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ABSTRACT. Let G be real Lie group, and I' a discrete subgroup of G. Let u be a
measure on G. Under a certain condition on u, we classify the finite p-stationary
measures on G/I'. We give an alternative argument (which bypasses the Local Limit
Theorem) for some of the breakthrough results of Benoist and Quint in this area.
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1. INTRODUCTION

1.1. Random walks and stationary measures. Let G’ be a real algebraic Lie
Group, let g’ denote the Lie algebra of G’, and let I be a discrete subgroup of G'.
Let p be a probablity measure on G’ with finite first moment. Let v be an p-stationary
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measure on G' /I i.e.

LxV =1, Where,u*y:/ gvdu(g).

We assume v(G'/I") = 1, and also that v is ergodic (i.e. is extremal among the p-
stationary measures). Let S denote the support of u, let Gs C G’ denote the closure
of the group generated by S, and let Ef C GL(g') denote the Zariski closure of the
adjoint group Ad(Gs).

We say that a measure v on G'/I" is homogeneous if it is supported on a closed
orbit of its stabilizer {g € G’ : g.v =v}.

We recall the following breakthrough theorem of Benoist-Quint [BQ1], [BQ2]:

Theorem 1.1 (Benoist-Quint). Suppose u is a compactly supported measure on G,

—Z . _ - :
G 1s semisimple, Zariski connected and has no compact factors. Then, any ergodic
p-stationary measure v on G'/T" is homogeneous.

In this paper, we prove some generalizations and extensions of Theorem 1.1. For a
discussion of related results, see §1.5.
Recall that the measure p has finite first moment if

/ log max(1, lgll, lg™ ) dyu(g) < oc.
G/

One easy to state consequence of our results is the following:

Theorem 1.2. Let G’ be a Lie group and let p be a probability measure on G’ with

finite first moment. Suppose Eg is generated by unipotents over C. Let I be a
discrete subgroup of G', and let v be any u-stationary measure on G'/T". Then, v is
Gs-invariant.

Another consequence is an alternative proof of an extension of Theorem 1.1 where
the assumption that p is compactly supported is replaced by the weaker assumption
that p has finite first moment. Thus, we prove the following:

Theorem 1.3. Suppose i is a measure on G’ with finite first moment, 6§ 1S SemuLsim-
ple, Zariski connected and has no compact factors. Then, any ergodic p-stationary
measure v on G'/T" is homogeneous.

1.2. The main theorems. Let ™ = % p--- % p (n times). If H is a Lie group,
we denote the Lie algebra of H by Lie(H).
G’ acts on ¢’ by the adjoint representation. For G’ = SL(n,R), g € G', v € g,

Ad(g)v = gvg .
Notation. We will often use the shorthand (g).v for Ad(g)v.

Let V' be a vector space on which G’ acts.
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Definition 1.4. The measure p is uniformly expanding on V if there exist C' > 0
and N € N such that for all v e V,

(1.1) / logMdu(N)(g) > C > 0.
a vl
Essentially, i is uniformly expanding on V' if every vector in V' grows on average
under the random walk.

Lemma 1.5. p is uniformly expanding on V if and only if for every v € V, for
,LLN-(],.G. g: (gl7927 <o 89n;y - ) S (G/)N;

o1
lim —log||(gn...g1) - v]| >0

n—oo M

Thus, if g is uniformly expanding, then with probability 1 every vector grows
exponentially. The proof of this lemma is postponed to §3.

Remark. We can consider the Adjoint action of G’ on its Lie algebra g'. If Eﬁ is
semisimple with no centralizer and no compact factors, then y is uniformly expanding
on ¢, see e.g. [EMar, Lemma 4.1]. However, there are many examples with Eﬁ not
semisimple for which uniform expansion on g’ still holds, see e.g. (1.13) below. O

Instead of assuming that p is uniformly expanding on g’ we consider the following
somewhat more general setup, to accomodate centralizers and compact factors.

Definition 1.6. Let Z be a connected Lie subgroup of GG'. We say that u is uniformly
expanding mod Z if the following hold:

(a) Z is normalized by Gs.

(b) The conjugation action of Gg on Z factors through the action of a compact
subgroup of Aut(Z2).

(c) We have a Gs-invariant direct sum decomposition

g =Lie(Z)a®V,
and g is uniformly expanding on V. (Note that V need not be a subalgebra).
Our result is the following:

Theorem 1.7. Let G’ be a real Lie group, and let TV be a discrete subgroup of G'.
Suppose . is a probability measure on G’ with finite first moment, and suppose there
exists a connected subgroup Z such that p is uniformly expanding mod Z.

