Fickleness

ickleness and No. Equal Mee

 $\begin{array}{l} {\rm Demanding} \geq \omega^{\,\omega} \, \text{-Fickleness} \\ {\rm ooo} \end{array}$

Infinite Semilattice

Fickleness and Bounding Lattices in \mathcal{R}_T

Liling Ko Iko@nd.edu University of Notre Dame http://sites.nd.edu/liling-ko/

October 27, 2020

Midwest Computability Seminar XXV

Understand the relation between the *fickleness* of a recursively enumerable (r.e.) Turing degree $\mathbf{d} \in \mathcal{R}_T$ and its ability to bound a given finite lattice (L, \lor, \land) .

Fickleness

ckleness and No. Equal Mee

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Bounding Distributive Lattices in \mathcal{R}_T

Lattices can be distributive or non-distributive. Distributive lattices are those that do not contain a copy of N_5 or 1-3-1 as sublattices (Birkhoff).

Theorem (Lerman; Lachlan 1972; Thomason 1971) Distributive lattices can be bounded below any $\mathbf{d} \in \mathcal{R}_T - \{\mathbf{0}\}$.

Fickleness

Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Ficklene:

Infinite Semilattice

Bounding Non-Distributive Lattices in \mathcal{R}_{T}

Fig: Some non-distributive lattices. They must contain N_5 or 1-3-1. Let $\mathbf{d} \in \mathcal{R}_T - \{0\}$.

Theorem (Lachlan and Soare 1980; Lempp and Lerman 1997; Downey, Greenberg, and Weber 2007; Ambos-Spies and Losert 2019; Downey and Greenberg 2015)

d bounds N₅ (Folklore).

d cannot bound S_8 or L_{20} (LS80;LL97).

- **d** bounds L_7 iff its "fickleness > ω " (DGW07;AL19).
- **d** bounds 1-3-1 iff its "fickleness $\geq \omega^{\omega}$ " (DG15).

 Dist., Non-Dist Lattices
 Fickleness
 Fickleness and No. Equal Meets

 000
 0000
 00000
 00000

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Fickleness of $\mathbf{d} \in \mathcal{R}_{\mathsf{T}}$

Let $\mathbf{d} \in \mathcal{R}_{\mathsf{T}}$, $\alpha \leq \epsilon_{\mathsf{0}} := \sup \left\{ \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \cdots \right\}$.

Definition (Downey and Greenberg 2015)

A set is α -computably approximable (α -c.a.) if it "changes its mind $\leq \alpha$ -times". E.g. *n*-r.e. sets are *n*-c.a.. **d** is totally α -c.a. ($\mathbf{d} \in \mathsf{T}(\alpha)$, or **d**'s fickleness $\leq \alpha$) if every $A \in \mathbf{d}$ is α -c.a.. **d** is properly $\mathsf{T}(\alpha)$ ($\mathbf{d} \in \mathsf{pT}(\alpha)$, or **d**'s fickleness = α) if $\mathbf{d} \in \mathsf{T}(\alpha)$ and $\mathbf{d} \notin \mathsf{T}(\beta) \forall \beta < \alpha$.

Fickleness

Fickleness and No. Equal Meets

 $\begin{array}{l} {\sf Demanding} \geq \omega^{\,\omega} \, \text{-Fickleness} \\ {\sf ooo} \end{array}$

Infinite Semilattice

Fickleness Hierarchy

Theorem (Downey and Greenberg 2015)

For every $\alpha \leq \epsilon_0$ there exists $\mathbf{d} \in p\mathsf{T}(\omega^{\alpha})$. If $\mathbf{d} \in \mathsf{T}(\beta)$ and $\omega^{\alpha} \leq \beta$ is the largest power of ω below β , then $\mathbf{d} \in \mathsf{T}(\omega^{\alpha})$. Every $\mathbf{d} \in \mathsf{T}(\omega^{\alpha})$ is low_2 .

Lemma

For every $\alpha \leq \epsilon_0$ there exists low and nonlow $\mathbf{d} \in pT(\omega^{\alpha})$.

Figure: Fickleness hierarchy is low_2 , independent from nonlowness, and collapses to powers of ω .

