Redundancy of information: Lowering effective dimension

Joseph S. Miller
University of Wisconsin-Madison

Computability Theory and Applications Online Seminar in association with the Midwest Computability Seminar and COVID-19

August 18, 2020

A talk in two parts

- In the first part, we will discuss the 2018 paper "Dimension 1 sequences are close to randoms," by Greenberg, M., Shen, and Westrick (GrMShW 2018).
- The second part, to which the title refers, will focus on recent work of Goh, M., Soskova, and Westrick on lowering effective dimension (GoMSoW).

Effective randomness

Definition. If $U: 2^{<\omega} \rightarrow 2^{<\omega}$ is a universal prefix-free machine, then

$$
K(\sigma)=\min \{|\tau|: U(\tau)=\sigma\}
$$

is the prefix-free (Kolmogorov) complexity of σ.

Theorem. $X \in 2^{\omega}$ is (Martin-Löf) random if and only if

$$
(\exists c)(\forall n) K(X \upharpoonright n) \geqslant n-c .
$$

Definition (Lutz; Mayordomo)
The (effective Hausdorff) dimension of a sequence $X \in 2^{\omega}$ is

$$
\operatorname{dim} X=\liminf _{n \rightarrow \infty} \frac{K(X \upharpoonright n)}{n} .
$$

Note that every random has dimension 1.

Hamming and Besicovitch distance

Definition. For each n, the Hamming distance between $\sigma, \tau \in 2^{n}$ is $d(\sigma, \tau)=|\sigma \triangle \tau|$.

This makes $\left(2^{n}, d\right)$ a metric space called n-dimensional Hamming space. It is one of the primary objects of study in coding theory.

Definition. The Besicovitch (pseudo-)distance between $X, Y \in 2^{\omega}$ is

$$
d(X, Y)=\underset{n \rightarrow \infty}{\limsup } \frac{|X \upharpoonright n \triangle Y \upharpoonright n|}{n} .
$$

In other words, it is the upper density of the symmetric difference of X and Y.

If $d(X, Y)=0$, we say that X and Y are coarsely equivalent.

Dimension 1 sequences

Not every dimension 1 sequence is random.
Example. Let $Y \in 2^{\omega}$ be random. Define X by

$$
X(n)= \begin{cases}1 & \text { if } n \text { is a power of } 2 \\ Y(n) & \text { otherwise }\end{cases}
$$

Then X is clearly not random (random sequences must be immune), but we have only slightly lowered the initial segment complexity, so $\operatorname{dim} X=1$.

But every dimension 1 sequence is close to a random.
Theorem (GrMShW 2018). A sequence $X \in 2^{\omega}$ has dimension 1 if and only if it is coarsely equivalent to a random sequence.

The proof uses a theorem of Harper about Hamming space. . . and compactness.

Further questions

We figured out how to efficiently raise the complexity of dimension 1 sequence to get a random. What's next?

- How hard is it to increase the complexity of a dimension t sequence to get a random? In other words, what is the (Besicovitch) distance from a dimension t sequence to the nearest random sequence? (or equivalently, a dimension 1)?
- What is the distance from a dimension t to the nearest dimension $s \geqslant t$ sequence?
- What about lowering dimension? What is the distance from a dimension 1 to the nearest dimension t sequence?
- What is the distance from a dimension s to the nearest dimension $t \leqslant s$ sequence? This is Part II.

Entropy and Hamming balls

Definition. The Shannon entropy function is

$$
H(p)=-p \log (p)-(1-p) \log (1-p) .
$$

$H(p)$ is the information content of one coin flip with probabilities p and $1-p$.

Notation. If $\sigma \in 2^{n}$ and $r \leqslant n$, then $B_{r}(\sigma)=\left\{\tau \in 2^{n}: d(\sigma, \tau) \leqslant r\right\}$ is the Hamming ball of radius r centered at σ.

Let $V(n, r)$ be the size of a Hamming ball of radius r in 2^{n}. (They all have the same size.)

Lemma. If $r \leqslant n / 2$, then $H(r / n) n-o(n) \leqslant \log V(n, r) \leqslant H(r / n) n$.

