Reverse mathematics of combinatorial principles over a weak base theory

Leszek Kołodziejczyk University of Warsaw

(part of joint project with

Marta Fiori Carones, Kasia Kowalik, Tin Lok Wong, and Keita Yokoyama)

Midwest Computability Seminar / CTA Seminar October 2020

Reverse mathematics

- Reverse mathematics studies the strength of axioms needed to prove various mathematical theorems. This is done by proving implications between the theorems and/or various logical principles over a relatively weak base theory.
- Often, the theorem is Π_2^1 of the form $\forall X \exists Y \psi$, and its strength is related to the difficulty of computing *Y* given *X*.
- In the early days, many theorems were proved equivalent to one of a few principles like "for each set, its jump exists" etc.
- Later work: theorems from e.g. Ramsey theory form a great mess of (non)implications (the "reverse mathematics zoo").
- Today's talk: we focus *on the base theory*.

- Introduction

Usual base theory: RCA₀

Language:

vbles *x*, *y*, *z*, ..., *i*, *j*, *k*... for natural numbers; vbles *X*, *Y*, *Z*, ... for sets of naturals; symbols +, \cdot , 2^x , \leq , 0, 1, \in .

Axioms:

- +, \cdot , 2^x etc. have their usual basic properties,
- Δ_1^0 comprehension: if $\bar{X} = X_1, \dots, X_k$ are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\{n : \psi(n, \bar{X})\}$ is a set.
- ► Σ_1^0 induction: if \bar{X} are sets and $\psi(x, \bar{X})$ is r.e. relative to \bar{X} , then $\psi(0, \bar{X}) \land \forall n (\psi(n, \bar{X}) \Rightarrow \psi(n+1, \bar{X})) \Rightarrow \forall n \psi(n, \bar{X})$.

Reverse mathematics over weak base theory

- Introduction

Weaker base theory: RCA₀*

Language:

vbles *x*, *y*, *z*, ..., *i*, *j*, *k*... for natural numbers; vbles *X*, *Y*, *Z*, ... for sets of naturals; symbols +, \cdot , 2^x , \leq , 0, 1, \in .

Axioms:

- +, \cdot , 2^x etc. have their usual basic properties,
- Δ_1^0 comprehension: if $\bar{X} = X_1, ..., X_k$ are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\{n : \psi(n, \bar{X})\}$ is a set.
- Δ_1^0 induction: if \bar{X} are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\psi(0, \bar{X}) \land \forall n (\psi(n, \bar{X}) \Rightarrow \psi(n+1, \bar{X})) \Rightarrow \forall n \psi(n, \bar{X})$.

- Introduction

Weaker base theory: RCA₀*

Language:

vbles *x*, *y*, *z*,..., *i*, *j*, *k*... for natural numbers; vbles *X*, *Y*, *Z*,... for sets of naturals; symbols +, \cdot , 2^x , \leq , 0, 1, \in .

Axioms:

- +, \cdot , 2^x etc. have their usual basic properties,
- Δ_1^0 comprehension: if $\bar{X} = X_1, \dots, X_k$ are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\{n : \psi(n, \bar{X})\}$ is a set.
- Δ_1^0 induction: if \bar{X} are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\psi(0, \bar{X}) \land \forall n (\psi(n, \bar{X}) \Rightarrow \psi(n+1, \bar{X})) \Rightarrow \forall n \psi(n, \bar{X})$.

Introduced in Simpson-Smith 86. Studied a bit both in traditional reverse maths and "reverse recursion theory". Most results have had the form "this still holds over RCA_0^* " or "this is equivalent to RCA_0^* ".

Reverse mathematics over weak base theory

- Introduction

What is the zoo like over RCA_0^* ?

