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Motivation

There have been a number of recent developments concerning
effective Hausdorff dimension and classical geometric measure
theory.

From this work, we have learned new ways in which effective
Hausdorff dimension can yield significant insights about problems
in classical mathematics.

Today, I want to offer a new way of understanding the effective
Hausdorff dimension of a sequence related to membership in
random closed sets.



Previous work by Diamondstone and Kjos-Hanssen

An informative connection between effective dimension and
random closed sets was first established by Diamondstone and
Kjos-Hanssen, who proved the following:

I If a sequence X has effective Hausdorff dimension ≥ γ, then
X is a member of random closed set (with the level of
randomness of the closed set determined by the parameter γ).

I If a sequence X is a member of random closed set (again,
with its level of randomness determined by the parameter γ),
then X has effective Hausdorff dimension > γ.

As we will see, for a given choice of γ ∈ [0, 1], the value 2−γ is the
survival parameter for the process of pruning the full binary tree.



A general consequence

As a consequence of these results of Diamondstone and
Kjos-Hanssen, we have:

the collection of
sequences in some
random closed set

given by parameter γ
for some γ ∈ (0, 1]

=

the collection of
sequences of positive

effective Hausdorff
dimension

Our goal is to refine this correspondence.



A rough description of our result

The main result that I will report today tells us, roughly:

I The effective Hausdorff dimension of a sequence is inversely
proportional to how intersectable the random closed sets
containing it must be.

The idea behind this statement is that the more branching there is
in a random closed set (determined by the choice of the parameter
γ ∈ [0, 1]), the larger the number of relatively random closed sets
with a non-empty intersection will be.

This is how we will define the degree of intersectability of a family
of random closed sets.
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Part 1: Background



Effective Hausdorff dimension

For X ∈ 2ω, the effective Hausdorff dimension of X is

lim inf
n→∞

K (X �n)

n
.

Intuitively, the effective Hausdorff dimension measures the density
of information content in a sequence.



Coding closed subsets of 2ω

In order to directly apply the machinery of algorithmic randomness
for sequences to closed subsets of 2ω, we will code closed sets as
members of 3ω (as coding scheme due to Barmpalias, Brodhead,
Cenzer, Dashti, and Weber).

In particular, as we move node by node through the extendible
nodes of our closed set, each value in our sequence encodes one of
three outcomes:

I “0” indicates that only the left extension of a given node is
extendible;

I “1” indicates that only the right extension of a given node is
extendible;

I “2” indicates that both extensions of a given node are
extendible.
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Computable Probability Measures on 3ω

Definition
A probability measure µ on 3ω is computable if σ 7→ µ(JσK) is
computable as a real-valued function.

Hereafter, for i ∈ {0, 1, 2} and σ ∈ 3<ω, I will use the shorthand

µ(σi | σ) =
µ(JσiK)

µ(JσK)
.

Let us consider some examples.



Bernoulli measures on 3ω

Let p, q ∈ [0, 1] satisfy p + q ≤ 1. Then the measure µ〈p,q〉 defined
by the conditional probabilities

I µ〈p,q〉(σ0 | σ) = p

I µ〈p,q〉(σ1 | σ) = q

I µ〈p,q〉(σ2 | σ) = 1− p − q

for σ ∈ 3<ω defines a Bernoulli measure on 3ω.

µ〈p,q〉 is a computable measure if and only if p and q are both
computable.



Symmetric Bernoulli measures on 3ω

Let p ∈ (0, 12). Then the measure µp defined by the conditional
probabilities

I µp(σ0 | σ) = p

I µp(σ1 | σ) = p

I µp(σ2 | σ) = 1− 2p

for σ ∈ 3<ω defines a symmetric Bernoulli measure on 3ω.

µp is a computable measure if and only if p is computable.



Martin-Löf randomness

Let µ be a computable measure on 3ω.

Definition
A µ-Martin-Löf test is a uniformly Σ0

1 sequence (Ui )i∈ω of subsets
of 3ω such that for each i ,

µ(Ui ) ≤ 2−i .

