup\left(F \cap L_{e}\right): F\right.$ is a finite set $\} \cup\left\{R_{e}^{*} \cup\left(F \cap L_{e}\right)\right.$: F is a finite set $\}$.

The Proof

- Define $R_{e}=L_{e} \backslash\left\{a_{e, i}: i \in \mathbb{N}\right\}$ and $R_{e}^{*}=L_{e} \backslash\left\{b_{e, i}: i \in \mathbb{N}\right\}$, both of which are c.e.
- Let $\mathcal{L}_{e}=\left\{R_{e} \cup\left(F \cap L_{e}\right): F\right.$ is a finite set $\} \cup\left\{R_{e}^{*} \cup\left(F \cap L_{e}\right)\right.$: F is a finite set $\}$.
- We must prove two claims:

1. \mathcal{L}_{e} is not TxtFext**-learnable by the fixed machine, M_{e}.
2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_{e}$ is $\mathrm{TxtFex}{ }_{2}^{*}$-learnable.

The Proof

1. M_{e} does not $\mathrm{TxtFext}_{*}^{*}$-learn \mathcal{L}_{e}

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e, k}$ is undefined.

The Proof

1. M_{e} does not $\mathrm{TxtFext}_{*}^{*}$-learn \mathcal{L}_{e}

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e, k}$ is undefined.
- There is no $\sigma \succ \sigma_{e, k-1}$ such that, in the cone below σ, all hypotheses code sets that agree on $[0, k)$.

The Proof

1. M_{e} does not $\mathrm{TxtFext}_{*}^{*}$-learn \mathcal{L}_{e}

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e, k}$ is undefined.
- There is no $\sigma \succ \sigma_{e, k-1}$ such that, in the cone below σ, all hypotheses code sets that agree on $[0, k)$.
- Inductively build an enumeration of L_{e} on which M_{e} infinitely often outputs codes for two sets that are not equal.

1. M_{e} does not $\mathrm{TxtFext}_{*}^{*}$-learn \mathcal{L}_{e}

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e, k}$ is undefined.
- There is no $\sigma \succ \sigma_{e, k-1}$ such that, in the cone below σ, all hypotheses code sets that agree on $[0, k)$.
- Inductively build an enumeration of L_{e} on which M_{e} infinitely often outputs codes for two sets that are not equal.
- Suppose $\sigma_{e, 0}$ is undefined.
- If possible, build an enumeration as above.
- If not, then build an enumeration on which M_{e} nevers settles upon a finite list of hypotheses.

The Proof

- Suppose $\sigma_{e, k}$ is defined for all $k \in \mathbb{N}$.

The Proof

- Suppose $\sigma_{e, k}$ is defined for all $k \in \mathbb{N}$.
- R_{e} and R_{e}^{*} are both coinfinite and have infinite symmetric difference.
- By the definition of $\sigma_{e, 0}$, there is a finite list, $h_{0}, h_{1}, \ldots, h_{n}$, of distinct hypotheses M_{e} outputs on extensions of $\sigma_{e, 0}$.

The Proof

- Suppose $\sigma_{e, k}$ is defined for all $k \in \mathbb{N}$.
- R_{e} and R_{e}^{*} are both coinfinite and have infinite symmetric difference.
- By the definition of $\sigma_{e, 0}$, there is a finite list, $h_{0}, h_{1}, \ldots, h_{n}$, of distinct hypotheses M_{e} outputs on extensions of $\sigma_{e, 0}$.
- Pick k large enough so that $(\forall i, j \leq n)(\exists x \leq k)\left(W_{h_{i}} \neq W_{h_{j}} \rightarrow x \in W_{h_{i}} \triangle W_{h_{j}}\right)$.
- All hypotheses made on extensions of $\sigma_{e, k}$ contained in L_{e} must agree up to $k-1$, thus be equal.

The Proof

- Suppose $\sigma_{e, k}$ is defined for all $k \in \mathbb{N}$.
- R_{e} and R_{e}^{*} are both coinfinite and have infinite symmetric difference.
- By the definition of $\sigma_{e, 0}$, there is a finite list, $h_{0}, h_{1}, \ldots, h_{n}$, of distinct hypotheses M_{e} outputs on extensions of $\sigma_{e, 0}$.
- Pick k large enough so that $(\forall i, j \leq n)(\exists x \leq k)\left(W_{h_{i}} \neq W_{h_{j}} \rightarrow x \in W_{h_{i}} \triangle W_{h_{j}}\right)$.
- All hypotheses made on extensions of $\sigma_{e, k}$ contained in L_{e} must agree up to $k-1$, thus be equal.
- $A=\operatorname{content}\left(\sigma_{e, k}\right) \cup R_{e}$ and $B=\operatorname{content}\left(\sigma_{e, k}\right) \cup R_{e}^{*}$ extend $\sigma_{e, k}$ and have infinite symmetric difference.