Let v be any ergodic p-stationary probability measure on G'/T'. Then one of the
following holds:

(a) There exists a closed subgroup H C G" with dim(H) > 0 and an H-homogeneous
probability measure vy on G'/T” such that the unipotent elements of H act er-
godically on vy, and there exists a finite u-stationary measure A on G'/H such
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that
(1.2) V:/Ggl/od)\(g).

Let H° denote the connected component of H containing the identity. If
dim H® is mazimal then H° and vy are unique up to conjugation of H° and
the obuvious corresponding modification of vy.

(b) The measure v is Gs-invariant and is supported on a finite union of compact
subsets of Z-orbits.

In partucular, if g is uniformly expanding on g’ we may take Z = {e}, and alter-
native (b) says that v is Gg-invariant and finitely supported.
Note that the subgroup H of Theorem 1.7(a) may not be connected.

Definition 1.8. A real-algebraic Lie subgroup L C G’ is called an H-envelope if the
following hold:

(i) L D H and H° is normal in L.
(i) The image of H in L/H" is discrete.
(iii) There exists a representation p’ : G' — GL(W) and a vector v, € W such
that the stabilizer of vy is L.

Suppose H is as in Theorem 1.7. Let Ng/(H) denote the normalizer of H® in G'.
Let py € /\dimH(g’) denote the vector vi A -+ A v, where vq,...v, is a basis of
Lie(H"). Then the stabilizer of py in G’ is an H-envelope. Also, if G’ is an algebraic
group and I" is an arithmetic lattice, the Zariski closure in G’ of T" N Ng/(HY) is an
H-envelope.

The following is an easy consequence of Theorem 1.7:

Theorem 1.9. Let G’ be a real Lie group, and let TV be a discrete subgroup of G'.
Suppose i is a probability measure on G’ with finite first moment. Let v be any ergodic
w-stationary probability measure on G'/T" such that (a) of Theorem 1.7 holds, let H,
Vg, A be as in Theorem 1.7. Suppose L C G’ is an H-envelope. Then

(a) There exists a finite p-stationary measure X\ on G'/L (the image of A under
the natural projection G'/H — G'/L).

(b) Suppose Gs C L. Then either v is supported on finitely many H°-orbits, or
there ezists a vector v € Lie(L) such that

. 1 "
(1.3) fimsup [ 1og (Ad(g)v) A pu| ) (9) < 0.
n—oo N G/
Here, as above, py € /\dimH(g) is the vector vi A --- A v,, where vq,...v, is
a basis of Lie(H?).

Proof of Theorem 1.9. Since the projection G'/H — G'/L commutes with the
left action of G, the image of any p-stationary measure on G'/H is a u-stationary
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measure on G'/L. Thus (a) holds. Now (b) follows by applying Theorem 1.7 to the
random walk (with measure ) on L/H = (L/H®)/(H/H"). O

Remark. Under the assumptions of Theorem 1.9, there exists a representation
G' — GL(W) and a vector v, € W such that the stabilizer of vy is L. Thus, if
L # @', then there exists a p-stationary measure on the vector space W.

Remark. Loosely speaking, the assumption that there exists a finite stationary
measure on GG’ /L means that on average, the random products given by p do not get
very far from L (and thus the random walk on G can be in some sense approximated
by a random process on L).

Remark. The equation (1.3) means that there exists v € Lie(L) such that on average
Ad(g)v does not grow modulo Lie(H). (The component of Ad(g)v in Lie(H) may
grow enough to satisfy uniform expansion).

Example. We now present an example with uniform expansion where the stationary
measure v is not invariant and not homogeneous. Recall that for A € (0,1) the A-
Bernoulli convolution is the measure on R given by the distribution of the random
series Y o7 EA".

Let G' = SL(4,R), I" = SL(4,7Z). Pick two elements 1, 72 € SL(2,7Z) each
with trace greater than 2. Let g; € SL(2,R) be such that g;7;g; * is diagonal. Let

g = (%1 go) € SL(4,R). Let o be supported on the two matrices (each with weight
2
1/2)

4 1 1 1 4 -1 -1 -1
(o 174 0 o0 o 14 0 o
o0 2 o |9 and 9 o o 2 o
0 0 2 1/2 0 0 -2 1/2

It is easy to check that uniform expansion holds.