A sequence X ∈ 3ω passes the µ-Martin-Löf test (Ui )i∈ω if
X /∈

⋂
i Ui .

X ∈ 3ω is µ-Martin-Löf random, denoted X ∈ MLRµ, if X passes
every µ-Martin-Löf test.

Note that we can relative this definition to any oracle.



Algorithmically random closed sets

Let K(2ω) be the collection of closed subsets of 2ω.

One way to define an algorithmically random closed subset of 2ω,
due to Barmpalias, Brodhead, Cenzer, Dashti, and Weber:

I A closed set C ⊆ 2ω is random if it can be coded by an
algorithmically random sequence X ∈ 3ω.



Uniformly random closed sets

This definition was originally given for the case p = q = 1
3 , i.e.,

with respect to the Lebesgue measure on 3ω.

It was later extended to more general measures on 3ω in a number
of other Cenzer-led projects.



Robustness of this definition

The resulting definition of randomness is equivalent to one
obtained by

I defining Martin-Löf random closed sets in a way that is
“native” to K(2ω), which uses the hit-or-miss or Fell topology
on 2ω (Axon); and

I defining Martin-Löf random closed sets in terms of
Galton-Watson processes (Diamondstone, Kjos-Hanssen).



Convention about measures on K(2ω)

If µ is a measure on 3ω, then we write µ∗ to stand for the
corresponding measure on K(2ω).

That is, µ∗-random closed sets are those closed sets coded by a
µ-random sequence in 3ω.



Symmetric Bernoulli random closed sets

Random closed sets with respect to a symmetric Bernoulli measure
µ∗p for p ∈ [0, 12 ] are particularly nice.

The symmetry of the measure manifests itself in the fact that the
probability of having only a left branch at a given node is equal to
the probability of having only a right branch at that node.

Consequently, the collection of µ∗p-random closed sets is closed
under mirror images (swapping 0s and 1s in the code).



Extreme instances of symmetric Bernoulli random closed
sets

The parameter p for a µ∗p-random closed set determines the
amount of branching in the closed sets.

The smaller p is, the more branching there is.

We have the following extreme cases:

I If p = 0, then the infinite sequence of 2s is the only
µp-random sequence, and thus the only µ∗p-random closed set
is 2ω.

I If p = 1
2 , then µp-random sequences contain no 2s, and thus

each µ∗p-random closed set has the form {X}, where X ∈ 2ω

is Martin-Löf random.



Part 2: Intersections of Random Closed Sets



Cenzer/Weber on the intersection of random closed sets

Theorem (Cenzer, Weber)

Suppose that p, q, r , s ≥ 0 are computable, 0 ≤ p + q ≤ 1 and
0 ≤ r + s ≤ 1.

Suppose that P ∈ K(2ω) is µ∗〈p,q〉-random relative to Q ∈ K(2ω)
and that Q is µ∗〈r ,s〉-random relative to P.

Then one of three possibilities occurs:



The first possibility

I If p + q + r + s ≥ 2 + pr + qs, then P ∩ Q = ∅.

This technical condition guarantees that neither P nor Q have a
sufficient amount of branching to guarantee a non-empty
intersection.



The second possibility

I If p + q + r + s < 1 + pr + qs, then P ∩Q = ∅ with probability

ps + qr

(1− p − q)(1− r − s)
.

In this case, there may be a sufficient amount of branching in P
and Q, but we see that the intersection is empty due to some finite
level of both P and Q.



The third possibility

I If p + q + r + s < 1 + pr + qs and P ∩ Q 6= ∅, then P ∩ Q is
Martin-Löf random with respect to the measure
µ∗〈p+r−pr ,q+s−qs〉.

Now we have a sufficient amount of branching in P and Q and
some infinite path in their intersection.

The amount of branching in the resulting closed set is computable
in the Bernoulli parameters of both P and Q.



A side question: The converse?

