Nonstandard Analysis: A New Way to Compute

Sam Sanders¹

Midwest Computability Seminar, Nov. 15, 2012

¹This research is generously supported by the John Templeton Foundation.

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Note that $\psi(n,\omega)$ is independent of the choice of $\omega \in \Omega$.

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Note that $\psi(n, \omega)$ is independent of the choice of $\omega \in \Omega$.

Principle (Ω -CA)

For all Ω -invariant $\psi(n, \omega)$, we have $(\exists X^{s} \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X^{s} \leftrightarrow \psi(n, \omega)).$

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Note that $\psi(n,\omega)$ is independent of the choice of $\omega \in \Omega$.

Principle (Ω -CA)

For all Ω -invariant $\psi(n, \omega)$, we have $(\exists X^s \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X^s \leftrightarrow \psi(n, \omega)).$

Theorem

Ω-CA implies $Δ_1^0$ -CA (Turing comp. ⊆ Ω-invariance)

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Note that $\psi(n,\omega)$ is independent of the choice of $\omega \in \Omega$.

Principle (Ω -CA)

For all Ω -invariant $\psi(n, \omega)$, we have $(\exists X^s \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X^s \leftrightarrow \psi(n, \omega)).$

Theorem

 $\begin{array}{l} \Omega\text{-CA implies } \Delta_1^0\text{-CA} \quad (Turing \ comp. \subseteq \Omega\text{-invariance}) \\ {}^*\text{RCA}_0 + \Omega\text{-CA} \underset{\text{cons}}{=} \text{RCA}_0 \quad (\Omega\text{-invariance} \subseteq Turing \ comp.)' \end{array}$

Definition (Ω -invariance)

For $\psi(n,m) \in \Delta_0$ and $\omega \in \Omega$, the formula $\psi(n,\omega)$ is Ω -invariant if $(\forall n \in \mathbb{N})(\forall \omega' \in \Omega)[\psi(n,\omega) \leftrightarrow \psi(n,\omega')].$

Note that $\psi(n,\omega)$ is independent of the choice of $\omega \in \Omega$.

Principle (Ω -CA)

For all Ω -invariant $\psi(n, \omega)$, we have $(\exists X^s \subset \mathbb{N})(\forall n \in \mathbb{N})(n \in X^s \leftrightarrow \psi(n, \omega)).$

Theorem

 $\begin{array}{l} \Omega\text{-CA implies } \Delta_{1}^{0}\text{-CA} \quad (Turing \ comp. \subseteq \Omega\text{-invariance}) \\ ^{*}\text{RCA}_{0} + \Omega\text{-CA} \underset{\text{cons}}{=} \text{RCA}_{0} \quad `(\Omega\text{-invariance} \subseteq Turing \ comp.)' \end{array}$

(Physics / TCS)

Errett Bishop's Constructive Analysis (also 'BISH') is a constructive redevelopment of Mathematics, consistent with CLASS, RUSS and INT.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

- P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
- 2 $P \land Q$: we have both a proof of P and a proof of Q.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

- P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
- 2 $P \land Q$: we have both a proof of P and a proof of Q.
- ③ P → Q: by means of an algorithm we can convert any proof of P into a proof of Q.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

- P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
- 2 $P \land Q$: we have both a proof of P and a proof of Q.
- P → Q: by means of an algorithm we can convert any proof of P into a proof of Q.

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

- P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
- 2 $P \land Q$: we have both a proof of P and a proof of Q.
- P → Q: by means of an algorithm we can convert any proof of P into a proof of Q.
- **(** $\exists x) P(x)$: an algorithm computes an object x_0 such that $P(x_0)$

Errett Bishop's Constructive Analysis (BISH) is a constructive redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

- P v Q: we have an algorithm that outputs either P or Q, together with a proof of the chosen disjunct.
- 2 $P \land Q$: we have both a proof of P and a proof of Q.
- ③ P → Q: by means of an algorithm we can convert any proof of P into a proof of Q.
- **(** $\exists x)P(x)$: an algorithm computes an object x_0 such that $P(x_0)$
- **(** $\forall x \in A$)P(x): for all $x, x \in A \rightarrow P(x)$.