Main principles we consider:

- ► RT₂²: for every $f: [\mathbb{N}]^2 \to 2$ there is infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright_{[H]^2} = \text{const.}$
- ▶ CAC: for every partial ordering \preccurlyeq on \mathbb{N} there is infinite $H \subseteq \mathbb{N}$ such that (H, \preccurlyeq) is either a chain or an antichain.
- ADS: in every linear ordering ≼ on N there is either an infinite ascending sequence or an infinite descending sequence.
- ► CRT₂²: for every $f: [\mathbb{N}]^2 \to 2$ there is infinite $H \subseteq \mathbb{N}$ such that $\forall x \in H \exists y \in H \forall z \in H (z \ge y \Rightarrow (f(x, z) = f(x, y))).$

Over RCA₀, we have $RT_2^2 \Rightarrow CAC \Rightarrow ADS \Rightarrow CRT_2^2$. (HS07; LST 13) How do these principles behave over RCA₀^{*}? Reverse mathematics over weak base theory

- Introduction

What is the zoo like over RCA_0^* ?

Main principles we consider:

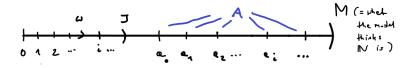
- ▶ RT₂²: for every $f: [\mathbb{N}]^2 \to 2$ there is infinite $H \subseteq \mathbb{N}$ such that $f \upharpoonright_{[H]^2} = \text{const.}$
- ▶ CAC: for every partial ordering \preccurlyeq on \mathbb{N} there is infinite $H \subseteq \mathbb{N}$ such that (H, \preccurlyeq) is either a chain or an antichain.
- ADS: in every linear ordering ≼ on N there is either an infinite ascending sequence or an infinite descending sequence.
- ► CRT_2^2 : for every $f: [\mathbb{N}]^2 \to 2$ there is infinite $H \subseteq \mathbb{N}$ such that $\forall x \in H \exists y \in H \forall z \in H (z \ge y \Rightarrow (f(x, z) = f(x, y))).$

Over RCA₀, we have $RT_2^2 \Rightarrow CAC \Rightarrow ADS \Rightarrow CRT_2^2$. (HS07; LST 13) How do these principles behave over RCA₀^{*}? - Introduction

What does failure of $I\Sigma_1^0$ mean?

If a model (M, \mathscr{X}) of RCA₀^{*} is not a model of RCA₀, then Σ_1^0 induction fails:

- there is a Σ₁⁰ definable *proper cut J* (contains 0, closed downwards and under +1),
- ► there is an infinite (=unbounded) set A ∈ X s.t. A = {a_i : i ∈ J} enumerated in increasing order. We can say that |A| = J.



Two flavours of Ramsey-theoretic principles

In RCA₀^{*}, "for every *f* there exists infinite $H \subseteq \mathbb{N}$..." can mean (at least) one of two things:

- "for every *f* there exists unbounded $H \subseteq \mathbb{N}$..." (*normal* version),
- "for every *f* there exists $H \subseteq \mathbb{N}$ with $|H| = \mathbb{N}$ s.t. ..." (*fat* version).

We will consider both versions, starting with normal.

Normal versions: relativization to cuts

Given a proper cut *J* in $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$, the family $\operatorname{Cod}(M/J)$ is $\{B \cap J : B \in \mathscr{X}\}$. This family depends only on *M* and *J*, not on \mathscr{X} .

If *J* is closed under $x \mapsto 2^x$, then $(J, \operatorname{Cod}(M/J)$ satisfies WKL₀^{*} (= RCA₀^{*} + "every infinite tree in {0, 1}^N has a length-N path").

Normal versions: relativization to cuts

Given a proper cut *J* in $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$, the family $\operatorname{Cod}(M/J)$ is $\{B \cap J : B \in \mathscr{X}\}$. This family depends only on *M* and *J*, not on \mathscr{X} .

If *J* is closed under $x \mapsto 2^x$, then $(J, \operatorname{Cod}(M/J)$ satisfies WKL₀^{*} (= RCA₀^{*} + "every infinite tree in {0, 1}^N has a length-N path").

Theorem

Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$ and let $J \subseteq M$ be a proper Σ_1^0 -definable cut in M. Let ψ be any of (normal) RT_2^n , CAC, ADS, CRT_2^2 . Then:

 $(M, \mathcal{X}) \models \Psi \; iff(J, \operatorname{Cod}(M/J)) \models \Psi.$

Normal versions: relativization to cuts

Given a proper cut *J* in $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$, the family $\operatorname{Cod}(M/J)$ is $\{B \cap J : B \in \mathscr{X}\}$. This family depends only on *M* and *J*, not on \mathscr{X} .

