
Reverse mathematics over weak base theory

Reverse mathematics of combinatorial
principles over a weak base theory

Leszek Kołodziejczyk
University of Warsaw

(part of joint project with

Marta Fiori Carones, Kasia Kowalik, Tin Lok Wong, and Keita Yokoyama)

Midwest Computability Seminar / CTA Seminar
October 2020

1 / 22



Reverse mathematics over weak base theory

Introduction

Reverse mathematics

Ï Reverse mathematics studies the strength of axioms needed to
prove various mathematical theorems. This is done by proving
implications between the theorems and/or various logical
principles over a relatively weak base theory.

Ï Often, the theorem isΠ1
2 of the form ∀X ∃Yψ, and its strength

is related to the difficulty of computing Y given X .

Ï In the early days, many theorems were proved equivalent to
one of a few principles like “for each set, its jump exists” etc.

Ï Later work: theorems from e.g. Ramsey theory form a great
mess of (non)implications (the “reverse mathematics zoo”).

Ï Today’s talk: we focus on the base theory.
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Reverse mathematics over weak base theory

Introduction

Usual base theory: RCA0

Language:

vbles x,y,z, . . . , i, j,k . . . for natural numbers;
vbles X ,Y ,Z , . . . for sets of naturals; symbols +, ·,2x,≤,0,1,∈.

Axioms:
Ï +, ·,2x etc. have their usual basic properties,

Ï ∆0
1 comprehension: if X̄ = X1, . . . ,Xk are sets andψ(x, X̄)

is computable relative to X̄ , then
{
n :ψ(n, X̄)

}
is a set.

Ï Σ0
1 induction: if X̄ are sets andψ(x, X̄) is r.e. relative to X̄ ,

thenψ(0, X̄)∧∀n
(
ψ(n, X̄) ⇒ψ(n+1, X̄)

)⇒∀nψ(n, X̄).

Introduced in Simpson-Smith 86. Studied a bit both in traditional
reverse maths and “reverse recursion theory”. Most results have had
the form “this still holds over RCA∗

0 ” or “this is equivalent to RCA0”.
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Reverse mathematics over weak base theory

Introduction

What is the zoo like over RCA∗
0 ?

Main principles we consider:

Ï RT2
2: for every f : [N]2 → 2 there is infinite H ⊆N

such that f �[H]2 = const.

Ï CAC: for every partial ordering4 onN there is infinite H ⊆N
such that (H ,4) is either a chain or an antichain.

Ï ADS: in every linear ordering4 onN there is either an infinite
ascending sequence or an infinite descending sequence.

Ï CRT2
2: for every f : [N]2 → 2 there is infinite H ⊆N

such that ∀x∈H ∃y∈H ∀z∈H
(
z ≥ y ⇒ (

f (x,z) = f (x,y)
))

.

Over RCA0, we have RT2
2 ⇒ CAC ⇒ ADS ⇒ CRT2

2. (HS07; LST 13)
How do these principles behave over RCA∗

0 ?
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Reverse mathematics over weak base theory

Introduction

What does failure of IΣ0
1 mean?

If a model (M ,X ) of RCA∗
0 is not a model of RCA0,

then Σ0
1 induction fails:

Ï there is a Σ0
1 definable proper cut J

(contains 0, closed downwards and under +1),

Ï there is an infinite (=unbounded) set A ∈X s.t. A = {ai : i ∈ J}
enumerated in increasing order. We can say that |A| = J .
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Reverse mathematics over weak base theory

Introduction

Two flavours of Ramsey-theoretic principles

In RCA∗
0 , “for every f there exists infinite H ⊆N...”

can mean (at least) one of two things:

Ï “for every f there exists unbounded H ⊆N...” (normal version),

Ï “for every f there exists H ⊆Nwith |H| =N s.t. ...” (fat version).

We will consider both versions, starting with normal.
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Normal versions

Normal versions: relativization to cuts

Given a proper cut J in (M ,X ) |= RCA∗
0 , the family Cod(M/J) is

{B∩ J : B ∈X }. This family depends only on M and J , not on X .

If J is closed under x 7→ 2x, then (J ,Cod(M/J) satisfies WKL∗
0

(= RCA∗
0 + “every infinite tree in {0,1}N has a length-N path”).

Theorem
Let (M ,X ) |= RCA∗

0 and let J ⊆ M be a proper Σ0
1-definable cut in M.

Letψ be any of (normal) RTn
2 , CAC, ADS, CRT2

2. Then:

(M ,X ) |=Ψ iff (J ,Cod(M/J)) |=Ψ.