Lost in translation

 \mathbb{NSA} (based on CL)

Central: algorithm and proof

 \mathbb{NSA} (based on CL)

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B \mathbb{NSA} (based on CL)

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B \mathbb{NSA} (based on CL)

Central: Ω -invariance and Transfer (\mathbb{T})

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B NSA (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$:

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B $\mathbb{NSA} \text{ (based on CL)}$ Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow [A(\vec{x}) \wedge [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \wedge [B(\vec{x}) \in \mathbb{T}]]$
Lost in translation BISH (based on BHK)

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B

 $A \rightarrow B$: an algo converts a proof of A to a proof of B

 $\mathbb{NSA} \text{ (based on CL)}$ Central: Ω -invariance and Transfer (T) $A \mathbb{V} B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow [A(\vec{x}) \wedge [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \wedge [B(\vec{x}) \in \mathbb{T}]]$ Lost in translation BISH (based on BHK) Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B

 $A \rightarrow B$: an algo converts a proof of A to a proof of B

 $\mathbb{NSA} \text{ (based on CL)}$ Central: Ω -invariance and Transfer (T) $A \mathbb{V} B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Rightarrow B$: $[A \land [A \in \mathbb{T}]] \rightarrow [B \land [B \in \mathbb{T}]]$

Lost in translation BISH (based on BHK) Central: algorithm and proof $A \vee B$: an algo yields a proof of A or of B $A \rightarrow B$: an algo converts a proof of A to a proof of B

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x},\omega) \rightarrow \begin{bmatrix} \wedge \\ B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}] \end{bmatrix}$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $A \in \mathbb{T}'$ means 'A satisfies Transfer'.

Lost in translation BISH (based on BHK) \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) Central: algorithm and proof $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $A \vee B$: an algo yields a proof of A or of B $\psi(\vec{x},\omega) \to [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x},\omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $A \rightarrow B$: an algo converts a proof of A to a proof of B $A \in \mathbb{T}$ means 'A satisfies Transfer'. E.g. $(\forall n \in \mathbb{N})\varphi(n) \in \mathbb{T}'$ is $[(\forall n \in \mathbb{N})\varphi(n) \to (\forall n \in \mathbb{N})\varphi(n)]$

Lost in translation BISH (based on BHK) \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) Central: algorithm and proof $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $A \vee B$: an algo yields a proof of A or of B $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $A \rightarrow B$: an algo converts a proof of A to a proof of B $A \in \mathbb{T}'$ means 'A satisfies Transfer'. E.g. $(\forall n \in \mathbb{N})\varphi(n) \in \mathbb{T}'$ is $[(\forall n \in \mathbb{N})\varphi(n) \to (\forall n \in *\mathbb{N})\varphi(n)]$ E.g. $(\exists n \in \mathbb{N})\varphi(n) \in \mathbb{T}'$ is $[(\exists n \in \mathbb{N})\varphi(n) \to (\exists n \in \mathbb{N}_1)\varphi(n)]$

Lost in translation BISH (based on BHK)

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B

 $A \rightarrow B$: an algo converts a proof of Ato a proof of B $\neg A$: $A \rightarrow (0 = 1)$ $\mathbb{NSA} \text{ (based on CL)}$ Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow [A(\vec{x}) \wedge [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \wedge [B(\vec{x}) \in \mathbb{T}]]$ $A \Rightarrow B$: $[A \wedge [A \in \mathbb{T}]] \rightarrow [B \wedge [B \in \mathbb{T}]]$ Lost in translation BISH (based on BHK)

Central: algorithm and proof

 $A \lor B$: an algo yields a proof of A or of B

 $A \rightarrow B$: an algo converts a proof of Ato a proof of B $\neg A$: $A \rightarrow (0 = 1)$

NSA (based on CL) Central: Ω -invariance and Transfer (T) $A \lor B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x}, \omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Rightarrow B$: $[A \land [A \in \mathbb{T}]] \rightarrow [B \land [B \in \mathbb{T}]]$ $\sim A$: $A \Rightarrow (0 = 1)$

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $\sim A: A \Rightarrow (0 = 1)$