If *J* is closed under $x \mapsto 2^x$, then $(J, \operatorname{Cod}(M/J)$ satisfies WKL₀^{*} (= RCA₀^{*} + "every infinite tree in {0, 1}^N has a length-N path").

Theorem

Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$ and let $J \subseteq M$ be a proper Σ_1^0 -definable cut in M. Let ψ be any of (normal) RT_2^n , CAC, ADS, CRT_2^2 . Then:

$$(M, \mathscr{X}) \models \Psi iff(J, \operatorname{Cod}(M/J)) \models \Psi.$$

We have a more general sufficient condition for this equivalence. Note that l.h.s. does not depend on *J*, r.h.s does not depend on \mathcal{X} !

A useful fact about coding

Theorem Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$ and let $J \subseteq M$ be a proper Σ_1^0 -definable cut in M. Let ψ be any of (normal) RT_2^n , CAC, ADS, CRT_2^2 . Then:

 $(M, \mathscr{X}) \models \Psi iff(J, \operatorname{Cod}(M/J)) \models \Psi.$

A useful fact about coding

Theorem Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$ and let $J \subseteq M$ be a proper Σ_1^0 -definable cut in M. Let ψ be any of (normal) RT_2^n , CAC, ADS, CRT_2^2 . Then:

 $(M, \mathscr{X}) \models \Psi iff(J, \operatorname{Cod}(M/J)) \models \Psi.$

We will prove the (\Rightarrow) direction for RT_2^2 . Both directions are similar and rely on the following fact about Cod.

A useful fact about coding

Theorem Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$ and let $J \subseteq M$ be a proper Σ_1^0 -definable cut in M. Let ψ be any of (normal) RT_2^n , CAC, ADS, CRT_2^2 . Then:

 $(M, \mathscr{X}) \models \Psi iff(J, \operatorname{Cod}(M/J)) \models \Psi.$

We will prove the (\Rightarrow) direction for RT_2^2 . Both directions are similar and rely on the following fact about Cod.

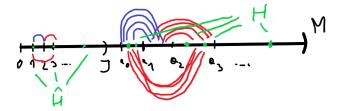
Fact (essentially Chong-Mourad 1990)

Let $(M, \mathscr{X}) \models \operatorname{RCA}_0^*$, let *J* be a proper cut in *M*, let $\mathscr{X} \ni A = \{a_i : i \in J\}$. Then for every $\mathscr{X} \ni B \subseteq A$, the set $\{i \in J : a_i \in B\}$ is in $\operatorname{Cod}(M/J)$.

Proving $(M, \mathscr{X}) \models \operatorname{RT}_2^2 \Rightarrow (J, \operatorname{Cod}(M/J)) \models \operatorname{RT}_2^2$.

Proof.

Let $A \in \mathscr{X}$ be such that $A = \{a_i : i \in J\}$. Let $f : [J]^2 \to 2$ be coded. Define a colouring of $[A]^2$ by $\check{f}(a_{i_1}, a_{i_2}) = f(i_1, i_2)$ Extend \check{f} to $[M]^2$ by looking at nearest elements of A. Use RT_2^2 in (M, \mathscr{X}) to get $H \subseteq M$ homogeneous for \check{f} .



By Chong-Mourad, $\hat{H} = \{i \in J : H \cap (a_{i-1}, a_i] \neq \emptyset\}$ is in Cod(*M*/*J*). This set \hat{H} is homogeneous for *f*.

Normal versions: what else can be said

If Ψ is the normal version of a Ramsey-theoretic principle (such as one of our RT_2^2 , CAC, ADS, CRT_2^2), the following things follow from the characterization in terms of cuts:

- If (M, X) ⊨ Ψ and (lightface) Σ₁ induction fails in M, then (M, Δ₁-Def(M)) ⊨ Ψ. I.e., Ψ is computably true in M!
- RCA₀^{*} + Ψ does not prove any Π₃⁰ sentences that are unprovable in RCA₀^{*} (i.e., RCA₀^{*} + Ψ is Π₃⁰-conservative over RCA₀^{*}).
- ► $RCA_0^* + \Psi$ is arithmetically conservative over RCA_0^* iff $WKL_0^* \vdash \Psi$ (and then we also have Π_1^1 -conservativity). (In the case of CRT_2^2 , this gives a negative answer to a question of Belanger.)

