Randomness notions and reverse mathematics

Paul Shafer University of Leeds p.e.shafer@leeds.ac.uk http://www1.maths.leeds.ac.uk/~matpsh/

Computability Theory and Applications Online Seminar Midwest Computability Seminar November 10, 2020

Joint work with André Nies.

Algorithmic randomness

The basic idea: Let $X, Z \in 2^{\mathbb{N}}$ (thought of as infinite bit sequences).

We say that X is **random** relative to Z if Z cannot be used to describe/predict/compress the bits of X.

Different formalizations of this idea yield different randomness notions.

Today:

Explore randomness notions as set-existence axioms:

"For every set Z, there is a set X that is random relative to Z."

Questions that one might ask:

- Can randomness axioms be used to prove classical mathematical theorems?
- Our focus: How do randomness axioms relate to each other?

For example:

(Don't worry about what the randomness notions mean for now.)

Computable randomness (CR) versus Schnorr randomness (SR):

- Every computably random set is Schnorr random.
- Not every Schnorr random set is computably random.
- Nevertheless, every Schnorr random set **computes** a computably random set (which follows from Nies, Stephan, and Terwijn).
- As randomness axioms: $RCA_0 \vdash SR \Leftrightarrow CR$.

Martin-Löf randomness (MLR) versus computable randomness (CR):

- Every Martin-Löf random set is computably random.
- Not every computably random set is Martin-Löf random.
- As randomness axioms:
 - $\mathsf{RCA}_0 + \mathsf{MLR} \vdash \mathsf{CR}$.
 - $RCA_0 + CR \nvDash MLR$.
 - In fact, $RCA_0 + CR \nvDash DNR$.

Reverse mathematics reminders

Formally we work in second-order arithmetic, which means the objects are natural numbers and sets of natural numbers.

We can make sense of a lot of other objects via coding, such as:

Trees Reals numbers The topology on \mathbb{R} Continuous functions etc.

Today's axiom systems are:

RCA₀: Sets computable from existing sets exist (formally, Δ_1^0 comprehension). Induction is restricted to Σ_1^0 formulas (formally, $I\Sigma_1^0$).

 $\mathsf{WKL}_0:$ Add to RCA_0 the statement "every infinite subtree of $2^{<\mathbb{N}}$ has an infinite path."

ACA₀: Every arithmetical formula defines a set.

Martin-Löf tests and Martin-Löf randomness

Recall: For a set $U \subseteq 2^{<\mathbb{N}}$,

$$\llbracket U \rrbracket = \bigcup_{\sigma \in U} \llbracket \sigma \rrbracket = \text{the open set coded by } U.$$

A Martin-Löf test relative to $Z \in 2^{\mathbb{N}}$ is a uniformly Z-r.e. sequence

 U_0, U_1, U_2, \dots

of subsets of $2^{<\mathbb{N}}$ such that for every $n \in \mathbb{N}$:

 $\mu(\llbracket U_n \rrbracket) \le 2^{-n}.$

Think of a ML-test relative to Z as describing an effective null set relative to Z.

 $X \in 2^{\mathbb{N}}$ passes the ML-test $(U_n : n \in \mathbb{N})$ if

$$X \notin \bigcap_{n \in \mathbb{N}} \llbracket U_n \rrbracket.$$

X is Martin-Löf random relative to Z if X passes every ML-test relative to Z.

ML-randomness as a set-existence axiom

It is reasonably straightforward to phrase

"X is ML-random relative to Z"

in second-order arithmetic.

Definition

MLR is the statement

 $\forall Z \exists X (X \text{ is ML-random relative to } Z).$

Can MLR be used as an axiom to prove interesting mathematical theorems?

MLR and König's lemma

Recall: $T \subseteq 2^{<\mathbb{N}}$ is a **tree** if it is closed under initial segments:

```
\forall \sigma \; \forall \tau \; (\sigma \in T \land \tau \sqsubseteq \sigma \rightarrow \tau \in T).
```

Tree T has **positive measure** if there is a rational q > 0 such that for all n

$$\frac{\left|\left\{\sigma \in T : |\sigma| = n\right\}\right|}{2^n} \ge q.$$

Weak weak König's lemma (WWKL) is the statement "every subtree of $2^{<\mathbb{N}}$ of positive measure has an infinite path."

