Nonstandard Analysis: A New Way to Compute

Sam Sanders ${ }^{1}$

Midwest Computability Seminar, Nov. 15, 2012

[^0]How to compute in NSA: Ω-invariance

How to compute in NSA: Ω-invariance
Definition (Ω-invariance)
For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

How to compute in NSA: Ω-invariance
Definition (Ω-invariance)
For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if $(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right]$.

How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if $(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right]$.

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

How to compute in NSA: Ω-invariance

Definition (Ω-invariance)
For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

Principle ($\Omega-C A$)

For all Ω-invariant $\psi(n, \omega)$, we have

$$
\left(\exists X^{s} \subset \mathbb{N}\right)(\forall n \in \mathbb{N})\left(n \in X^{s} \leftrightarrow \psi(n, \omega)\right) .
$$

How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

Principle ($\Omega-\mathrm{CA}$)

For all Ω-invariant $\psi(n, \omega)$, we have

$$
\left(\exists X^{s} \subset \mathbb{N}\right)(\forall n \in \mathbb{N})\left(n \in X^{s} \leftrightarrow \psi(n, \omega)\right) .
$$

Theorem
Ω-CA implies Δ_{1}^{0}-CA \quad (Turing comp. $\subseteq \Omega$-invariance)

How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

Principle ($\Omega-C A$)

For all Ω-invariant $\psi(n, \omega)$, we have

$$
\left(\exists X^{s} \subset \mathbb{N}\right)(\forall n \in \mathbb{N})\left(n \in X^{s} \leftrightarrow \psi(n, \omega)\right) .
$$

Theorem

Ω-CA implies Δ_{1}^{0}-CA \quad (Turing comp. $\subseteq \Omega$-invariance)
${ }^{*} \mathrm{RCA}_{0}+\Omega-\mathrm{CA} \equiv_{\text {cons }}$ RCA $_{0} \quad$ '(Ω-invariance \subseteq Turing comp. $)$ '

How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For $\psi(n, m) \in \Delta_{0}$ and $\omega \in \Omega$, the formula $\psi(n, \omega)$ is Ω-invariant if

$$
(\forall n \in \mathbb{N})\left(\forall \omega^{\prime} \in \Omega\right)\left[\psi(n, \omega) \leftrightarrow \psi\left(n, \omega^{\prime}\right)\right] .
$$

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

Principle ($\Omega-C A$)

For all Ω-invariant $\psi(n, \omega)$, we have

$$
\left(\exists X^{s} \subset \mathbb{N}\right)(\forall n \in \mathbb{N})\left(n \in X^{s} \leftrightarrow \psi(n, \omega)\right) .
$$

Theorem

Ω-CA implies Δ_{1}^{0}-CA \quad (Turing comp. $\subseteq \Omega$-invariance)
${ }^{*} \mathrm{RCA}_{0}+\Omega-\mathrm{CA} \equiv_{\text {cons }}$ RCA $_{0} \quad$ '(Ω-invariance \subseteq Turing comp.) ${ }^{\prime}$
(Physics / TCS)

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Son of a...

Errett Bishop's Constructive Analysis (also 'BISH') is a constructive redevelopment of Mathematics, consistent with CLASS, RUSS and INT.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(4) $\neg P \equiv P \rightarrow(0=1)$.

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(4) $\neg P \equiv P \rightarrow(0=1)$.
(6) $(\exists x) P(x)$: an algorithm computes an object x_{0} such that $P\left(x_{0}\right)$

Algorithm and Proof in Constructive Analysis

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

(1) $P \vee Q$: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
(2) $P \wedge Q$: we have both a proof of P and a proof of Q.
(3) $P \rightarrow Q$: by means of an algorithm we can convert any proof of P into a proof of Q.
(4) $\neg P \equiv P \rightarrow(0=1)$.
(5) $(\exists x) P(x)$: an algorithm computes an object x_{0} such that $P\left(x_{0}\right)$
(0) $(\forall x \in A) P(x)$: for all $x, x \in A \rightarrow P(x)$.

