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Real Closed Fields

@ All structures have countable universe and all classes are
closed under isomorphism.

@ RCF =Mod(Th(R,+,*,0,1,<))

@ RCF has many nice model theoretic properties

o Complete, decidable, o-minimal and accepts quantifier
elimination.
o Definable Skolemization which preserves the properties above.
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Skolemization of RC'F

Let R € RCF and X ¢ R™ be definable, say by ¢(Z,y). Let
Xa={y:(a,y) e X}. Then we have:

o if X5 is empty, then f,(a) =0

if X3 has a least element b, then f,(a) =0

if the leftmost interval of X5 is (¢,d), then f,(a) = 2

if the leftmost interval of X3 is (—o0,d), then f,(a)=d-1
if the leftmost interval of X5 is (¢, 00), then f,(a) =c+
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TC embeddings

Let K and K be two classes of structures. A Turing computable
embedding from K to K is a Turing operator ® = e such that:

o for each A ¢ K, thereis a A ¢ K such that gof(A) = Xpa')

o for A, B e K correspond, respectively, to A, B € K then
A=Biff A28




Turing computable embeddings

TC embeddings

Let K and K be two classes of structures. A Turing computable
embedding from K to K is a Turing operator ® = ¢, such that:

o for each A ¢ K, thereis a A ¢ K such that %D(A) = Xp(a')

o for A, B e K correspond, respectively, to A, B € K then
A=Biff A28

@ Uniform procedure that respects isomorphism types.

e For K and K as above we write that K <te K', so that TCE
induces a preordering or classes.
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Turing computable embeddings

TC embeddings

@ For all classes K, K <4 UG =4 LO = RCF..

Definition (Multiplicative Archimedean classes)

Let R € RCF and let r,s € R with r,s >0. We say r <, s iff
VgeQri<s

o ARCYF is a subclass of the class RCF' where structures have
no infinite elements, i.e only multiplicative classes are [1],,

and [2],.



Turing computable embeddings

Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph G with a distinguished vertex,
say g, and a set of edges F, such that every vertex = # xg in the
universe of G is part of a unique loop containing xg.

@ Every S cw can be represented as a daisy graph by having a
loop of size 2n.+ 3 if n €S and a loop is size 2n + 4 otherwise.
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Daisy graphs and ARCF

Definition

A daisy graph is an undirected graph G with a distinguished vertex,
say g, and a set of edges F, such that every vertex = # xg in the
universe of G is part of a unique loop containing xg.

@ Every S cw can be represented as a daisy graph by having a
loop of size 2n.+ 3 if n €S and a loop is size 2n + 4 otherwise.

@ So, A€ DG is a collection of daisy graphs each representing a
distinct subset of w.

o ARCF <. DG ApG ?{-tc DG
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DG <. ARCF

There is a perfect, computable, binary tree T' whose continuum
many paths represent algebraically independent reals over Q.

Recall: A tree T is perfect if for every o € T there is ¢ < T such

that 70,71 € T.
Note: 7':2<“ - Q x Q, where o — (¢, q*) which we interpret as

an interval I, = [q,q*]



Turing computable embeddings

DG <. ARCF

There is a perfect, computable, binary tree T' whose continuum
many paths represent algebraically independent reals over QQ.

Q@ T'(w)=1[0,1]

Q Ifox7,then I, C1,.

@ If length(o) = n, then diameter(l,) < 27", where
diameter(a,b), for an interval (a,b), is defined to be b —a.

@ If o, 7 are incomparable and both of length n, I, NI, =@

© For fe2¥ let ry be the unique real in NycrI,. Then for
distinct f1,..., fn, €2%, r¢, ... 7y, are algebraically
independent.
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Further work on TCE

Definition

For all 0 < n, let VRCE,, be all structures with n + 2 distinct
multiplicative classes.

Obs. ARCF = VRCF,

For all 0 <n<w, VRCF, <t VRCF, 1 \

ARCF <t VRCFy
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ARCF <. VRCF,

Theorem (Pull-Back Theorem, Knight, Miller, Vanden Boom)

If K <;c K via some ®, then for any computable infinitary
sentence gol in the language of K " we can find a computable
infinitary sentence @ in the language of K such that for all A € K,
AE @ iff ®(A) = ¢ . Moreover, if ¢ is $o (Ily) then so is p.

o Az Be ARCF iff A and B satisfy the same 3§ sentences.

@ We find V and V' € V RCF; non-isomorphic satisfying the
same X$ sentences.
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ARCF <. VRCF,

e V=RC(Q(g,a0,-..,an,...)) and V' = RC(V(b)), where
-] b = Ziaigq"
o (¢;)i<w decreasing sequence converging to an irrational.

For any Hg set S, we can uniformly produce a sequence of
structures (F,)p<w such that F, 2 V' ifneS and F,, 2V
otherwise.
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Relative Categoricity

Definition (Relatively AY-categorical)

A structure A is relatively Ag—categorical if for all structures
B = A, there is some isomorphism F': A — B such that F'is

A%(B).
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Relative Categoricity

A structure A is relatively AQ/ categorical iff A has a formally Xf
Scott family.

Definition
A formally X2 Scott family for a structure A is a set ® of
formulas, with fixed parameters ¢ from A, such that:
@ for each tuple a of elements of A, there is a formula
©(Z,¢) € ®, such that A= p(a,c)
o if two tuples @ and b from A satisfy the same formula from @,
then there is an automorphism of A mapping a to b
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Motivation

Theorem (Corollary from work of Nurtazin)

Let R be a computable RCF, then R is computably categorical if
and only if R has finite transcendence degree.

Theorem (Calvert)

If R is a computable archimedean RCF, then R is AY-categorical.

Moral: The complexity is in the infinite elements.
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Two Results

Theorem (Ash)

Suppose o is a computable ordinal, with w®*™ < o < W1, § is

either O or a limit ordinal, and n < w. Then o is Ag+2n-stable but
not A%—stable for 5 <0+ 2n.

Theorem
Let o« be a computable well-order and let R, be the RCF
constructed around «. Then R, is relatively Ag—categorical and
not A%—categorical for B <, where n < w and

2n+1, ifw" < a<w'tl
V= { 8 +2n, if W < a < WL

| \
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Relative categoricity

e LO:
Ao(z) = (Vy)(z <y)

e RCF':

zemy= o<y & Yy<a”
neN neN
N (2) = INF(2) & (V)@ o 4V 2 < )
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Scott family for R,

For all B < «, we take all formulas of the form:

o () = (y1)-(Fwi) (A5, (y1) & - & NG, (i) & (2, 9)),
where 1(Z,7) is quantifier free.
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