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x},\omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $\sim A: A \Rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_{Ω} such that $A(x_0)$

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $\sim A: A \Rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_0 such that $A(x_0)$ $\sim [(\forall n \in \mathbb{N})A(n)]$

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \to \left[A(\vec{x}) \land \left[A(\vec{x}) \in \mathbb{T}\right]\right]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $\sim A: A \Rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_0 such that $A(x_0)$

 $\sim [(\forall n \in \mathbb{N})A(n)] \equiv (\exists n \in \mathbb{N}_1) \sim A(n)$ WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

Lost in translation BISH (based on BHK) Central: algorithm and proof $A \vee B$: an algo yields a proof of A or of B $A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow (0 = 1)$ $(\exists x)A(x)$: an algo computes x_0 such that $A(x_0)$ $\neg [(\forall n \in \mathbb{N})A(n)]$ is WEAKER than $(\exists n \in \mathbb{N}) \neg A(n)$.

 \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Rightarrow B: \left[A \land \left[A \in \mathbb{T}\right]\right] \to \left[B \land \left[B \in \mathbb{T}\right]\right]$ $\sim A: A \Rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_0 such that $A(x_0)$ $\sim [(\forall n \in \mathbb{N})A(n)] \equiv (\exists n \in \mathbb{N}_1) \sim A(n)$ WEAKER than $(\exists n \in \mathbb{N}) \sim A(n)$.

Lost in translation BISH (based on BHK) \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) Central: algorithm and proof $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. $A \vee B$: an algo yields a proof of A or of B $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x}, \omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $A \rightarrow B$: an algo converts a proof of A to a proof of B $\sim A: A \Rightarrow (0 = 1)$ $\neg A: A \rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_{Ω} $(\exists x)A(x)$: an algo computes x_0 such that $A(x_0)$ such that $A(x_0)$ WHY is this a good/faithful/reasonable/... translation?

Lost in translation BISH (based on BHK) \mathbb{NSA} (based on CL) Central: Ω -invariance and Transfer (T) Central: algorithm and proof $A \vee B$: $A \vee B$: There is Ω -invariant $\psi(\vec{x}, \omega)$ s.t. an algo yields a proof of A or of B $\psi(\vec{x},\omega) \rightarrow [A(\vec{x}) \land [A(\vec{x}) \in \mathbb{T}]]$ $\neg \psi(\vec{x},\omega) \rightarrow [B(\vec{x}) \land [B(\vec{x}) \in \mathbb{T}]]$ $A \Longrightarrow B: \left[A \land \left[A \in \mathbb{T} \right] \right] \to \left[B \land \left[B \in \mathbb{T} \right] \right]$ $A \rightarrow B$: an algo converts a proof of A to a proof of B $\neg A: A \rightarrow (0 = 1)$ $\sim A: A \Rightarrow (0 = 1)$ $(\exists x)A(x)$: an Ω -inv. proc. computes x_{Ω} $(\exists x)A(x)$: an algo computes x_0 such that $A(x_0)$ such that $A(x_0)$ WHY is this a good/faithful/reasonable/... translation? BECAUSE it preserves all essential features of BISH (e.g. CRM)

Constructive Reverse Mathematics

Constructive Reverse Mathematics BISH (based on BHK)

non-constructive/non-algorithmic

1

Constructive Reverse Mathematics BISH (based on BHK) non-constructive/non-algorithmic LPO: For $P \in \Sigma_1$, $P \lor \neg P$ \uparrow LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg(x > 0))$ \uparrow

 \mathbb{NSA} (based on CL)

Transfer Principle

 \mathbb{NSA} (based on CL)

Transfer Principle \mathbb{LPO} : For $P \in \Sigma_1$, $P \vee \sim P$

 $\mathbb{NSA} \text{ (based on CL)}$ Transfer Principle $\mathbb{LPO}: \text{ For } P \in \Sigma_1, P \mathbb{V} \sim P$ \iff $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \mathbb{V} \sim (x > 0))$ \iff

