Fickleness and Bounding Lattices in \mathcal{R}_{\top}

Liling Ko
lko@nd.edu

University of Notre Dame

```
http://sites.nd.edu/liling-ko/
```

October 27, 2020

Midwest Computability Seminar XXV

Motivation

Understand the relation between the fickleness of a recursively enumerable (r.e.) Turing degree $\mathbf{d} \in \mathcal{R}_{\mathrm{T}}$ and its ability to bound a given finite lattice (L, \vee, \wedge).

Bounding Distributive Lattices in \mathcal{R}_{\top}

Lattices can be distributive or non-distributive. Distributive lattices are those that do not contain a copy of N_{5} or 1-3-1 as sublattices (Birkhoff).

N_{5}

Theorem (Lerman; Lachlan 1972; Thomason 1971)
Distributive lattices can be bounded below any $\mathbf{d} \in \mathcal{R}_{\boldsymbol{T}}-\{0\}$.

Bounding Non-Distributive Lattices in \mathcal{R}_{\top}

Fig: Some non-distributive lattices. They must contain N_{5} or 1-3-1.
Let $\mathbf{d} \in \mathcal{R}_{\mathrm{T}}-\{0\}$.
Theorem (Lachlan and Soare 1980; Lempp and Lerman 1997; Downey, Greenberg, and Weber 2007; Ambos-Spies and Losert 2019;
Downey and Greenberg 2015)
d bounds N_{5} (Folklore).
d cannot bound S_{8} or L_{20} (LS80;LL97).
d bounds L_{7} iff its "fickleness $>\omega$ " (DGW07;AL19).
d bounds 1-3-1 iff its "fickleness $\geq \omega^{\omega}$ " (DG15).

Fickleness of $\mathbf{d} \in \mathcal{R}_{\boldsymbol{T}}$

Let $\mathbf{d} \in \mathcal{R}_{\mathrm{T}}, \alpha \leq \epsilon_{0}:=\sup \left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \cdots\right\}$.
Definition (Downey and Greenberg 2015)
A set is α-computably approximable (α-c.a.) if it "changes its mind $\leq \alpha$-times". E.g. n-r.e. sets are n-c.a..
\mathbf{d} is totally α-c.a. $(\mathbf{d} \in \mathrm{T}(\alpha)$, or d's fickleness $\leq \alpha)$ if every $A \in \mathbf{d}$ is α-c.a..
\mathbf{d} is properly $\mathrm{T}(\alpha)(\mathbf{d} \in \mathrm{pT}(\alpha)$, or d's fickleness $=\alpha)$ if $\mathbf{d} \in \mathrm{T}(\alpha)$ and $\mathbf{d} \notin \mathrm{T}(\beta) \forall \beta<\alpha$.

Fickleness Hierarchy

Theorem (Downey and Greenberg 2015)
For every $\alpha \leq \epsilon_{0}$ there exists
$\mathbf{d} \in \mathrm{pT}\left(\omega^{\alpha}\right)$.
If $\mathbf{d} \in \mathrm{T}(\beta)$ and $\omega^{\alpha} \leq \beta$ is the
largest power of ω below β,
then $\mathbf{d} \in \mathrm{T}\left(\omega^{\alpha}\right)$.
Every $\mathbf{d} \in \mathrm{T}\left(\omega^{\alpha}\right)$ is low $_{2}$.
Lemma
For every $\alpha \leq \epsilon_{0}$ there exists low and nonlow $\mathbf{d} \in \mathrm{pT}\left(\omega^{\alpha}\right)$.

Figure: Fickleness hierarchy is low ${ }_{2}$, independent from nonlowness, and collapses to powers of ω.

Towards Characterizing $>\omega^{2}$-Fickleness

Open Question (Downey and Greenberg 2015)
We saw that L_{7} (1-3-1) characterized $>\omega\left(\geq \omega^{\omega}\right)$-fickleness. Is there a lattice that characterizes $>\omega^{2}$-fickleness?

$>\omega$-fickleness

$>\omega^{2}$-fickleness

$\geq \omega^{\omega}$-fickleness

3 Independent Elements Lattices

Do Not Characterize $>\omega^{2}$-Fickleness

Consider lattices L like L_{7} and 1-3-1 with no more than 3 independent elements A, B, C, and every element in L is either the join or meet of elements in $\{A, B, C\}$.
Theorem
Each such lattice either characterizes $>0,>\omega$, or
$\geq \omega^{\omega}$-fickleness.

One Meet Demands > ω-Fickleness

(Downey, Greenberg, and Weber 2007; Ambos-Spies and Losert 2019)
Construct r.e. $A, B, C, \Delta_{A}, \Delta_{C}$ satisfying

$$
\begin{aligned}
J_{A} & : A=\Delta_{A}(B, C) \\
J_{C} & : C=\Delta_{C}(A, B) \\
D_{\psi} & : A \neq \Psi(B) \\
M_{\Phi} & : \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow W \leq 0
\end{aligned}
$$

J_{A}-strategy: To put x into A, first put $\delta_{A}(x)$ into B or C. J_{C}-strategy: To put x into C, first put $\delta_{C}(x)$ into A or B.

