Randomness notions and reverse mathematics

Paul Shafer
University of Leeds
p.e.shafer@leeds.ac.uk
http://www1.maths.leeds.ac.uk/~matpsh/

Computability Theory and Applications Online Seminar Midwest Computability Seminar November 10, 2020

Joint work with André Nies.

Algorithmic randomness

The basic idea:
Let $X, Z \in 2^{\mathbb{N}}$ (thought of as infinite bit sequences).
We say that X is random relative to Z if Z cannot be used to describe/predict/compress the bits of X.

Different formalizations of this idea yield different randomness notions.

Today:
Explore randomness notions as set-existence axioms:
"For every set Z, there is a set X that is random relative to Z."

Questions that one might ask:

- Can randomness axioms be used to prove classical mathematical theorems?
- Our focus: How do randomness axioms relate to each other?

For example:

(Don't worry about what the randomness notions mean for now.)
Computable randomness (CR) versus Schnorr randomness (SR):

- Every computably random set is Schnorr random.
- Not every Schnorr random set is computably random.
- Nevertheless, every Schnorr random set computes a computably random set (which follows from Nies, Stephan, and Terwijn).
- As randomness axioms: $\mathrm{RCA}_{0} \vdash \mathrm{SR} \Leftrightarrow \mathrm{CR}$.

Martin-Löf randomness (MLR) versus computable randomness (CR):

- Every Martin-Löf random set is computably random.
- Not every computably random set is Martin-Löf random.
- As randomness axioms:
- $R C A_{0}+M L R \vdash C R$.
- $\mathrm{RCA}_{0}+\mathrm{CR} \nvdash \mathrm{MLR}$.
- In fact, $\mathrm{RCA}_{0}+\mathrm{CR} \nvdash \mathrm{DNR}$.

Reverse mathematics reminders

Formally we work in second-order arithmetic, which means the objects are natural numbers and sets of natural numbers.

We can make sense of a lot of other objects via coding, such as:
Trees Reals numbers The topology on \mathbb{R} Continuous functions etc.

Today's axiom systems are:
RCA_{0} : Sets computable from existing sets exist (formally, Δ_{1}^{0} comprehension). Induction is restricted to Σ_{1}^{0} formulas (formally, $\mid \Sigma_{1}^{0}$).
$W K L_{0}$: Add to $R C A_{0}$ the statement "every infinite subtree of $2^{<\mathbb{N}}$ has an infinite path."
$A C A_{0}$: Every arithmetical formula defines a set.

Martin-Löf tests and Martin-Löf randomness

Recall: For a set $U \subseteq 2^{<\mathbb{N}}$,

$$
\llbracket U \rrbracket=\bigcup_{\sigma \in U} \llbracket \sigma \rrbracket=\text { the open set coded by } U \text {. }
$$

A Martin-Löf test relative to $Z \in 2^{\mathbb{N}}$ is a uniformly Z-r.e. sequence

$$
U_{0}, U_{1}, U_{2}, \ldots
$$

of subsets of $2^{<\mathbb{N}}$ such that for every $n \in \mathbb{N}$:

$$
\mu\left(\llbracket U_{n} \rrbracket\right) \leq 2^{-n} .
$$

Think of a ML-test relative to Z as describing an effective null set relative to Z.
$X \in 2^{\mathbb{N}}$ passes the ML-test ($U_{n}: n \in \mathbb{N}$) if

$$
X \notin \bigcap_{n \in \mathbb{N}} \llbracket U_{n} \rrbracket .
$$

X is Martin-Löf random relative to Z if X passes every ML-test relative to Z.

ML-randomness as a set-existence axiom

It is reasonably straightforward to phrase
" X is ML-random relative to Z "
in second-order arithmetic.

Definition

MLR is the statement

$$
\forall Z \exists X \text { (} X \text { is ML-random relative to } Z \text {). }
$$

Can MLR be used as an axiom to prove interesting mathematical theorems?

MLR and König's lemma

Recall:

$T \subseteq 2^{<\mathbb{N}}$ is a tree if it is closed under initial segments:

$$
\forall \sigma \forall \tau(\sigma \in T \wedge \tau \sqsubseteq \sigma \rightarrow \tau \in T)
$$

Tree T has positive measure if there is a rational $q>0$ such that for all n

$$
\frac{|\{\sigma \in T:|\sigma|=n\}|}{2^{n}} \geq q .
$$

Weak weak König's lemma (WWKL) is the statement "every subtree of $2^{<\mathbb{N}}$ of positive measure has an infinite path."

