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In commutative algebra, a class usually admits a natural notion
of “independence“.

The Main Problem: In a class K , does every structure have a
computable copy with a computable base? What about a copy

with no computable base?

We will give a sufficient condition with applications to abelian
groups, ordered abelian groups, DCF0, RCF , and difference

closed fields.
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Part 1: Known results
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Known results

The earliest results include:

Example 1 (Mal’cev)

The divisible abelian group V∞ =
⊕

i∈ω Q of infinite rank has a
computable copy with no computable Z-basis.

Note that V∞ has a nice copy by default.

Example 2 (Folklore)

The algebraic closure U of Q(xi : i ∈ ω) has a computable copy with
no computable transcendence base.

Note that U has a nice copy for free as well.

Corollary 3 (Mal’cev, ..., ..., Goncharov)
Both V∞ and U are not computably categorical, and indeed have
auto-dimension ω.

The latter follows because we have a ∆0
2-isomorphic “bad” copy.
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Known results

In contrast to V∞ and U, torsion-free abelian groups do not
have “nice” copies by default.

Theorem 4 (Dobrica, Nurtazin)
Every computable torsion-free abelian group A of infinite Z-rank has
two computable copies B and G such that:

B has no computable Z-base;

G has a computable Z-base;

B ∼=∆0
2

G.

Corollary 5 (Goncharov)
A has auto-dimension ω.
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Known results

It takes more work to establish:

Theorem 6 (Goncharov, Lempp, Solomon)
Every computable Archimedean ordered abelian group A of infinite
Z-rank has two computable copies B and G such that:

B has no computable Z-base;

G has a computable Z-base;

B ∼=∆0
2

G.

Corollary 7 (G.L.S.)
A has auto-dimension ω.
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Known results

So we see a pattern.

Definition 8
We say that a class K of computable structures and the
associated notion of independence has

the Mal’cev property

if for every A ∈ K of infinite dimension there exist computable
presentations B and G of A such that:

B has no computable Z-base;
G has a computable Z-base;
B ∼=∆0

2
G.

Question
Which classes have the Mal’cev property?
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Part 2: Computably enumerable
pregeometries
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Definition 9
Let X be a set and cl : P(X )→ P(X ) a function on P(X ). We
say that cl is a pregeometryif:

X ⊆ cl(X ) and cl(cl(X )) = cl(X ),
X ⊆ Y ⇒ cl(X ) ⊆ cl(Y ),
(finite character) cl(X ) is the union of the sets cl(Y ) where
Y is a finite subset of X , and
(exchange principle) if x ∈ cl(X ∪ {y}) and x /∈ cl(X ), then
y ∈ cl(X ∪ {x}).

Alexander Melnikov Notions of independence in computable commutative algebra



See [Downey and Remmel] (The Handbook of Rec. Math.) for
a survey on computable pregeometries.

Each pregeometry under consideration will be upon the domain of a
computable structureM and will be relatively intrinsically c.e. ( i.e.,
the relations x ∈ cl({y1, . . . , yn}) are relatively intrinsically c.e. in
M, uniformly in n.)

In general, our pregeometry will be computable only within the
“good” copy G ofM. One can then apply most of the results
form [Downey and Remmel] to G.
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We need new ideas in the context of DCF0 and other field-like
structures. (Intuitively, this is because algebra is “not linear”
anymore, and bad things can happen locally.)

LetM be a structure and (M, cl) a r.i.c.e. pregeometry.

Condition G: Uniformly in c̄ ∈M, we can effectively list the
existential formulas ϕ(c̄, x̄) which have a solution ā independent
over c̄.

Condition B: The existential types of independent elements inM are
non-principal.

(In other words: For any existential formula ϕ(c̄, x) holding of
any element a which is independent over c̄, there is an element
b which satisfies ϕ(c̄, x) and is dependent over c̄.)
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The metatheorem:

Theorem 10 (Harrison-Trainor, M., Montalban 2014)

LetM be a structure and (M, cl) a r.i.c.e. pregeometry of infinite
rank that satisfies Condition G and Condition B. Then (M, cl) has
the Mal’cev property.

In fact, Condition G implies the existence of a ∆0
2-isomorphic

“good” copy where cl is computable, and Condition B implies
the existence of a ∆0

2-isomorphic “bad” copy where cl is not
computable.

Corollary 11
M has auto-dimension ω.

Alexander Melnikov Notions of independence in computable commutative algebra



The metatheorem:

Theorem 10 (Harrison-Trainor, M., Montalban 2014)

LetM be a structure and (M, cl) a r.i.c.e. pregeometry of infinite
rank that satisfies Condition G and Condition B. Then (M, cl) has
the Mal’cev property.

In fact, Condition G implies the existence of a ∆0
2-isomorphic

“good” copy where cl is computable, and Condition B implies
the existence of a ∆0

2-isomorphic “bad” copy where cl is not
computable.

Corollary 11
M has auto-dimension ω.

Alexander Melnikov Notions of independence in computable commutative algebra



The metatheorem:

Theorem 10 (Harrison-Trainor, M., Montalban 2014)

LetM be a structure and (M, cl) a r.i.c.e. pregeometry of infinite
rank that satisfies Condition G and Condition B. Then (M, cl) has
the Mal’cev property.

In fact, Condition G implies the existence of a ∆0
2-isomorphic

“good” copy where cl is computable, and Condition B implies
the existence of a ∆0

2-isomorphic “bad” copy where cl is not
computable.

Corollary 11
M has auto-dimension ω.

