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Computability of lown Boolean algebras

Theorem (Downey, Jockusch 1994)

Every low Boolean algebra has a computable copy.

Theorem (Thurber 1995)

Every low2 Boolean algebra has a computable copy.

Theorem (Knight, Stob 2000)

Every low4 Boolean algebra has a computable copy.

In each case the isomorphism from the lown copy to the computable copy
is ∅(n+2)-computable.
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Questions

Question

Is it the case that every lown Boolean algebra has a computable copy?

This question is open.

Question

Is it the case that every lown Boolean algebra has a computable copy with
a ∅(n+2)-computable isomorphism?

No!

Theorem (Harris, Montalbán 2010)

There is a low5 Boolean algebra with no ∅(7)-computable isomorphism to
any computable copy.

The algebra has a computable copy, and a ∅(8)-computable isomorphism to
it.
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The main result

So the behaviour at n = 5 is different. Is this an instance of a more
general phenomenon?

Question

For which values of n is there a lown boolean algebra that has no
∅(n+2)-computable isomorphism to a computable copy?

Theorem (Stephenson 2013)

For each n ∈ ω there is a low2n+5 Boolean algebra with no
∅(2n+7)-computable isomorphism to any computable copy.

The plan:

Use Montalbán’s copy/diagonalise game.

Place the low5 construction of Harris and Montalbán into this context.

Perform an inductive argument to get the theorem.
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Montalbán’s Copy/Diagonalise Game

If K is a class of structures over a language L, and α is some a computable
ordinal, then Gα(K) is a game played by a copying player C and a
diagonalising player D.

C constructs infinitely many L-structures (C i )i∈ω.
D constructs one structure D.

The players play finite approximations to L-structures, extending at each
stage.
At stage s, C builds C i [s] for each i , and D responds with D[s].
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Montalbán’s Copy/Diagonalise Game

C computes some i from the αth jump of D’s sequence of moves, and
wants D ∼= C i . This is the main win condition.

If C fails to construct structures in K, then D wins.

If D fails to construct structures in K but C does, then C wins.

If both players construct structures in K, then the winner is determined by
the main win condition.

We want to know when the diagonalising player has a winning strategy,
and how effective it is.
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Σc ,Y
n formulas

Definition

Let L be a computable language, and Y ⊆ ω. Σc,Y
n denotes all

Lω1,ω-formulas where the infinitary conjunctions and disjunctions are Y -c.e.

Definition

Let Bn,Y be the class of structures that are Σc,Y
n -presentations of Boolean

algebras.
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Diagonalising and lown Boolean algebras

Theorem

Suppose that n ≥ 1, and the diagonalising player has a winning
∅(n)-computable strategy in Gα(Bn,∅).

Then there is a lown Boolean algebra D which is not isomorphic to any
computable Boolean algebra by a ∅(n+α)-computable map.
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Diagonalising and lown Boolean algebras

The proof of Harris and Montalbán can be adapted to show that the
diagonalising player has a ∅(5)-computable winning strategy in the game
G2(B5,∅).
Combining with the previous result essentially gives their construction of a
low5 Boolean algebra.

The argument can be relativised to show:

Theorem

The diagonalising player has a winning Y (5)-computable strategy in
G2(B5,Y ), for each Y ⊆ ω.
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Translating between families of structures

We now want to consider how a strategy for winning a game Gα(K) in one
class of structures might be used to get a strategy that wins a game for a
different class of structures.

Definition

Suppose that K and L are two families of structures.
Let Φ and Ψ be Turing functionals with the following properties:

If K is a structure in K and L is a structure in L, then Φ(L) ∈ K and
Ψ(K) ∈ L.

If K ∈ K, then Φ(Ψ(K)) and K are isomorphic.

If L1,L2 ∈ L are isomorphic to the same structure in the image of
Ψ(K), then Φ(K1) and Φ(K2) are isomorphic.

Then we say Φ and Ψ translate diagonalisation from K to L.
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Translating between families of structures

Theorem (vandenDriessche, Gonzáles — in G
∞

(K))

Suppose that K and L are two families of structures, and let Φ and Ψ
translate diagonalisation from K to L.
Suppose that the diagonalising player has a computable strategy to win in
Gα(K).
The the diagonalising player has a computable strategy to win in Gα(L).
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ωB

Definition

Let B be a Boolean algebra, and let L(B) be a linearisation of B. Let ωB
be the Boolean algebra Int(ωL(B)).

Definition

If B is an infinite Boolean algebra, let FB be the collection of elements of
B which consist of finitely many atoms.

We can find ωB effectively from B, and arrange that FωB is some fixed set,
and thus we know which elements are atoms or finite collections of atoms.
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B/FB

Definition

Let B/FB be the Boolean algebra obtained by identifying any two elements
of B that differ by a member of FB.