Theorem (Essentially Kučera):
$\mathrm{RCA}_{0} \vdash \mathrm{MLR} \Leftrightarrow \mathrm{WWKL}$.
Theorem (Yu and Simpson):
$R C A_{0}+M L R$ is strictly between $R C A_{0}$ and $W K L_{0}$.

Mathematical consequences of MLR

The following are all equivalent to MLR over RCA_{0} :

- Every Borel measure on a compact Polish space is countably additive. (Yu and Simpson)
- Versions of the Vitali covering theorem. (Brown, Giusto, and Simpson)
- A version of the monotone convergence theorem for Borel measures on compact Polish spaces. (Yu)
- Every continuous $f:[0,1] \rightarrow \mathbb{R}$ of bounded variation is differentiable at some point. (Nies, Triplett, and Yokoyama)
- Every continuous $f:[0,1] \rightarrow \mathbb{R}$ of bounded variation is differentiable almost everywhere. (Nies, Triplett, and Yokoyama)

Stronger randomness notions

Recall: X is ML-random relative to Z if X passes every ML-test ($U_{n}: n \in \mathbb{N}$) relative to Z.

- $\left(U_{n}: n \in \mathbb{N}\right)$ is uniformly Z-r.e. with $\mu\left(\llbracket U_{n} \rrbracket\right) \leq 2^{-n}$.
- X passes $\left(U_{n}: n \in \mathbb{N}\right)$ if $X \notin \bigcap_{n \in \mathbb{N}} \llbracket U_{n} \rrbracket$.

Stronger randomness notions are defined by allowing more tests which capture more sets and hence leave fewer randoms.

That is, if there are more tests, then it is harder to pass all tests.

Definition

A weak 2-test relative to Z is like a ML-test relative to Z, except we only require

$$
\lim _{n \rightarrow \infty} \mu\left(\llbracket U_{n} \rrbracket\right)=0
$$

instead of $\forall n\left(\mu\left(\llbracket U_{n} \rrbracket\right) \leq 2^{-n}\right)$.

Weak 2-randomness

A weak 2-test relative to Z is a uniformly Z-r.e. sequence ($U_{n}: n \in \mathbb{N}$) such that $\lim _{n \rightarrow \infty} \mu\left(\llbracket U_{n} \rrbracket\right)=0$.
X is weakly 2-random relative to Z if X passes every weak 2-test relative to Z.

Definition

W2R is the statement
$\forall Z \exists X(X$ is weakly 2-random relative to $Z)$.

2-randomness

Basic idea:

X is 2-random relative to Z if X is ML-random relative to Z^{\prime}.
This definition works fine in ordinary math, but it's a problem over RCA_{0} because the statement

$$
\text { "for all sets } Z \text {, the set } Z^{\prime} \text { exists" }
$$

is equivalent to $A C A_{0}$ over $R C A_{0}$.
We want to say " X is 2-random relative to Z " in a way that does not imply that Z^{\prime} is a set.

This can be done by letting the components of a test be $\Sigma_{2}^{0, Z}$ classes instead of $\Sigma_{1}^{0, Z^{\prime}}$ classes.

Formalized 2-randomness

If $T \subseteq 2^{<\mathbb{N}}$ is a tree, let [T] denote the class of paths through T.
For $q \in \mathbb{Q}$, define $\mu([T]) \leq q$ if there is an n such that

$$
\frac{|\{\sigma \in T:|\sigma|=n\}|}{2^{n}} \leq q .
$$

Let $Z \in 2^{\mathbb{N}}$.

- A code for a $\Sigma_{2}^{0, Z}$ class \mathscr{W} is a sequence of trees $\left(T_{n}: n \in \mathbb{N}\right) \leq_{T} Z$ such that $T_{0} \subseteq T_{1} \subseteq T_{2} \subseteq \cdots$.
- Define $X \in \mathscr{W}$ if $\exists n\left(X \in\left[T_{n}\right]\right)$.
- For $q \in \mathbb{Q}$, define $\mu(\mathscr{W}) \leq q$ if $\forall n\left(\left[T_{n}\right] \leq q\right)$.
- A uniform sequence of $\Sigma_{2}^{0, Z}$ classes $\left(\mathscr{W}_{n}: n \in \mathbb{N}\right)$ is coded by a double-sequence of trees $\left(T_{n, i}: n, i \in \mathbb{N}\right) \leq_{T} Z$.
- A 2-test relative to Z is a uniform sequence of $\Sigma_{2}^{0, Z}$ classes $\left(\mathscr{W}_{n}: n \in \mathbb{N}\right.$) such that $\forall n\left(\mu\left(W_{n}\right) \leq 2^{-n}\right)$.