Normal versions: what else can be said

If Ψ is the normal version of a Ramsey-theoretic principle (such as one of our RT_2^2 , CAC, ADS, CRT_2^2), the following things follow from the characterization in terms of cuts:

- If (M, X) ⊨ Ψ and (lightface) Σ₁ induction fails in M, then (M, Δ₁-Def(M)) ⊨ Ψ. I.e., Ψ is computably true in M!
- RCA₀^{*} + Ψ does not prove any Π₃⁰ sentences that are unprovable in RCA₀^{*} (i.e., RCA₀^{*} + Ψ is Π₃⁰-conservative over RCA₀^{*}).
- ► $RCA_0^* + \Psi$ is arithmetically conservative over RCA_0^* iff $WKL_0^* \vdash \Psi$ (and then we also have Π_1^1 -conservativity). (In the case of CRT_2^2 , this gives a negative answer to a question of Belanger.)

Also worth mentioning:

► The implications $RT_2^2 \Rightarrow CAC \Rightarrow ADS$ and $RT_2^2 \Rightarrow CRT_2^2$ still hold in RCA_0^* . We do not know if $CAC \Rightarrow CRT_2^2$ holds.

Fat versions: what is ADS?

Many principles have one natural fat version. In many cases it is easily seen to imply RCA_0 . (E.g. fat- RT_2^2 , by Yokoyama 2013.)

For ADS, the issue is delicate:

- ► fat-ADS^{set}: "for every linear ordering \preccurlyeq on \mathbb{N} , there is *H* with $|H| = \mathbb{N}$ s.t. \preccurlyeq , \leq either always agree or always disagree on *H*".
- fat-ADS^{seq}: "for every linear ordering ≼ on N, there is h: N → N which is either an ascending or a descending sequence in ≼".

 RCA_0^* proves fat- $RT_2^2 \Rightarrow$ fat-CAC \Rightarrow fat-ADS^{set} \Rightarrow fat-ADS^{seq}. Over RCA₀, we also have fat-ADS^{set} \Leftrightarrow fat-ADS^{seq}.

Some fat principles are strong

```
Theorem Over \operatorname{RCA}_0^*, fat-ADS<sup>set</sup> implies RCA<sub>0</sub>.
```

Proof.

- Assume $I\Sigma_1^0$ fails, so we have unbounded $A = \{a_i : i \in J\}$ for proper Σ_1^0 -definable cut *J*.
- If $x \in [a_i, a_{i+1})$ and $y \in [a_j, a_{j+1})$ for i < j, set $x \preccurlyeq y$.
- If $x, y \in [a_i, a_{i+1})$, set $x \preccurlyeq y$ iff x > y.
- Then all ≼-ascending sets have cardinality at most J, and all ≼-descending sets are finite. So, fat-ADS^{set} fails.

Some fat principles are less strong

Theorem Over RCA_0^* , (normal) ADS and fat-ADS^{seq} are equivalent.

Some fat principles are less strong

Theorem Over RCA_0^* , (normal) ADS and fat-ADS^{seq} are equivalent.

We will prove the implication in WKL_0^* , using a variant of the *grouping principle* (cf. Patey-Yokoyama 2018) specific to RCA_0^* .

Definition

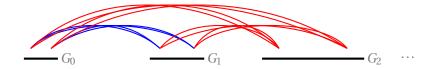
EFG (*Ever fatter grouping* principle) says: "for every $f: [\mathbb{N}]^2 \to 2$, there exists an infinite family of finite sets $G_0 < G_1 < \dots$ such that:

- the cardinalities $|G_i|$ grow to \mathbb{N} as *i* increases,
- for each i < j, we have $f \upharpoonright_{G_i \times G_j} = \text{const}^n$.

