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Definition
The degree spectrum of R is the set of all Turing degrees that the
image of R has in computable copies of A.

Example

Any finite or cofinite relation has only the computable degree in its
spectrum.

Example

The degree spectrum of the successor relation on (ω,<) consists of
all co-c.e. degrees.
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Unary relations on (ω,<)

Theorem (Downey, Khoussainov, Miller, and Yu)

Let R be a unary relation that is computable in the standard copy

of (ω,<). Then the degree spectrum of R either contains only the

computable degree or contains all c.e. degrees.

Proof.
Set things up so that n ∈ ∅′ ⇐⇒ R(2n).
Fairly straightforward finite injury.



At the beginning, no elements have entered ∅′, so we start with
even numbers in order, with odd numbers to ensure none are in the
relation:

0 1 2 4 3 5 · · ·

At some stage, maybe 1 is enumerated in.



Add odd numbers before its coding element (2) to push it into R :

0 1 7 9 2 4 3 5 · · ·

But there’s a problem: 4 has been pushed into the relation, but we
don’t think that 2 ∈ ∅′ at this stage!



No big deal. Add more padding elements to push it back out!

0 1 7 9 2 11 4 3 5 · · ·

Now we’re done for this stage, because everything is where it
should be:

n ∈ ∅′s ⇐⇒ Rs(2n)

for all n.



No big deal. Add more padding elements to push it back out!

0 1 7 9 2 11 4 3 5 · · ·

Now we’re done for this stage, because everything is where it
should be:

n ∈ ∅′s ⇐⇒ Rs(2n)

for all n.

Remark
A small modification to the construction shows that the spectrum

consists of exactly the ∆2 degrees.
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Let R be a computable n-ary relation on (ω,<) which is not

intrinsically computable. Then the degree spectrum of R contains

all c.e. degrees.

Main features of the proof in the unary case:

◮ Designated coding elements (the evens) and other padding
elements (the odds)

◮ A way to keep coding elements out of the relation if they were
out (pad below it to push it back out)

◮ A way to push coding elements into the relation and keep
them in (pad below it to push it in)



Designated coding elements: for an n-ary relation, we need coding
tuples. We’ll use tuples of consecutive evens: to code the number
k we will use the number

pkq = 〈2nk , 2(nk + 1), 2(nk + 2), . . . , 2(n(k + 1)− 1)〉.

This, again, leaves the odds free to be used for padding.



To keep coding tuples in or out of the relation:

1. Applying Ramsey’s theorem to the relation shows that we can
always push a coding tuple into R and keep it there.
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To keep coding tuples in or out of the relation:

1. Applying Ramsey’s theorem to the relation shows that we can
always push a coding tuple into R and keep it there.

2. Using facts about well partial orderings, we can restrict our
tuples to a certain computable set in a way that allows us to
ensure they stay out of the relation at each stage.

We therefore have all of the ingredients for the finite injury
construction we did before. We can keep coding elements out of
the relation at every stage until they are supposed to enter, and
then keep them in the relation after that.



What about ordinals other than ω?

Definition
We say that a copy A of a computable ordinal is strongly
computable if the “Cantor-Bendixson rank α” relation and the
“successor among Cantor-Bendixson rank α” relations are
computable.



What about ordinals other than ω?

Definition
We say that a copy A of a computable ordinal is strongly
computable if the “Cantor-Bendixson rank α” relation and the
“successor among Cantor-Bendixson rank α” relations are
computable.

Theorem (W.)

Let R be a computable unary relation on a strongly computable

copy A of a computable ordinal α. Then for any computable

ordinal β, if there is a computable copy B of α in which

RB 6≤T ∅(β), then there is a computable copy C of α such that RC

has Turing degree ∅(β+1).

A similar result holds for limit ordinals.



The proof relies on theorems of Ash and Knight about back and
forth relations. As an example, consider coding ∅′′ into ω2:

Theorem (Ash, Knight)

Let S be a Σ0
2 set. Then there are uniformly computable sequences

of linear orderings (Cn)n∈ω and (Dn)n∈ω such that

Cn
∼=

{

ω if n ∈ S

ω × 2 if n /∈ S
.

and

Dn
∼=

{

ω × 2 if n ∈ S

ω if n /∈ S
.



This lets us put coding elements where we want: we build “pieces”
that look like

ω × 2 + ∗+ ω

or

ω + ∗+ ω × 2

depending on whether a given number is in ∅′′ or not, where “*” is
our coding element.
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that look like

ω × 2 + ∗+ ω

or

ω + ∗+ ω × 2

depending on whether a given number is in ∅′′ or not, where “*” is
our coding element.

As long as there are infinitely many n such that for some kn it’s
the case that R(ω × n + kn) 6= R(ω × (n + 1) + kn), then we can
code ∅′′ in this way.
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We can do a similar construction with

ω +m + ∗+ ω

or

ω + n + ∗+ ω

This construction succeeds as long as there are infinitely many n

such that there is a kn with R(ω × n + kn) 6= R(ω × n + kn + 1).

What happens if both constructions fail?

1. R is constant on all but finitely many copies of ω.

2. R behaves the same way across all but finitely many copies of
ω.

Therefore, R is bounded, and can be computed using the successor
relation and finitely many named limit points.
R is therefore intrinsically ∅′.
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a coding of ∅(α), and show that if it fails we could have computed
R using ∅(β) for some β < α.
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The general construction works in a similar way: we attempt to do
a coding of ∅(α), and show that if it fails we could have computed
R using ∅(β) for some β < α.

Open questions:

1. What happens in the case of n-ary relations on arbitrary
computable ordinals?

2. To what extent can these results be generalized to other linear
orderings?