More formalized 2-randomness

A 2-test relative to $Z \in 2^{\mathbb{N}}$ is a uniform sequence of $\Sigma_{2}^{0, Z}$ classes ($\mathscr{W}_{n}: n \in \mathbb{N}$) such that $\forall n\left(\mu(\mathscr{W}) \leq 2^{-n}\right)$.
$X \in 2^{\mathbb{N}}$ passes the 2-test $\left(\mathscr{W}_{n}: n \in \mathbb{N}\right)$ if $X \notin \bigcap_{n \in \mathbb{N}} \mathscr{W}_{n}$.
X is 2-random relative to Z if X passes every 2-test relative to Z.

Definition

2-MLR is the statement

$$
\forall Z \exists X \text { (} X \text { is 2-random relative to } Z \text {). }
$$

Quick history

The definition of 2-randomness in terms of 2-tests is due to Kurtz.
The equivalence of 2-randomness (in terms of 2-tests) and ML-randomness relative to 0^{\prime} is due to Kautz.

Among the first to consider 2-MLR in reverse mathematics are:

- Avigad, Dean, and Rute
- Conidis and Slaman

Mathematical consequences of 2-MLR

RCA $_{0}+2$-MLR proves the rainbow Ramsey theorem for pairs. (Conidis and Slaman, following Csima and Mileti)

In fact, the rainbow Ramsey theorem for pairs is equivalent to 2 -DNR over RCA_{0}. (J. Miller)

Rainbow Ramsey theorem for pairs:
Let $k \geq 1$, and let $f:[\mathbb{N}]^{2} \rightarrow \mathbb{N}$ be k-bounded: $\forall n\left(\left|f^{-1}(n)\right| \leq k\right)$. Then there is an infinite $R \subseteq \mathbb{N}$ such that f is injective on $[R]^{2}$.

Over $R C A_{0}, 2-M L R+B \Sigma_{2}^{0}$ is equivalent to a version of the dominated convergence theorem for Borel measures on compact Polish spaces. (Avigad, Dean, and Rute)

Dominated convergence theorem:

Let \mathscr{X} be a compact Polish space, and let μ be a Borel measure on \mathscr{X}. Let $\left(f_{n}: n \in \mathbb{N}\right)$, f, and g be members of $L^{1}(\mathscr{X})$ such that $\left(f_{n}: n \in \mathbb{N}\right)$ converges to f pointwise and is dominated by g. Then ($\int f_{n}: n \in \mathbb{N}$) converges to $\int f$.

2-MLR versus W2R

$R C A_{0}+2-M L R$ is strictly between $A C A_{0}$ and $R C A_{0}+W 2 R$ (and not above $W K L_{0}$).

Theorem (Nies and S.)

$\mathrm{RCA}_{0}+\mathrm{W} 2 \mathrm{R} \nvdash 2-\mathrm{MLR}$.
In fact, $\mathrm{RCA}_{0}+\mathrm{W} 2 \mathrm{R} \nvdash 2$-DNR.

The immediate impulse is to use van Lambalgen's theorem: $X \oplus Y$ is random if and only if X is random and Y is random relative to X.

Therefore, if $X=\bigoplus_{n \in \mathbb{N}} X_{n}$ is random, then each X_{i} is random relative to $\bigoplus_{n<i} X_{n}$. So we can build a model of randomness from the columns of X.

However, van Lambalgen's theorem does not hold for weak 2-randomness.
So instead use van Lambalgen for ML-randomness, plus the fact that if $X \oplus Y$ has hyperimmune-free degree and Y is ML-random relative to X, then Y is also weakly 2 -random relative to X.

Implications among randomness notions mentioned so far

Arrows indicate implications over RCA_{0}.
None of the arrows reverse. (Except the $\mathrm{CR} \Leftrightarrow \mathrm{SR}$ arrow, of course!)

Quick slides on the first-order strength of 2-MLR

As far as I know, an exact characterization of the first-order consequences of $R C A_{0}+2-M L R$ is still an open problem.