Fickleness

ickleness and No. Equal Meet

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Towards Characterizing $> \omega^2$ -Fickleness

Open Question (Downey and Greenberg 2015) We saw that L_7 (1-3-1) characterized > ω (> ω^{ω}) -fickleness. Is there a lattice that characterizes > ω^2 -fickleness?

Fickleness

ckleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

3 Independent Elements Lattices Do Not Characterize $> \omega^2$ -Fickleness

Consider lattices *L* like L_7 and 1-3-1 with no more than 3 independent elements *A*, *B*, *C*, and every element in *L* is either the join or meet of elements in $\{A, B, C\}$.

Theorem

Each such lattice either characterizes $> 0, > \omega$, or $\ge \omega^{\omega}$ -fickleness.

Fickleness

Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

One Meet Demands $> \omega$ -Fickleness

(Downey, Greenberg, and Weber 2007; Ambos-Spies and Losert 2019) Construct r.e. $A, B, C, \Delta_A, \Delta_C$ satisfying

$$J_A : A = \Delta_A(B, C),$$

 $J_C : C = \Delta_C(A, B),$
 $D_{W} : A \neq \Psi(B),$

 $M_{\Phi}: \Phi_0(A) = \Phi_1(C) = W \implies W \leq 0.$

 J_A -strategy: To put *x* into *A*, first put $\delta_A(x)$ into *B* or *C*. J_C -strategy: To put *x* into *C*, first put $\delta_C(x)$ into *A* or *B*.

Fickleness

Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

One Meet Demands $> \omega$ -Fickleness

D-strategy: Pick *x* and wait for *x* to be *realized* ($\Psi(x) = 0$). Restrain $B \upharpoonright \psi(x)$. Want to put *x* into *A*, but J_A requires $\delta_A(x)$ be put into *B* or *C* first. Restraint on *B* forces us to target *C*. J_C requires $\delta_C(\delta_A(x))$ be put into *A* or *B* first. Restraint on *B* forces us to target *A*. Repeat till we can target *B* when

$$\underbrace{\delta_{\mathcal{C}}(\delta_{\mathcal{A}}(\ldots \delta_{\mathcal{C}}(\delta_{\mathcal{A}}(x))\ldots) > \psi(x).}_{\text{polymorphisms}}$$

n alternations

We get an *ac*-trace $x, \delta_A(x), \delta_C \delta_A(x), \ldots$ of length $n < \omega$ that needs to be enumerated into A and C in reverse before x finally enters A.

Fickleness

Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

One Meet Demands $> \omega$ -Fickleness

$$M_{\Phi}: \Phi_0(A) = \Phi_1(C) = W \implies W \leq 0.$$

M-strategy: Wait for equality $\Phi_0(y) = \Phi_1(y)$. Always restrain $A \upharpoonright \phi_0(y)$ or $C \upharpoonright \phi_1(y)$ to prevent injuring computations on *A* and *C* sides simultaneously.

D versus *M*: *D* needs to enumerate an *ac*-trace of length $n < \omega$. *M* disallows the entire trace from being enumerated simultaneously, so *D* needs *n* permissions to be satisfied. Construction can be viewed as a pinball machine, where an *ac*-trace is represented by *ac*-balls, and where *M* is represented as an *AC*-gate that opens and closes infinitely often, allowing only one ball to pass through each time.

Fickleness

Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Two Equal Meets Demand $\geq \omega^{\omega}$ -Fickleness

(Downey and Greenberg 2015) Construct r.e. $A, B, C, \Delta_A, \Delta_C$ satisfying

 $\begin{aligned} J_A &: A = \Delta_A(B, C), \\ J_C &: C = \Delta_C(A, B), \\ D_\Psi &: A \neq \Psi(B), \\ M_{AC\Phi} &: \Phi_0(A) = \Phi_1(C) = W \implies W \leq 0, \\ M_{AB\Phi} &: \Phi_0(A) = \Phi_1(B) = W \implies W \leq 0. \end{aligned}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - つへぐ

Infinite Semilattice

Two Equal Meets Demand $\geq \omega^{\omega}$ -Fickleness

The new M_{AB} requirement introduces AB-gates for *ac*-traces to pass through.