Lost in translation

Lost in translation BISH (based on BHK)

Lost in translation BISH (based on BHK)

Lost in translation
BISH (based on BHK)
Central: algorithm and proof

NSA (based on CL)

Lost in translation BISH (based on BHK)

NSA (based on CL)

Lost in translation
BISH (based on BHK)
Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]]$
$\neg \psi(\vec{x}, \omega) \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{\mathbb { T }}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{\mathbb { T }}]]
\end{aligned}
$$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{\mathbb { T }}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\psi(\vec{x}, \omega) \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]]
$$

$$
\neg \psi(\vec{x}, \omega) \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.
$\psi(\vec{x}, \omega) \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]]$
$\neg \psi(\vec{x}, \omega) \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]$
$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}$ ' is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

' $A \in \mathbb{T}$ ' means ' A satisfies Transfer'.
E.g. ' $(\forall n \in \mathbb{N}) \varphi(n) \in \mathbb{T}$ ' is $\left[(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]$
E.g. ${ }^{\prime}\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \in \mathbb{T}^{\prime}$ is $\left[\left(\exists n \in{ }^{*} \mathbb{N}\right) \varphi(n) \rightarrow\left(\exists n \in \mathbb{N}_{1}\right) \varphi(n)\right]$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
$\neg A: A \rightarrow(0=1)$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$\sim A: A \Rightarrow(0=1)$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0} such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.
$\psi(\vec{x}, \omega) \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]]$
$\neg \psi(\vec{x}, \omega) \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]$
$A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]$
$\sim A: A \Rightarrow(0=1)$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$
$\sim[(\forall n \in \mathbb{N}) A(n)]$

Lost in translation BISH (based on BHK)

Central: algorithm and proof $A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0}
such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$
$\sim[(\forall n \in \mathbb{N}) A(n)] \equiv\left(\exists n \in \mathbb{N}_{1}\right) \sim A(n)$
WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0} such that $A\left(x_{0}\right)$
$\neg[(\forall n \in \mathbb{N}) A(n)]$ is WEAKER than $(\exists n \in \mathbb{N}) \neg A(n)$.

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$
$\sim[(\forall n \in \mathbb{N}) A(n)] \equiv\left(\exists n \in \mathbb{N}_{1}\right) \sim A(n)$
WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0} such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$

WHY is this a good/faithful/reasonable/... translation?

Lost in translation BISH (based on BHK)

Central: algorithm and proof
$A \vee B:$
an algo yields a proof of A or of B
$A \rightarrow B$: an algo converts a proof of A to a proof of B
$\neg A: A \rightarrow(0=1)$
$(\exists x) A(x)$: an algo computes x_{0} such that $A\left(x_{0}\right)$

NSA (based on CL)
Central: Ω-invariance and Transfer (\mathbb{T})
$A \vee B$: There is Ω-invariant $\psi(\vec{x}, \omega)$ s.t.

$$
\begin{aligned}
\psi(\vec{x}, \omega) & \rightarrow[A(\vec{x}) \wedge[A(\vec{x}) \in \mathbb{T}]] \\
\neg \psi(\vec{x}, \omega) & \rightarrow[B(\vec{x}) \wedge[B(\vec{x}) \in \mathbb{T}]]
\end{aligned}
$$

$$
A \Rightarrow B:[A \wedge[A \in \mathbb{T}]] \rightarrow[B \wedge[B \in \mathbb{T}]]
$$

$$
\sim A: A \Rightarrow(0=1)
$$

$(\exists x) A(x)$: an Ω-inv. proc. computes x_{0} such that $A\left(x_{0}\right)$

WHY is this a good/faithful/reasonable/... translation?
BECAUSE it preserves all essential feafures of BISH (e.g. CRM)

Constructive Reverse Mathematics

Constructive Reverse Mathematics BISH (based on BHK)

Constructive Reverse Mathematics BISH (based on BHK)

Constructive Reverse Mathematics BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow

NSA (based on CL)

Constructive Reverse Mathematics BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle
$\mathbb{L P O}$: For $P \in \Sigma_{1}, P \vee \sim P$

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$

LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
\uparrow
MCT: monotone convergence thm \uparrow
CIT: Cantor intersection thm

Transfer Principle
$\mathbb{Z P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{L P R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm $M \mathbb{C T}$: monotone convergence thm $\stackrel{\imath}{\text { CIT: Cantor intersection thm }}$

NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{P}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{P}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow

MCT: monotone convergence thm
$\mathbb{C D T}$: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \uparrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{P}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow

MCT: monotone convergence thm
$\mathbb{C D T}$: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{P}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow
MCT: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C D T}$: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \downarrow
MCT: monotone convergence thm \downarrow (limit computed by algo)
CIT: Cantor intersection thm (point in intersection computed by algp)

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \uparrow
MCT: monotone convergence thm \downarrow (limit computed by algo)
CIT: Cantor intersection thm (point in intersection computed by alg ϕ)
(point in intersection computed by Ω-inv. proc.)