Let H® = ;; 7 C G. Let D denote the diagonal subgroup of SL(2,R), and

let Ay = (é g) C G'. Let U;; C G’ denote the one-parameter unipotent subgroup
whose only non-diagonal entry is in the ij-entry of G’. Let vy denote the H°-invariant
measure on G'/T” which is supported on H%gI”, let v; denote the Ay Hinvariant
measure on G’ /I" supported on Ay HOgI"”, and let v = fU43 uvy dn(u), where n is the
1/4-Bernoulli convolution measure on Uyz = R. In view of the fact that

10 0 0 1000 10 0 0
01 0 0 01 00| {01 0 o]~
00 2 0 oo10]9% loo 1 of%
00 £2 1/2) \0 0 z 1 00 z/4+1 1
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it is easy to check that v is p-stationary.
In the context of Theorem 1.7, H = (

SL(2,R) *
0  SL,R)
not fail, since any vector in Lie(Usy) satisfies (1.3).

SL(2,R) *

0 SL(2, Z)) C @. In the context of

Theorem 1.9, L = ( ) C G. We have Gs C L. Theorem 1.9 does

1.3. Compact Extensions. To accomodate the proof of Theorem 1.2 we will need
the following somewhat more general setup.

Suppose M’ is a compact Lie group, and suppose we have a homomorphism p :
@ﬁ — M'. Suppose M, is a closed subgroup of M’ and let M = M'/M,. Then éi
acts on M by g-m = p(g)m.

Suppose G is a connected Lie group, and let g denote the Lie algebra of G. Suppose
U @ﬁ x M — G is a cocycle, i.e. 9(g192,m) = ¥(g1, g2 - m)P(g2, m). Now @i acts
on M x G by

(1.4) g (m,g) = (g"-m,J(g',m)g).
Furthermore, we assume that there exists C' > 0 such that for all ¢’ € éﬁ and m € M,
(1.5) 199", m)l| < Cllg'll and [|9(g",m) || < Cll(g") |-

Suppose ' is a discrete subgroup of G. We will be given a probability measure p

on E§ C G’ and will need to understand p-stationary measures v on M x G/T" which
project to the Haar measure on M.

We say that M and ¢ are trivial if G = G', ' = 1", M is a point, and ¥(g, m) = g.
This is the setup for Theorem 1.7. On first reading the reader is urged to think of
this case.

The bounceback condition. In addition to uniform expansion mod Z as in The-
orem 1.7, we will also use the following weaker condition (which in particular allows
for compact factors and many cases where éﬁ is solvable).

Definition 1.10. A probability measure p on G’ satisfies the bounceback condition

if for every compact set K C G’ there exists k € N and C' € R such that for all n € N,
allvegandallg,...,¢g, €suppunNK and all m € M,

Ad(W(d'q, ...q,
G

Note that in this definition, C' may be negative. This can be interpreted as follows:
suppose we pick a vector v € g, and then try to contract it as much as we can for
n steps (by picking ¢/,...,g,). One can presumably make it very short. But then,
if one takes a random word of length kn, it will “bounce back” and become long
again. This means that any vector which can get contracted, gets expanded again on
average.
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Lemma 1.11. Suppose M and ¥ is trivial, and there exists Z C G such that p is
uniformly expanding mod Z. Then, p satisfies the bounceback condition.

Proof. Note that Definition 1.10 does not depend on the choice of the norm on g.
We can thus choose || - || so that if v = vy + vy where v; € V and v, € Lie(Z) we
have [|v]| = ||vi|| + ||v2]|, and || Ad(g)v2|| = ||v2]| for all ¢ € Gs. Then it is clear that
the Lemma holds if v; = 0 (with C' = 0), and furthermore, it is enough to prove the
Lemma assuming v € V. Then we have,

log || Ad(gn s gl)VH Z —nC(K),
vl
and by uniform expansion on V', iterated kn times and applied to the vector Ad(g, ... ¢1)v
we have I Ad( Wl
99n ---91)V kn) () > /
e el ) 2
where C” > 0. Then we can choose k € Z so that kC' > C'(K). O

In fact, we will really use a slightly weaker version of the bounceback condition,
see Lemma 3.9.