Theorem (Essentially Kučera): $RCA_0 \vdash MLR \Leftrightarrow WWKL$.

Theorem (Yu and Simpson): RCA₀ + MLR is strictly between RCA₀ and WKL₀.

Mathematical consequences of MLR

The following are all equivalent to MLR over RCA₀:

- Every Borel measure on a compact Polish space is countably additive. (Yu and Simpson)
- Versions of the Vitali covering theorem. (Brown, Giusto, and Simpson)
- A version of the monotone convergence theorem for Borel measures on compact Polish spaces. (Yu)
- Every continuous f: [0,1] → R of bounded variation is differentiable at some point. (Nies, Triplett, and Yokoyama)
- Every continuous $f: [0,1] \rightarrow \mathbb{R}$ of bounded variation is differentiable almost everywhere. (Nies, Triplett, and Yokoyama)

Stronger randomness notions

Recall: X is ML-random relative to Z if X passes every ML-test $(U_n : n \in \mathbb{N})$ relative to Z.

- $(U_n: n \in \mathbb{N})$ is uniformly Z-r.e. with $\mu(\llbracket U_n \rrbracket) \le 2^{-n}$.
- X passes $(U_n : n \in \mathbb{N})$ if $X \notin \bigcap_{n \in \mathbb{N}} \llbracket U_n \rrbracket$.

Stronger randomness notions are defined by allowing **more tests** which capture **more sets** and hence leave **fewer randoms**.

That is, if there are more tests, then it is harder to pass all tests.

Definition

A weak 2-test relative to Z is like a ML-test relative to Z, except we only require

```
\lim_{n\to\infty}\mu(\llbracket U_n\rrbracket)=0
```

instead of $\forall n (\mu(\llbracket U_n \rrbracket) \leq 2^{-n}).$

Weak 2-randomness

A weak 2-test relative to Z is a uniformly Z-r.e. sequence $(U_n : n \in \mathbb{N})$ such that $\lim_{n\to\infty} \mu(\llbracket U_n \rrbracket) = 0$.

X is weakly 2-random relative to Z if X passes every weak 2-test relative to Z.

Definition

W2R is the statement

 $\forall Z \exists X (X \text{ is weakly } 2\text{-random relative to } Z).$

2-randomness

Basic idea:

X is 2-random relative to Z if X is ML-random relative to Z'.

This definition works fine in ordinary math, but it's a problem over RCA_0 because the statement

```
"for all sets Z, the set Z' exists"
```

is equivalent to ACA_0 over RCA_0 .

We want to say "X is 2-random relative to Z" in a way that does **not** imply that Z' is a set.

This can be done by letting the components of a test be $\Sigma_2^{0,Z}$ classes instead of $\Sigma_1^{0,Z'}$ classes.

Formalized 2-randomness

If $T \subseteq 2^{<\mathbb{N}}$ is a tree, let [T] denote the class of paths through T.

For $q \in \mathbb{Q}$, define $\mu([T]) \leq q$ if there is an n such that

$$\frac{\left|\left\{\sigma\in T\colon |\sigma|=n\right\}\right|}{2^n}\leq q.$$

Let $Z \in 2^{\mathbb{N}}$.

- A code for a $\Sigma_2^{0,Z}$ class \mathcal{W} is a sequence of trees $(T_n : n \in \mathbb{N}) \leq_T Z$ such that $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$.
- Define $X \in \mathcal{W}$ if $\exists n (X \in [T_n])$.
- For $q \in \mathbb{Q}$, define $\mu(\mathcal{W}) \le q$ if $\forall n ([T_n] \le q)$.
- A uniform sequence of Σ₂^{0,Z} classes (*W_n*: n ∈ ℕ) is coded by a double-sequence of trees (*T_{n,i}*: n, i ∈ ℕ) ≤_T Z.