Constructive Reverse Mathematics BISH (based on BHK)
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\uparrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$ \uparrow
MCT: monotone convergence thm
\downarrow (limit computed by algo)
CIT: Cantor intersection thm

NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow
MCT: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C} \mathbb{T}:$ Cantor intersection thm

$巾_{1}$-TRANS ${ }^{S E T}$
$(\forall n \in \mathbb{N}) \varphi(n, \vec{X}) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi\left(n,{ }^{*} \vec{X}\right)$

Constructive Reverse Mathematics
non-constructive/non-algorithmic
LPO: For $P \in \Sigma_{1}, P \vee \neg P$
\downarrow
LPR: $(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
\uparrow

CIT: Cantor intersection thm

BISH (based on BHK)

MCT: monotone convergence thm
\downarrow (limit computed by algo)
NSA (based on CL)
Transfer Principle
$\mathbb{Q P O}$: For $P \in \Sigma_{1}, P \vee \sim P$
$\mathbb{Q} \mathbb{R}:(\forall x \in \mathbb{R})(x>0 \vee \sim(x>0))$
\Longleftrightarrow
$\mathbb{M C T}$: monotone convergence thm
(limit computed by Ω-inv. proc.)
$\mathbb{C D T}$: Cantor intersection thm
\Longleftrightarrow
7_{1}-TRANS ${ }^{S E T}$
$(\forall n \in \mathbb{N}) \varphi(n, \vec{X}) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi\left(n,{ }^{*} \vec{X}\right)$
NSA does prove $(\forall \delta \in \mathbb{R})[\delta>0 \Rightarrow(x>0) \vee(x<\delta)]$.
BISH does prove $(\forall \delta \notin \mathbb{R})[\delta>0 \rightarrow(x>0) \vee(x<\delta)]$.

Constructive Reverse Mathematics II

Constructive Reverse Mathematics II BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics II BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics II BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics II BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

$$
\uparrow
$$

Constructive Reverse Mathematics II BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$
 \downarrow
NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

\downarrow
IVT: Intermediate value theorem

Constructive Reverse Mathematics II

BISH (based on BHK)

 non-constructive/non-algorithmicLLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$
 \uparrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem

NSA (based on CL) Transfer Principle

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

LLPR: $(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \downarrow
NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem

NSA (based on CL) Transfer Principle

```
&&PO
```

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$
\Longleftrightarrow
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$
\qquad

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

IVT: Intermediate value theorem

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$
$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$

Nal
$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

\downarrow
IVT: Intermediate value theorem

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$
$\mathbb{Q} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$
$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal.

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

$$
\uparrow
$$

IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$

$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem
(int. value computed by Ω-inv. proc.)

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

$$
\uparrow
$$

IVT: Intermediate value theorem \uparrow (int. value computed by algo) WKL

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$

$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{L}$

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic

LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL

$$
(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)
$$

$$
\uparrow
$$

IVT: Intermediate value theorem \uparrow (int. value computed by algo) WKL

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$

$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

Nal

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{\Longleftrightarrow}$ - -Transfer

Constructive Reverse Mathematics II

BISH (based on BHK) non-constructive/non-algorithmic LLPO
For $P, Q \in \Sigma_{1}, \neg(P \wedge Q) \rightarrow \neg P \vee \neg Q$

NIL
$(\forall x, y \in \mathbb{R})(x y=0 \rightarrow x=0 \vee y=0)$
\downarrow
IVT: Intermediate value theorem \downarrow (int. value computed by algo) WKL

NSA (based on CL) Transfer Principle

ロロPO

For $P, Q \in \Sigma_{1}, \sim(P \wedge Q) \Rightarrow \sim P \vee \sim Q$

$\mathbb{L} \mathbb{P R}:(\forall x \in \mathbb{R})(x \geq 0 \vee x \leq 0)$ \Longleftrightarrow

```
N0|
```

$(\forall x, y \in \mathbb{R})(x y=0 \Rightarrow x=0 \vee y=0)$

IVT: Intermediate value theorem (int. value computed by Ω-inv. proc.)
$\Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{\Longleftrightarrow}$ - -Transfer

BISH and $\mathbb{N S A}$ can prove $(\forall k \in \mathbb{N})\left(\exists x_{0} \in[0,1]\right)\left(\left|f\left(x_{0}\right)\right|<\frac{1}{k}\right)$.