Reverse mathematics over weak base theory

Fat versions

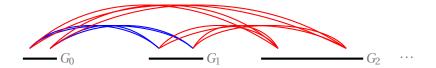
EFG pictured



Reverse mathematics over weak base theory

- Fat versions

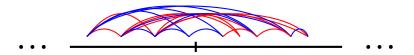
EFG pictured



Theorem WKL₀^{*} + \neg I Σ_1^0 *proves* EFG.

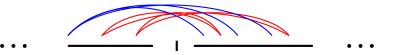
Proving EFG

- Assuming $\neg I\Sigma_1^0$, we have the usual cut *J* and set $A = \{a_i : i \in J\}$.
- ▶ W.l.o.g., we have (i) $|[a_i, a_{i+1})| \gg 2^{|[0,a_i)|}$ and (ii) $|[a_i, a_{i+1})| \gg |J|$. Let $G_0^0 = [0, a_0), G_1^0 = [a_0, a_1), G_2^0 = [a_1, a_2)$ etc.



Proving EFG

- Assuming $\neg I\Sigma_1^0$, we have the usual cut *J* and set $A = \{a_i : i \in J\}$.
- ▶ W.l.o.g., we have (i) $|[a_i, a_{i+1})| \gg 2^{|[0,a_i)|}$ and (ii) $|[a_i, a_{i+1})| \gg |J|$. Let $G_0^0 = [0, a_0), G_1^0 = [a_0, a_1), G_2^0 = [a_1, a_2)$ etc.
- ▶ Using (i), take large $G_0^1 \subseteq G_0^0, G_1^1 \subseteq G_1^0, G_2^1 \subseteq G_2^0, \dots$ so that $f \upharpoonright_{\{x\} \times G_i^1}$ constant for each $x \in G_i^0, i < j$.

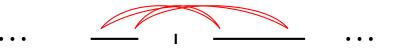


Proving EFG

- Assuming $\neg I\Sigma_1^0$, we have the usual cut *J* and set $A = \{a_i : i \in J\}$.
- ▶ W.l.o.g., we have (i) $|[a_i, a_{i+1})| \gg 2^{|[0,a_i)|}$ and (ii) $|[a_i, a_{i+1})| \gg |J|$. Let $G_0^0 = [0, a_0), G_1^0 = [a_0, a_1), G_2^0 = [a_1, a_2)$ etc.
- ► Given fixed *k*, using (ii) lets us take large $G_k^2 \subseteq G_k^1, \ldots, G_0^2 \subseteq G_0^1$ so that $f \upharpoonright_{G_i^2 \times G_i^2}$ constant for each $i < j \le k$.

Proving EFG

- Assuming $\neg I\Sigma_1^0$, we have the usual cut *J* and set $A = \{a_i : i \in J\}$.
- ▶ W.l.o.g., we have (i) $|[a_i, a_{i+1})| \gg 2^{|[0,a_i)|}$ and (ii) $|[a_i, a_{i+1})| \gg |J|$. Let $G_0^0 = [0, a_0), G_1^0 = [a_0, a_1), G_2^0 = [a_1, a_2)$ etc.
- Such finite approximations to a witness to EFG form a binary tree. Take infinite path provided by WKL.



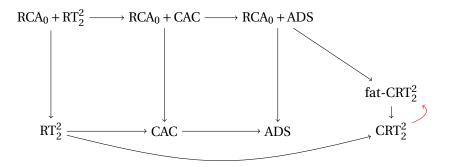
Proving ADS + EFG \Rightarrow fat-ADS^{seq}

Let linear ordering \preccurlyeq on \mathbb{N} be given. We can assume $\neg I\Sigma_1^0$.

- By EFG, we get G₀ < G₁ < G₂... s.t. for *i* ≠ *j*, points in G_i are either all ≼-above or all ≼-below all points in G_j.
- ▶ So, there is an induced \preccurlyeq -ordering on the set of G_i 's. By ADS, there is (w.l.o.g.) a descending sequence $G_{i_0} \succeq G_{i_1} \succeq G_{i_2} \dots$ where $i_0 < i_1 < i_2 \dots$ The numbers $|G_{i_k}|$ grow to \mathbb{N} with k.
- Build length-N ≼-decreasing sequence by enumerating G_{i₀} in ≼-decreasing order, then G_{i₁} in ≼-decreasing order etc.