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) **Transfer Principle** non-constructive/non-algorithmic **LPO**: For $P \in \Sigma_1$, $P \vee \sim P$ LPO: For $P \in \Sigma_1$, $P \vee \neg P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm CIT: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle **LPO**: For $P \in \Sigma_1$, $P \vee \sim P$ LPO: For $P \in \Sigma_1$, $P \vee \neg P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm **CIT**: Cantor intersection thm CIT: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO:** For $P \in \Sigma_1$, $P \vee \sim P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm (limit computed by algo) CIT: Cantor intersection thm **CIT**: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO:** For $P \in \Sigma_1$, $P \vee \sim P$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm (limit computed by Ω -inv. proc.) (limit computed by algo) **CIT**: Cantor intersection thm CIT: Cantor intersection thm

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO:** For $P \in \Sigma_1$, $P \vee \sim P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \forall \sim (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm (limit computed by Ω -inv. proc.) (limit computed by algo) **CIT**: Cantor intersection thm CIT: Cantor intersection thm (point in intersection computed by $alg\phi$)

Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO:** For $P \in \Sigma_1$, $P \vee \sim P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm \iff (limit computed by Ω-inv. proc.) (limit computed by algo) **CIT**: Cantor intersection thm CIT: Cantor intersection thm (point in intersection computed by $alg\phi$) (point in intersection computed by Ω -inv. proc.) Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) **Transfer Principle** non-constructive/non-algorithmic LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO**: For $P \in \Sigma_1$, $P \vee \sim P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ \mathbb{LPR} : $(\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm \iff (limit computed by Ω-inv. proc.) (limit computed by algo) **CIT**: Cantor intersection thm CIT: Cantor intersection thm ∏₁-TRANS^{SE} $(\forall n \in \mathbb{N})\varphi(n, \vec{X}) \rightarrow (\forall n \in {}^*\mathbb{N})\varphi(n, {}^*\vec{X})$ Constructive Reverse Mathematics BISH (based on BHK) \mathbb{NSA} (based on CL) **Transfer Principle** non-constructive/non-algorithmic LPO: For $P \in \Sigma_1$, $P \vee \neg P$ **LPO**: For $P \in \Sigma_1$, $P \vee \sim P$ LPR: $(\forall x \in \mathbb{R})(x > 0 \lor \neg (x > 0))$ $\mathbb{LPR}: (\forall x \in \mathbb{R})(x > 0 \vee (x > 0))$ MCT: monotone convergence thm MCT: monotone convergence thm (limit computed by algo) \iff (limit computed by Ω-inv. proc.) **CIT**: Cantor intersection thm CIT: Cantor intersection thm ∏₁-TRANS^{SET} $(\forall n \in \mathbb{N})\varphi(n, \vec{X}) \rightarrow (\forall n \in {}^*\mathbb{N})\varphi(n, {}^*\vec{X})$ NSA does prove $(\forall \delta \in \mathbb{R}) [\delta > 0 \Rightarrow (x > 0) \forall (x < \delta)].$ BISH does prove $(\forall \delta \notin \mathbb{R}) [\delta > 0 \rightarrow (x > 0) \lor (x < \delta)].$

Constructive Reverse Mathematics II

Constructive Reverse Mathematics II BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

Constructive Reverse Mathematics II BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

LLPO

For $P, Q \in \Sigma_1$, $\neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow Constructive Reverse Mathematics II BISH (based on BHK) non-constructive/non-algorithmic

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow

Constructive Reverse Mathematics II BISH (based on BHK) non-constructive/non-algorithmic

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow
LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem \mathbb{NSA} (based on CL)

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem NSA (based on CL) Transfer Principle

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem $\label{eq:stars} \mathbb{NSA} \mbox{ (based on CL)} \\ \hline \mbox{Transfer Principle} \\ \hline$

 \mathbb{LLPO} For $P, Q \in \Sigma_1, \ \sim (P \land Q) \Rightarrow \sim P \lor \sim Q$

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem $\mathbb{NSA} \text{ (based on CL)}$ Transfer Principle \mathbb{LLPO} For $P, Q \in \Sigma_1, \sim (P \land Q) \Rightarrow \sim P \lor \sim Q$ \iff $\mathbb{LLPR:} (\forall x \in \mathbb{R}) (x \ge 0 \lor x \le 0)$ \iff

