Computability in the class of Real Closed Fields

Víctor A. Ocasio-González

Department of Mathematics University of Notre Dame

MCS @ UChicago

Oct. 1, 2013

Turing computable embeddings

2 Categoricity in RCF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Real Closed Fields

- All structures have countable universe and all classes are closed under isomorphism.
- $RCF = Mod(Th(\mathbb{R}, +, *, 0, 1, <))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real Closed Fields

- All structures have countable universe and all classes are closed under isomorphism.
- $RCF = Mod(Th(\mathbb{R}, +, *, 0, 1, <))$
- *RCF* has many nice model theoretic properties
 - Complete, decidable, o-minimal and accepts quantifier elimination.
 - Definable Skolemization which preserves the properties above.

Skolemization of RCF

Let $\mathcal{R} \in RCF$ and $X \subseteq \mathcal{R}^n$ be definable, say by $\varphi(\bar{x}, y)$. Let $X_{\bar{a}} = \{y : (\bar{a}, y) \in X\}$. Then we have:

- if $X_{\bar{a}}$ is empty, then $f_{\varphi}(\bar{a}) = 0$
- if $X_{\bar{a}}$ has a least element b, then $f_{\varphi}(\bar{a}) = b$
- if the leftmost interval of $X_{\bar{a}}$ is (c,d), then $f_{\varphi}(\bar{a}) = \frac{d-c}{2}$
- if the leftmost interval of $X_{\bar{a}}$ is $(-\infty, d)$, then $f_{\varphi}(\bar{a}) = d 1$
- if the leftmost interval of $X_{\bar{a}}$ is (c, ∞) , then $f_{\varphi}(\bar{a}) = c + 1$

- 日本 - 4 日本 - 4 日本 - 日本

TC embeddings

Definition

Let K and K' be two classes of structures. A Turing computable embedding from K to K' is a Turing operator $\Phi = \varphi_e$ such that:

- for each $\mathcal{A} \in K$, there is a $\mathcal{A}' \in K'$ such that $\varphi_e^{D(\mathcal{A})} = \chi_{D(\mathcal{A}')}$
- for $\mathcal{A}, \mathcal{B} \in K$ correspond, respectively, to $\mathcal{A}', \mathcal{B}' \in K'$ then $\mathcal{A} \cong \mathcal{B}$ iff $\mathcal{A}' \cong \mathcal{B}'$.

(日) (同) (三) (三) (三) (○) (○)

TC embeddings

Definition

Let K and K' be two classes of structures. A Turing computable embedding from K to K' is a Turing operator $\Phi = \varphi_e$ such that:

- for each $\mathcal{A} \in K$, there is a $\mathcal{A}' \in K'$ such that $\varphi_e^{D(\mathcal{A})} = \chi_{D(\mathcal{A}')}$
- for $\mathcal{A}, \mathcal{B} \in K$ correspond, respectively, to $\mathcal{A}', \mathcal{B}' \in K'$ then $\mathcal{A} \cong \mathcal{B}$ iff $\mathcal{A}' \cong \mathcal{B}'$.
- Uniform procedure that respects isomorphism types.
- For K and K' as above we write that $K \leq_{tc} K'$, so that TCE induces a preordering or classes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

TC embeddings

• For all classes K, $K \leq_{tc} UG \equiv_{tc} LO \equiv_{tc} RCF$.

TC embeddings

• For all classes K, $K \leq_{tc} UG \equiv_{tc} LO \equiv_{tc} RCF$.

Definition (Multiplicative Archimedean classes)

Let $\mathcal{R} \in RCF$ and let $r,s \in R$ with r,s > 0. We say $r <_m s$ iff $\forall q \in \mathbb{Q} \ r^q < s$

TC embeddings

• For all classes K, $K \leq_{tc} UG \equiv_{tc} LO \equiv_{tc} RCF$.

Definition (Multiplicative Archimedean classes)

Let $\mathcal{R} \in RCF$ and let $r, s \in R$ with r, s > 0. We say $r <_m s$ iff $\forall q \in \mathbb{Q} \ r^q < s$

• ARCF is a subclass of the class RCF where structures have no infinite elements, i.e only multiplicative classes are $[1]_m$ and $[2]_m$.

Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph \mathcal{G} with a distinguished vertex, say x_0 , and a set of edges E, such that every vertex $x \neq x_0$ in the universe of \mathcal{G} is part of a unique loop containing x_0 .

 Every S ⊆ ω can be represented as a daisy graph by having a loop of size 2n + 3 if n ∈ S and a loop is size 2n + 4 otherwise.

Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph \mathcal{G} with a distinguished vertex, say x_0 , and a set of edges E, such that every vertex $x \neq x_0$ in the universe of \mathcal{G} is part of a unique loop containing x_0 .

