Complexity of root-taking in power series fields \& related problems

Karen Lange
Wellesley College

Joint work with Chris Hall, Julia F. Knight, and Reed Solomon

Root-taking in Puiseux Series

Let K be an algebraically closed field of characteristic 0 .
Definition
A Puiseux series over K has the form

$$
s=\sum_{I \leq i \in \mathbb{Z}} a_{i} t^{\frac{i}{m}} \text { for some } m \in \mathbb{N}, I \in \mathbb{Z}, a_{i} \in K
$$

The support of s is $\operatorname{Supp}(s)=\left\{\left.\frac{i}{m} \right\rvert\, I \leq i \in \mathbb{Z} \& a_{i} \neq 0\right\}$.
Let $K\{\{t\}\}$ denote the field of Puiseux series over K.
Example $s=3 t^{-\frac{1}{2}}+\pi t^{0}+2 t^{\frac{1}{2}}+-t^{1}+\ldots$ with

$$
\operatorname{Supp}(s)=\left\{-\frac{1}{2}, 0, \frac{1}{2}, 1, \ldots\right\} .
$$

Newton-Puiseux Theorem
If K is an algebraically closed field, then $K\{\{t\}\}$ is algebraically closed as well.

Generalizing Puiseux Series

Let K be an algebraically closed field of characteristic 0 .
Let G be a divisible ordered abelian group.

Definition

A Hahn series over K and G has the form

$$
s=\sum_{g \in S} a_{g} t^{g} \text { for a well-ordered } S \subset G \text { and } a_{g} \in K^{\neq 0}
$$

Let $K((G))$ be the field of Hahn series.
Example $s=\pi t^{0}+t^{3}+-t^{3.1}+t^{3.14}+t^{3.141}+\ldots+t^{4}$ with

$$
\operatorname{Supp}(s)=\{0,3,3.1,3.14,3.141, \ldots, 4\} .
$$

Theorem (Mac Lane '39)
If K is an algebraically closed field and G is a divisible ordered abelian group, then $K((G))$ is algebraically closed as well.

Complexity of the root-taking process

Let

$$
p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}
$$

where the A_{i} are all in $K\{\{t\}\}$ or all in $K((G))$.

Goal
Describe the complexity of the roots of $p(x)$ in terms of the A_{i} 's, K, and G.

Turns out to be related to the complexity of natural problems about well-ordered subsets of G.

Valuation on Puiseux series

Definition

A Puiseux series over K has the form

$$
\sum_{I \leq i \in \mathbb{Z}} a_{i} t^{\frac{i}{m}} \text { for some } m \in \mathbb{N}, I \in \mathbb{Z}, a_{i} \in K
$$

Example $s=3 t^{-\frac{1}{2}}+\pi t^{0}+2 t^{\frac{1}{2}}+-t^{1}+\ldots$ with

$$
\operatorname{Supp}(s)=\left\{-\frac{1}{2}, 0, \frac{1}{2}, 1, \ldots\right\} .
$$

$K\{\{t\}\}$ has a natural valuation $w: K\{\{t\}\} \rightarrow \mathbb{Q} \bigcup\{\infty\}$ s.t.

$$
w(s):= \begin{cases}\min (\operatorname{Supp}(s)) & \text { if } s \neq 0 \\ \infty & \text { if } s=0\end{cases}
$$

Think of t as infinitesimal, so t^{q} infinitesimal if $q>0$ and t^{q} infinite if $q<0$.

Newton-Pusieux Method in $K\{\{t\}\}$

Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a nonconstant polynomial over $K\{\{t\}\}$.

- $A_{0}=0$ implies 0 is a root of $p(x)$

Suppose $A_{0} \neq 0$.

Construct Newton Polygon to compute a root r of $p(x)$.

- Calculate leading term $r=b t^{\nu}+\ldots$ to make terms cancel.

Newton-Pusieux Method in $K\{\{t\}\}$

Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a nonconstant polynomial over $K\{\{t\}\}$ with $A_{0} \neq 0$.

Example
$p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}$.
Roots are t and $t^{1 / 2}$ (with multiplicity 2).

Draw Newton Polygon

Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a nonconstant, $A_{0} \neq 0$.
Example
$p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}$.
Roots are t and $t^{1 / 2}$ (with multiplicity 2).

