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Real Closed Fields

All structures have countable universe and all classes are
closed under isomorphism.

RCF =Mod(Th(R,+,∗,0,1,<))

RCF has many nice model theoretic properties

Complete, decidable, o-minimal and accepts quantifier
elimination.
Definable Skolemization which preserves the properties above.
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Skolemization of RCF

Let R ∈ RCF and X ⊆ Rn be definable, say by ϕ(x̄, y). Let
Xā = {y ∶ (ā, y) ∈X}. Then we have:

if Xā is empty, then fϕ(ā) = 0

if Xā has a least element b, then fϕ(ā) = b
if the leftmost interval of Xā is (c, d), then fϕ(ā) = d−c

2

if the leftmost interval of Xā is (−∞, d), then fϕ(ā) = d − 1

if the leftmost interval of Xā is (c,∞), then fϕ(ā) = c + 1
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TC embeddings

Definition

Let K and K
′

be two classes of structures. A Turing computable
embedding from K to K

′

is a Turing operator Φ = ϕe such that:

for each A ∈K, there is a A′ ∈K ′

such that ϕ
D(A)
e = χD(A′)

for A,B ∈K correspond, respectively, to A′ ,B′ ∈K ′

then
A ≅ B iff A′ ≅ B′ .

Uniform procedure that respects isomorphism types.

For K and K
′

as above we write that K ≤tc K
′

, so that TCE
induces a preordering or classes.
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TC embeddings

For all classes K, K ≤tc UG ≡tc LO ≡tc RCF .

Definition (Multiplicative Archimedean classes)

Let R ∈ RCF and let r, s ∈ R with r, s > 0. We say r <m s iff
∀q ∈ Q rq < s

ARCF is a subclass of the class RCF where structures have
no infinite elements, i.e only multiplicative classes are [1]m
and [2]m.
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Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph G with a distinguished vertex,
say x0, and a set of edges E, such that every vertex x ≠ x0 in the
universe of G is part of a unique loop containing x0.

Every S ⊆ ω can be represented as a daisy graph by having a
loop of size 2n + 3 if n ∈ S and a loop is size 2n + 4 otherwise.

So, A ∈DG is a collection of daisy graphs each representing a
distinct subset of ω.

ARCF ≤tc DG ApG ≰tc DG
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DG ≤tc ARCF

The ‘reverse’ the procedure above to get DG ≤tc ARCF will
not work

If we are to succeed in DG ≤tc ARCF , we must do so by
associating families of sets to families of algebraically
independent reals.

Theorem

There is a perfect, computable, binary tree T whose continuum
many paths represent algebraically independent reals over Q.



Outline Turing computable embeddings Categoricity in RCF

DG ≤tc ARCF

The ‘reverse’ the procedure above to get DG ≤tc ARCF will
not work

If we are to succeed in DG ≤tc ARCF , we must do so by
associating families of sets to families of algebraically
independent reals.

Theorem

There is a perfect, computable, binary tree T whose continuum
many paths represent algebraically independent reals over Q.



Outline Turing computable embeddings Categoricity in RCF

DG ≤tc ARCF

The ‘reverse’ the procedure above to get DG ≤tc ARCF will
not work

If we are to succeed in DG ≤tc ARCF , we must do so by
associating families of sets to families of algebraically
independent reals.

Theorem

There is a perfect, computable, binary tree T whose continuum
many paths represent algebraically independent reals over Q.



Outline Turing computable embeddings Categoricity in RCF

DG ≤tc ARCF

Theorem

There is a perfect, computable, binary tree T whose continuum
many paths represent algebraically independent reals over Q.

Recall: A tree T is perfect if for every σ ∈ T there is σ ⪯ τ such
that τ∧0, τ∧1 ∈ T .

Note: T ∶ 2<ω → Q ×Q, where σ ↦ (q, q∗) which we interpret as
an interval Iσ = [q, q∗]
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DG ≤tc ARCF

Theorem

There is a perfect, computable, binary tree T whose continuum
many paths represent algebraically independent reals over Q.