- Every S ⊆ ω can be represented as a daisy graph by having a loop of size 2n + 3 if n ∈ S and a loop is size 2n + 4 otherwise.
- So, A ∈ DG is a collection of daisy graphs each representing a distinct subset of ω.

Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph \mathcal{G} with a distinguished vertex, say x_0 , and a set of edges E, such that every vertex $x \neq x_0$ in the universe of \mathcal{G} is part of a unique loop containing x_0 .

- Every S ⊆ ω can be represented as a daisy graph by having a loop of size 2n + 3 if n ∈ S and a loop is size 2n + 4 otherwise.
- So, A ∈ DG is a collection of daisy graphs each representing a distinct subset of ω.
- $ARCF \leq_{tc} DG$

Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph \mathcal{G} with a distinguished vertex, say x_0 , and a set of edges E, such that every vertex $x \neq x_0$ in the universe of \mathcal{G} is part of a unique loop containing x_0 .

- Every S ⊆ ω can be represented as a daisy graph by having a loop of size 2n + 3 if n ∈ S and a loop is size 2n + 4 otherwise.
- So, $\mathcal{A} \in DG$ is a collection of daisy graphs each representing a distinct subset of ω .
- $ARCF \leq_{tc} DG$ $ApG \leq_{tc} DG$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $DG \leq_{tc} ARCF$

• The 'reverse' the procedure above to get $DG \leq_{tc} ARCF$ will not work

$DG \leq_{tc} ARCF$

- The 'reverse' the procedure above to get $DG \leq_{tc} ARCF$ will not work
- If we are to succeed in $DG \leq_{tc} ARCF$, we must do so by associating families of sets to families of algebraically independent reals.

$DG \leq_{tc} ARCF$

- The 'reverse' the procedure above to get $DG \leq_{tc} ARCF$ will not work
- If we are to succeed in $DG \leq_{tc} ARCF$, we must do so by associating families of sets to families of algebraically independent reals.

Theorem

There is a perfect, computable, binary tree T whose continuum many paths represent algebraically independent reals over \mathbb{Q} .

$DG \leq_{tc} ARCF$

Theorem

There is a perfect, computable, binary tree T whose continuum many paths represent algebraically independent reals over \mathbb{Q} .

Recall: A tree T is *perfect* if for every $\sigma \in T$ there is $\sigma \leq \tau$ such that $\tau^{\wedge}0, \tau^{\wedge}1 \in T$.

$DG \leq_{tc} ARCF$

Theorem

There is a perfect, computable, binary tree T whose continuum many paths represent algebraically independent reals over \mathbb{Q} .

Recall: A tree *T* is *perfect* if for every $\sigma \in T$ there is $\sigma \leq \tau$ such that $\tau^{\wedge}0, \tau^{\wedge}1 \in T$. **Note:** $T: 2^{<\omega} \to \mathbb{Q} \times \mathbb{Q}$, where $\sigma \mapsto (q, q^*)$ which we interpret as an interval $I_{\sigma} = [q, q^*]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$DG \leq_{tc} ARCF$

Theorem

There is a perfect, computable, binary tree T whose continuum many paths represent algebraically independent reals over \mathbb{Q} .

- **1** $T(\emptyset) = [0,1]$
- **2** If $\sigma \leq \tau$, then $I_{\tau} \subseteq I_{\sigma}$.
- If length(σ) = n, then diameter(I_σ) ≤ 2⁻ⁿ, where diameter(a,b), for an interval (a,b), is defined to be b − a.
- **③** If σ, τ are incomparable and both of length $n, I_{\sigma} \cap I_{\tau} = \emptyset$
- For $f \in 2^{\omega}$, let r_f be the unique real in $\bigcap_{\sigma \subseteq f} I_{\sigma}$. Then for distinct $f_1, \ldots, f_n \in 2^{\omega}$, r_{f_1}, \ldots, r_{f_n} are algebraically independent.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Further work on TCE

Definition

For all $0 \le n$, let $VRCF_n$ be all structures with n + 2 distinct multiplicative classes.

Obs. $ARCF = VRCF_0$

Further work on TCE

Definition

For all $0 \le n$, let $VRCF_n$ be all structures with n + 2 distinct multiplicative classes.

Obs. $ARCF = VRCF_0$

Theorem

For all $0 \le n < \omega$, $VRCF_n \le_{tc} VRCF_{n+1}$

Theorem

 $ARCF <_{tc} VRCF_1$

$ARCF <_{tc} VRCF_1$

Theorem (Pull-Back Theorem, Knight, Miller, Vanden Boom)

If $K \leq_{tc} K'$ via some Φ , then for any computable infinitary sentence φ' in the language of K' we can find a computable infinitary sentence φ in the language of K such that for all $\mathcal{A} \in K$, $A \vDash \varphi$ iff $\Phi(\mathcal{A}) \vDash \varphi'$. Moreover, if φ' is Σ_{α} (Π_{α}) then so is φ .