$A \wedge C = 0$	acacac	
$A \wedge C = 0$		
$A \wedge B = 0$		
$A \wedge C = 0$		
$A \wedge B = 0$		

To pass 2 (*k*) alternations of *AC* and *AB*-gates, the trace demands $\geq \omega^2 (\geq \omega^k)$ permissions. Therefore with just one more meet requirement, fickleness demanded increases from $> \omega$ to $\geq \omega^{\omega}$.

Alternative Conditions that Demand $\geq \omega^{\omega}$ -Fickleness

Open Question

Besides having two equal meets and relevant join requirements, are there other sets of conditions a lattice could satisfy to demand $\geq \omega^{\omega}$ -fickleness?

In particular, can we find a 4 independent element lattice L at the $\geq \omega^{\omega}$ level that does not already contain a copy of any of these $\geq \omega^{\omega}$ lattices?

$\geq \omega^{\omega}$	υ
	•
	•
	•
	•

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fickleness

ckleness and No. Equal Meets

 $\begin{array}{l} \operatorname{Demanding} \geq \omega^{\,\omega}\operatorname{-Fickleness} \\ \circ \bullet \circ \end{array}$

Infinite Semilattice

Alternative Conditions that Demand $\geq \omega^{\omega}$ -Fickleness

Consider a lattice L with 4 independent elements A, B, C, D, satisfying

$$\begin{array}{ll} A \leq B+C+D, & A \wedge B=0, \\ B \leq A+C+D, & A \wedge C=0, \\ C \leq A+B+D, & A \wedge D=0, \\ D \leq A+B+C, & B \wedge C=0, \\ & B \wedge D=0, \\ & C \wedge D=0. \end{array}$$

Lemma

Any L satisfying the above demands $\geq \omega^{\omega}$ -fickleness.

The pinball construction hints at the $\geq \omega^{\omega}$ -fickleness demanded:

・ロット (四) (日) (日) (日) (日)

Alternative Conditions that Demand $\geq \omega^{\omega}$ -Fickleness

Conjecture

Every lattice L satisfying the previous conditions already contains a copy of a 3 independent elements lattice that demands $\geq \omega^{\omega}$ -fickleness.

Fickleness

ickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Infinite Semilattice

Open Question

Are there infinite semilattices that characterize $\geq \omega^2$ -fickleness?

Consider the infinite upper semilattice obtained by removing the meet from L_7 , i.e. $A \cap C$ does not exist.

Theorem

 L_7 without meet characterizes $> \omega$ -fickleness.

$$J_{A} : A = \Delta_{A}(B, C),$$

$$J_{C} : C = \Delta_{C}(A, B),$$

$$D_{\Psi} : A \neq \Psi(B),$$

$$M'_{\Phi} : \Phi_{0}(A) = \Phi_{1}(C) = W \implies (\exists \kappa) W = \kappa(B),$$

$$R : A \wedge C \text{ does not exist.}$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

17 / 23

Fickleness

ickleness and No.

Demanding $\geq \omega^{\omega}$ -F

Infinite Semilattice

One Non-meet Demands $> \omega$ -Fickleness

$$M'_{\Phi}: \Phi_0(A) = \Phi_1(C) = W \implies (\exists \kappa) W = \kappa(B)$$

M'-strategy: Wait for $\Phi_0(A, y) = \Phi_1(C, y)$. Pick large use k(y). Allow simultaneous injury on *A* and *C* sides only if some $b \le k(y)$ enters *B* at the same time.

D vs *M*': *D* wants to enumerate an *ac*-trace. To minimize demanded fickleness we are tempted to enumerate the entire trace simultaneously. But that requires us to put some *b* into *B*. *M*' needs to know this *b* early, possibly picking *b* before *D* is realized. But then *D* will be unrealized when *b* enters *B*. So we cannot avoid enumerating the *ac*-trace one element at a time and demanding > ω -fickleness.