Entropy, density, and Bernoulli randomness

Lemma. If $r \leqslant n / 2$, then $\log V(n, r) \approx H(r / n) n$.
Prop. If $\sigma \in 2^{n}$ has $p n$ ones, then $K(\sigma) \leqslant H(p) n+o(n)$.
Proof. Note that $\sigma \in B_{p n}\left(0^{n}\right)$. There are $V(n, p n)$ strings in $B_{p n}\left(0^{n}\right)$, so we can give each a description of length $\approx \log V(n, p n) \approx H(p) n$ (for $p \leqslant 1 / 2$). If $p>1 / 2$, switch the roles of 0 and 1 and use the fact that $H(1-p)=H(p)$ to get the same bound.

Corollary. If X has asymptotic density p, then $\operatorname{dim} X \leqslant H(p)$.
Definition. For $p \in[0,1]$, a Bernoulli p-random is generated by independently sampling the distribution on $\{0,1\}$ with $\operatorname{Pr}(1)=p$ and $\operatorname{Pr}(0)=(1-p)$. (This can be effectivized.)

Note that Bernoulli p-randoms have density p.
Prop. If $X \in 2^{\omega}$ is a Bernoulli p-random, then $\operatorname{dim} X=H(p)$.

The best case

Prop. If $d(X, Y)=p$, then $\operatorname{dim} Y \leqslant \operatorname{dim} X+H(p)$.
Proof. Say $Y \upharpoonright n$ and $X \upharpoonright n$ differ on density $\approx p$. To code $Y \upharpoonright n$, it is sufficient to code $X \upharpoonright n$ and the $\approx p n$ changes. Therefore,

$$
K(Y \upharpoonright n) \lesssim K(X \upharpoonright n)+H(p) n
$$

Corollary. If $\operatorname{dim} X=t$ and $\operatorname{dim} Y=s$, then

$$
d(X, Y) \geqslant H^{-1}(|s-t|) .
$$

(Here, $H^{-1}:[0,1] \rightarrow[0,1 / 2]$ is an increasing function.)

This bound is achievable (if we get to pick both sequences).
Prop (GrMShW 2018). If $0 \leqslant t \leqslant s \leqslant 1$, then there are $X, Y \in 2^{\omega}$ such that $\operatorname{dim} X=t, \operatorname{dim} Y=s$, and $d(X, Y)=H^{-1}(s-t)$.

A simple obstacle

Question. What is the distance from a dimension t sequence to the nearest dimension $s \geqslant t$ sequence? Is it always $H^{-1}(s-t)$?

No, and the counterexample is simple.

- Let X be Bernoulli $H^{-1}(t)$-random.
- So $\operatorname{dim} X=t$ and the density of ones in X is $H^{-1}(t)$.
- If $\operatorname{dim} Y=s$, then the density of ones in Y is at least $H^{-1}(s)$.
- Therefore, $d(X, Y) \geqslant H^{-1}(s)-H^{-1}(t)$.

It turns out that

$$
H^{-1}(s)-H^{-1}(t)>H^{-1}(s-t)
$$

except for trivialities.

Increasing dimension

The previous simple obstacle actually witnesses the worst case. Thm (GrMShW 2018). Let $0 \leqslant t \leqslant s \leqslant 1$. If $\operatorname{dim} X=t$, then there is a $Y \in 2^{\omega}$ with $\operatorname{dim} Y=s$ and $d(X, Y) \leqslant H^{-1}(s)-H^{-1}(t)$.

- There are similarities to the proof that dimension 1 sequences are close to random sequences.
- The analogue for finite strings follows from Harper's theorem.
- The construction is done blockwise, then we use compactness.
- But there is a new difficulty: X can have regions of complexity higher than t followed by regions of complexity lower than t.
- There are actually two constructions, conditioned on which of $(1-t)\left(H^{-1}(t)\right)^{\prime}$ and $(1-s)\left(H^{-1}(s)\right)^{\prime}$ is larger.
- Each construction is proved to work, under its respective assumption, using a somewhat delicate convexity argument.