Note that taking this quotient preserves isomorphism, and in addition that
ωB/FωB ∼= B.
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The plan

We want to show that for every m ∈ ω there is a low2m+5 Boolean algebra
not ∅(2m+7)-computably isomorphic to any computable Boolean algebra.

To do so, let Y ⊆ ω and n ∈ ω. Consider the families Bn,Y ′′ and Bn+2,Y .

We will show:

Theorem

If D has a Y (n+2)-computable strategy for winning Gα(Bn,Y ′′), then D has
a Y (n+2)-computable strategy for winning Gα(Bn+2,Y ).

To do so, we’ll want to establish Φ and Ψ to translate diagonalisation.
Choose

Ψ: Bn,Y ′′ → Bn+2,Y to be B 7→ ωB
Φ: Bn+2,Y → Bn,Y ′′ to be B 7→ B/FB
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The plan

It suffices to show that

We can effectively evaluate Σc,Y ′′
n L-formulas in B/FB by consulting

Σc,Y
n+2 L-formulas in B.

We can effectively evaluate Σc,Y
n+2 L-formulas in ωB by consulting

Σc,Y ′′
n L-formulas in B.

Constructing the map Φ is easy: two elements of B/FB are equal when
their preimages in B differ by a member of FB, which is Πc

2 to check.
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L2-formulas in ωB

Now, we’ll construct Ψ.

Let L2 be the language of boolean algebras together with two additional
predicates Inf and Atom. Knowing these predicates is equivalent to having
the second structural jump of a boolean algebra, provided that it is of the
form ωB.

Lemma

Given an index for a Σc,Y
n+2 L-formula ϕ(x1, · · · , xn) which implies that

x1∨̇ · · · ∨̇xn = 1, we can uniformly compute an index for a Σc,Y
′′

n

L2-formula which is equivalent to ϕ in Boolean algebras of the form ωB.
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L2-formulas in ωB

We can express any Σc,Y ′′
n L2-fact in an equivalent way which describes

how a Boolean algebra can be partitioned into successively finer pieces.
Use this partition refinement structure to split the information expressed
by ϕ(ā) into two kinds:

Computable information about whether the elements in ā are finite
collections of atoms (and if so, how large).

Σc,Y ′′
n information which comes from B (telling us how the

corresponding tuple there can be partitioned).

Recombine these two kinds of information to build a Σc,Y ′′
n L-formula to

evaluate in B.
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collections of atoms (and if so, how large).

Σc,Y ′′
n information which comes from B (telling us how the

corresponding tuple there can be partitioned).

Recombine these two kinds of information to build a Σc,Y ′′
n L-formula to

evaluate in B.

Jonny Stephenson (UChicago) Lown Boolean Algebras October 1, 2013 17 / 20



L2-formulas in ωB

We can express any Σc,Y ′′
n L2-fact in an equivalent way which describes

how a Boolean algebra can be partitioned into successively finer pieces.
Use this partition refinement structure to split the information expressed
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Results

This suffices to show:

Theorem

If D has a Y (n+2)-computable strategy for winning Gα(Bn,Y ′′), then D has
a Y (n+2)-computable strategy for winning Gα(Bn+2,Y ).

Now we recall that:

Lemma

For each Y ⊆ ω, the diagonalising player has a winning Y (5)-computable
strategy in the game G2(B5,Y ).

In particular:

Lemma

D has a ∅(2n+5)-computable strategy for winning G2(B5,∅(2n)).

Jonny Stephenson (UChicago) Lown Boolean Algebras October 1, 2013 18 / 20
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In particular:

Lemma

D has a ∅(2n+5)-computable strategy for winning G2(B5,∅(2n)).
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Main Result

Now apply our result to see that

D has a ∅(2n+5)-computable strategy for winning G2(B7,∅(2n−2)
)

...
D has a ∅(2n+5)-computable strategy for winning G2(B2n+5,∅)
and hence

Theorem (Stephenson 2013)

There is a low2n+5 Boolean algebra with no ∅(2n+7)-computable
isomorphism between it and a computable Boolean algebra.
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Future Directions

The machinery is very general, and the family of structures built will be
improved by a stronger base case (e.g. arguments for the 6th jump, or an
argument showing no ∅(n+3)-computable isomorphism between some lown

boolean algebra and any computable copy).

Is there a way to make a variant of this argument that steps from n to
n + 1, or to n + 3?

Are there any other classes of structures for which translation of
diagonalisation allows us to exploit structural similarities to uncover
computational similarities?

Is there any specific property of Boolean algebras which causes the lown

problem to be hard?
If such a property exists, are there other classes of structures with similar
properties? Could the copy/diagonalise game be used to identify them?
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