LLPO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem

 \mathbb{NSA} (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \Rightarrow \sim P \lor \sim Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$

LLPO For $P, Q \in \Sigma_1$, $\neg (P \land Q) \rightarrow \neg P \lor \neg Q$ \uparrow LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ \uparrow NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ \uparrow IVT: Intermediate value theorem

 \mathbb{NSA} (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \Rightarrow \sim P \lor \sim Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ **IVT**: Intermediate value theorem

11PO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \implies \sim P \lor \sim Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ IVT: Intermediate value theorem

11PO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ IVT: Intermediate value theorem (int. value computed by algo)

NSA (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \implies \sim P \lor \sim Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ **IVT**: Intermediate value theorem (int. value computed by Ω -inv. proc.)

11PO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ IVT: Intermediate value theorem \uparrow (int. value computed by algo) WKL

NSA (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \implies \sim P \lor \sim Q$ \iff LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ \Leftrightarrow NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ **IVT**: Intermediate value theorem (int. value computed by Ω -inv. proc.) $\iff \mathbb{W}[\mathbb{K}]$

11PO For $P, Q \in \Sigma_1, \neg (P \land Q) \rightarrow \neg P \lor \neg Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ IVT: Intermediate value theorem \uparrow (int. value computed by algo) WKL

NSA (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \implies \sim P \lor \sim Q$ \iff LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ \Leftrightarrow NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ **IVT**: Intermediate value theorem (int. value computed by Ω -inv. proc.) \iff WKI \iff V-Transfer

11PO For $P, Q \in \Sigma_1$, $\neg (P \land Q) \rightarrow \neg P \lor \neg Q$ LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \lor x \le 0)$ NIL $(\forall x, y \in \mathbb{R})(xy = 0 \rightarrow x = 0 \lor y = 0)$ IVT: Intermediate value theorem ↑ (int. value computed by algo) WKL

 \mathbb{NSA} (based on CL) Transfer Principle LLPO For $P, Q \in \Sigma_1$, $\sim (P \land Q) \implies \sim P \lor \sim Q$ \iff LLPR: $(\forall x \in \mathbb{R})(x \ge 0 \forall x \le 0)$ \Leftrightarrow NII $(\forall x, y \in \mathbb{R})(xy = 0 \Rightarrow x = 0 \forall y = 0)$ **IVT**: Intermediate value theorem (int. value computed by Ω -inv. proc.) $\iff \mathbb{WKL} \iff \vee$ -Transfer

BISH and NSA can prove $(\forall k \in \mathbb{N})(\exists x_0 \in [0,1])(|f(x_0)| < \frac{1}{k}).$

Constructive Reverse Mathematics III

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic

$$MP: \text{ For } P \in \Sigma_1, \ \neg \neg P \to P$$

$$\uparrow$$

 Constructive Reverse Mathematics III

 BISH (based on BHK)
 NSA

 non-constructive/non-algorithmic
 NSA

MP: For
$$P \in \Sigma_1$$
, $\neg \neg P \rightarrow P$
 \uparrow
MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$
 \uparrow

 \mathbb{NSA} (based on CL)

Constructive Reverse Mathem BISH (based on BHK) non-constructive/non-algorithmic	natics III NSA (based on CL)
MP: For $P \in \Sigma_1$, $\neg \neg P \rightarrow P$ \uparrow MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ \uparrow	
EXT: the extensionality theorem	

Constructive Reverse Mathem	natics III
BISH (based on BHK)	NSA (based on CL)
non-constructive/non-algorithmic	Transfer Principle
MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$	
↓	
MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$	
\$	
EXT: the extensionality theorem	
	1

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ EXT: the extensionality theorem

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic Transfer Principle $\mathbb{MP}: \text{ For } P \in \Sigma_1, \ \sim \sim P \Rightarrow P$ MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ EXT: the extensionality theorem

Constructive Reverse Mathem BISH (based on BHK) non-constructive/non-algorithmic	matics III NSA (based on CL) Transfer Principle		
$MP: For P \in \Sigma_1, \neg \neg P \rightarrow P$ \uparrow	$\mathbb{MP}: \text{ For } P \in \Sigma_1, \ \sim\sim P \Rightarrow P$ \iff		
$MPR: (\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ \uparrow	$\mathbb{MPR}: (\forall x \in \mathbb{R})(\sim (x > 0) \Rightarrow x > 0)$ \iff		
EXT: the extensionality theorem	$\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem		