- $\mathcal{A} \cong \mathcal{B} \in ARCF$ iff \mathcal{A} and \mathcal{B} satisfy the same Σ_2^c sentences.
- We find \mathcal{V} and $\mathcal{V}' \in VRCF_1$ non-isomorphic satisfying the same Σ_2^c sentences.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$ARCF <_{tc} VRCF_1$

•
$$\mathcal{V} = RC(\mathbb{Q}(g, a_0, \dots, a_n, \dots))$$
 and $\mathcal{V}' = RC(\mathcal{V}(b))$, where

•
$$b = \sum_i a_i g^{q_i}$$

• $(q_i)_{i<\omega}$ decreasing sequence converging to an irrational.

Lemma

For any Π_2^0 set S, we can uniformly produce a sequence of structures $(F_n)_{n<\omega}$ such that $F_n \cong \mathcal{V}'$ if $n \in S$ and $F_n \cong \mathcal{V}$ otherwise.

Relative Categoricity

Definition (Relatively Δ^0_{γ} -categorical)

A structure \mathcal{A} is relatively Δ^0_{γ} -categorical if for all structures $\mathcal{B} \cong \mathcal{A}$, there is some isomorphism $F : \mathcal{A} \to \mathcal{B}$ such that F is $\Delta^0_{\gamma}(\mathcal{B})$.

Relative Categoricity

A structure \mathcal{A} is relatively Δ^0_γ categorical iff \mathcal{A} has a formally Σ^c_γ Scott family.

Definition

A formally Σ_{γ}^{c} Scott family for a structure \mathcal{A} is a set Φ of formulas, with fixed parameters \overline{c} from \mathcal{A} , such that:

- for each tuple \bar{a} of elements of \mathcal{A} , there is a formula $\varphi(\bar{x}, \bar{c}) \in \Phi$, such that $\mathcal{A} \models \varphi(\bar{a}, \bar{c})$
- if two tuples \bar{a} and \bar{b} from A satisfy the same formula from Φ , then there is an automorphism of A mapping \bar{a} to \bar{b}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

Theorem (Corollary from work of Nurtazin)

Let \mathcal{R} be a computable RCF, then \mathcal{R} is computably categorical if and only if \mathcal{R} has finite transcendence degree.

Theorem (Calvert)

If \mathcal{R} is a computable archimedean RCF, then \mathcal{R} is Δ_2^0 -categorical.

Moral: The complexity is in the infinite elements.

Two Results

Theorem (Ash)

Suppose α is a computable ordinal, with $\omega^{\delta+n} \leq \alpha < \omega^{\delta+n+1}$, δ is either 0 or a limit ordinal, and $n < \omega$. Then α is $\Delta^0_{\delta+2n}$ -stable but not Δ^0_{β} -stable for $\beta < \delta + 2n$.

Theorem

Let α be a computable well-order and let \mathcal{R}_{α} be the RCF constructed around α . Then \mathcal{R}_{α} is relatively Δ^{0}_{γ} -categorical and not Δ^{0}_{β} -categorical for $\beta < \gamma$, where $n < \omega$ and $\gamma = \begin{cases} 2n+1, \text{ if } \omega^{n} \leq \alpha < \omega^{n+1} \\ \delta + 2n, \text{ if } \omega^{\delta+n} \leq \alpha < \omega^{\delta+n+1} \end{cases}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Relative categoricity

•
$$LO:$$

 $\lambda_0(x) \equiv (\forall y)(x \le y)$

•
$$RCF$$
:
 $x \approx_m y \equiv \bigvee_{n \in \mathbb{N}} x < y^n \& \bigvee_{n \in \mathbb{N}} y < x^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Relative categoricity

•
$$LO:$$

 $\lambda_0(x) \equiv (\forall y)(x \le y)$

•
$$RCF$$
:
 $x \approx_m y \equiv \bigvee_{n \in \mathbb{N}} x < y^n \& \bigvee_{n \in \mathbb{N}} y < x^n$
 $\lambda_0^*(x) \equiv INF(x) \& (\forall y)(x \approx_m y \lor x <_m y)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Scott family for \mathcal{R}_{α}

For all $\beta < \alpha$, we take all formulas of the form:

• $\varphi(\bar{x}) \equiv (\exists y_1) \cdots (\exists y_i) (\lambda_{\beta_1}^*(y_1) \& \cdots \& \lambda_{\beta_i}^*(y_i) \& \psi(\bar{x}, \bar{y})),$ where $\psi(\bar{x}, \bar{y})$ is quantifier free.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

THANK YOU