
Nonstandard Analysis: A New Way to Compute

Sam Sanders1

Midwest Computability Seminar, Nov. 15, 2012

1This research is generously supported by the John Templeton Foundation.



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



How to compute in NSA: Ω-invariance

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω)↔ ψ(n, ω′)].

Note that ψ(n, ω) is independent of the choice of ω ∈ Ω.

Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s
⊂ N)(∀n ∈ N)(n ∈ X s

↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0 ‘(Ω-invariance ⊆ Turing comp.)’

(Physics / TCS)



Son of a. . .

INT

CLASS RUSS

BISH

LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM

LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN

CONT′



Son of a. . .

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Son of a. . .

Errett Bishop’s Constructive Analysis (also ‘BISH’) is a constructive
redevelopment of Mathematics, consistent with CLASS, RUSS and INT.

INT

CLASS RUSS

BISH

≈Math. programmable on TM
LEM (P ∨ ¬P)

Classical Math. ≈

(proof by contradiction)

≈Brouwer’s Intuitionistic Math.

MP
(¬¬P → P)

CPF

CONT

FAN CONT′



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0)

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).



Lost in translation

BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK)

NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB:

There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

E.g. ‘(∀n ∈ N)ϕ(n) ∈ T’ is [(∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n)]

E.g. ‘(∃n ∈ ∗N)ϕ(n) ∈ T’ is [(∃n ∈ ∗N)ϕ(n)→ (∃n ∈ N1)ϕ(n)]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1)

∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

∼[(∀n ∈ N)A(n)]

≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ N1)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

¬[(∀n ∈ N)A(n)] is WEAKER

than (∃n ∈ N)¬A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω)→ [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω)→ [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]]→ [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃x)A(x): an Ω-inv. proc. computes x0

such that A(x0)

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Constructive Reverse Mathematics

BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo)

(limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

(point in intersection computed by algo)

(point in intersection computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

(point in intersection computed by algo)

(point in intersection computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P

↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))

↕

MCT: monotone convergence thm

↕

CIT: Cantor intersection thm

Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))

⇚⇛

MCT: monotone convergence thm

⇚⇛

CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛

Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ )→ (∀n ∈ ∗N)ϕ(n, ∗X⃗ )

NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].



Constructive Reverse Mathematics II

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem

(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo)

(int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)

↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL

⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q)→ ¬P ∨ ¬Q

↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)

↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)

↕

IVT: Intermediate value theorem

Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q)⇛ ∼P V∼Q

⇚⇛

LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛

NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛

IVT: Intermediate value theorem
(int. value computed by algo) (int. value computed by Ω-inv. proc.)↕

WKL ⇚⇛ WKL ⇚⇛ ∨-Transfer

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ <
1
k ).



Constructive Reverse Mathematics III

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Constructive Reverse Mathematics III
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕

MPR: (∀x ∈ R)(¬¬(x > 0)→ x > 0)

↕

EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛

MPR: (∀x ∈ R)(∼∼(x > 0)⇛ x > 0)

⇚⇛

EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P

↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]

↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]

⇚⇛

DISC: A discontinuous

2N → N-function exists.

(Four Remarks)



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH.

The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Ω-invariance is weaker than Recursive

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n)⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

In NSA +MP, all �1-formulas are decidable.

But MP is not available in NSA!

Examples of non-Ω-invariant procedures?



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.

Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL



Conclusion: NSA ≈ BISH

Our interpretation from BISH to NSA has the following properties.

1 CRM-equivalences are preserved.

2 Non-constructive princ. from BISH are interpreted as Transfer
Princ. rejected in NSA.

3 “Not all ∆1-formulas are decidable” is preserved.

INT

CLASS RUSS

BISH≈ NSA

≈Math. programmable on TM
Classical Math. ≈

≈Brouwer’s Intuitionistic Math.



Conclusion: NSA ≈ BISH

Our interpretation from BISH to NSA has the following properties.

1 CRM-equivalences are preserved.

2 Non-constructive princ. from BISH are interpreted as Transfer
Princ. rejected in NSA.

3 “Not all ∆1-formulas are decidable” is preserved.

INT

CLASS RUSS

BISH≈ NSA

≈Math. programmable on TM
Classical Math. ≈

≈Brouwer’s Intuitionistic Math.



Conclusion: NSA ≈ BISH

Our interpretation from BISH to NSA has the following properties.

1 CRM-equivalences are preserved.

2 Non-constructive princ. from BISH are interpreted as Transfer
Princ. rejected in NSA.

3 “Not all ∆1-formulas are decidable” is preserved.

INT

CLASS RUSS

BISH≈ NSA

≈Math. programmable on TM
Classical Math. ≈

≈Brouwer’s Intuitionistic Math.



Conclusion: NSA ≈ BISH

Our interpretation from BISH to NSA has the following properties.

1 CRM-equivalences are preserved.

2 Non-constructive princ. from BISH are interpreted as Transfer
Princ. rejected in NSA.

3 “Not all ∆1-formulas are decidable” is preserved.

INT

CLASS RUSS

BISH≈ NSA

≈Math. programmable on TM
Classical Math. ≈

≈Brouwer’s Intuitionistic Math.



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

continuous transformation ht of f to g (t ∈ [0,1]).

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

continuous transformation ht of f to g (t ∈ [0,1]).

ht1(x)

ht2(x)

ht3(x)

⋮

⋮

⋮

●

●h1(x) =

h0(x) =

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓

increment is multiple of 1
ω

ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓

increment is multiple of 1
ω

ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●

�
�

●

�
��

●
��

���

●

PPPPP
@
@
@
@
@

mω(x) ≈

kω(x) ≈

●
@
@

●

Q
QQ

●

PPPPP

●

PPPPP�
�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.

(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!

Any questions?



Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?