Constructive Reverse Mathematics III

Constructive Reverse Mathematics III BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics III BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics III BISH (based on BHK)

NSA (based on CL)

Constructive Reverse Mathematics III BISH (based on BHK)

NSA (based on CL) non-constructive/non-algorithmic

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
$\mathfrak{\downarrow}$
MPR:
$\downarrow$$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

Constructive Reverse Mathematics III

BISH (based on BHK) non-constructive/non-algorithmic

MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
$\mathfrak{\downarrow}$
MPR:
$\downarrow$$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \uparrow
EXT: the extensionality theorem

NSA (based on CL) Transfer Principle

Constructive Reverse Mathematics III

BISH (based on BHK)
 NSA (based on CL)

 non-constructive/non-algorithmicTransfer Principle
MP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
$\mathfrak{\downarrow}$
MPR:
$\mathfrak{\imath}$
$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$

\downarrow

EXT: the extensionality theorem

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1, \neg \neg P \rightarrow P}$
$\mathfrak{\downarrow}$
MPR:
$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem

NSA (based on CL) Transfer Principle

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow
$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$
\Longleftrightarrow

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
\downarrow
MPR:
\downarrow
$(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$

\uparrow

EXT: the extensionality theorem

NSA (based on CL)
Transfer Principle
MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow
$M P R:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

\downarrow

EXT: the extensionality theorem

NSA (based on CL) Transfer Principle

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

$M P R:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$ \downarrow

Constructive Reverse Mathematics III

BISH (based on BHK)
 NSA (based on CL)

 non-constructive/non-algorithmic Transfer PrincipleMP: For $P \in \Sigma_{1, ~} \rightarrow \neg P \rightarrow P$
 \downarrow
EXT: the extensionality theorem
$\operatorname{MPR}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$ \downarrow
WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$

\uparrow

EXT: the extensionality theorem

NSA (based on CL) Transfer Principle

MP: For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$

$M P R:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem

WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$

\downarrow

WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
 \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \neg \neg P \vee \neg P$
\downarrow
WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$ \downarrow
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmic Transfer PrincipleMP: For $P \in \Sigma_{1, \neg \neg P \rightarrow P}$
 \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1, \neg \neg P \vee \neg P}$

WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics III

BISH (based on BHK)
 NSA (based on CL)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1, \neg \neg P \rightarrow P}$

MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1, \neg \neg P \vee \neg P}$

\downarrow

WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Transfer Principle

MP: For $P \in \Sigma_{1, \sim \sim P \Rightarrow P}$

MPR: $(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$

EXT: the extensionality theorem WLPD: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$

$\mathbb{W} \mathbb{P} \mathbb{R}:(\forall x \in \mathbb{R})[\sim \sim(x>0) \mathbb{V} \sim(x>0)]$

DISC: A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

Constructive Reverse Mathematics III

BISH (based on BHK)

 non-constructive/non-algorithmicMP: For $P \in \Sigma_{1}, \neg \neg P \rightarrow P$
\downarrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg(x>0) \rightarrow x>0)$ \downarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1, \neg \neg P \vee \neg P}$ \downarrow
WLPR: $(\forall x \in \mathbb{R})[\neg \neg(x>0) \vee \neg(x>0)]$
DISC:
A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.

NSA (based on CL) Transfer Principle
$\mathbb{M P}:$ For $P \in \Sigma_{1}, \sim \sim P \Rightarrow P$
\Longleftrightarrow
$\mathbb{M P R}:(\forall x \in \mathbb{R})(\sim \sim(x>0) \Rightarrow x>0)$
\Longleftrightarrow
EXT: the extensionality theorem
WLPO: For $P \in \Sigma_{1}, \sim \sim P \vee \sim P$
\Longleftrightarrow
$\mathbb{W} \mathbb{P} \mathbb{R}:(\forall x \in \mathbb{R})[\sim \sim(x>0) \mathbb{V} \sim(x>0)]$
\Longleftrightarrow
DUSC: A discontinuous $2^{\mathbb{N}} \rightarrow \mathbb{N}$-function exists.
(Four Remarks)

Ω-invariance is weaker than Recursive

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition ($\ln \mathbb{N S A}$)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (\ln NSA)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.
Theorem
In NSA + MP, all Δ_{1}-formulas are decidable.

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (\ln NSA)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Theorem
In NSA + MP, all Δ_{1}-formulas are decidable.
But MP is not available in NSA!