1.4. Skew Products. Let S C G’ denote the support of u. We consider the two
sided shift space SZ. For w € 8%, we have w = (...,w_1,wp,wi,...). We write
w = (w,w") where w™ = (...,w_q) is the “past”, and w™ = (wp,ws,...) is the
“future”. Let T : S — S” denote the left shift (Tw); = w;.; (which we are thinking
of as “taking one step into the future”). We also use the letter T" to denote the “skew
product” map 8% x M — S% x M given by

(1.6) T(w,m) = (Tw,wpy - m).
We also have the skew product map T:82xMxG—8ExMxG given by

~

(1.7) T(w,m,g) = (Tw,wy - m, I (wy, m)g), where w = (..., wp,...).
For z = (w,m) € 8% x M, let
(1.8) T = (w1 ...wo,m).

We can view T as a skew-product over the map T : S x M — S%* x M. Then, for
n€Nand z = (w,m) € S x M,

T"(x,g) = (T"z, T"g).
We will often consider 7" to be a map from S% x (M x G/T) to 8% x (M x G/T).

Measures on skew-products. Suppose we are given an ergodic p-stationary mea-
sure v on M x G/T. As in [BQ1], for w = (..., w_1,wp, w1, ... ), let

V- = lim w_1...w_, V.
n—oo
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Here the action of Gs on M x G/T"is as in (1.4). The fact that the limit exists follows
from the Martingale convergence theorem. Then v, is a measure on M x G/T".

Basic Fact: Given a p-stationary measure v on M x G/T", we get a T-invariant
measure 7 on SZ x M x G/T" given by

(1.9) do(w™,w*, gT) = dp®(w™, ") dvy-(m, gT)

It is important that the measure 7 defined in (1.9) is a product of a measure
depending on (w~,m,¢I") and a measure depending on w*. (If instead of the two-
sided shift space we use the one-sided shift GY x (M x G/TI'), then p% x v would be

an invariant measure for 7'.)

Proposition 1.12. If v is an ergodic stationary measure on M x G/I', then the
T-invariant measure v is T-ergodic.

Proof. This follows from [Kif, Lemma I.2.4, Theorem 1.2.1] O

The “group” U;". We would like to express the fact that for w = (w™,w") the
conditional measures of » along the fiber {w} x M x G do not depend on the w™
coordinate, as invariance under the action of a group. The group will be a bit artificial.

Let P(S) denote the permutation group on S, i.e. the set of bijections from S to
S. We do not put a topology on P(S). Let

U = P(S) x P(S) x P(S)...

S
u = (00,0'1,...7071,...)
The way u = (0¢,01,...,0,,...) €U acts on SZ is given by
U (o Wy, W, W Wy e - ) = (s Wy e Wy, 00(wo), 01 (W1e),y .- )

We then extend the action of U;" to SZ x M and 8% x M x G by:
u- (w,m) = (uw,m), u - (w,m, g) = (uw,m, g).

(Thus U;" acts by “changing the combinatorial future”. U;" fixes w™, m and g and
changes w'.) We do not attempt to define a topology or a Haar measure on U;", as
it is a formal construction. X

We now refer to (1.9) as the U, -invariance property of v. In fact T-invariant
measures on the skew-product which come from stationary measures are exactly the
T-invariant measures which are also have the U, -invariance property.

We have a similar group ¢, which is changing the past. However, in general ©
does not have the U; -invariance property.
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Stable and unstable manifolds. For » = (w,m) € 8% x M, let
Wz] = {(w,m) €S x M : m =m and for n € N sufficiently large, v/, = w,}.
Then W~ [z] consists of sequences y which eventually agree with . We call W~ [z]
the “stable leaf through x”. We also have the subset

Wiz = {(W,m)eS*xM : m'=mand (V)" =w"} Cc W [z].
Similarly, we define
WHz] = {(w,m') € S“xM : m' =m and for n € N sufficiently large, ', = w_,},
and we also have the subset

Wizl = {(w',m) e SEx M : (W) =w"} C Wz].

For x = (w,m) € 8% x M, we define 27 = (w™,m) and = = (w™,m). Then W, [z]
depends only on 2~ and Wy [z] depends only on x*.

