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Dyadic density-one points

We use the symbol µ to refer to the uniform measure, both on Cantor space and on
the unit interval.

Given σ ∈ 2<ω and a measurable set C ⊆ 2ω , the shorthand µσ(C) denotes the
relative measure of C in the cone above σ, i.e.,

µσ(C) =
µ([σ] ∩ C)

µ([σ])
.

De�nition
Let C be a measurable set and X a real. The lower dyadic density of C at X , written
ρ2(C |X), is

lim inf
n

µX � n(C).

De�nition

A real X is a dyadic positive density point if for every Π0
1 class C containing X ,

ρ2(C |X) > 0. It is a dyadic density-one point if for every Π0
1 class C containing X ,

ρ2(C |X) = 1.
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Full density-one points

Even though dyadic density seems like the natural notion of density in Cantor
space, it is a simpli�cation of the version of density that appears in the classical
Lebesgue Density Theorem:

De�nition
Let C be a measurable subset of R and x ∈ R. The lower (full) density of C at x,
written ρ(C | x), is

lim inf
γ,δ→0+

µ((x − γ, x + δ) ∩ C)

γ + δ
.

De�nition

We say x ∈ [0, 1] is a positive density point if for every Π0
1 class C ⊆ [0, 1]

containing x, ρ(C | x) > 0. It is a (full) density-one point if for every Π0
1 class

C ⊆ [0, 1] containing x, ρ(C | x) = 1.
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Density on the Martin-Löf random reals

Theorem (Bienvenu, Hölzl, Miller, Nies)
If X is Martin-Löf random, then X is a positive density point if and only if it is
incomplete.

Theorem (Day, Miller)

There is a Martin-Löf random real that is a positive density point (hence incomplete)
but not a density-one point.
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Some observations

Dyadic positive density points (and hence full positive density points) are
Kurtz random.
1-generics are full density-one points.
Not being a full density-one point is a Π0

2 property. Therefore, all weak
2-random reals are full density-one points. Note that any hyperimmune-free
Kurtz random is weak 2-random (Yu).
The two halves of a dyadic density-one point are dyadic density-one. In fact,
any computable sampling of a dyadic density-one point is a dyadic
density-one point. Likewise for full density-one points.
There is a Kurtz random real that is not Martin-Löf random and not a
density-one point. Consider Ω⊕ G where G is weakly 2-generic.
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The resulting picture

Complete,

density 0
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Dyadic density-one vs full density-one

It’s easy to exhibit a speci�c C and an X such that ρ2(C |X) 6= ρ(C |X). But is this
discrepancy eliminated if we require that for every Π0

1 class C containing X ,
ρ2(C |X) = 1? In other words, are dyadic density-one points the same as full
density-one points? On the Martin-Löf randoms, yes:

Theorem (K., Miller)
Let X be Martin-Löf random. Then X is a dyadic density-one point if and only if it is a
full density-one point.

Some amount of randomness is necessary:

Proposition (K.)

There is a dyadic density-one point that is not full density-one.

We build a dyadic density-one point Y by computable approximation, while
building a Σ0

1 class B such that ρ(B̄ | Y) < 1.
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Dyadic density-one vs full density-one (contd.)

The basic idea:
Put into B

[ ]

We shall be free to choose j as large as we want. Note that [σ] is the smallest dyadic
cone containing Y that can see [σ01j], the “hole” that we create in B̄, and relative to
σ, this hole appears small. However, on the real line, at a certain scale around Y , the
hole is quite large.
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Dyadic density-one vs full density-one (contd.)

We want to place these holes in�nitely often along Y , and this constitutes one type
of requirement. Making Y a dyadic density-one point amounts to ensuring that for
each Σ0

1 class [We], either
1 Y ∈ [We], or
2 the relative measure of [We] along Y goes to 0.

The basic strategy for meeting a density requirement is to reroute Y to enter [We] if
its measure becomes too big above some initial segment of Ys . To make this play
well with our hole-placing strategy, we keep the measure of B above initial
segments of Ys very small. Then if [We] becomes big enough, we can enter it while
keeping B very small along Ys .
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Dyadic density-one vs full density-one (contd.)

The following lemma makes this intuition precise:

Covering Lemma, dyadic version

Suppose B ⊆ 2ω is open. Then for any ε such that µ(B) ≤ ε ≤ 1, let Uε(B) denote
the set

{X ∈ 2ω : µρ(B) ≥ ε for some ρ ≺ X}.

Then Uε(B) is open and µ(Uε(B)) ≤ µ(B)/ε.

The lemma tells us exactly how small we have to keep B along Ys to make it
possible to act for multiple density requirements. Each time we reroute Ys to enter a
Σ0

1 class we get a little “closer” to B, but still remain far enough away so that we can
act on behalf on another, higher priority density requirement if the need arises.
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Dyadic density-one vs full density-one (contd.)

Interleave hole-placing requirements with density requirements by progressively
building a better and better approximation to a dyadic density-one point.