 Dist., Non-Dist Lattices
 Fickleness
 Fickleness and No. Equal Meets
 Demanding 2

 000
 0000
 00000
 000

ω^ω-Fickleness Infinite Semilattice

One Non-meet Demands $> \omega$ -Fickleness

$\begin{array}{ccc} R_{V\Gamma\Xi}: V \not\geq A \And & \Gamma_0(A) = \Gamma_1(C) = V & \Longrightarrow & (\exists \Theta, U) \\ \Theta_0(A) = \Theta_1(C) = U & \& U \neq \Xi(V). \end{array} \qquad \stackrel{A \quad C}{\underbrace{}}_{J \cup V} \downarrow^{G} U = V \\ \end{array}$

R-strategy (Ambos-Spies 1984): Pick large $x, \theta_0(x), \theta_1(x)$. Wait for *x* to be realized ($\Xi(x) = 0$). Wait for $\theta_0(x)$ to be lifted above the use for realization, which must occur if $V \ge A$.

Simultaneously put $\theta_0(x)$ into A, $\theta_1(x)$ into C, x into U. Restrain A to prevent unrealization.

R vs M': R simultaneously injures A and C computations. M' allows that if some b also enters B. M' needs b to be picked early, sometimes before R is realized. This is alright because R never restrains B. All enumerations are done simultaneously, so 1 permission is enough.

Two Equal Non-meets Demand $\geq \omega^{\omega}$ -Fickleness

Theorem

Consider the lattice L shown below, which is the same as the earlier 2-meet lattice after ensuring that $A \land B$ and $A \land C$ do not exist. L characterizes $\geq \omega^{\omega}$ -fickleness.

 $J_{A} : A = \Delta_{A}(B, C),$ $J_{C} : C = \Delta_{C}(A, B),$ $D_{\Psi} : A \neq \Psi(B),$ $M'_{AC\Phi} : \Phi_{0}(A) = \Phi_{1}(C) = W \implies (\exists \kappa)W = \kappa(B),$ $M'_{AB\Phi} : \Phi_{0}(A) = \Phi_{1}(B) = W \implies (\exists \kappa)W = \kappa(C),$ $R : A \land C \text{ does not exist.}$

Two Equal Non-meets Demand $\geq \omega^{\omega}$ -Fickleness

D vs M'_{AC} , M'_{AB} : Like before, even though M' allows simultaneous injury, we cannot reduce the demanded fickleness because we might unrealize D.

R vs M'_{AC} , M'_{AB} : Like before, *R* needs to put some *a* into *A* and *c* into *C* simultaneously. M'_{AC} allows this because *R* can pick some *b* early enough to be put into *B*. But by M'_{AB} , the *a*, *b* enumerations forces *R* to pick some *c'* early enough to be put into *C*. We can choose c' = c since *R* does not impose a restraint on *C*. All enumerations are done simultaneously, so fickleness of 1 is sufficient.

Fickleness 0000 Fickleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Three Equal Non-meets

What if we add the final type of M' requirement?

1-3-1 without meet

 $J_{A} : A = \Delta_{A}(B, C),$ $J_{C} : C = \Delta_{C}(A, B),$ $D_{\Psi} : A \neq \Psi(B),$ $M'_{AC\Phi} : \Phi_{0}(A) = \Phi_{1}(C) = W \implies (\exists \kappa)W = \kappa(B),$ $M'_{AB\Phi} : \Phi_{0}(A) = \Phi_{1}(B) = W \implies (\exists \kappa)W = \kappa(C),$ $M'_{BC\Phi} : \Phi_{0}(B) = \Phi_{1}(C) = W \implies (\exists \kappa)W = \kappa(A),$ $R : A \wedge C \text{ does not exist.}$

Fickleness

ckleness and No. Equal Meets

Demanding $\geq \omega^{\omega}$ -Fickleness

Infinite Semilattice

Three Equal Non-meets

R vs M'_{AB} , M'_{AC} , M'_{BC} : R cannot help but injure the A, B, C-gates simultaneously via a, b, c traces. M'_{AB} (M'_{AC}) allowed the AB-injury (AC) because c (b) could be chosen early enough. Likewise, M'_{BC} will allow the BC-injury if a can be chosen early enough. But we cannot choose a early if we want to avoid unrealizing R.

Conjecture

1-3-1 without meet cannot be bounded in the r.e. degrees.