Anomalous Vacillatory Learning

Achilles Beros

Department of Mathematics, UW - Madison

November 15, 2012

A first definition.

- A machine, M, identifies an enumeration, (a_n)_{n∈N}, for a set A if lim_{i→∞} M(a₀a₁...a_i) = h and W_h = A.
- *M* learns a set, *A*, if it identifies every enumeration.
- *M* learns a family of sets if it learns each set in the family.

A first definition.

- A machine, M, identifies an enumeration, (a_n)_{n∈N}, for a set A if lim_{i→∞} M(a₀a₁...a_i) = h and W_h = A.
- *M* learns a set, *A*, if it identifies every enumeration.
- *M* learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

A first definition.

- A machine, M, identifies an enumeration, (a_n)_{n∈N}, for a set A if lim_{i→∞} M(a₀a₁...a_i) = h and W_h = A.
- *M* learns a set, *A*, if it identifies every enumeration.
- *M* learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: $a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 \dots$ learning machine: $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \dots$ hypothesis stream: $h_0 \qquad h_1 \qquad \qquad h_2 h_3 \qquad \dots$

A first definition.

- A machine, M, identifies an enumeration, (a_n)_{n∈N}, for a set A if lim_{i→∞} M(a₀a₁...a_i) = h and W_h = A.
- *M* learns a set, *A*, if it identifies every enumeration.
- *M* learns a family of sets if it learns each set in the family.

This is known as TxtEx-learning, or learning in the limit.

input data stream: $a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 \dots$ learning machine: $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \dots$ hypothesis stream: $h_0 \qquad h_1 \qquad \qquad h_2 h_3 \qquad \dots$

Examples

- 1. $\{A\}$ is learnable for any *c.e.* set *A*.
- 2. {F : F is a finite set} is learnable by $M(\sigma) = e$ where $W_e = \text{content}(\sigma)$.
- 3. $\{F : F \text{ is a finite set}\} \cup \{\mathbb{N}\}$ is not learnable.
- 4. $\{A \cup \{x\} : x \in \mathbb{N}\}$ is not learnable for any non-computable, *c.e.* set *A*.

Examples

- 1. $\{A\}$ is learnable for any *c.e.* set *A*.
- 2. {F : F is a finite set} is learnable by $M(\sigma) = e$ where $W_e = \text{content}(\sigma)$.
- 3. $\{F : F \text{ is a finite set}\} \cup \{\mathbb{N}\}$ is not learnable.
- 4. $\{A \cup \{x\} : x \in \mathbb{N}\}$ is not learnable for any non-computable, *c.e.* set *A*.

Learning with errors is called anomalous learning.

We consider two types of anomalous vacillatory learning, TxtFex^*_* and $\mathsf{TxtFex}^*_*.$

We consider two types of anomalous vacillatory learning, TxtFex^*_* and $\mathsf{TxtFext}^*_*.$

TxtFex*

M TxtFex^{*}_{*}-identifies a text T if, and only if,

 $(\exists S \text{ finite})(\forall^{\infty} n)(\forall a \in S)(M(T[n]) \in S \land W_a =^* \text{content}(T)).$

We consider two types of anomalous vacillatory learning, TxtFex^*_* and $\mathsf{TxtFext}^*_*.$

TxtFex*

M TxtFex^{*}_{*}-identifies a text T if, and only if,

 $(\exists S \text{ finite})(\forall^{\infty} n)(\forall a \in S)(M(T[n]) \in S \land W_a =^* \text{content}(T)).$

TxtFext*

M TxtFext^{*}_{*}-identifies a text T if, and only if,

 $(\exists S \text{ finite})(\forall^{\infty} n)(\forall a, b \in S)(M(T[n]) \in S \land W_a = W_b =^* \text{content}(T)).$

Superficially, the hypothesis streams look quite similar:

Superficially, the hypothesis streams look quite similar:

TxtFex_{*}^{*}: $h_0 h_1 h_2 h_3 h_4 h_5 h_6 h_5 h_6 h_4 h_5 \dots$ TxtFext_{*}^{*}: $k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_5 k_6 k_4 k_5 \dots$

Colored hypotheses are repeated infinitely often

Superficially, the hypothesis streams look quite similar:

TxtFex_{*}^{*}: $h_0 h_1 h_2 h_3 h_4 h_5 h_6 h_5 h_6 h_4 h_5 \dots$ TxtFext_{*}^{*}: $k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_5 k_6 k_4 k_5 \dots$

Colored hypotheses are repeated infinitely often

TxtFex_{*}^{*}: $h_0 h_1 h_2 h_3 h_4 h_5 h_6 h_5 h_6 h_4 h_5 \dots$ TxtFext_{*}^{*}: $k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_5 k_6 k_4 k_5 \dots$

Colored hypotheses are repeated infinitely often and hypotheses of different colors code different sets.