Measure first-order strength via induction, bounding, and cardinality schemes:

$$
\mathrm{B} \Sigma_{2}^{0} \Rightarrow \mathrm{C} \Sigma_{2}^{0} \Rightarrow \mathrm{I} \Sigma_{1}^{0}
$$

- $\mid \Sigma_{1}^{0}$ is the induction scheme for Σ_{1}^{0} formulas.
- $\mathrm{C} \Sigma_{2}^{0}$ is a scheme saying that if $\varphi(x, y)$ is Σ_{2}^{0} and defines an injection, then the range is unbounded.
- $B \Sigma_{2}^{0}$ is the bounding scheme

$$
(\forall n<a)(\exists m) \varphi(n, m) \rightarrow \exists b(\forall n<a)(\exists m<b) \varphi(n, m)
$$

for Σ_{2}^{0} formulas φ.

Quick slides on the first-order strength of 2-MLR

What is known:

- $\mathrm{RCA}_{0}+2-\mathrm{MLR} \vdash \mathrm{C} \Sigma_{2}^{0}$. (Conidis and Slaman)
- $R C A_{0}+B \Sigma_{2}^{0}+2-M L R$ is Π_{1}^{1}-conservative over $R C A_{0}+B \Sigma_{2}^{0}$. (Conidis and Slaman)
- $R C A_{0}+2-M L R \nvdash B \Sigma_{2}^{0}$. (Slaman)

So the first-order consequences of $\mathrm{RCA}_{0}+2-\mathrm{MLR}$ are strictly between those of $R C A_{0}$ and $R C A_{0}+B \Sigma_{2}^{0}$.

Also, there are more recent results by Belanger, Chong, Wang, Wong, and Yang establishing a better upper bound on the first-order consequences of $\mathrm{RCA}_{0}+2$-MLR.

Plain complexity and incompressibility

Let $C^{Z}(\sigma)$ denote the plain Kolmogorov complexity of a string $\sigma \in 2^{<\mathbb{N}}$ relative to a set $Z \in 2^{\mathbb{N}}$.

Slogan: $C^{Z}(\sigma)$ is the length of the shortest Z-description of σ.

- Fix a universal oracle Turing machine U (computing a partial function $2^{<\mathbb{N}} \rightarrow 2^{<\mathbb{N}}$ for each oracle).
- Define $C^{Z}(\sigma)$ to be $|\tau|$ for the shortest τ such that $U^{Z}(\tau)=\sigma$.

Definition

X is infinitely often C^{Z}-incompressible if

$$
\exists b \exists^{\infty} m\left(C^{Z}(X \upharpoonright m) \geq m-b\right) .
$$

Characterizing 2-randomness in terms of incompressibility

Recall: X is infinitely often C^{Z}-incompressible if $\exists b \exists^{\infty} m\left(C^{Z}(X \mid m) \geq m-b\right)$.

Theorem (Nies, Stephan, and Terwijn; J. Miller indep. for \Rightarrow)

X is 2-random relative to $Z \quad \Leftrightarrow \quad X$ is infinitely often C^{Z}-incompressible.

Theorem (Nies and S.)

The equivalence between 2-randomness relative to Z and infinitely often C^{Z}-incompressibility is provable in RCA_{0}.

That is:
$\mathrm{RCA}_{0} \vdash \forall Z \forall X$ (X is 2-MLR relative to $Z \Leftrightarrow X$ is infinitely often C^{Z}-incomp.)

This is nice because infinitely often C^{Z}-incompressibility is easy to formalize in second-order arithmetic, but 2-randomness relative to Z is not.

Comments on the proof

Focus on the direction
X is 2-random relative to $Z \Rightarrow X$ is infinitely often C^{Z}-incompressible.
Main problem: Avoid using $\mathrm{B} \Sigma_{2}^{0}$!
Secondary consideration: Give a direct proof in terms of 2-tests.
$\mathrm{B} \Sigma_{2}^{0}$ tends to creep into arguments about computations relative to Z^{\prime} :

- Obtaining initial segments of Z^{\prime} only requires bounded Σ_{1}^{0} comprehension.
- Obtaining initial segments of an arbitrary $\Delta_{2}^{0, Z}$ set requires bounded Δ_{2}^{0} comprehension, which is equivalent to $B \Sigma_{2}^{0}$.

The original proofs think of 2-MLR as MLR-relative-to-Z':

- J. Miller's proof uses prefix-free complexity relative to Z^{\prime}.
- Nies, Stephan, and Terwijn's proof uses the low basis theorem and MLR-relative-to- Z^{\prime}.

Comments on the proof

We follow a proof by Bauwens, based on a proof by Bienvenu, Muchnik, Shen, and Vereshchagin.

The crux is the following lemma.