Constructive Reverse Mathematics III				
BISH (based on BHK)	■ NSA (based on CL)			
non-constructive/non-algorithmic	Transfer Principle			
MP: For $P \in \Sigma_1$, $\neg \neg P \rightarrow P$	$\mathbb{MP}: \text{ For } P \in \Sigma_1, \ \sim \sim P \Rightarrow P$			
\$	\Leftrightarrow			
$MPR: \ (\forall x \in \mathbb{R})(\neg \neg (x > 0) \to x > 0)$	$\mathbb{MPR}: \ (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$			
\$	\Leftrightarrow			
EXT: the extensionality theorem	$\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem			
WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$				
\$				

Constructive Reverse Mathem	natics III
BISH (based on BHK)	■ NSA (based on CL)
non-constructive/non-algorithmic	Transfer Principle
MP: For $P \in \Sigma_1$, $\neg \neg P \rightarrow P$	$\mathbb{MP}: \text{ For } P \in \Sigma_1, \ \sim \sim P \Rightarrow P$
\updownarrow	\Leftrightarrow
$MPR: \ (\forall x \in \mathbb{R})(\neg \neg (x > 0) \to x > 0)$	$\mathbb{MPR}: \ (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$
\updownarrow	\Leftrightarrow
EXT: the extensionality theorem	$\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem
WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$	
\$	
WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$	
\$	

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ EXT: the extensionality theorem $\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$ WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$ DISC: A discontinuous $2^{\mathbb{N}} \to \mathbb{N}$ -function exists.

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1$, $\neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ \Leftrightarrow EXT: the extensionality theorem $\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$ WLPO: For $P \in \Sigma_1$, $\sim \sim P \vee \sim P$ \Leftrightarrow WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$ DISC: A discontinuous $2^{\mathbb{N}} \to \mathbb{N}$ -function exists.

Constructive Reverse Mathematics III BISH (based on BHK) NSA (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1$, $\neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ \Leftrightarrow EXT: the extensionality theorem $\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$ WLPO: For $P \in \Sigma_1$, $\sim P \vee P$ \Leftrightarrow WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$ $\mathbb{WLPR}: (\forall x \in \mathbb{R}) [\sim (x > 0) \mathbb{V} \sim (x > 0)]$ DISC: A discontinuous $2^{\mathbb{N}} \to \mathbb{N}$ -function exists.

Constructive Reverse Mathematics III BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ \Leftrightarrow EXT: the extensionality theorem $\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$ WLPO: For $P \in \Sigma_1$, $\sim P \vee P$ \Leftrightarrow WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$ $\mathbb{WLPR}: (\forall x \in \mathbb{R}) [\sim (x > 0) \forall \sim (x > 0)]$ DISC: \mathbb{D} \mathbb{S} \mathbb{C} : A discontinuous A discontinuous $2^{\mathbb{N}} \to \mathbb{N}$ -function exists. $2^{\mathbb{N}} \rightarrow \mathbb{N}$ -function exists.

Constructive Reverse Mathematics III BISH (based on BHK) \mathbb{NSA} (based on CL) non-constructive/non-algorithmic Transfer Principle MP: For $P \in \Sigma_1, \neg \neg P \rightarrow P$ MP: For $P \in \Sigma_1$, $\sim \sim P \Rightarrow P$ MPR: $(\forall x \in \mathbb{R})(\neg \neg (x > 0) \rightarrow x > 0)$ $\mathbb{MPR}: (\forall x \in \mathbb{R}) (\sim (x > 0) \Rightarrow x > 0)$ \Leftrightarrow EXT: the extensionality theorem $\mathbb{E}\mathbb{X}\mathbb{T}$: the extensionality theorem WLPO: For $P \in \Sigma_1$, $\neg \neg P \lor \neg P$ WLPO: For $P \in \Sigma_1$, $\sim P \vee P$ \Leftrightarrow WLPR: $(\forall x \in \mathbb{R}) [\neg \neg (x > 0) \lor \neg (x > 0)]$ $\mathbb{WLPR}: (\forall x \in \mathbb{R}) [\sim (x > 0) \forall \sim (x > 0)]$ DISC: DISC: A discontinuousA discontinuous $2^{\mathbb{N}} \to \mathbb{N}$ -function exists. $2^{\mathbb{N}} \rightarrow \mathbb{N}$ -function exists. (Four Remarks)

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH.