One Meet Demands > ω-Fickleness

D-strategy: Pick x and wait for x to be realized $(\Psi(x)=0)$. Restrain $B \upharpoonright \psi(x)$. Want to put x into A, but J_{A} requires $\delta_{A}(x)$ be put into B or C first. Restraint on B forces us to target C. J_{C} requires $\delta_{C}\left(\delta_{A}(x)\right)$ be put into A or B first. Restraint on B forces us to target A. Repeat till we can target B when

$$
\underbrace{\delta_{C}\left(\delta _ { A } \left(\ldots \delta _ { C } \left(\delta_{A}(\right.\right.\right.}_{n \text { alternations }} x)) \ldots)>\psi(x) .
$$

We get an ac-trace $x, \delta_{A}(x), \delta_{C} \delta_{A}(x), \ldots$ of length $n<\omega$ that needs to be enumerated into A and C in reverse before x finally enters A.

One Meet Demands > ω-Fickleness

$$
M_{\Phi}: \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow W \leq 0 .
$$

M-strategy: Wait for equality $\Phi_{0}(y)=\Phi_{1}(y)$. Always restrain $A \upharpoonright \phi_{0}(y)$ or $C \upharpoonright \phi_{1}(y)$ to prevent injuring computations on A and C sides simultaneously.
D versus M : D needs to enumerate an ac-trace of length $n<\omega$. M disallows the entire trace from being enumerated simultaneously, so D needs n permissions to be satisfied. Construction can be viewed as a pinball machine, where an ac-trace is represented by ac-balls, and where M is represented as an $A C$-gate that opens and closes infinitely often, allowing only one ball to pass through each time.

$$
M: A \wedge C=0
$$

Two Equal Meets Demand $\geq \omega^{\omega}$-Fickleness

(Downey and Greenberg 2015)
Construct r.e. $A, B, C, \Delta_{A}, \Delta_{C}$ satisfying

$$
\begin{aligned}
J_{A} & : A=\Delta_{A}(B, C), \\
J_{C} & : C=\Delta_{C}(A, B), \\
D_{\Psi} & : A \neq \Psi(B) \\
M_{A C \Phi} & : \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow W \leq 0, \\
M_{A B \Phi} & : \Phi_{0}(A)=\Phi_{1}(B)=W \Longrightarrow W \leq 0 .
\end{aligned}
$$

Two Equal Meets Demand $\geq \omega^{\omega}$-Fickleness

The new $M_{A B}$ requirement introduces $A B$-gates for ac-traces to pass through.

To pass $2(k)$ alternations of $A C$ and $A B$-gates, the trace demands $\geq \omega^{2}\left(\geq \omega^{k}\right)$ permissions. Therefore with just one more meet requirement, fickleness demanded increases from $>\omega$ to $\geq \omega^{\omega}$.

Alternative Conditions that Demand $\geq \omega^{\omega}$-Fickleness

Open Question

Besides having two equal meets and relevant join requirements, are there other sets of conditions a lattice could satisfy to demand $\geq \omega^{\omega}$-fickleness?
In particular, can we find a 4 independent element lattice L at the $\geq \omega^{\omega}$ level that does not already contain a copy of any of these $\geq \omega^{\omega}$ latices?

Alternative Conditions that Demand $\geq \omega^{\omega}$-Fickleness

Consider a lattice L with 4 independent elements A, B, C, D, satisfying

$$
\begin{array}{ll}
A \leq B+C+D, & A \wedge B=0 \\
B \leq A+C+D, & A \wedge C=0 \\
C \leq A+B+D, & A \wedge D=0 \\
D \leq A+B+C, & B \wedge C=0 \\
& B \wedge D=0 \\
& C \wedge D=0
\end{array}
$$

Lemma
Any L satisfying the above demands $\geq \omega^{\omega}$-fickleness.

The pinball construction hints at the $\geq \omega^{\omega}$-fickleness demanded:

Alternative Conditions that Demand $\geq \omega^{\omega}$-Fickleness

 ConjectureEvery lattice L satisfying the previous conditions already contains a copy of a 3 independent elements lattice that demands $\geq \omega^{\omega}$-fickleness.

Infinite Semilattice

Open Question

Are there infinite semilattices that characterize $\geq \omega^{2}$-fickleness?
Consider the infinite upper semilattice obtained by removing the meet from L_{7}, i.e. $A \cap C$ does not exist.