Increasing dimension: $s=0.99$

Figure: Best and worst cases for the distance from a dimension $t \leqslant 0.99$ sequence to the nearest dimension 0.99 sequence. Mysteriously, this is rotationally symmetric, and would be for any dimension s in place of 0.99. (It is not symmetric under reflection.)

Decreasing dimension

Lemma (Delsarte and Piret). For each $r \leqslant n$, the Hamming space 2^{n} can be covered by $\approx 2^{n} / V(n, r)$ Hamming balls of radius r.

- The collection of centers is called a covering code of radius r.
- By an easy volume argument, the lemma is (essentially) optimal.
- The lemma is proved using the probabilistic method. But we can find such a code via exhaustive search.
- For $p \leqslant 1 / 2$, there is a covering code of radius $p n$ and size $\approx 2^{n} / V(n, p n)$. For every center τ in that code,

$$
K(\tau) \lesssim \log \left(2^{n} / V(n, p n)\right)=n-\log V(n, p n) \approx(1-H(p)) n .
$$

Proposition. Every $\sigma \in 2^{n}$ is within $H^{-1}(1-t) n$ bits of a string τ such that $K(\tau) \lesssim t n$.

Decreasing dimension, cont.

Proposition. Every $\sigma \in 2^{n}$ is within $H^{-1}(1-t) n$ bits of a string τ such that $K(\tau) \lesssim t n$.

Theorem (GrMShW 2018). For any $Y \in 2^{\omega}$ and $t \in[0,1]$, there is an $X \in 2^{\omega}$ such that $\operatorname{dim} X=t$ and $d(X, Y) \leqslant H^{-1}(1-t)$.
Proof. Simply apply the proposition blockwise to Y. The blocks should grow, but not too quickly; it's sufficient to let the nth block of Y have size n.

Corollary (GrMShW 2018). If $\operatorname{dim} Y=1$ and $t \in[0,1]$, then there is an $X \in 2^{\omega}$ such that $\operatorname{dim} X=t$ and $d(X, Y)=H^{-1}(1-t)$.

Starting from a dimension 1, the best case can always achieved!

Every taco truck is near a corner, but.. .

Figure: Every random is close to a dimension t sequence, but not every dimension t sequence is close to a random.

Another obstacle

Question. What is the distance from a dimension s to the nearest dimension $t \leqslant s$ sequence? Is it always $H^{-1}(s-t)$?

No: if information is stored redundantly, it is harder to erase. (Note that this can't happen in dimension 1.)

Let's look at an example (GrMShW 2018).

- Let $Z \in 2^{\omega}$ be random and $Y=Z \oplus Z$. So $\operatorname{dim} Y=1 / 2$.
- For a contradiction, fix an $X \in 2^{\omega}$ of dimension 0 such that $d(X, Y)=H^{-1}(1 / 2)$.
- We can code $Y \upharpoonright 2 n$ by giving:
- A description of $X \upharpoonright 2 n$,
- For each $i<n$ such that $X(2 i) \neq X(2 i+1)$, the value $Y(2 i)$, and
- A description of $\{i<n: X(2 i)=X(2 i+1) \neq Y(2 i)\}$.

Another obstacle, cont.

- We can code $Y \upharpoonright 2 n$ by giving:
- A description of $X \upharpoonright 2 n: K(X \upharpoonright 2 n)$.
- For each $i<n$ such that $X(2 i) \neq X(2 i+1)$, the value $Y(2 i)$: There are $\lesssim H^{-1}(1 / 2) 2 n$ such i.
- A description of $\{i<n: X(2 i)=X(2 i+1) \neq Y(2 i)\}:$ This is a subset of n of size $\lesssim H^{-1}(1 / 2) n$, so it has a description of length $\lesssim H\left(H^{-1}(1 / 2)\right) n=n / 2$.
- Putting this all together,

$$
n \approx K(Y \upharpoonright 2 n) \lesssim K(X \upharpoonright 2 n)+H^{-1}(1 / 2) 2 n+n / 2
$$

- So $K(X \upharpoonright 2 n) \gtrsim n / 2-H^{-1}(1 / 2) 2 n \approx 0.28 n$, which contradicts the assumption that X has dimension 0 .