Let dg(-,-) be a right invariant Riemannian metric on G. For 2 = (z,g) € (8% x
M) x G, let

Wi ={(y.9) € (S*x M)x G : yeW[z], limsup —logdG(T”g,T”g’) < 0}.
n—0o0

Thus, W’[fc] consists of the ‘points 7 which have the same combinatorial future as z

and such that at n — oo, T3 and T "y converge exponentially fast. Similarly, we

have a subset

Wit[2] = {(y.¢) € (S*XM)xG : y e Wi[z], limsup— logdG(T ng, T-"g') < 0},

n—oo
consisting of the points y which have the same combinatorlal past as & and such that
at n — oo, T~ "z and T~ "y converge exponentially fast.
We will show below that that for almost all x € S% x M there exist unipotent
subgroups N*(z) and N~ (z) so that N*(z) = N*(z7), N~ (x) = N~ (z") and
Wi (o )] = Wit el x N* (2.

and

(110) Wf[(l‘,g)] = Wli[x] X Nﬁ('%’)ga
Thus,
n* is arbitrary, h € N*(w™,m)g}.

and

A

Wrlw™ wh gl ={(n"n"h) = n"=w",
n~ is arbitrary, h € N~ (w",m)g}.
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The two cases. Note that " acts on Wi [(z, g)]. Since & has the U; -invariance
property (i.e. (1.9) holds), for almost all (z, g), the conditional measure ﬁ|W1+[(m79)] is

the product of the Bernoulli measure p on W;[x] 22 §[0°°) and an unknown measure

on NT(x)g. However, we have no such information on the conditional measures
’9|W;[(az - We distinguish two cases:

e Case I: Not Case II.
e Case II: For almost all (z, g) € 8% x M x G, the conditional measure ﬁ|W1_[(z,g)]

is supported on a single U~ orbit.

Our proof breaks up into the following statements:

Theorem 1.13. Suppose u is a probability measure on G’ with finite first moment
and satisfying the bounceback condition Definition 1.10. Let M and 9 be as in §1.5.
Suppose v is an ergodic p-stationary measure on M x G /T" which projects to the Haar
measure on M, and suppose Case I holds. Then

(a) There ezists a Lie subgroup H C G with dim H > 0, an H-homogeneous
probability measure vy on G/I' such that the unipotent elements of H act
ergodically on vy, and there exists a finite p-stationary measure X on M x G/ H
such that

(1.11) v = \x* 1y,

where for a measure A on M x G/H and an H-invariant measure vy on G/T,
the measure A * vy on M x G/T" is defined by

(s w)(f) = /M y /G £(m. 9g'T) d\(m, g) du(g'T)

(b) Let H® denote the connected component of H containing the identity. If
dim H° is mazimal then H° and vy are unique up to conjugation of H° and
the obuvious corresponding modification of vy.

(In fact, the bounceback condition in Theorem 1.13 can be replaced by a weaker
assumption, see Remark 3.10).

Theorem 1.14. Suppose p is a probability measure on G’ with finite first moment,
M and 9 are as in §1.3, v is an ergodic p-stationary measure on M x G/I' which
projects to the Haar measure on M, and suppose Case II holds.

(a) Let v be as in (1.9). Then, v is Gs invariant, where the action of G' on
M x G/T is as in (1.4). Furthermore, v = u% x v is the product of the
Bernoulli measure p” on 8% and the measure v on M x G/T.

(b) Suppose M and 9 are trivial, and there exists a connected subgroup Z C G
such that p satisfies uniform expansion mod Z (see Definition 1.6). Then v
18 supported on a finite union of compact subsets of Z orbits.
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Clearly Theorem 1.7 follows from Lemma 1.11, Theorem 1.13 and Theorem 1.14.
We will prove Theorem 1.13 in §2-§10, and we will prove Theorem 1.14 in §11. Finally,
Theorem 1.2 will be derived from Theorem 1.13 and Theorem 1.14 in §12.

1.5. Outline of the proofs, and discussion of related results. Our proof of
Theorem 1.14 (duplicated in a simpler setting in [EsL]) is new, and relies on a con-
struction of a Margulis function, see §11.

Our proof of Theorem 1.13 follows roughly the same outline as the beginning of
[EMi]. A simpler version of the argument has been presented in [EsL]. Also, for
simplicity we assume in this subsection that M and ¥ is trivial, so G = G, I' =T".

Suppose the following hold:

(A1) For almost all z € SZ, there exists a nilpotent subalgebra E(z) of g such that
with probability tending to 1, “any two points diverge along E(z), i.e. on the
Lie algebra level, for any vector v € g, for almost all x € SZ,

: (T7)wv )

lim d (x—,E(T”a:) = 0.

novoe - \ (1)l

(A2) There exists a cocycle X : 8% x Z — R such that for all v € E(z),
I(T) vl = Xolv].

(In general, the norm used in (A2) on E(x) depends on z.)

In the setting of [EsL] (i.e. Gs is Zariski dense in a simple Lie group G), (A1) and
(A2) hold, with E(x) = Lie(N;)(x) where N;(x) is the subgroup corresponding to the
top Lyapunov exponent A; of the random walk, i.e.