A similar argument shows that $WKL_0^* + CRT_2^2$ proves fat- CRT_2^2 . For colourings given by linear orderings (= transitive colourings), WKL can be eliminated from proof of EFG.

Normal and fat principles: summary



Red implication known in the presence of WKL.

- The case of COH

The curious case of COH

The principle COH is: "for every family $\{R_x : x \in \mathbb{N}\}$ of subsets of \mathbb{N} , there exists infinite $H \subseteq \mathbb{N}$ such that for each x, either $\forall^{\infty}z \in H(z \in R_x)$ or $\forall^{\infty}z \in H(z \notin R_x)$ ".

This strengthens CRT_2^2 : think of f(x, y) as $y \in R_x$. But here, $f(x, \cdot)$ must stabilize on H for each x, not just for $x \in H$.

Over RCA₀, RT₂² proves COH. Even if we do not require $|H| = \mathbb{N}$, COH has a certain "fat" aspect, due to the "for each *x*" condition.

How strong is COH over RCA_0^* ?

- The case of COH

The curious case of COH (cont'd)

Theorem A model of RCA_0^* of the form $(M, \Delta_1$ -Def(M)) never satisfies COH.

Corollary $RCA_0^* + RT_2^2$ does not prove COH.

- The case of COH

The curious case of COH (cont'd)

Theorem

A model of RCA_0^* of the form $(M, \Delta_1 \operatorname{-Def}(M))$ never satisfies COH.

Corollary RCA₀^{*} + RT₂² does not prove COH.

Proof of Theorem.

Like over RCA₀, COH implies that for any set *A* and any two disjoint $\Sigma_2(A)$ -sets, there is a set *B* and a $\Delta_2(B)$ -set separating them. But RCA₀^{*} is enough to prove that there are disjoint Σ_2 -sets with no separating (lightface) Δ_2 -set.

That is pretty much all we know about COH over RCA_0^* .

- Conclusion

Some open problems

- Does ADS or CAC imply CRT_2^2 over RCA_0^* ?
- Can the grouping principle EFG be proved in $RCA_0^* + \neg I\Sigma_1^0$?
- What is the strength of COH? Does it imply IΣ₁⁰? Is it Π₃⁰-conservative over RCA₀^{*}?

- Conclusion

Coming soon...

. . .

Small teaser: things we have just started writing up.

- For Ψ a Π_2^1 statement, RCA₀^{*} + Ψ is Π_1^1 -conservative over RCA₀^{*} + $\neg I\Sigma_1^0$ iff WKL₀^{*} + $\neg I\Sigma_1^0$ proves Ψ .
- The above is false without the extra condition $\neg I\Sigma_1^0$.
- For any *n*, the maximal Π¹₂ theory that is Π¹₁-conservative over RCA₀ + BΣ⁰_n + ¬IΣ⁰_n is recursively axiomatized. (Here BΣ⁰_n is basically another name for IΔ⁰_n.)
- If RCA₀ + RT²₂ is ∀Π⁰₅-conservative over BΣ⁰₂, then it is Π¹₁-conservative over BΣ⁰₂.

- Conclusion

Coming soon...

. . .

Small teaser: things we have just started writing up.

- For Ψ a Π_2^1 statement, RCA₀^{*} + Ψ is Π_1^1 -conservative over RCA₀^{*} + $\neg I\Sigma_1^0$ iff WKL₀^{*} + $\neg I\Sigma_1^0$ proves Ψ .
- The above is false without the extra condition $\neg I\Sigma_1^0$.
- For any *n*, the maximal Π¹₂ theory that is Π¹₁-conservative over RCA₀ + BΣ⁰_n + ¬IΣ⁰_n is recursively axiomatized. (Here BΣ⁰_n is basically another name for IΔ⁰_n.)
- If RCA₀ + RT²₂ is ∀Π⁰₅-conservative over BΣ⁰₂, then it is Π¹₁-conservative over BΣ⁰₂.

Thank you!