Cenzer and Weber left open the question as to whether the
converse is true:

In the case that p + q + r + s < 1 + pr + qs, can every
µ∗〈p+r−pr ,q+s−qs〉-random closed set be obtained as the intersection

of P,Q ∈ K(2ω), where P is µ∗〈p,q〉-random relative to Q ∈ K(2ω)
and Q is µ∗〈r ,s〉-random relative to P?

We answered the question in the affirmative.



A corollary of the intersection theorem

Corollary (Cenzer, Weber)

For p ∈ (0, 1/2), let P,Q ∈ K(2ω) be relatively µ∗p-random.

1. If p ≥ 1−
√
2
2 , then P ∩ Q = ∅.

2. If p < 1−
√
2
2 , then P ∩ Q = ∅ with probability 2p2

(1−2p)2 .

3. If p < 1−
√
2
2 and P ∩ Q 6= ∅, then P ∩ Q is Martin-Löf

random with respect to the measure µ∗2p−p2 .



Jointly random closed sets

We would like to extend this to the intersection of more than two
random closed sets.

To do so, we need to make sure that any closed set in our
intersection is relatively random to all of the others (taken
together).

A sequence of random closed sets P1,P2, . . .Pn ⊆ 2ω with codes
X1,X2, . . . ,Xn ∈ 3ω is jointly random if for each j ∈ n

Xj is random relative to
⊕
i 6=j

Xj .

By van Lambalgen’s theorem, this is equivalent to requiring that⊕n
i=1 Xj be random.
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Intersecting 3 jointly random closed sets

Given jointly µ∗p-random closed sets P1,P2, and P3, then assuming

that
⋂3

i=1 Pi 6= ∅, we can conclude:

I P1 ∩ P2 is µ∗2p−p2-random (by the Cenzer/Weber corollary),

I (P1 ∩ P2) ∩ P3 is µ∗3p−3p2+p3-random (by the original

Cenzer/Weber intersection theorem)

Moreover, setting p = q and r = s = 2p − p2, from the
condition p + q + r + s < 1 + pr + qs, we can conclude

3p − 3p2 + p3 <
1

2
.



More generally

For n ≥ 1, there is a sequence of polynomials (fn)n∈ω such that
given n + 1 jointly µ∗p-random closed sets P1, . . . ,Pn+1, then

assuming that
⋂n+1

i=1 Pi 6= ∅, we can conclude:

I
⋂n

i=1 Pi is µ∗fn(p)-random,

I
(⋂n

i=1 Pi

)
∩ Pn+1 is µ∗p+fn(p)−pfn(p)-random.

Thus we have

fn+1(p) = p + fn(p)− pfn(p)

and we require that, for every n,

fn(p) <
1

2
.



Analyzing the fn’s, Part 1

From the conditions
f0(p) = p

and
fn+1(p) = p + fn(p)− pfn(p),

we can show via induction that

fn(p) = 1− (1− p)n.



Analyzing the fn’s, Part 2

From
fn(p) = 1− (1− p)n

and the requirement for a non-empty intersection of n jointly
random µ∗p-random closed sets, we have

fn(p) <
1

2
,

we can derive the equivalent requirement that

p < 1− 1
n
√

2
.



The full result

For n ∈ ω, let fn(p) = 1− (1− p)n.

Theorem (Case, Porter)

For p ∈ (0, 12) and n ≥ 2, given n jointly µ∗p-random closed sets
P1, . . . ,Pn, the following hold:

1. If p ≥ 1− 1
n√2 , then

⋂n
i=1 Pi = ∅.

2. If p < 1− 1
n√2 , then

⋂n
i=1 Pi = ∅ with probability 1− 1−2fn(p)

(1−2p)n .

3. If p < 1− 1
n√2 and

⋂n
i=1 Pi 6= ∅, then

⋂n
i=1 Pi is Martin-Löf

random with respect to the measure µ∗fn(p).