A 2-test relative to Z is a uniform sequence of Σ₂^{0,Z} classes (𝒱_n: n ∈ ℕ) such that ∀n (μ(𝒱_n) ≤ 2⁻ⁿ).

More formalized 2-randomness

A 2-test relative to $Z \in 2^{\mathbb{N}}$ is a uniform sequence of $\Sigma_2^{0,Z}$ classes $(\mathcal{W}_n : n \in \mathbb{N})$ such that $\forall n (\mu(\mathcal{W}) \leq 2^{-n})$.

 $X \in 2^{\mathbb{N}}$ passes the 2-test $(\mathcal{W}_n : n \in \mathbb{N})$ if $X \notin \bigcap_{n \in \mathbb{N}} \mathcal{W}_n$.

X is 2-random relative to Z if X passes every 2-test relative to Z.

Definition

2-MLR is the statement

 $\forall Z \exists X (X \text{ is } 2\text{-random relative to } Z).$

Quick history

The definition of 2-randomness in terms of 2-tests is due to Kurtz.

The equivalence of 2-randomness (in terms of 2-tests) and ML-randomness relative to 0^\prime is due to Kautz.

Among the first to consider 2-MLR in reverse mathematics are:

- Avigad, Dean, and Rute
- · Conidis and Slaman

Mathematical consequences of 2-MLR

 $RCA_0 + 2$ -MLR proves the **rainbow Ramsey theorem for pairs**. (Conidis and Slaman, following Csima and Mileti)

In fact, the rainbow Ramsey theorem for pairs is equivalent to 2-DNR over $\mathsf{RCA}_0.$ (J. Miller)

Rainbow Ramsey theorem for pairs:

Let $k \ge 1$, and let $f: [\mathbb{N}]^2 \to \mathbb{N}$ be *k*-bounded: $\forall n (|f^{-1}(n)| \le k)$. Then there is an infinite $R \subseteq \mathbb{N}$ such that f is injective on $[R]^2$.

Over RCA₀, 2-MLR + $B\Sigma_2^0$ is equivalent to a version of the dominated convergence theorem for Borel measures on compact Polish spaces. (Avigad, Dean, and Rute)

Dominated convergence theorem:

Let \mathscr{X} be a compact Polish space, and let μ be a Borel measure on \mathscr{X} . Let $(f_n : n \in \mathbb{N})$, f, and g be members of $L^1(\mathscr{X})$ such that $(f_n : n \in \mathbb{N})$ converges to f pointwise and is dominated by g. Then $(\int f_n : n \in \mathbb{N})$ converges to $\int f$.

2-MLR versus W2R

 $RCA_0 + 2$ -MLR is strictly between ACA_0 and $RCA_0 + W2R$ (and not above WKL_0).

Theorem (Nies and S.)

 $RCA_0 + W2R \nvDash 2-MLR.$ In fact, $RCA_0 + W2R \nvDash 2-DNR.$

The immediate impulse is to use **van Lambalgen's theorem**: $X \oplus Y$ is random if and only if X is random and Y is random relative to X.

Therefore, if $X = \bigoplus_{n \in \mathbb{N}} X_n$ is random, then each X_i is random relative to $\bigoplus_{n < i} X_n$. So we can build a model of randomness from the columns of X.

However, van Lambalgen's theorem does not hold for weak 2-randomness.

So instead use van Lambalgen for ML-randomness, plus the fact that if $X \oplus Y$ has **hyperimmune-free degree** and Y is ML-random relative to X, then Y is also weakly 2-random relative to X.

Implications among randomness notions mentioned so far

Arrows indicate implications over RCA₀.

None of the arrows reverse. (Except the CR \Leftrightarrow SR arrow, of course!)

Quick slides on the first-order strength of 2-MLR

As far as I know, an **exact characterization** of the first-order consequences of $RCA_0 + 2$ -MLR is still an **open problem**.