Steps

1. Plot $\left(i, w\left(A_{i}\right)\right)$ for $i=0, \ldots, n$.
2. Draw convex Newton Polygon.

Newton Polygon Example

$$
p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}
$$

Facts about the Newton Polygon

Example $p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}$.

- The valuation ν of at least one root $r=b t^{\nu}+\cdots$ is the negative of the slope of a side.

Facts about the Newton Polygon

Example $p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}$.

- Convexity means slopes increasing, so root of greatest valuation associated with leftmost side.

Facts about the Newton Polygon

Example $p(x)=\underbrace{-t^{2}}_{A_{0}}+\underbrace{\left(t+2 t^{3 / 2}\right)}_{A_{1}} x+\underbrace{-\left(2 t^{1 / 2}+t\right)}_{A_{2}} x^{2}+\underbrace{1}_{A_{3}} x^{3}$.

- Calculate $b \in K$ by finding a root of poly. in $K[x]$ determined by leading coefficients of terms lying on corresponding side of Newton polygon.

Continuing to approximate r

Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a nonconstant, $A_{0} \neq 0$.

To find the next term in root $r=b t^{\nu}+\cdots$ having calculated $r_{1}=b t^{\nu}$,

Consider $q(x)=p\left(r_{1}+x\right)=B_{0}+B_{1} x+\cdots+B_{n} x^{n}$.
If $B_{0}=0$, then r_{1} is a root.
If $B_{0} \neq 0$, then repeat this process.

Representing Puiseux series

Suppose K has universe ω.
Fix a computable copy of \mathbb{Q} with universe ω.
Consider the Puiseux series

$$
s=\sum_{I \leq i \in \mathbb{Z}} a_{i} t^{\frac{i}{m}} \text { for some } m \in \mathbb{N}, I \in \mathbb{Z}, a_{i} \in K
$$

Represent s by a function $f: \omega \rightarrow K \times \mathbb{Q}$ s.t.

$$
\text { if } f(n)=\left(a_{n}, q_{n}\right) \text {, then }
$$

$$
s=\sum_{n \in \omega} a_{n} t^{q_{n}} .
$$

and

- q_{n} increases with n, so
- there is a uniform bound on the denominators of the q_{n} terms, so $\lim _{n \rightarrow \infty} q_{n}=\infty$.

Complexity of basic operations in $K\{\{t\}\}$

Lemma

Let K and $s, s^{\prime} \in K\{\{t\}\}$ be given.

1. We can effectively compute $s+s^{\prime}$ and $s \cdot s^{\prime}$.
2. It is Π_{1}^{0}, but not computable, to say that $s=0$.

- Given that $s \neq 0$, we can effectively find $w(s)$.
- Regardless of whether $s \neq 0$, we can effectively order $w(s)$ and any $q \in \mathbb{Q}$.

Complexity of root-taking over $K\{\{t\}\}$

Theorem (Knight, L., Solomon)
There is a uniform effective procedure that, given K and the sequence of coefficients for a non-constant polynomial over $K\{\{t\}\}$, yields a root.

Corollary
Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a polynomial over $K\{\{t\}\}$. Then all roots of $p(x)$ are computable in K and the coefficients A_{i}.

Complexity of root-taking over $K\{\{t\}\}$: Key Issues

Theorem (Knight, L., Solomon)
There is a uniform effective procedure that, given K and the sequence of coefficients for a non-constant polynomial over $K\{\{t\}\}$, yields a root.

Cannot effectively

- determine if a coefficient $A_{i}=0$.

Hence, can't check if $A_{0}=0$, i.e., 0 is a root.

- determine the valuation $w\left(A_{i}\right)$.

So cannot uniformly compute Newton Polygon

- tell if the root r is a finite sum.

But must append terms to r while checking if done.

Definition: Hahn fields $K((G))$

1. Let $K((G))$ be the set of formal sums $s=\Sigma_{g \in S} a_{g} t^{g}$ where

- $a_{g} \in K^{\neq 0}$ and
- S is a well ordered subset of G.
S is the support of s and is denoted Supp(s). The length of s is the order type of S in G.

