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Root-taking in Puiseux Series
Let K be an algebraically closed field of characteristic 0.

Definition
A Puiseux series over K has the form

s =
∑

I≤i∈Z
ai t

i
m for some m ∈ N, l ∈ Z, ai ∈ K .

The support of s is Supp(s) = { i
m | I ≤ i ∈ Z & ai 6= 0}.

Let K{{t}} denote the field of Puiseux series over K .

Example s = 3t−
1
2 + πt0 + 2t

1
2 +−t1 + . . . with

Supp(s) = {−1
2 , 0,

1
2 , 1, . . .}.

Newton-Puiseux Theorem
If K is an algebraically closed field, then K{{t}} is algebraically
closed as well.



Generalizing Puiseux Series
Let K be an algebraically closed field of characteristic 0.
Let G be a divisible ordered abelian group.

Definition
A Hahn series over K and G has the form

s =
∑
g∈S

ag t
g for a well-ordered S ⊂ G and ag ∈ K 6=0.

Let K ((G )) be the field of Hahn series.

Example s = πt0 + t3 +−t3.1 + t3.14 + t3.141 + . . .+ t4 with
Supp(s) = {0, 3, 3.1, 3.14, 3.141, . . . , 4}.

Theorem (Mac Lane ’39)

If K is an algebraically closed field and G is a divisible ordered
abelian group, then K ((G )) is algebraically closed as well.



Complexity of the root-taking process

Let
p(x) = A0 + A1x + . . .+ Anx

n,

where the Ai are all in K{{t}} or all in K ((G )).

Goal
Describe the complexity of the roots of p(x) in terms of the Ai ’s,
K , and G .

Turns out to be related to the complexity of natural problems
about well-ordered subsets of G .



Valuation on Puiseux series

Definition
A Puiseux series over K has the form∑

I≤i∈Z
ai t

i
m for some m ∈ N, l ∈ Z, ai ∈ K .

Example s = 3t−
1
2 + πt0 + 2t

1
2 +−t1 + . . . with

Supp(s) = {−1
2 , 0,

1
2 , 1, . . .}.

K{{t}} has a natural valuation w : K{{t}} → Q
⋃
{∞} s.t.

w(s) :=

{
min(Supp(s)) if s 6= 0
∞ if s = 0

Think of t as infinitesimal, so tq infinitesimal if q > 0 and tq

infinite if q < 0.



Newton-Pusieux Method in K{{t}}

Let p(x) = A0 + A1x + . . .+ Anx
n be a nonconstant polynomial

over K{{t}}.

I A0 = 0 implies 0 is a root of p(x)

Suppose A0 6= 0.

Construct Newton Polygon to compute a root r of p(x).

I Calculate leading term r = btν + . . . to make terms cancel.



Newton-Pusieux Method in K{{t}}

Let p(x) = A0 + A1x + . . .+ Anx
n be a nonconstant polynomial

over K{{t}} with A0 6= 0.

Example
p(x) = −t2︸︷︷︸

A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.

Roots are t and t1/2 (with multiplicity 2).



Draw Newton Polygon

Let p(x) = A0 + A1x + . . .+ Anx
n be a nonconstant, A0 6= 0.

Example
p(x) = −t2︸︷︷︸

A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.

Roots are t and t1/2 (with multiplicity 2).

Steps

1. Plot (i ,w(Ai )) for i = 0, . . . , n.

2. Draw convex Newton Polygon.



Newton Polygon Example

p(x) = −t2︸︷︷︸
A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.



Facts about the Newton Polygon

Example p(x) = −t2︸︷︷︸
A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.

I The valuation ν of at least one root r = btν + · · · is the
negative of the slope of a side.



Facts about the Newton Polygon

Example p(x) = −t2︸︷︷︸
A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.

I Convexity means slopes increasing, so root of greatest
valuation associated with leftmost side.



Facts about the Newton Polygon
Example p(x) = −t2︸︷︷︸

A0

+ (t + 2t3/2)︸ ︷︷ ︸
A1

x +−(2t1/2 + t)︸ ︷︷ ︸
A2

x2 + 1︸︷︷︸
A3

x3.