Decreasing dimension: the worst case

Theorem (GoMSoW). If $Y \in 2^{\omega}$ has dimension s and $0 \leqslant t<s$, then there is an $X \in 2^{\omega}$ with $\operatorname{dim} X=t$ and

$$
d(X, Y) \leqslant \operatorname{Worst}(s, t):= \begin{cases}H^{-1}(1-t) & \text { if } t \leqslant 1-H\left(2^{s-1}\right), \\ \frac{t-s}{\log \left(2^{1-s}-1\right)} & \text { if } t>1-H\left(2^{s-1}\right) .\end{cases}
$$

Furthermore, for any $s \in(0,1]$, there is a sequence Y_{s} of dimension s such that these bounds are tight.

Observations.

- If $t \leqslant s$ is small enough, then we can't lower dimension from Y_{s} any better than if it were a random sequence!
- In particular, for any $s \in(0,1]$, the distance from Y_{s} to the nearest dimension 0 is $1 / 2$.

Decreasing dimension: the worst case

Theorem (GoMSoW). If $Y \in 2^{\omega}$ has dimension s and $0 \leqslant t<s$, then there is an $X \in 2^{\omega}$ with $\operatorname{dim} X=t$ and

$$
d(X, Y) \leqslant \operatorname{Worst}(s, t):= \begin{cases}H^{-1}(1-t) & \text { if } t \leqslant 1-H\left(2^{s-1}\right) \\ \frac{t-s}{\log \left(2^{1-s}-1\right)} & \text { if } t>1-H\left(2^{s-1}\right) .\end{cases}
$$

Furthermore, for any $s \in(0,1]$, there is a sequence Y_{s} of dimension s such that these bounds are tight.

Observations.

- Even limited to few changes, we can always lower the dimension. I.e., for all $s>0$ and $\varepsilon>0$, there is a $t<s$ with $\operatorname{Worst}(s, t) \leqslant \varepsilon$.
- The function is continuous, and even differentiable. Is there a simple reason this has to be the case?
- The second case is linear in t. Why?

Decreasing dimension: $s=1 / 2$

Figure: The distance from a dimension $1 / 2$ sequence to the nearest dimension $t \leqslant 1 / 2$ sequence.

Decreasing dimension: $t=1 / 2$

Figure: The distance from a dimension $s \geqslant 1 / 2$ sequence to the nearest dimension $1 / 2$ sequence.

Covering codes revisited

How do we code information robustly? We need to better understand covering codes. Recall:

Lemma (Delsarte and Piret). For each $r \leqslant n$, there is a covering code $C \subseteq 2^{n}$ of radius r such that $|C| \approx 2^{n} / V(n, r)$.

- For $\tau \in 2^{n}$ and $r \leqslant q \leqslant n$, how many centers from C should we expect to be in the Hamming ball $B_{q}(\tau)$?
- Each σ is in $V(n, q)$ balls of radius q, so each has a probability of $V(n, q) / 2^{n}$ to be in a randomly chosen Hamming ball of radius q.
- Therefore, on average, we should expect $B_{q}(\tau)$ to contain around

$$
|C| \frac{V(n, q)}{2^{n}} \approx \frac{V(n, q)}{V(n, r)} \text { centers from } C .
$$

- We want a covering code that is "evenly distributed", i.e., never much worse that this average behavior.

Covering codes revisited, cont.

Such codes exist.
Lemma. For $r \leqslant n$, there is an covering code $C \subseteq 2^{n}$ of radius r such that $|C| \approx 2^{n} / V(n, r)$. Furthermore, for every $q \geqslant r$ and every $\tau \in 2^{n}$, we have

$$
\left|B_{q}(\tau) \cap C\right| \lesssim \frac{V(n, q)}{V(n, r)}
$$

(This can be proved using the probabilistic method.)