Measure first-order strength via induction, bounding, and cardinality schemes:

$$\mathsf{B}\Sigma_2^0 \quad \Rightarrow \quad \mathsf{C}\Sigma_2^0 \quad \Rightarrow \quad \mathsf{I}\Sigma_1^0$$

- $I\Sigma_1^0$ is the induction scheme for Σ_1^0 formulas.
- $C\Sigma_2^0$ is a scheme saying that if $\varphi(x, y)$ is Σ_2^0 and defines an injection, then the range is unbounded.
- $B\Sigma_2^0$ is the bounding scheme

```
(\forall n < a)(\exists m)\varphi(n,m) \rightarrow \exists b(\forall n < a)(\exists m < b)\varphi(n,m)
```

```
for \Sigma_2^0 formulas \varphi.
```

Quick slides on the first-order strength of 2-MLR

What is known:

- $RCA_0 + 2$ -MLR $\vdash C\Sigma_2^0$. (Conidis and Slaman)
- RCA_0 + B Σ_2^0 + 2-MLR is Π_1^1 -conservative over RCA_0 + B $\Sigma_2^0.$ (Conidis and Slaman)
- $\mathsf{RCA}_0 + 2 \mathsf{MLR} \nvDash \mathsf{B}\Sigma_2^0$. (Slaman)

So the first-order consequences of RCA_0 + 2-MLR are strictly between those of RCA_0 and RCA_0 + B Σ_2^0 .

Also, there are more recent results by Belanger, Chong, Wang, Wong, and Yang establishing a better upper bound on the first-order consequences of $RCA_0 + 2-MLR$.

Plain complexity and incompressibility

Let $C^{Z}(\sigma)$ denote the **plain Kolmogorov complexity** of a string $\sigma \in 2^{<\mathbb{N}}$ relative to a set $Z \in 2^{\mathbb{N}}$.

Slogan: $C^{Z}(\sigma)$ is the length of the shortest Z-description of σ .

- Fix a universal oracle Turing machine U (computing a partial function 2^{<ℕ} → 2^{<ℕ} for each oracle).
- Define $C^{Z}(\sigma)$ to be $|\tau|$ for the shortest τ such that $U^{Z}(\tau) = \sigma$.

Definition

X is infinitely often C^{Z} -incompressible if

$$\exists b \; \exists^{\infty} m \; \Big(C^{Z}(X \upharpoonright m) \geq m - b \Big).$$

Characterizing 2-randomness in terms of incompressibility

Recall: *X* is infinitely often $C^{\mathbb{Z}}$ -incompressible if $\exists b \exists^{\infty} m (C^{\mathbb{Z}}(X | m) \ge m - b)$.

Theorem (Nies, Stephan, and Terwijn; J. Miller indep. for \Rightarrow)

X is 2-random relative to $Z \Leftrightarrow X$ is infinitely often C^Z -incompressible.

Theorem (Nies and S.)

The equivalence between 2-randomness relative to Z and infinitely often C^{Z} -incompressibility is provable in RCA₀.

That is:

 $\mathsf{RCA}_0 \vdash \forall Z \; \forall X \; (X \text{ is } 2\text{-}\mathsf{MLR} \text{ relative to } Z \Leftrightarrow X \text{ is infinitely often } C^Z \text{-incomp.})$

This is nice because infinitely often C^{Z} -incompressibility is easy to formalize in second-order arithmetic, but 2-randomness relative to Z is not.

Comments on the proof

Focus on the direction

X is 2-random relative to $Z \Rightarrow X$ is infinitely often C^{Z} -incompressible.

Main problem: Avoid using $B\Sigma_2^0$!

Secondary consideration: Give a direct proof in terms of 2-tests.

 $B\Sigma_2^0$ tends to creep into arguments about computations relative to Z':

- Obtaining initial segments of Z' only requires bounded Σ_1^0 comprehension.
- Obtaining initial segments of an arbitrary $\Delta_2^{0,Z}$ set requires bounded Δ_2^0 comprehension, which is equivalent to $B\Sigma_2^0$.

The original proofs think of 2-MLR as MLR-relative-to-Z':

- J. Miller's proof uses prefix-free complexity relative to Z'.
- Nies, Stephan, and Terwijn's proof uses the low basis theorem and MLR-relative-to-Z'.

Comments on the proof

We follow a proof by Bauwens, based on a proof by Bienvenu, Muchnik, Shen, and Vereshchagin.