Alexander Melnikov Notions of independence in computable commutative algebra



Part 3: Applications

Alexander Melnikov Notions of independence in computable commutative algebra



Corollary 12 (H.-T., M.,M.)
We get essentially all that was known before and with nicer proofs:

The trivial examples (vector spaces, ACF0, etc.).

Torsion-free abelian groups (we use the factorial trick and Rado
Lemma).

Archimedean ordered abelian groups (we use the factorial trick
and o-minimality of R).
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Definition 13
A differential field is a field K together with a derivation operator
δ : K → K which is linear and which satisfies the Leibniz rule;
that is, δ(x + y) = δ(x) + δ(y) and δ(xy) = xδ(y) + yδ(x).

Definition 14
A differential field is differentially closed if it is existentially
closed in the language (0,+,×, δ).

Famously, DCF0 is decidable. Harrington showed that every
computable differential field can be embedded into a
computable DCF0. R. Miller has recently showed that DCF0
has The Low Property.
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There is a natural notion of δ-algebraic dependence in
differential fields. We show:

Corollary 15 (H.-T., M., M.)
Every computable differentially closed field of infinite
δ-transcendence degree has the Mal’cev property.

Interestingly enough, our proof has some technical similarities
with the R.Miller’s proof of the Low Property for DCF0. We have
no formal explanation for this phenomenon. Something even
more general may be going on here.

Alexander Melnikov Notions of independence in computable commutative algebra



There is a natural notion of δ-algebraic dependence in
differential fields. We show:

Corollary 15 (H.-T., M., M.)
Every computable differentially closed field of infinite
δ-transcendence degree has the Mal’cev property.

Interestingly enough, our proof has some technical similarities
with the R.Miller’s proof of the Low Property for DCF0. We have
no formal explanation for this phenomenon. Something even
more general may be going on here.

Alexander Melnikov Notions of independence in computable commutative algebra



I assume that we know what real closed fields are.

Corollary 16 (H.-T., M., M.)
Every computable real closed field of infinite transcendence degree
has the Mal’cev property.

Our proof uses cell decompositions etc.
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A difference filed is a fields with a distinguished
automorphism σ. The natural associated notion of
independence (involving σ) is called transformal independence.

Definition 17 (Chatzidakis and Hrushovski (?), 1999)
A difference closed field is an existentially closed difference
field.

Corollary 18 (H.-T., M., M.)
Every computable difference closed field of characteristic 0 of infinite
transformal degree has the Mal’cev property.

Our proof relies on various model theoretic properties of these
fields.
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Part 4. A negative result
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Not every notion of a basis corresponds to
a r.i.c.e. pregeometry.

In the 1960’s and 1970’s people wondered whether countable
abelian p-groups admit a good notion of a “basis”.

The most well-known attempt is probably Kulikov’s p-basis.
However, this approach has certain limitations.

In effective algebra, we use the notion of a
p-basic tree (L. Rogers (1977) based on Crawley and
Hales (1969)).
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p-Basic trees

Let A be an abelian p-group.

Definition 19 (L. Rogers)

A p-basic tree of A is the collection of elements B of A with the
properties:

1 Every a ∈ A can be uniquely expressed as

a =
∑
b∈B

kbb,

where each kb ∈ Zp;
2 For every b ∈ B, either pb ∈ B or pb = 0.
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Computable p-groups

Classically, every countable abelian p-group admits a p-basic
tree. The question below is open:

Question (Ash, Knight and Oates, ∼1990)
Does every computable reduced abelian p-group have a copy with a
computable p-basic tree?

The answer is known to be YES for every computable reduced
p-group of finite Ulm type (to be explained).
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For every abelian p-group A we can define its “derivative” A′ to
the the collection of elements of infinite p-height.

Ulm: In fact, A′ 5 A and

A1 = A/A′

splits into a direct sum of cyclic groups.
We iterate this process:

A0 = A,

A(k+1) = (A(k))′,

. . .

A(ω) =
⋂
n

A(n)

. . .

We also define the Ulm factors

Aβ = A(β)/A(β+1).
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Abelian p-groups

A countable abelian p-group is reduced if there is a (countable)
β such that

Aβ = 0.

The least such β is called the Ulm type of A, written U(A).

Theorem 20 (Ulm)

Let β = U(A). Then the isomorphism types of the Ulm factors Aγ ,
γ < β, completely describe the isomorphism type of A.
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Theorem 21 (Ash-Knight-Oates)
Suppose A is a computable reduced abelian p-group and
U(A) = n < ω. Then A has a computable copy with a computable
p-basic tree.

The only proof that we know is non-uniform. For every k ≤ n
we need to have an access to a certain effective invariant of An,
namely its limitwise monotonic function.
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Computable p-groups

If we had a uniform access to these limitwise monotonic
functions, the case of U(A) = ω would not be a problem.

The upper bound for

“e is an index of a ∆0
2n limitwise monotonic function ranging

over the invariant of An+1”

is “uniformly Π0
2n+3”.

Theorem 22 (Downey, M., Ng)

The upper bound above can not be improved to “uniformly Σ0
2n+3”.

Furthermore, the theorem is witnessed by a computable
abelian p-group of Ulm type ω that possesses a computable
p-basic tree.
The proof uses elements of the 0”’ technique.
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Computable p-groups

The result tells me that “having a computable p-basic tree”
does not reduce the complexity of the (non)uniformity in
the problem.

The result also suggests that there is no hope of solving
the problem using any of the known methods.
There is a very little hope of getting a counterexample.
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Spasibo

Thanks!
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