2. The natural valuation is the function $w: K((G)) \rightarrow G \cup\{\infty\}$ such that

$$
w(s)= \begin{cases}\min \operatorname{Supp}(s) & \text { if } s \neq 0 \\ \infty & \text { if } s=0\end{cases}
$$

Example $s=\pi t^{0}+t^{3}+-t^{3.1}+t^{3.14}+t^{3.141}+\ldots+t^{4}$ with

$$
\begin{aligned}
\operatorname{Supp}(s)= & \{0,3,3.1,3.14,3.141, \ldots, 4\} . \\
& \operatorname{length}(s)=\omega+1
\end{aligned}
$$

Representing Hahn series: two approaches

Let $s=\sum_{g \in S} a_{g} t^{g} \in K((G))$.
Represent s in two ways as:

1. a function $f: \alpha \rightarrow K \times G$ for some ordinal α s.t.

$$
\begin{array}{r}
\text { if } f(\gamma)=\left(a_{\gamma}, g_{\gamma}\right) \text {, then } s=\sum_{\gamma<\alpha} a_{\gamma} t^{g_{\gamma}} \text { and } \\
\qquad g_{\beta}<g_{\gamma} \text { for all } \beta<\gamma<\alpha .
\end{array}
$$

2. a function $\sigma: G \rightarrow K$ s.t.

$$
\begin{gathered}
S=\{g \in G: \sigma(g) \neq 0\} \text { is well ordered and } \\
s=\sum_{g \in S} \sigma(g) t^{g} .
\end{gathered}
$$

Admissible Sets

Definition

An admissible set is a transitive set that satisfies essentially

- the axioms of ZF but with no power set axiom and
- the axioms of Comprehension and Replacement restricted to Δ_{0}^{0}-formulas, finite conjuncts and disjuncts of atomic formulas and their negations.

Example: $L_{\omega_{1}^{c K}}$, the least admissible set containing ω.
The subsets of ω in $L_{\omega_{1}^{c k}}$ are exactly the Δ_{1}^{1} sets, i.e., the hyperarithmetical sets.

Advantage of Admissible Sets containing ω

Theorem

Let A be an admissible set containing the field K and group G.
Then the generalized Newton-Puiseux Theorem holds in A, i.e., any polynomial $p(x)$ over $K((G))$ with coefficients in A has a root r in A.

Can define functions F by induction on the ordinals,
as long as have a Σ_{1} formula describing how to obtain $F(\alpha)$ from $F \mid \alpha$.

Lengths of roots \& other tools

Theorem (Knight \& L.)
Let $p(x)=A_{0}+\ldots+A_{n} x^{n}$ be a polynomial over $K((G))$.
If γ is a a limit ordinal greater than the lengths of all A_{i}, then any root of $p(x)$ has length less than $\omega^{\omega^{\gamma}}$.

Lemma
Let A be an admissible set containing the field K and group G.

- The function $\alpha \rightarrow \omega^{\alpha}$ is Σ_{1}-definable on A.
- If s, s^{\prime} are elements of $K((G))$ in A, then $s+s^{\prime}, s \cdot s^{\prime}, \operatorname{Supp}(s)$ and the length of s are all in A.

Root-taking in Hahn Fields

Theorem
Let A be an admissible set containing the field K and group G. Then the generalized Newton-Puiseux Theorem holds in A, i.e., any polynomial $p(x)$ over $K((G))$ with coefficients in A has a root r in A.

Initial segments of roots

New Procedure

Let $p(x)=A_{0}+A_{1} x+\ldots+A_{n} x^{n}$ be a polynomial over $K((G))$.
At step α determine an initial segment r_{α} of a root of $p(x)$, s.t.

$$
r_{0}=0 \text { and for } \alpha>0
$$

either r_{α} has length α and extends r_{β} for all $\beta<\alpha$ or there is some $\beta<\alpha$ s.t. r_{β} is already root and $r_{\alpha}=r_{\beta}$.

View r_{α} as a function $r_{\alpha}: G \rightarrow K$ with well ordered support.
New Goal
Bound complexity of carrying out this procedure to step α when given K, G, and $p(x)$.