I Calculate b ∈ K by finding a root of poly. in K [x ] determined
by leading coefficients of terms lying on corresponding side of
Newton polygon.



Continuing to approximate r

Let p(x) = A0 + A1x + . . .+ Anx
n be a nonconstant, A0 6= 0.

To find the next term in root r = btν + · · · having calculated
r1 = btν ,

Consider q(x) = p(r1 + x) = B0 + B1x + · · ·+ Bnx
n.

If B0 = 0, then r1 is a root.

If B0 6= 0, then repeat this process.



Representing Puiseux series

Suppose K has universe ω.
Fix a computable copy of Q with universe ω.

Consider the Puiseux series

s =
∑

I≤i∈Z
ai t

i
m for some m ∈ N, l ∈ Z, ai ∈ K .

Represent s by a function f : ω → K ×Q s.t.
if f (n) = (an, qn), then

s =
∑
n∈ω

ant
qn .

and

I qn increases with n, so

I there is a uniform bound on the denominators of the qn terms,
so limn→∞ qn =∞.



Complexity of basic operations in K{{t}}

Lemma
Let K and s, s ′ ∈ K{{t}} be given.

1. We can effectively compute s + s ′ and s · s ′.

2. It is Π0
1, but not computable, to say that s = 0.

I Given that s 6= 0, we can effectively find w(s).

I Regardless of whether s 6= 0, we can effectively order w(s) and
any q ∈ Q.



Complexity of root-taking over K{{t}}

Theorem (Knight, L., Solomon)

There is a uniform effective procedure that, given K and the
sequence of coefficients for a non-constant polynomial over
K{{t}}, yields a root.

Corollary

Let p(x) = A0 + A1x + . . .+ Anx
n be a polynomial over K{{t}}.

Then all roots of p(x) are computable in K and the coefficients Ai .



Complexity of root-taking over K{{t}}: Key Issues

Theorem (Knight, L., Solomon)

There is a uniform effective procedure that, given K and the
sequence of coefficients for a non-constant polynomial over
K{{t}}, yields a root.

Cannot effectively

I determine if a coefficient Ai = 0.

Hence, can’t check if A0 = 0, i.e., 0 is a root.

I determine the valuation w(Ai ).

So cannot uniformly compute Newton Polygon

I tell if the root r is a finite sum.

But must append terms to r while checking if done.



Definition: Hahn fields K ((G ))

1. Let K ((G )) be the set of formal sums s = Σg∈Sag t
g where

I ag ∈ K 6=0 and
I S is a well ordered subset of G .

S is the support of s and is denoted Supp(s).
The length of s is the order type of S in G .

2. The natural valuation is the function w : K ((G ))→ G ∪ {∞}
such that

w(s) =

{
minSupp(s) if s 6= 0
∞ if s = 0

Example s = πt0 + t3 +−t3.1 + t3.14 + t3.141 + . . .+ t4 with
Supp(s) = {0, 3, 3.1, 3.14, 3.141, . . . , 4}.

length(s) = ω + 1



Representing Hahn series: two approaches

Let s =
∑

g∈S ag t
g ∈ K ((G )).

Represent s in two ways as:

1. a function f : α→ K × G for some ordinal α s.t.

if f (γ) = (aγ , gγ), then s =
∑

γ<α aγt
gγ and

gβ < gγ for all β < γ < α.

2. a function σ : G → K s.t.

S = {g ∈ G : σ(g) 6= 0} is well ordered and

s =
∑

g∈S σ(g)tg .



Admissible Sets

Definition
An admissible set is a transitive set that satisfies essentially

I the axioms of ZF but with no power set axiom and

I the axioms of Comprehension and Replacement restricted to
∆0

0-formulas, finite conjuncts and disjuncts of atomic
formulas and their negations.

Example: LωCK
1

, the least admissible set containing ω.

The subsets of ω in LωCK
1

are exactly the ∆1
1 sets, i.e., the

hyperarithmetical sets.



Advantage of Admissible Sets containing ω

Theorem
Let A be an admissible set containing the field K and group G .
Then the generalized Newton-Puiseux Theorem holds in A, i.e.,

any polynomial p(x) over K ((G )) with coefficients in A has a root
r in A.