 In 1986, Osherson, Stob and Weinstein asked whether TxtFex^{*} and TxtFext^{*} are equivalent.

- In 1986, Osherson, Stob and Weinstein asked whether TxtFex* and TxtFext* are equivalent.
- In 1994, Fulk, Jain and Osherson proved that $(\forall j \in \mathbb{N})(\mathsf{TxtFex}_*^j \subseteq \mathsf{TxtFext}_*^*).$

- In 1986, Osherson, Stob and Weinstein asked whether TxtFex* and TxtFext* are equivalent.
- In 1994, Fulk, Jain and Osherson proved that $(\forall j \in \mathbb{N})(\mathsf{TxtFex}_*^j \subseteq \mathsf{TxtFext}_*^*).$
- Earlier this year, I proved $TxtFex_2^* \neq TxtFext_*^*$. This proves $TxtFex_*^* \neq TxtFext_*^*$ in the strongest possible way.

There is a u.c.e. family that is $TxtFex_2^*$ -learnable, but not $TxtFext_*^*$ -learnable.

There is a u.c.e. family that is $TxtFex_2^*$ -learnable, but not $TxtFext_*^*$ -learnable.

In particular,

Corollary $TxtFex_*^* \neq TxtFext_*^*$

There is a u.c.e. family that is $TxtFex_2^*$ -learnable, but not $TxtFext_*^*$ -learnable.

In particular,

Corollary $TxtFex_*^* \neq TxtFext_*^*$

The proof started as an infinite-injury priority argument, but the tree collapsed.

There is a u.c.e. family that is $TxtFex_2^*$ -learnable, but not $TxtFex_4^*$ -learnable.

In particular,

Corollary $TxtFex_*^* \neq TxtFext_*^*$

The proof started as an infinite-injury priority argument, but the tree collapsed.

We diagonalize against every possible machine by forcing machines to commit to a finite number of hypotheses.

• A single step of the argument diagonalizes against a machine, M_e , by building a family, \mathcal{L}_e .

- A single step of the argument diagonalizes against a machine, M_e , by building a family, \mathcal{L}_e .
- Let $L_e = \{e, e+1, e+2, \ldots\}$

- A single step of the argument diagonalizes against a machine, M_e , by building a family, \mathcal{L}_e .
- Let $L_e = \{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_e . All cones referred to subsequently will be subsets of this tree.

- A single step of the argument diagonalizes against a machine, M_e , by building a family, \mathcal{L}_e .
- Let $L_e = \{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_e . All cones referred to subsequently will be subsets of this tree.
- Define σ to be an (e, k)-stabilizing sequence iff
 [e, e + k] ⊆ content(σ) ⊂ L_e and for τ in the cone below σ

 M_e(τ) ≤ |σ|
 W_{M_e(σ)} ∩ [0, k) = W_{M_e(τ)} ∩ [0, k)

- A single step of the argument diagonalizes against a machine, M_e , by building a family, \mathcal{L}_e .
- Let $L_e = \{e, e+1, e+2, \ldots\}$
- We consider the tree of strings whose content is contained in L_e . All cones referred to subsequently will be subsets of this tree.
- Define σ to be an (e, k)-stabilizing sequence iff
 [e, e + k] ⊆ content(σ) ⊂ L_e and for τ in the cone below σ

 M_e(τ) ≤ |σ|
 W_{M_e(σ)} ∩ [0, k) = W_{M_e(τ)} ∩ [0, k)
- " σ is not an (e, k)-stabilizing sequence" is Σ_1^0 .

• If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e, n)-stabilizing sequence in the limit.

- If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e, n)-stabilizing sequence in the limit.
- More generally, define $\sigma_{e,k,s}$ to be an array of strings, with $\lim_{s\to\infty} \sigma_{e,k,s} = \sigma_{e,k}$, if it exists, such that:
 - $\sigma_{e,k,s} \prec \sigma_{e,k+1,s}$ for all $k, s \in \mathbb{N}$.
 - If σ_{e,0},...σ_{e,n} are defined and there is an (e, n + 1)-stabilizing sequence extending σ_{e,n}, then (σ_{e,n+1,s})_{s∈ℕ} converges to such a string.