Complexity of root-taking procedure in $K((G))$

Proposition

The procedure to carry out step α is $\Delta_{f(\alpha)}^{0}$ in K, G, and p, where f is defined as:

$$
\begin{aligned}
& \text { 1. } f(\alpha)=\sup _{\beta<\alpha} f(\beta)+1 \\
& \text { 2. for } n \geq 1, f(\alpha+n)=f(\alpha)+1 \text {. }
\end{aligned}
$$

For finite $n \geq 1$, the results below, apart from the last, are sharp.
Step n is Δ_{2}^{0}.
Step ω is Δ_{3}^{0}.
Step $\omega+n$ is Δ_{4}^{0}.
Step $\omega+\omega$ is Δ_{5}^{0}, but unknown if sharp.

Complexity of root-taking procedure in $K((G))$

Determining $r_{\omega+\omega}$ as a function is Δ_{5}^{0}, but unknown.
But Complexity continues to go up with length.

Proposition
For each computable ordinal α, Step ω^{α} is $\Pi_{2 \alpha}^{0}$-hard.

Proof: Step ω^{α} is $\Pi_{2 \alpha}^{0}$-hard

Let S be a $\Pi_{2 \alpha}^{0}$ set.
Key ingredient
There is a uniformly computable sequence of orderings \mathcal{C}_{n} s.t.
$\mathcal{C}_{n} \subset \mathbb{Q} \cap(0,1)$ has o.t. ω^{α} if $n \in S$ and some $\gamma<\omega^{\alpha}$ otherwise.

Let $B_{n}=\sum_{q \in \mathcal{C}_{n}} t^{q}$.
Consider the polynomial $p_{n}(x)=B_{n}-x$, with unique root $r=B_{n}$.

$$
\begin{aligned}
& \text { If } n \in S \text {, then } r=r_{\omega^{\alpha}} \\
& \text { If } n \notin S \text {, then } r=r_{\gamma} \text { for some } \gamma<\omega^{\alpha} \text {. }
\end{aligned}
$$

So, S is reducible to Step ω^{α} applied to $\left(p_{n}(x)\right)_{n \in \omega}$.

Bounds on Root-taking procedure in $K((G))$ sharp?

Proposition

The procedure to carry out step α is $\Delta_{f(\alpha)}^{0}$ in K, G, and p, where f was defined as before.

For finite $n \geq 1$, the results below, apart from the last, are sharp.

$$
\begin{aligned}
& \text { Step } n \text { is } \Delta_{2}^{0} \\
& \text { Step } \omega \text { is } \Delta_{3}^{0} \\
& \text { Step } \omega+n \text { is } \Delta_{4}^{0} .
\end{aligned}
$$

Step $\omega+\omega$ is Δ_{5}^{0}, but unknown if sharp.

But seemingly not using full power of multiplication.

Pivot to simpler setting

Goal

Get better bounds on the root-taking process for $K((G))$.
Let $s \in K((G))$.

- support $\left(s^{2}\right)$ is a well ordered subset of sums of pairs of elements in support(s) $\subset G$.
- Natural to consider complexity of problems associated with well-ordered subsets of G.

Problems associated with well-ordered subsets A, B of G

How hard is it to:

1. Check that A has order type at least α ?

Find the $\alpha^{\text {th }}$ element of A ?
2. Let $A+B:=\{a+b: a \in A \& b \in B\}$.

Check $A+B$ has order type at least α ?
Compute initial segments of $A+B$?
3. If $A \subseteq G{ }^{\geq 0}$, the set $[A]$ of finite sums of elements of A is well-ordered.

Check $[A]$ has order type at least α ?
Compute initial segments of $[A]$?

Takeaways

1. Newton's Method over $K\{\{t\}\}$ is uniformly computable in K and a nonconstant polynomial.
2. Newton's Method over $K((G))$ can be carried out in any admissible set containing the field K and group G.
3. Latter problem naturally involves complexity of problems involving well ordered subsets of G.

Thanks!

Saugata Basu, Richard Pollack, and Marie-Françoise Roy.
Algorithms in real algebraic geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin, second edition, 2006.
固
J. Knight, K. Lange, and D. R. Solomon.

Roots of polynomials in fields roots of polynomials in fields of generalized power series.
In Proceedings for Aspects of Computation. World Scientific.
To appear.
圊 Julia F. Knight and Karen Lange.
Lengths of roots of polynomials in a Hahn field.
Submitted.