Lemma (Conidis)

Let $q \in \mathbb{Q}$ and let $\left(U_{n}: n \in \mathbb{N}\right)$ be uniformly Z-r.e. sets such that $\forall n\left(\mu\left(\llbracket U_{n} \rrbracket\right) \leq q\right)$. Then for every $p>q$, there is a $Z^{\prime}-$ r.e. set V such that

$$
\mu(\llbracket V \rrbracket) \leq p \quad \text { and } \quad \forall n_{0}\left(\bigcap_{i \geq n_{0}} \llbracket U_{i} \rrbracket \subseteq \llbracket V \rrbracket\right) .
$$

Supposing some X is not infinitely often C^{Z}-incompressible, the lemma is used to build a test capturing X.

Comments on the proof

We give a version of the lemma in RCA_{0}.

Lemma (RCA_{0}; Nies and S.)

Let $q \in \mathbb{Q}$ and let $\left(U_{n}: n \in \mathbb{N}\right)$ be uniformly Z-r.e. sets such that $\forall n\left(\mu\left(\llbracket U_{n} \rrbracket\right) \leq q\right)$. Then for every $p>q$, there is a $\Sigma_{2}^{0, Z}$ class V such that

$$
\mu(\llbracket V]) \leq p \quad \text { and } \quad \forall n_{0}\left(\bigcap_{i \geq n_{0}} \llbracket U_{i} \rrbracket \subseteq \mathcal{V}\right) .
$$

The basic idea is: replace

$$
\bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i \geq n_{0}} \llbracket U_{i} \rrbracket \quad \text { with } \quad V=\bigcup_{n_{0} \in \mathbb{N}} \bigcap_{i=n_{0}}^{b_{i}} \llbracket U_{i} \rrbracket
$$

for an appropriate sequence $b_{0}<b_{1}<b_{2}<\cdots$.
Z^{\prime} can compute the b_{i} 's, but we want to avoid using Z^{\prime}.

Balanced randomness and h-weak Demuth randomness

Let $h: \mathbb{N} \rightarrow \mathbb{N}$.
An h-weak Demuth test relative to Z is like an ML-test relative to Z, except you may change your mind about index of the $n^{\text {th }}$ component $U_{n} h(n)$-many times.
X is h-weakly Demuth random relative to Z if X weakly passes every h-weak Demuth test relative to Z.
(In the context of Demuth randomness, the pros say 'weakly passes' instead of 'passes' to mean 'not in the intersection of the test.')
X is balanced random relative to Z if X weakly passes every $O\left(2^{n}\right)$-Demuth test relative to Z.

Definition

For h provably total in RCA_{0}, h-WDR is the statement
$\forall Z \exists X(X$ is h-weakly Demuth random relative to $Z)$.
BR is the statement

$$
\forall Z \exists X(X \text { is balanced random relative to } Z) \text {. }
$$

MLR versus $B R$

MLR versus BR:

- Every balanced random set is Martin-Löf random.
- Not every Martin-Löf random set is balanced random.
- Yet if $X=X_{0} \oplus X_{1}$ is ML-random, then either X_{0} or X_{1} is balanced random (Figueira, Hirschfeldt, Miller, Ng, Nies).

The original proof of the last item uses van Lambalgen's theorem and traceability notions (specifically, ω-r.e.-tracing).

We give a new direct proof that is easy to implement in RCA_{0}. Therefore:

Theorem (Nies and S.)
 $R C A_{0} \vdash M L R \Leftrightarrow B R$.

MLR versus h-WDR and rates of growth

Recall:

- BR is (informally) $O\left(2^{n}\right)$-WDR.
- $\mathrm{RCA}_{0} \vdash \mathrm{MLR} \Leftrightarrow \mathrm{BR}$.

If $h(n)$ grows faster than $n \mapsto k^{n}$ for every k, then h-WDR is stronger than MLR.

Theorem (Nies and S.)

Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be such that:

- h eventually dominates $n \mapsto k^{n}$ for every k
- $\mathrm{RCA}_{0} \vdash h$ is total.

Then $\mathrm{RCA}_{0}+\mathrm{MLR} \nvdash h$-WDR. In fact, $\mathrm{WKL}_{0} \nvdash h$-WDR.

To prove this:

- Build a model of WKL_{0} in which $\forall X \exists k$ (X is k^{n}-r.e.).
- If h eventually dominates k^{n}, then no k^{n}-r.e. set X is h-WDR.

Thank you!

Thank you for coming to my talk! Do you have a question about it?