The crux is the following lemma.

Lemma (Conidis) Let $q \in \mathbb{Q}$ and let $(U_n : n \in \mathbb{N})$ be uniformly Z-r.e. sets such that $\forall n (\mu(\llbracket U_n \rrbracket) \leq q)$. Then for every p > q, there is a Z'-r.e. set V such that $\mu(\llbracket V \rrbracket) \leq p$ and $\forall n_0 \left(\bigcap_{i \geq n_0} \llbracket U_i \rrbracket \subseteq \llbracket V \rrbracket \right)$.

Supposing some X is **not** infinitely often C^{Z} -incompressible, the lemma is used to build a test capturing X.

Comments on the proof

We give a version of the lemma in RCA_0 .

Lemma (RCA₀; Nies and S.)

Let $q \in \mathbb{Q}$ and let $(U_n : n \in \mathbb{N})$ be uniformly Z-r.e. sets such that $\forall n (\mu(\llbracket U_n \rrbracket) \leq q)$. Then for every p > q, there is a $\Sigma_2^{0,Z}$ class \mathcal{V} such that

The basic idea is:

replace	$\bigcup \bigcap \llbracket U_i \rrbracket$	with	$\mathcal{V} = \bigcup \bigcap_{i=1}^{n} \left[U_i \right]$
	$n_0 \in \mathbb{N}$ $i \ge n_0$		$n_0 \in \mathbb{N}$ $i=n_0$

for an appropriate sequence $b_0 < b_1 < b_2 < \cdots$.

Z' can compute the b_i 's, but we want to **avoid** using Z'.

h.

Balanced randomness and *h*-weak Demuth randomness

Let $h: \mathbb{N} \to \mathbb{N}$.

An *h*-weak Demuth test relative to Z is like an ML-test relative to Z, except you may change your mind about index of the n^{th} component $U_n h(n)$ -many times.

X is h-weakly Demuth random relative to Z if X weakly passes every h-weak Demuth test relative to Z.

(In the context of Demuth randomness, the pros say 'weakly passes' instead of 'passes' to mean 'not in the intersection of the test.')

X is **balanced random** relative to Z if X weakly passes every $O(2^n)$ -Demuth test relative to Z.

Definition

For h provably total in RCA₀, h-WDR is the statement

 $\forall Z \exists X (X \text{ is } h \text{-weakly Demuth random relative to } Z).$

BR is the statement

 $\forall Z \exists X (X \text{ is balanced random relative to } Z).$

MLR versus BR

MLR versus BR:

- Every balanced random set is Martin-Löf random.
- Not every Martin-Löf random set is balanced random.
- Yet if $X = X_0 \oplus X_1$ is ML-random, then either X_0 or X_1 is balanced random (Figueira, Hirschfeldt, Miller, Ng, Nies).

The original proof of the last item uses van Lambalgen's theorem and traceability notions (specifically, ω -r.e.-tracing).

We give a new direct proof that is easy to implement in RCA_0 . Therefore:

Theorem (Nies and S.) $RCA_0 \vdash MLR \Leftrightarrow BR.$

MLR versus *h*-WDR and rates of growth

Recall:

- BR is (informally) $O(2^n)$ -WDR.
- $\mathsf{RCA}_0 \vdash \mathsf{MLR} \Leftrightarrow \mathsf{BR}$.

If h(n) grows faster than $n \mapsto k^n$ for every k, then h-WDR is stronger than MLR.

Theorem (Nies and S.)

Let $h: \mathbb{N} \to \mathbb{N}$ be such that:

- h eventually dominates $n \mapsto k^n$ for every k
- $\mathsf{RCA}_0 \vdash h \text{ is total.}$

Then $RCA_0 + MLR \nvDash h-WDR$. In fact, $WKL_0 \nvDash h-WDR$.

To prove this:

- Build a model of WKL₀ in which $\forall X \exists k (X \text{ is } k^n \text{-r.e.}).$
- If h eventually dominates k^n , then no k^n -r.e. set X is h-WDR.

Thank you for coming to my talk! Do you have a question about it?