We have a more general sufficient condition for this equivalence.
Note that l.h.s. does not depend on J , r.h.s does not depend on X !
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Reverse mathematics over weak base theory

Normal versions

A useful fact about coding

Theorem
Let (M ,X ) |= RCA∗

0 and let J ⊆ M be a proper Σ0
1-definable cut in M.

Letψ be any of (normal) RTn
2 , CAC, ADS, CRT2

2. Then:

(M ,X ) |=Ψ iff (J ,Cod(M/J)) |=Ψ.

We will prove the (⇒) direction for RT2
2.

Both directions are similar and rely on the following fact about Cod.

Fact (essentially Chong-Mourad 1990)

Let (M ,X ) |= RCA∗
0 , let J be a proper cut in M, let X 3 A = {ai : i ∈ J}.

Then for every X 3 B ⊆ A, the set {i ∈ J : ai ∈ B} is in Cod(M/J).
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Reverse mathematics over weak base theory

Normal versions

Proving (M ,X ) |= RT2
2 ⇒ (J ,Cod(M/J)) |= RT2

2.

Proof.
Let A ∈X be such that A = {ai : i ∈ J}. Let f : [J]2 → 2 be coded.
Define a colouring of [A]2 by f̌ (ai1 ,ai2 ) = f (i1, i2)
Extend f̌ to [M]2 by looking at nearest elements of A.
Use RT2

2 in (M ,X ) to get H ⊆ M homogeneous for f̌ .

By Chong-Mourad, Ĥ = {i ∈ J : H ∩ (ai−1,ai] 6= ;} is in Cod(M/J).
This set Ĥ is homogeneous for f .
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Normal versions

Normal versions: what else can be said
IfΨ is the normal version of a Ramsey-theoretic principle (such as
one of our RT2

2, CAC, ADS, CRT2
2), the following things follow from

the characterization in terms of cuts:

Ï If (M ,X ) |=Ψ and (lightface) Σ1 induction fails in M ,
then (M ,∆1-Def(M)) |=Ψ. I.e.,Ψ is computably true in M !

Ï RCA∗
0 +Ψ does not prove anyΠ0

3 sentences that are unprovable
in RCA∗

0 (i.e., RCA∗
0 +Ψ isΠ0

3-conservative over RCA∗
0 ).

Ï RCA∗
0 +Ψ is arithmetically conservative over RCA∗

0 iff
WKL∗

0 `Ψ (and then we also haveΠ1
1-conservativity).

(In the case of CRT2
2, this gives a negative answer to a question of Belanger.)

Also worth mentioning:

Ï The implications RT2
2 ⇒ CAC ⇒ ADS and RT2

2 ⇒ CRT2
2 still hold

in RCA∗
0 . We do not know if CAC ⇒ CRT2

2 holds.
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Reverse mathematics over weak base theory

Fat versions

Fat versions: what is ADS?

Many principles have one natural fat version. In many cases it is
easily seen to imply RCA0. (E.g. fat-RT2

2, by Yokoyama 2013.)

For ADS, the issue is delicate:

Ï fat-ADSset: “for every linear ordering4 onN, there is H with
|H| =N s.t.4,≤ either always agree or always disagree on H”.

Ï fat-ADSseq: “for every linear ordering4 onN, there is h : N→N

which is either an ascending or a descending sequence in4”.

RCA∗
0 proves fat-RT2

2 ⇒ fat-CAC ⇒ fat-ADSset ⇒ fat-ADSseq.
Over RCA0, we also have fat-ADSset ⇔ fat-ADSseq.
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Fat versions

Some fat principles are strong

Theorem
Over RCA∗

0 , fat-ADSset implies RCA0.

Proof.
Ï Assume IΣ0

1 fails, so we have unbounded A = {ai : i ∈ J}
for proper Σ0

1-definable cut J .

Ï If x ∈ [ai,ai+1) and y ∈ [aj,aj+1) for i < j, set x4 y.

Ï If x,y ∈ [ai,ai+1), set x4 y iff x > y.

Ï Then all4-ascending sets have cardinality at most J ,
and all4-descending sets are finite. So, fat-ADSset fails.
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Fat versions

Some fat principles are less strong

Theorem
Over RCA∗

0 , (normal) ADS and fat-ADSseq are equivalent.

We will prove the implication in WKL∗
0 , using a variant of the

grouping principle (cf. Patey-Yokoyama 2018) specific to RCA∗
0 .