1
2

0
1 − 1

2

1 − 1
3 2

1 − 1
4 2

1 − 1
5 2



Another side question: The converse?

Can a µ∗p-random closed set be obtained as the intersection of n
jointly random closed sets of the appropriate type?

The answer is affirmative:

Theorem (Case, Porter)

For p ∈ (0, 1/2) and n ≥ 2, every µ∗p-random closed set can be
obtained as the intersection of n jointly random µ∗

f −1
n (p)

-random

closed sets.



Part 4: Effective dimension and
intersectability



Applying Diamondstone/Kjos-Hanssen’s result

We now want to apply the result of Diamondstone and
Kjos-Hanssen on the effective dimension of members of random
closed sets mentioned earlier.

To do so, we first have to translate their approach to random
closed sets, via Galton-Watson trees, to the approach we are
taking.

Idea: For a fixed γ ∈ [0, 1], starting with the full binary tree, we
move edge by edge length-lexicographically and remove an edge
with probability 1− 2−γ .

The probability that an edge remains in the tree is 2−γ .



Translating between the two approaches

For the measure µ∗p, the probability that a given edge remains in
the tree (assuming that it is still connected to the root), is equal to

p + (1− 2p) = 1− p.



This edge remains

in the tree

if and only if

the corresponding

code for the resulting

closed set has

a 0 or a 2 in the 

relevant position



This edge remains

in the tree

if and only if

the corresponding

code for the resulting

closed set has

a 0 or a 2 in the 

relevant position

Probability = p



This edge remains

in the tree

if and only if

the corresponding

code for the resulting

closed set has

a 0 or a 2 in the 

relevant position

Probability = 1- 2p



Translating between the two approaches

For the measure µ∗p, the probability that a given edge remains in
the tree (assuming that it is still connected to the root), is equal to

p + (1− 2p) = 1− p.

Setting 1− p = 2−γ , this gives us

γ = − log(1− p).



Stating the Diamondstone/Kjos-Hanssen result

Theorem (Diamondstone/Kjos-Hanssen)

Let γ ∈ [0, 1].

I If X is a member of a random closed set with survival
parameter 2−γ , then

dim(X ) ≥ γ.

I If
dim(X ) > γ,

then X is a member of a random closed set with survival
parameter 2−γ .



In the case that p = 1− 1
n√2 , we get

− log(1− p) = − log
(
1− (1− 1

n
√

2
)
)

=
1

n
.

Thus in our context, setting pn = 1− 1
n√2 , we get:

I If X is a member of a µ∗pn -random closed set, then

dim(X ) ≥ 1

n
.

I If

dim(X ) >
1

n
,

then X is a member of a µ∗pn -random closed set.



Degrees of intersectability

Let us set the degree of intersectability of a µ∗p-random closed set
to be the unique n such that (i) n jointly µ∗p-random closed sets
can have a non-empty intersection and (ii) n + 1 jointly µ∗p-random
closed sets always have an empty intersection.

We know such an n exists by our theorem on multiple intersections.

Moreover, the µ∗p-random closed sets with degree of intersectability
equal to n are precisely those satisfying

p ∈

[
1− 1

n+1
√

2
, 1− 1

n
√

2

)
.



Dimension and intersectability

If P is a symmetric Bernoulli random closed set with degree of

intersectability n, then for every X ∈ P, we have dim(X ) ≥ 1

n + 1
.

Let s ∈ [0, 1] satisfying s 6= 1
n for n ∈ ω. If dim(X ) = s, then

1. X is contained in a symmetric Bernoulli random closed set of
degree of intersectability k for all k ≥ b1s c, but

2. X is not contained in any symmetric Bernoulli random closed
set of degree of intersectability k for k < b1s c.



Part 4: Future directions



Where do we go from here?

Two possible directions for further investigation are:

1. Study the relationship between energy randomness and degree
of intersectability of the members of random closed sets.

2. Apply these ideas to study the intersectability of random
subfractals of self-similar fractals.



Thank you!