Formally, to meet the requirement De,k between σ and σ′ where σ � σ′ ≺ Y is to
ensure that either σ′ ∈ [We] or the measure of [We] between σ and σ′ is bounded
by 2−k (i.e., for every τ between σ and σ′, µτ ([We]) ≤ 2−k).
We organize the construction as follows:

De,k has higher priority than De′,k , for e′ > e. Above σk,s , we only act for the sake
of De,k if we haven’t acted for the sake of a higher priority density requirement
above σk,s . In sum, we have a �nite-injury priority construction, where for each e,
co�nitely many of the De,k requirements will be satis�ed. There are some details to
work out, but they’re routine.
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Computational strength

1-generics are GL1, therefore incomplete. By the theorem of Bienvenu et al.,
Martin-Löf random density-one points are also incomplete. But in general,
density-one points can be complete. In fact, every real is computable from a full
density-one point:

Theorem (K.)

For every X ∈ 2ω , there is a full density-one point Y such that X ≤T Y ≤T X ⊕ 0′.

Because dyadic density is so much easier to work with, I’ll �rst sketch the proof of
the result for dyadic density. Even though the statement of the theorem bears a
super�cial resemblance to the Kuc̆era-Gács Theorem, the method is di�erent. For
one thing, there is no Π0

1 class consisting exclusively of density-one points. Also
note that we don’t get a wtt reduction as in the Kuc̆era-Gács Theorem.
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Computational strength (contd.)

Basic idea: Combine the density strategy of the previous proof with coding, on a
tree.
By computable approximation, we build a ∆0

2 function tree F : 2<ω → 2<ω and a
functional Γ such that for every σ ∈ 2<ω , ΓF(σ) = σ.

Mushfeq Khan Density-one Points of Π0
1 Classes



Computational strength (contd.)

To set Fs(σ) = τ at stage s is to code σ at the string τ . We need to ensure that we
can always do this in a consistent manner. There are two ways this could go wrong:

τ codes incorrectly (i.e., Γτ | σ), or
τ codes too much (i.e. Γτ properly extends σ).

For example:

We cannot route Fs(1) through the current or previous values of Fs(10), Fs(11) and
Fs(0).
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Computational strength (contd.)

In general, for every nonempty string σ, there is a Σ0
1 class Bσ,s that Fs(σ) must

avoid, and a threshold βσ,s below which we must keep the measure of Bσ,s between
Fs(σ−) and Fs(σ), where σ− is the immediate predecessor of σ.

The strategies must cooperate to maintain this condition. For example, if σ = α0,
then the strategies controlling Fs(σ0), Fs(σ1) and Fs(α1), all of which contribute
measure to Bσ,s , must maintain the fact that µ(Bσ,s) remains strictly below βσ,s
between Fs(α) and Fs(σ). All of this is completely within our control, since we can
code on arbitrarily long strings.

For each X ∈ 2ω , the construction of
⋃
σ≺X F(σ) is again a �nite-injury priority

construction. The details are easy to work out.
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Real line issues

We brie�y outline some of the di�culties in transferring the coding theorem for
dyadic density-one points to full density-one points.

Strategies can no longer restrict their attention to dyadic cones:

[We] is very small relative to Fs(σ), but it poses a threat to the path we’re building.
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Real line issues (contd.)

We build a tree {Iσ : σ ∈ 2<ω} of intervals with dyadic rational endpoints.

Suppose I ⊇ I ′ are intervals in [0, 1] and C is a measurable set. We say that µ(C) is
below ε between I and I ′ if for every interval L such that I ⊇ L ⊇ I ′, µL(C) < ε.

In previous proofs, it was easy to chop up density requirements into smaller pieces
such that the individual wins added up nicely. This is a little messier on the real line:

Here µ([We]) < 1/8 between I0 and I1 and also between I1 and I2, but not between
I0 and I2.
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Real line issues (contd.)

There is a version of the Density Drop Covering Lemma for the real line:

Lemma (Bienvenu, Hölzl, Miller, Nies)

Suppose B ⊆ [0, 1] is open. Then for any ε such that µ(B) ≤ ε ≤ 1, let Uε(B) denote
the set

{X ∈ [0, 1] : ∃ an interval I , X ∈ I , and µI (B) ≥ ε}.

Then µ(Uε(B)) ≤ 2µ(B)/ε.

We have to be slightly careful when applying this lemma for our construction.
When we relativize this lemma to an interval L, we obtain a bound for the measure
of Uε(B ∩ L) within L, but in general, we are also concerned about the part of B that
lies outside L. Fortunately, under the assumptions of the construction, we can
obtain a bound for the measure threatened by all of B.

We skip the details. On to the next topic...
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The minimality question

Question
Is there a density-one point of minimal degree?

Of course, 1-generics and 1-randoms cannot be minimal, since for any real A⊕ B
with either property, A and B are Turing incomparable. This is not true of
density-one points:

Fact
There is a density-one point A⊕ B with A ≡T B.
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The minimality question (contd.)

Theorem
There is a high degree that computes no density-one point.

Main idea: Combine the Sacks minimal degree construction with coding bits of 0′′
in an “almost” 0′-computable construction. The resulting minimal real A is such
that A⊕ 0′ can rerun the construction and recover 0′′. Instead of the usual splitting
trees, use “thin” splitting trees. Code the bits of 0′′ by choosing the left or right
subtree of the splitting tree.
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Thanks!
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