- If there is an (e, n)-stabilizing sequence, there is a computable sequence of strings that converges to an (e, n)-stabilizing sequence in the limit.
- More generally, define $\sigma_{e,k,s}$ to be an array of strings, with $\lim_{s\to\infty} \sigma_{e,k,s} = \sigma_{e,k}$, if it exists, such that:
 - $\sigma_{e,k,s} \prec \sigma_{e,k+1,s}$ for all $k, s \in \mathbb{N}$.
 - If σ_{e,0},...σ_{e,n} are defined and there is an (e, n + 1)-stabilizing sequence extending σ_{e,n}, then (σ_{e,n+1,s})_{s∈ℕ} converges to such a string.
- Let a_{e,k} be the least even number such that σ_{e,h,s} = σ_{e,h,s+1} for h ≤ k and s ≥ a_{e,k}. Define b_{e,k} = a_{e,k} + 1.

• Define $R_e = L_e \setminus \{a_{e,i} : i \in \mathbb{N}\}$ and $R_e^* = L_e \setminus \{b_{e,i} : i \in \mathbb{N}\}$, both of which are *c.e.*

- Define $R_e = L_e \setminus \{a_{e,i} : i \in \mathbb{N}\}$ and $R_e^* = L_e \setminus \{b_{e,i} : i \in \mathbb{N}\}$, both of which are *c.e.*
- Let $\mathcal{L}_e = \{R_e \cup (F \cap L_e) : F \text{ is a finite set}\} \cup \{R_e^* \cup (F \cap L_e) : F \text{ is a finite set}\}.$

- Define $R_e = L_e \setminus \{a_{e,i} : i \in \mathbb{N}\}$ and $R_e^* = L_e \setminus \{b_{e,i} : i \in \mathbb{N}\}$, both of which are *c.e.*
- Let $\mathcal{L}_e = \{R_e \cup (F \cap L_e) : F \text{ is a finite set}\} \cup \{R_e^* \cup (F \cap L_e) : F \text{ is a finite set}\}.$
- We must prove two claims:
 - 1. \mathcal{L}_e is not TxtFext^{*}_{*}-learnable by the fixed machine, M_e .
 - 2. $\bigcup_{e \in \mathbb{N}} \mathcal{L}_e$ is TxtFex₂^{*}-learnable.

- 1. M_e does not TxtFext^{*}_{*}-learn \mathcal{L}_e
 - Suppose there is a minimal $k \neq 0$ such that $\sigma_{e,k}$ is undefined.

- 1. M_e does not TxtFext^{*}_{*}-learn \mathcal{L}_e
 - Suppose there is a minimal $k \neq 0$ such that $\sigma_{e,k}$ is undefined.
 - There is no σ ≻ σ_{e,k-1} such that, in the cone below σ, all hypotheses code sets that agree on [0, k).

1. M_e does not TxtFext^{*}_{*}-learn \mathcal{L}_e

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e,k}$ is undefined.
 - There is no σ ≻ σ_{e,k-1} such that, in the cone below σ, all hypotheses code sets that agree on [0, k).
 - ► Inductively build an enumeration of *L_e* on which *M_e* infinitely often outputs codes for two sets that are not equal.

1. M_e does not TxtFext^{*}_{*}-learn \mathcal{L}_e

- Suppose there is a minimal $k \neq 0$ such that $\sigma_{e,k}$ is undefined.
 - There is no σ ≻ σ_{e,k-1} such that, in the cone below σ, all hypotheses code sets that agree on [0, k).
 - ► Inductively build an enumeration of *L_e* on which *M_e* infinitely often outputs codes for two sets that are not equal.
- Suppose $\sigma_{e,0}$ is undefined.
 - If possible, build an enumeration as above.
 - ▶ If not, then build an enumeration on which *M_e* nevers settles upon a finite list of hypotheses.

• Suppose $\sigma_{e,k}$ is defined for all $k \in \mathbb{N}$.

- Suppose $\sigma_{e,k}$ is defined for all $k \in \mathbb{N}$.
 - ► R_e and R^{*}_e are both coinfinite and have infinite symmetric difference.
 - By the definition of σ_{e,0}, there is a finite list, h₀, h₁,..., h_n, of distinct hypotheses M_e outputs on extensions of σ_{e,0}.