Theorem

L_{7} without meet characterizes $>\omega$-fickleness.

$$
\begin{aligned}
J_{A} & : A=\Delta_{A}(B, C), \\
J_{C} & : C=\Delta_{C}(A, B), \\
D_{\Psi} & : A \neq \Psi(B), \\
M_{\phi}^{\prime} & : \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow(\exists \kappa) W=\kappa(B), \\
R & : A \wedge C \text { does not exist. }
\end{aligned}
$$

One Non-meet Demands > ω-Fickleness

$$
M_{\Phi}^{\prime}: \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow(\exists \kappa) W=\kappa(B)
$$

M^{\prime}-strategy: Wait for $\Phi_{0}(A, y)=\Phi_{1}(C, y)$. Pick large use $k(y)$. Allow simultaneous injury on A and C sides only if some $b \leq k(y)$ enters B at the same time.
D vs M^{\prime} : D wants to enumerate an ac-trace. To minimize demanded fickleness we are tempted to enumerate the entire trace simultaneously. But that requires us to put some b into B. M^{\prime} needs to know this b early, possibly picking b before D is realized. But then D will be unrealized when b enters B. So we cannot avoid enumerating the ac-trace one element at a time and demanding $>\omega$-fickleness.

One Non-meet Demands > ω-Fickleness

$$
\begin{array}{lll}
R_{V \Gamma \equiv}: V \nsupseteq A \& & \Gamma_{0}(A)=\Gamma_{1}(C)=V & \Longrightarrow(\exists \Theta, U) \\
& \Theta_{0}(A)=\Theta_{1}(C)=U \quad \& U \neq \equiv(V) .
\end{array}
$$

R-strategy (Ambos-Spies 1984): Pick large $x, \theta_{0}(x), \theta_{1}(x)$. Wait for x to be realized $(\equiv(x)=0)$. Wait for $\theta_{0}(x)$ to be lifted above the use for realization, which must occur if $V \nsupseteq A$.
Simultaneously put $\theta_{0}(x)$ into $A, \theta_{1}(x)$ into C, x into U. Restrain A to prevent unrealization.
R vs $M^{\prime}: R$ simultaneously injures A and C computations. M^{\prime} allows that if some b also enters $B . M^{\prime}$ needs b to be picked early, sometimes before R is realized. This is alright because R never restrains B. All enumerations are done simultaneously, so 1 permission is enough.

Two Equal Non-meets Demand $\geq \omega^{\omega}$-Fickleness

Theorem

Consider the lattice L shown below, which is the same as the earlier 2-meet lattice after ensuring that $A \wedge B$ and $A \wedge C$ do not exist. L characterizes $\geq \omega^{\omega}$-fickleness.

$$
\left.\begin{array}{rl}
J_{A} & : A=\Delta_{A}(B, C), \\
J_{C} & : C=\Delta_{C}(A, B), \\
D_{\psi} & : A \neq \Psi(B), \\
M_{A C \Phi}^{\prime} & : \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow(\exists \kappa) W=\kappa(B), \\
M_{A B \Phi}^{\prime} & : \Phi_{0}(A)=\Phi_{1}(B)=W \Longrightarrow(\exists \kappa) W=\kappa(C), \\
R & : A
\end{array}\right) C \text { does not exist. } . ~ \$
$$

Two Equal Non-meets Demand $\geq \omega^{\omega}$-Fickleness

D vs $M_{A C}^{\prime}, M_{A B}^{\prime}$: Like before, even though M^{\prime} allows simultaneous injury, we cannot reduce the demanded fickleness because we might unrealize D.
R vs $M_{A C}^{\prime}, M_{A B}^{\prime}$: Like before, R needs to put some a into A and C into C simultaneously. $M_{A C}^{\prime}$ allows this because R can pick some b early enough to be put into B. But by $M_{A B}^{\prime}$, the a, b enumerations forces R to pick some c^{\prime} early enough to be put into C. We can choose $c^{\prime}=c$ since R does not impose a restraint on C. All enumerations are done simultaneously, so fickleness of 1 is sufficient.

Three Equal Non-meets

What if we add the final type of M^{\prime} requirement?

1-3-1 without meet

$$
\begin{aligned}
J_{A} & : A=\Delta_{A}(B, C), \\
J_{C} & : C=\Delta_{C}(A, B), \\
D_{\psi} & : A \neq \Psi(B), \\
M_{A C \Phi}^{\prime} & : \Phi_{0}(A)=\Phi_{1}(C)=W \Longrightarrow(\exists \kappa) W=\kappa(B), \\
M_{A B \Phi}^{\prime} & : \Phi_{0}(A)=\Phi_{1}(B)=W \Longrightarrow(\exists \kappa) W=\kappa(C), \\
M_{B C \Phi}^{\prime} & : \Phi_{0}(B)=\Phi_{1}(C)=W \Longrightarrow(\exists \kappa) W=\kappa(A), \\
R & : A \wedge C \text { does not exist. }
\end{aligned}
$$

Three Equal Non-meets

R vs $M_{A B}^{\prime}, M_{A C}^{\prime}, M_{B C}^{\prime}: R$ cannot help but injure the A, B, C-gates simultaneously via a, b, c traces. $M_{A B}^{\prime}\left(M_{A C}^{\prime}\right)$ allowed the $A B$-injury $(A C)$ because $c(b)$ could be chosen early enough. Likewise, $M_{B C}^{\prime}$ will allow the $B C$-injury if a can be chosen early enough. But we cannot choose a early if we want to avoid unrealizing R.
Conjecture
1-3-1 without meet cannot be bounded in the r.e. degrees.