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (In NSA)

A formula ψ is \mathbb{A}_1 if $\psi \iff (\exists n \in \mathbb{N})\varphi_1(n) \iff (\forall m \in \mathbb{N})\varphi_2(m)$.

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (In NSA)

A formula ψ is \mathbb{A}_1 if $\psi \iff (\exists n \in \mathbb{N})\varphi_1(n) \iff (\forall m \in \mathbb{N})\varphi_2(m)$.

Theorem

In $\mathbb{NSA} + \mathbb{MP}$, all \mathbb{A}_1 -formulas are decidable.

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (In NSA)

A formula ψ is \mathbb{A}_1 if $\psi \iff (\exists n \in \mathbb{N})\varphi_1(n) \iff (\forall m \in \mathbb{N})\varphi_2(m)$.

Theorem

In $\mathbb{NSA} + \mathbb{MP}$, all \mathbb{A}_1 -formulas are decidable.

But MP is not available in NSA!

Markov's principle MP can be reformulated as *If it is impossible that a TM runs forever, then it must halt.*

As no algorithmic upper bound on the halting time of the TM is given, MP is rejected in BISH. The notion of algorithm in BISH is not identical to 'recursive'.

Definition (In NSA)

A formula ψ is \mathbb{A}_2	if $\psi \iff$	$(\exists n \in \mathbb{N})\varphi_1(n) \iff$	$(\forall m \in \mathbb{N})\varphi_2(m).$
------------------------------------	----------------	---	---

Theorem

In $\mathbb{NSA} + \mathbb{MP}$, all \mathbb{A}_1 -formulas are decidable.

But MP is not available in NSA!

Examples of non- Ω -invariant procedures?

Constructive Reverse Mathematics IV
Same for WMP, FAN $_{\Delta}$, BD-N, and MP $^{\vee}$.

Same for WMP, FAN $_{\Delta}$, BD-N, and MP $^{\vee}$. Same for 'mixed' theorems:

Same for WMP, FAN $_{\Delta}$, BD-N, and MP $^{\vee}$. Same for 'mixed' theorems:

BISH (based on BHK)

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

BISH (based on BHK)

 $LPO \leftrightarrow MP + WLPO$

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

BISH (based on BHK)

 $\begin{array}{l} \mathsf{LPO} \leftrightarrow \mathsf{MP}{+}\mathsf{WLPO} \\ \mathsf{MP} \leftrightarrow \mathsf{WMP} + \mathsf{MP}^{\vee} \end{array}$

```
Same for WMP, FAN_{\Delta}, BD-N, and MP<sup>\vee</sup>. Same for 'mixed' theorems:
```

BISH (based on BHK)

 $\label{eq:lpower} \begin{array}{l} \mathsf{LPO} \leftrightarrow \mathsf{MP} {+} \mathsf{WLPO} \\ \mathsf{MP} \leftrightarrow \mathsf{WMP} {+} \mathsf{MP}^{\vee} \\ \mathsf{WLPO} \rightarrow \mathsf{LLPO} \end{array}$

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

```
BISH (based on BHK)
```

```
LPO \leftrightarrow MP + WLPOMP \leftrightarrow WMP + MP^{\vee}WLPO \rightarrow LLPOLLPO \rightarrow MP^{\vee}
```

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

```
BISH (based on BHK)
```

```
LPO \leftrightarrow MP + WLPOMP \leftrightarrow WMP + MP^{\vee}WLPO \rightarrow LLPOLLPO \rightarrow MP^{\vee}LPO \rightarrow BD-N
```