Can define functions F by induction on the ordinals,

as long as have a Σ1 formula describing
how to obtain F (α) from F |α.



Lengths of roots & other tools

Theorem (Knight & L.)

Let p(x) = A0 + . . .+ Anx
n be a polynomial over K ((G )).

If γ is a a limit ordinal greater than the lengths of all Ai ,

then any root of p(x) has length less than ωω
γ

.

Lemma
Let A be an admissible set containing the field K and group G .

I The function α→ ωα is Σ1-definable on A.

I If s, s ′ are elements of K ((G )) in A, then

s + s ′, s · s ′, Supp(s) and the length of s are all in A.



Root-taking in Hahn Fields

Theorem
Let A be an admissible set containing the field K and group G .
Then the generalized Newton-Puiseux Theorem holds in A, i.e.,

any polynomial p(x) over K ((G )) with coefficients in A has a root
r in A.



Initial segments of roots

New Procedure

Let p(x) = A0 + A1x + . . .+ Anx
n be a polynomial over K ((G )).

At step α determine an initial segment rα of a root of p(x), s.t.

r0 = 0 and for α > 0,

either rα has length α and extends rβ for all β < α

or there is some β < α s.t. rβ is already root and rα = rβ.

View rα as a function rα : G → K with well ordered support.

New Goal

Bound complexity of carrying out this procedure to step α when
given K , G , and p(x).



Complexity of root-taking procedure in K ((G ))

Proposition

The procedure to carry out step α is ∆0
f (α) in K , G , and p, where

f is defined as:

1. f (α) = supβ<αf (β) + 1.

2. for n ≥ 1, f (α + n) = f (α) + 1.

For finite n ≥ 1, the results below, apart from the last, are sharp.

Step n is ∆0
2.

Step ω is ∆0
3.

Step ω + n is ∆0
4.

Step ω + ω is ∆0
5, but unknown if sharp.



Complexity of root-taking procedure in K ((G ))

Determining rω+ω as a function is ∆0
5, but unknown.

But Complexity continues to go up with length.

Proposition

For each computable ordinal α, Step ωα is Π0
2α-hard.



Proof: Step ωα is Π0
2α-hard

Let S be a Π0
2α set.

Key ingredient
There is a uniformly computable sequence of orderings Cn s.t.

Cn ⊂ Q ∩ (0, 1) has o.t. ωα if n ∈ S and some γ < ωα otherwise.

Let Bn =
∑

q∈Cn t
q.

Consider the polynomial pn(x) = Bn− x , with unique root r = Bn.

If n ∈ S , then r = rωα .

If n /∈ S , then r = rγ for some γ < ωα.

So, S is reducible to Step ωα applied to (pn(x))n∈ω.



Bounds on Root-taking procedure in K ((G )) sharp?

Proposition

The procedure to carry out step α is ∆0
f (α) in K , G , and p, where

f was defined as before.

For finite n ≥ 1, the results below, apart from the last, are sharp.

Step n is ∆0
2.

Step ω is ∆0
3.

Step ω + n is ∆0
4.

Step ω + ω is ∆0
5, but unknown if sharp.

But seemingly not using full power of multiplication.



Pivot to simpler setting

Goal
Get better bounds on the root-taking process for K ((G )).

Let s ∈ K ((G )).

I support(s2) is a well ordered subset of sums of pairs of
elements in support(s) ⊂ G .

I Natural to consider complexity of problems associated with
well-ordered subsets of G .



Problems associated with well-ordered subsets A,B of G

How hard is it to:

1. Check that A has order type at least α?

Find the αth element of A?

2. Let A + B := {a + b : a ∈ A & b ∈ B}.

Check A + B has order type at least α?

Compute initial segments of A + B?

3. If A ⊆ G≥0, the set [A] of finite sums of elements of A is
well-ordered.

Check [A] has order type at least α?

Compute initial segments of [A]?



Takeaways

1. Newton’s Method over K{{t}} is uniformly computable in K
and a nonconstant polynomial.

2. Newton’s Method over K ((G )) can be carried out in any
admissible set containing the field K and group G .

3. Latter problem naturally involves complexity of problems
involving well ordered subsets of G .
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