Ω-invariance is weaker than Recursive

Markov's principle MP can be reformulated as If it is impossible that a TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (\ln NSA)

A formula ψ is Δ_{1} if $\psi \Longleftrightarrow(\exists n \in \mathbb{N}) \varphi_{1}(n) \Longleftrightarrow(\forall m \in \mathbb{N}) \varphi_{2}(m)$.

Theorem
In NSA + MP, all \triangle_{1}-formulas are decidable.
But MP is not available in NSA!
Examples of non- Ω-invariant procedures?

Constructive Reverse Mathematics IV

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MPv.

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

$$
\begin{aligned}
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO}
\end{aligned}
$$

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)
NSA (based on CL)

$$
\begin{aligned}
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}-\mathrm{N}
\end{aligned}
$$

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$. Same for 'mixed' theorems:

BISH (based on BHK)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$. Same for 'mixed' theorems:

BISH (based on BHK)
NSA (based on CL)

Constructive Reverse Mathematics IV

Same for WMP, FAN ${ }_{\Delta}, B D-N$, and MP ${ }^{\vee}$.
Same for 'mixed' theorems:

BISH (based on BHK)

$$
\begin{aligned}
& \mathrm{LPO} \leftrightarrow \mathrm{MP}+\mathrm{WLPO} \\
& \mathrm{MP} \leftrightarrow \mathrm{WMP}+\mathrm{MP}^{\vee} \\
& \mathrm{WLPO} \rightarrow \mathrm{LLPO} \\
& \mathrm{LLPO} \rightarrow \mathrm{MP}^{\vee} \\
& \mathrm{LPO} \rightarrow \mathrm{BD}-\mathrm{N} \\
& \mathrm{LLPO} \rightarrow \mathrm{FAN}_{\Delta} \\
& \mathrm{LLPO} \leftrightarrow \mathrm{WKL}
\end{aligned}
$$

NSA (based on CL)

$$
\begin{aligned}
& \mathbb{Q P O} \Longleftrightarrow \mathbb{M P}+\mathbb{W} \mathbb{P D} \\
& M P \Longleftrightarrow W M P+M P^{\vee} \\
& \mathbb{W} \mathbb{P} \mathbb{P} \Rightarrow \mathbb{L} \mathbb{R} P \\
& \mathbb{L R P O} \Rightarrow M^{\vee} \\
& \mathbb{L P O} \Rightarrow \mathbb{B D}-\mathbb{N} \\
& \mathbb{C P O D} \Rightarrow \mathbb{F A N}_{\Delta} \\
& \mathbb{L} \mathbb{P O} \Longleftrightarrow \mathbb{W} \mathbb{K} \mathbb{L}
\end{aligned}
$$

Conclusion: $\mathbb{N S A} \approx \mathrm{BISH}$

Our interpretation from BISH to NSA has the following properties.
(1) CRM-equivalences are preserved.

Conclusion: $\mathbb{N S A} \approx \mathrm{BISH}$

Our interpretation from BISH to NSA has the following properties.
(1) CRM-equivalences are preserved.
(2) Non-constructive princ. from BISH are interpreted as Transfer Princ. rejected in $\mathbb{N S A}$.

Conclusion: $\mathbb{N S A} \approx \mathrm{BISH}$

Our interpretation from BISH to NSA has the following properties.
(1) CRM-equivalences are preserved.
(2) Non-constructive princ. from BISH are interpreted as Transfer Princ. rejected in NSA.
(3) "Not all Δ_{1}-formulas are decidable" is preserved.

Conclusion: $\mathbb{N S A} \approx \mathrm{BISH}$

Our interpretation from BISH to NSA has the following properties.
(1) CRM-equivalences are preserved.
(2) Non-constructive princ. from BISH are interpreted as Transfer Princ. rejected in NSA.
(3) "Not all Δ_{1}-formulas are decidable" is preserved.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: continuous transformation h_{t} of f to $g(t \in[0,1])$.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: continuous transformation h_{t} of f to $g(t \in[0,1])$.

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy:
$k_{\omega}(x) \approx f(x)$
$m_{\omega}(x) \approx g(x)$

Independent of the choice of ω

Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
Can Ω-invariance help capture e.g. Type Theory?
Homotopy: $\approx \Omega$-invariant broken-line transformation $h_{\omega, t}$ of f to g.

Independent of the choice of ω

Philosophy of Physics

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date.

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?
Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' $\varepsilon-\delta$ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on the choice of infinite number/infinitesimal used, i.e. it is Ω-invariant.

Final Thoughts

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!

Any questions?

[^0]: ${ }^{1}$ This research is generously supported by the John Templeton Foundation.