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

```
BISH (based on BHK)
```

```
LPO \leftrightarrow MP + WLPOMP \leftrightarrow WMP + MP^{\vee}WLPO \rightarrow LLPOLLPO \rightarrow MP^{\vee}LPO \rightarrow BD-NLLPO \rightarrow FAN_{A}
```

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

```
BISH (based on BHK)
```

```
\begin{array}{l} \mathsf{LPO} \leftrightarrow \mathsf{MP} + \mathsf{WLPO} \\ \mathsf{MP} \leftrightarrow \mathsf{WMP} + \mathsf{MP}^{\vee} \\ \mathsf{WLPO} \rightarrow \mathsf{LLPO} \\ \mathsf{LLPO} \rightarrow \mathsf{MP}^{\vee} \\ \mathsf{LPO} \rightarrow \mathsf{BD-N} \\ \mathsf{LLPO} \rightarrow \mathsf{FAN}_{\Delta} \\ \mathsf{LLPO} \leftrightarrow \mathsf{WKL} \end{array}
```

NSA (based on CL)

```
Same for WMP, FAN_{\Delta}, BD-N, and MP^{\vee}. Same for 'mixed' theorems:
```

```
BISH (based on BHK)
```

```
\label{eq:lpo} \begin{array}{l} \mathsf{LPO} \leftrightarrow \mathsf{MP} + \mathsf{WLPO} \\ \mathsf{MP} \leftrightarrow \mathsf{WMP} + \mathsf{MP}^{\vee} \\ \mathsf{WLPO} \rightarrow \mathsf{LLPO} \\ \mathsf{LLPO} \rightarrow \mathsf{MP}^{\vee} \\ \mathsf{LPO} \rightarrow \mathsf{BD-N} \\ \mathsf{LLPO} \rightarrow \mathsf{FAN}_{\Delta} \\ \mathsf{LLPO} \leftrightarrow \mathsf{WKL} \end{array}
```

```
LPO \iff MP + WLPO
MP \iff WMP + MP^{\vee}
WLPO \Rightarrow LLPO
LLPO \Rightarrow MP^{\vee}
LPO \Rightarrow BD-N
LLPO \Rightarrow FAN_{\Delta}
I = PO \iff WKI
```

Our interpretation from BISH to \mathbb{NSA} has the following properties.

• CRM-equivalences are preserved.

Our interpretation from BISH to \mathbb{NSA} has the following properties.

- **O** CRM-equivalences are preserved.
- On-constructive princ. from BISH are interpreted as Transfer Princ. rejected in NSA.

Our interpretation from BISH to \mathbb{NSA} has the following properties.

- **O** CRM-equivalences are preserved.
- On-constructive princ. from BISH are interpreted as Transfer Princ. rejected in NSA.
- **③** "Not all Δ_1 -formulas are decidable" is preserved.

Our interpretation from BISH to \mathbb{NSA} has the following properties.

- CRM-equivalences are preserved.
- On-constructive princ. from BISH are interpreted as Transfer Princ. rejected in NSA.
- "Not all Δ_1 -formulas are decidable" is preserved.

Martin-Löf intended his type theory as a foundation for BISH.

Martin-Löf intended his type theory as a foundation for BISH. Can Ω -invariance help capture e.g. Type Theory? Homotopy: continuous transformation h_t of f to g ($t \in [0,1]$).

Martin-Löf intended his type theory as a foundation for BISH. Can Ω -invariance help capture e.g. Type Theory? Homotopy: continuous transformation h_t of f to g ($t \in [0,1]$).

Martin-Löf intended his type theory as a foundation for BISH. Can Ω -invariance help capture e.g. Type Theory? Homotopy: $\approx \Omega$ -invariant broken-line transformation $h_{\omega,t}$ of f to g.

Why is Mathematics in Physics so constructive/computable?

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date.

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' ε - δ ' method was never adopted, neither was BISH).

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' ε - δ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason's thm).

Yet, in Physics, an informal version of NSA is used to date. (Weierstraß' notorious ' ε - δ ' method was never adopted, neither was BISH).

Now, in Physics, the end result of a calculation should have physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on the choice of infinite number/infinitesimal used, i.e. it is Ω -invariant.

Final Thoughts

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. Augustus De Morgan

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel
Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention! Any questions?