- Fix s and n. Let C be as in the lemma for $r=H^{-1}(1-s) n$.
- Note that $|C| \approx 2^{n} / V(n, r) \approx 2^{n} / 2^{(1-s) n}=2^{s n}$.
- Pick $\sigma \in C$ randomly. In particular, $K(\sigma) \approx s n$.

Claim. This $\sigma \in 2^{n}$ is robust in the following sense: if we change σ on density $H^{-1}(1-t)$ to get a string τ, where $t \leqslant s$, then $K(\tau) \gtrsim t n$.

Robust coding

Claim. If we change the σ from the previous slide on density $H^{-1}(1-t)$ to get a string τ, where $t \leqslant s$, then $K(\tau) \gtrsim t n$.
Proof. Let $q=H^{-1}(1-t)$. We can determine σ by giving a description of τ and the index of σ in $B_{q}(\tau) \cap C$. But

$$
\left|B_{q}(\tau) \cap C\right| \lesssim V(n, q) / V(n, r) \approx 2^{(1-t) n} / 2^{(1-s) n}=2^{(s-t) n}
$$

Therefore,

$$
s n \approx K(\sigma) \lesssim K(\tau)+(s-t) n,
$$

hence $K(\tau) \gtrsim t n$.

Proposition. There is a $\sigma \in 2^{n}$ such that $K(\sigma) \approx s n$ and if $d(\sigma, \tau) \leqslant H^{-1}(1-t) n$, for any $t \leqslant s$, then $K(\tau) \gtrsim t n$.

Robust coding, cont.

Proposition. There is a $\sigma \in 2^{n}$ such that $K(\sigma) \approx s n$ and if $d(\sigma, \tau) \leqslant H^{-1}(1-t) n$, for any $t \leqslant s$, then $K(\tau) \gtrsim t n$.

Recall. Every $\sigma \in 2^{n}$ is within $H^{-1}(1-t) n$ bits of a string τ such that $K(\tau) \lesssim t n$.

There is a $\sigma \in 2^{n}$ of complexity $s n$ such that, for $t<s$, it is just as hard to lower the complexity to $t n$ as if σ were random.

As already stated, things are different for infinite sequences, at least when $t<s$ is not too small.

This is the only case where the result for infinite sequences is not an analogue of the result for strings.

Decreasing dimension: the optimal strategy

Theorem (GoMSoW). If $Y \in 2^{\omega}$ has dimension s and $0 \leqslant t<s$, then there is an $X \in 2^{\omega}$ with $\operatorname{dim} X=t$ and

$$
d(X, Y) \leqslant \operatorname{Worst}(s, t):= \begin{cases}H^{-1}(1-t) & \text { if } t \leqslant 1-H\left(2^{s-1}\right) \\ \frac{t-s}{\log \left(2^{1-s}-1\right)} & \text { if } t>1-H\left(2^{s-1}\right) .\end{cases}
$$

Furthermore, for any $s \in(0,1]$, there is a sequence Y_{s} of dimension s such that these bounds are tight.

Notes.

- The optimal strategy alternates between leaving an interval unchanged to save up changes, then making a lot of changes.
- The ratio of the length of a "savings block" to the corresponding "spending block" and the density of changes needed is a simple optimization problem.

Decreasing dimension: proving optimality

Theorem (GoMSoW). If $Y \in 2^{\omega}$ has dimension s and $0 \leqslant t<s$, then there is an $X \in 2^{\omega}$ with $\operatorname{dim} X=t$ and

$$
d(X, Y) \leqslant \operatorname{Worst}(s, t):= \begin{cases}H^{-1}(1-t) & \text { if } t \leqslant 1-H\left(2^{s-1}\right), \\ \frac{t-s}{\log \left(2^{1-s}-1\right)} & \text { if } t>1-H\left(2^{s-1}\right) .\end{cases}
$$

Furthermore, for any $s \in(0,1]$, there is a sequence Y_{s} of dimension s such that these bounds are tight.

Notes.

- To show tightness, we need to construct Y_{s}.
- This is done by concatenating randomly chosen "robust" strings of dimension s and increasing lengths. (I.e., use the finite result.)
- A convexity argument is used to prove that we can't do better than claimed.

— THANK YOU ——