- Suppose $\sigma_{e,k}$ is defined for all $k \in \mathbb{N}$.
 - ► R_e and R^{*}_e are both coinfinite and have infinite symmetric difference.
 - By the definition of σ_{e,0}, there is a finite list, h₀, h₁,..., h_n, of distinct hypotheses M_e outputs on extensions of σ_{e,0}.
 - ▶ Pick k large enough so that $(\forall i, j \leq n)(\exists x \leq k)(W_{h_i} \neq W_{h_j} \rightarrow x \in W_{h_i} \triangle W_{h_j}).$
 - All hypotheses made on extensions of *σ_{e,k}* contained in *L_e* must agree up to *k* − 1, thus be equal.

- Suppose $\sigma_{e,k}$ is defined for all $k \in \mathbb{N}$.
 - ► R_e and R^{*}_e are both coinfinite and have infinite symmetric difference.
 - By the definition of σ_{e,0}, there is a finite list, h₀, h₁,..., h_n, of distinct hypotheses M_e outputs on extensions of σ_{e,0}.
 - ▶ Pick k large enough so that $(\forall i, j \leq n)(\exists x \leq k)(W_{h_i} \neq W_{h_j} \rightarrow x \in W_{h_i} \triangle W_{h_j}).$
 - ► All hypotheses made on extensions of σ_{e,k} contained in L_e must agree up to k − 1, thus be equal.
 - $A = \text{content}(\sigma_{e,k}) \cup R_e$ and $B = \text{content}(\sigma_{e,k}) \cup R_e^*$ extend $\sigma_{e,k}$ and have infinite symmetric difference.

- Let x_e and x_e^* code R_e and R_e^* , respectively.
- R_e is co-even and R_e^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.

- Let x_e and x_e^* code R_e and R_e^* , respectively.
- R_e is co-even and R_e^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.
- For an input string, σ , we define the following:

•
$$m_{\sigma} = \min(\operatorname{content}(\sigma)).$$

• $n_{\sigma} = \min(\{y > m_{\sigma} : y \notin \operatorname{content}(\sigma)\}).$

- Let x_e and x_e^* code R_e and R_e^* , respectively.
- R_e is co-even and R_e^{*} is co-odd above e, hence the sets are recognizable by the types of numbers they do not contain.
- For an input string, σ , we define the following:

•
$$m_{\sigma} = \min(\operatorname{content}(\sigma)).$$

- $n_{\sigma} = \min(\{y > m_{\sigma} : y \notin \operatorname{content}(\sigma)\}).$
- Define a learning machine, *M*, by

$$M(\sigma) = \left\{egin{array}{ll} x_e & e = m_\sigma \wedge (n_\sigma ext{ is even}) \ x_e^* & e = m_\sigma \wedge (n_\sigma ext{ is odd}) \ 0 & ext{ otherwise} \end{array}
ight.$$

- *M* recieves an enumeration for $R_e \cup F$.
- If R_e is cofinite, then both x_e and x_e^* are correct hypotheses.
- If R_e is coinfinite, then the least element of $L_e \setminus (R_e \cup F)$ is an even number.
- Cofinitely, M will output the hypothesis x_e .

TxtFin

Fix a symbol "?". M TxtFin-identifies a text T if, and only if, $\exists n \forall n' < n(M(T[n']) = ? \land M(T[n]) \neq ? \land W_{M(T[n])} = \text{content}(T)).$

TxtEx

TxtBC

 $M \text{ TxtBC-identifies a text } T \text{ if, and only if,} \\ \exists n \forall i > n(W_{M(T[i])} = \text{content}(T)).$

TxtEx* M TxtEx*-identifies a text T if, and only if, $\exists n(\lim_{i\to\infty} M(T[i]) \to n \land W_n = \text{``content}(T)).$

Index Sets

- 1. Let FINL denote the index set of all Σ_1^0 codes for *u.c.e.* families such that $e \in \text{FINL}$ if, and only if, *e* codes a TxtFin-learnable family.
- 2. Let EXL denote the index set of all Σ_1^0 codes for *u.c.e.* families such that $e \in \text{EXL}$ if, and only if, *e* codes a TxtEx-learnable family.
- 3. Let BCL denote the index set of all Σ_1^0 codes for *u.c.e.* families such that $e \in BCL$ if, and only if, *e* codes a TxtBC-learnable family.
- Let EXL* denote the index set of all Σ₁⁰ codes for *u.c.e.* families such that *e* ∈ EXL* if, and only if, *e* codes a TxtEx*-learnable family.

Arithmetic Hierarchy

Theorem FINL is Σ_3^0 -complete

Theorem *EXL is* Σ_4^0 -*complete*

Theorem *BCL is* Σ_5^0 -complete

Theorem EXL^* is Σ_5^0 -complete

Thank You