1 T (∅) = [0,1]
2 If σ ⪯ τ , then Iτ ⊆ Iσ.

3 If length(σ) = n, then diameter(Iσ) ≤ 2−n, where
diameter(a, b), for an interval (a, b), is defined to be b − a.

4 If σ, τ are incomparable and both of length n, Iσ ∩ Iτ = ∅
5 For f ∈ 2ω, let rf be the unique real in ⋂σ⊆f Iσ. Then for

distinct f1, . . . , fn ∈ 2ω, rf1 , . . . , rfn are algebraically
independent.
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Further work on TCE

Definition

For all 0 ≤ n, let V RCFn be all structures with n + 2 distinct
multiplicative classes.

Obs. ARCF = V RCF0

Theorem

For all 0 ≤ n < ω, V RCFn ≤tc V RCFn+1

Theorem

ARCF <tc V RCF1
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ARCF <tc V RCF1

Theorem (Pull-Back Theorem, Knight, Miller, Vanden Boom)

If K ≤tc K
′

via some Φ, then for any computable infinitary
sentence ϕ

′

in the language of K
′

we can find a computable
infinitary sentence ϕ in the language of K such that for all A ∈K,
A ⊧ ϕ iff Φ(A) ⊧ ϕ′ . Moreover, if ϕ

′

is Σα (Πα) then so is ϕ.

A ≅ B ∈ ARCF iff A and B satisfy the same Σc
2 sentences.

We find V and V ′ ∈ V RCF1 non-isomorphic satisfying the
same Σc

2 sentences.
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ARCF <tc V RCF1

V = RC(Q(g, a0, . . . , an, . . .)) and V ′ = RC(V(b)), where

b = Σiaig
qi

(qi)i<ω decreasing sequence converging to an irrational.

Lemma

For any Π0
2 set S, we can uniformly produce a sequence of

structures (Fn)n<ω such that Fn ≅ V ′ if n ∈ S and Fn ≅ V
otherwise.
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Relative Categoricity

Definition (Relatively ∆0
γ-categorical)

A structure A is relatively ∆0
γ-categorical if for all structures

B ≅ A, there is some isomorphism F ∶ A → B such that F is
∆0
γ(B).
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Relative Categoricity

A structure A is relatively ∆0
γ categorical iff A has a formally Σc

γ

Scott family.

Definition

A formally Σc
γ Scott family for a structure A is a set Φ of

formulas, with fixed parameters c̄ from A, such that:

for each tuple ā of elements of A, there is a formula
ϕ(x̄, c̄) ∈ Φ, such that A ⊧ ϕ(ā, c̄)
if two tuples ā and b̄ from A satisfy the same formula from Φ,
then there is an automorphism of A mapping ā to b̄
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Motivation

Theorem (Corollary from work of Nurtazin)

Let R be a computable RCF, then R is computably categorical if
and only if R has finite transcendence degree.

Theorem (Calvert)

If R is a computable archimedean RCF, then R is ∆0
2-categorical.

Moral: The complexity is in the infinite elements.



Outline Turing computable embeddings Categoricity in RCF

Two Results

Theorem (Ash)

Suppose α is a computable ordinal, with ωδ+n ≤ α < ωδ+n+1, δ is
either 0 or a limit ordinal, and n < ω. Then α is ∆0

δ+2n-stable but
not ∆0

β-stable for β < δ + 2n.

Theorem

Let α be a computable well-order and let Rα be the RCF
constructed around α. Then Rα is relatively ∆0

γ-categorical and

not ∆0
β-categorical for β < γ, where n < ω and

γ = { 2n + 1, if ωn ≤ α < ωn+1

δ + 2n, if ωδ+n ≤ α < ωδ+n+1
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Relative categoricity

LO ∶
λ0(x) ≡ (∀y)(x ≤ y)

RCF ∶
x ≈m y ≡ ⩔

n∈N
x < yn & ⩔

n∈N
y < xn

λ∗0(x) ≡ INF (x) & (∀y)(x ≈m y ∨ x <m y)
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Scott family for Rα

For all β < α, we take all formulas of the form:

ϕ(x̄) ≡ (∃y1)⋯(∃yi)(λ∗β1(y1) & ⋯ & λ∗βi(yi) & ψ(x̄, ȳ)),
where ψ(x̄, ȳ) is quantifier free.



Outline Turing computable embeddings Categoricity in RCF

THANK YOU


	Turing computable embeddings
	Categoricity in RCF