Definition
EFG (Ever fatter grouping principle) says: “for every f : [N]2 → 2,
there exists an infinite family of finite sets G0 < G1 < . . . such that:

Ï the cardinalities |Gi| grow toN as i increases,

Ï for each i < j, we have f �Gi×Gj
= const”.
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Fat versions

EFG pictured

G0 G1 G2 · · ·

Theorem
WKL∗

0 +¬IΣ0
1 proves EFG.
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Fat versions

Proving EFG

We use the “thinning out from below/from above” method
(cf. K-Yokoyama 2020). Let f : [N]2 → 2 be given.

Ï Assuming ¬IΣ0
1, we have the usual cut J and set A = {ai : i ∈ J}.

Ï W.l.o.g., we have (i) |[ai,ai+1)|À 2|[0,ai)| and (ii) |[ai,ai+1)|À |J |.
Let G0

0 = [0,a0),G0
1 = [a0,a1),G0

2 = [a1,a2) etc.

Ï Using (i), take large G1
0 ⊆ G0

0,G1
1 ⊆ G0

1,G1
2 ⊆ G0

2, . . .
so that f �{x}×G1

j
constant for each x ∈ G0

i , i < j.

. . .. . .
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so that f �G2
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j

constant for each i < j ≤ k.

. . .

. . .
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Fat versions

Proving ADS+EFG ⇒ fat-ADSseq

Let linear ordering4 onN be given. We can assume ¬IΣ0
1.

Ï By EFG, we get G0 < G1 < G2 . . . s.t. for i 6= j, points in Gi are
either all4-above or all4-below all points in Gj.

Ï So, there is an induced4-ordering on the set of Gi’s. By ADS,
there is (w.l.o.g.) a descending sequence Gi0 <Gi1 <Gi2 . . .
where i0 < i1 < i2 . . . The numbers |Gik | grow toNwith k.

Ï Build length-N4-decreasing sequence by enumerating Gi0

in4-decreasing order, then Gi1 in4-decreasing order etc.

A similar argument shows that WKL∗
0 +CRT2

2 proves fat-CRT2
2.

For colourings given by linear orderings (= transitive colourings),
WKL can be eliminated from proof of EFG.
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Fat versions

Normal and fat principles: summary

RCA0 +RT2
2

RT2
2

RCA0 +CAC

CAC

RCA0 +ADS

ADS

fat-CRT2
2

CRT2
2

Red implication known in the presence of WKL.
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The case of COH

The curious case of COH

The principle COH is: “for every family {Rx : x ∈N} of subsets ofN,
there exists infinite H ⊆N such that for each x,
either ∀∞z∈H (z ∈ Rx) or ∀∞z∈H (z ∉ Rx)”.

This strengthens CRT2
2: think of f (x,y) as y ∈ Rx.

But here, f (x, ·) must stabilize on H for each x, not just for x ∈ H .

Over RCA0, RT2
2 proves COH. Even if we do not require |H| =N, COH

has a certain “fat” aspect, due to the “for each x” condition.

How strong is COH over RCA∗
0 ?
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The case of COH

The curious case of COH (cont’d)

Theorem
A model of RCA∗

0 of the form (M ,∆1-Def(M)) never satisfies COH.

Corollary

RCA∗
0 +RT2

2 does not prove COH.

Proof of Theorem.
Like over RCA0, COH implies that for any set A and any two disjoint
Σ2(A)-sets, there is a set B and a ∆2(B)-set separating them.
But RCA∗

0 is enough to prove that there are disjoint Σ2-sets
with no separating (lightface) ∆2-set.

That is pretty much all we know about COH over RCA∗
0 .
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Conclusion

Some open problems

Ï Does ADS or CAC imply CRT2
2 over RCA∗

0 ?

Ï Can the grouping principle EFG be proved in RCA∗
0 +¬IΣ0

1?

Ï What is the strength of COH?
Does it imply IΣ0

1? Is itΠ0
3-conservative over RCA∗

0 ?
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Conclusion

Coming soon...

Small teaser: things we have just started writing up.

Ï ForΨ aΠ1
2 statement, RCA∗

0 +Ψ
isΠ1

1-conservative over RCA∗
0 +¬IΣ0

1 iff WKL∗
0 +¬IΣ0

1 provesΨ.

Ï The above is false without the extra condition ¬IΣ0
1.

Ï For any n, the maximalΠ1
2 theory that isΠ1

1-conservative
over RCA0 +BΣ0

n +¬IΣ0
n is recursively axiomatized.

(Here BΣ0
n is basically another name for I∆0

n.)

Ï If RCA0 +RT2
2 is ∀Π0

5-conservative over BΣ0
2,

then it isΠ1
1-conservative over BΣ0

2.

Ï . . .

Thank you!
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