The Proof

2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_{e}$ is TxtFex_{2}^{*}-learnable

The Proof

2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_{e}$ is TxtFex_{2}^{*}-learnable

- Let x_{e} and x_{e}^{*} code R_{e} and R_{e}^{*}, respectively.
- R_{e} is co-even and R_{e}^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.

The Proof

2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_{e}$ is TxtFex_{2}^{*}-learnable

- Let x_{e} and x_{e}^{*} code R_{e} and R_{e}^{*}, respectively.
- R_{e} is co-even and R_{e}^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.
- For an input string, σ, we define the following:
- $m_{\sigma}=\min (\operatorname{content}(\sigma))$.
- $n_{\sigma}=\min \left(\left\{y>m_{\sigma}: y \notin \operatorname{content}(\sigma)\right\}\right)$.

The Proof

2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_{e}$ is TxtFex_{2}^{*}-learnable

- Let x_{e} and x_{e}^{*} code R_{e} and R_{e}^{*}, respectively.
- R_{e} is co-even and R_{e}^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.
- For an input string, σ, we define the following:
- $m_{\sigma}=\min ($ content $(\sigma))$.
- $n_{\sigma}=\min \left(\left\{y>m_{\sigma}: y \notin \operatorname{content}(\sigma)\right\}\right)$.
- Define a learning machine, M, by

$$
M(\sigma)=\left\{\begin{array}{lr}
x_{e} & e=m_{\sigma} \wedge\left(n_{\sigma} \text { is even }\right) \\
x_{e}^{*} & e=m_{\sigma} \wedge\left(n_{\sigma} \text { is odd }\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

The Proof

- M recieves an enumeration for $R_{e} \cup F$.
- If R_{e} is cofinite, then both x_{e} and x_{e}^{*} are correct hypotheses.
- If R_{e} is coinfinite, then the least element of $L_{e} \backslash\left(R_{e} \cup F\right)$ is an even number.
- Cofinitely, M will output the hypothesis x_{e}.

Other Learning Criteria

TxtFin

Fix a symbol "?". M TxtFin-identifies a text T if, and only if, $\exists n \forall n^{\prime}<n\left(M\left(T\left[n^{\prime}\right]\right)=? \wedge M(T[n]) \neq ? \wedge W_{M(T[n])}=\operatorname{content}(T)\right)$.

TxtEx
M TxtEx-identifies a text T if, and only if, $\exists n\left(\lim _{i \rightarrow \infty} M(T[i]) \rightarrow n \wedge W_{n}=\right.$ content $\left.(T)\right)$.

TxtBC
M TxtBC-identifies a text T if, and only if,
$\exists n \forall i>n\left(W_{M(T[i])}=\operatorname{content}(T)\right)$.
TxtEx*
M TxtEx*-identifies a text T if, and only if, $\exists n\left(\lim _{i \rightarrow \infty} M(T[i]) \rightarrow n \wedge W_{n}=^{*}\right.$ content $\left.(T)\right)$.

Other Learning Criteria

Index Sets

1. Let FINL denote the index set of all Σ_{1}^{0} codes for u.c.e. families such that $e \in$ FINL if, and only if, e codes a TxtFin-learnable family.
2. Let EXL denote the index set of all Σ_{1}^{0} codes for u.c.e. families such that $e \in$ EXL if, and only if, e codes a TxtEx-learnable family.
3. Let BCL denote the index set of all Σ_{1}^{0} codes for u.c.e. families such that $e \in B C L$ if, and only if, e codes a TxtBC-learnable family.
4. Let $E X L^{*}$ denote the index set of all Σ_{1}^{0} codes for u.c.e. families such that $e \in E X L^{*}$ if, and only if, e codes a TxtEx*-learnable family.

Arithmetic Hierarchy

Theorem
FINL is Σ_{3}^{0}-complete
Theorem
EXL is Σ_{4}^{0}-complete
Theorem
$B C L$ is Σ_{5}^{0}-complete
Theorem
$E X L^{*}$ is Σ_{5}^{0}-complete

Thank You