1
Lie(Ny)(z) ={veg : ngrinoo—log

(A2) holds since in the case Gs is Zariski dense in a simple Lie group G, the action
on Lie(Ny)(z) is conformal, so we can let the R-valued cocycle A(z,n) = A(x,n)
measure the growth of all vectors in Lie(Vy)(x).

The proof in the setting of [EsL] has been outlined in [EsL, §1.2]. We reproduce
it here for completeness. The assumption of Case I implies that we can find points
G = (q,9) and ¢ = (¢’,¢') in the support of v, with ¢’ € VV{ [¢] and g # ¢'. (Since
¢ € Wy [q] we must have ¢+ = (¢')*, but ¢~ need not be equal to (¢')~). Furthermore,
we can find such ¢ in a set of large measure, and also choose ¢’ so that dg(g,¢') =~ 1.

(In the rest of the outline, we use a suspension flow construction which will allow
us to make sense of expressions like Tt where t € R. This construction is defined in
the beginning of §2.)

We now choose an arbitrary large parameter ¢ € R*, and let ¢; = thj, g = T tq'.
Since ¢’ € Wi [q], d(1.d,) is exponentially small in ¢.

Suppose u € U;". For most choices of u, ug, and ug} are no longer in the same stable
for T, and thus we expect Ttucjl and Ttucﬁ to diverge as t — co. Fix 0 < e < 1 and
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qzo ° 2 qs3 ég

~

q
Figure 1. Outline of the proof of Theorem 1.13

choose t so that ¢ = T'udy and ¢, = T'ug, satisfy d(qo,d,) ~ €. Write G = (ga, g2),
& = (43, 93).

By (A1), for a.e. z € S for most choices of u, ¢, and ¢, ‘diverge essentially along
Ny, i.e. g} is very close to Nq(g2)g2, with the distance tending to 0 as ¢ — oc.

Let the cocycle Ai(-,-) be as in (A2). Now choose t; > 0 such that A\(q1,t;) =
A (ugy,t), and let Gs = T% Gy, @ = T"¢,. Then 3 and @ are even closer than §; and
a1

1 The rest of the setup follows Benoist-Quint [BQ1] (which only uses the “top half”

of Figure 1). For # = (z,g9) € , let f,(2) denote the conditional measure (or more
precisely the leafwise measure in the sense of [EiL2]) of © along {z} x N;(z)g. These
measures are only defined up to normalization. Then, since v is T-invariant and
U, -invariant and since A (qi,t1) = A (uqi,t), we have,

fi(@2) = f1(gs)-
Also, since one can show Aj(uq),t) = A\(q},t1) we have,
f1(G3) = f1(d5)-

Since ¢3 and @5 are very close, we can ensure that, fi(¢;) =~ f1(gs). Then, we get, up
to normalization,

f1(@2) = f1(Gy)-
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Applying the argument with a sequence of £’s going to infinity, and passing to a limit
along a subsequence, we obtain points ¢o = (2, g2) and ¢, = (z, g5) with g, € N1(z)go,
dc (g2, §y) ~ € and, up to normalization, f1(g) = f1(g). Thus, fi(g2) is invariant by a
translation of size approximately e. By repeating this argument with a sequence of €’s
converging to 0, we show that for almost all = (z,g) € S* x G/T', f1(2) is invariant
under arbitrarily small translations, which implies that there exists a connected non-
trivial unipotent subgroup U,., (Z) C Ni(x) so that v is “U,-invariant” or more
precisely, for almost all &, the conditional measure of 7 along {z} x U,", (%) is Haar.
The rest of the argument follows closely [BQ1, §8].

To make this scheme work, we need to make sure that all eight points ¢,q’, q,
dvs G2, G5, G3, G5, are in some “good subset” K, C Q) of almost full measure. (For
instance we want the function f; to be uniformly continuous on Kj). Showing that
this is possible is the heart of the proof. Our strategy for accomplishing this goal
is substantially different from that of Benoist-Quint in [BQ1], where a time changed
Martingale Convergence argument was used, and from that of Benoist-Quint in [BQ2],
where a Local Limit Theorem (proved in [BQ3]) is used. Our strategy is outlined
further in §10.1. This completes the outline of the proof of [EsL].

More generally, it is possible that (A1) and (A2) hold even if the Zariski closure of
(s is not semisimple; this is the situation in the case considered in Simmons-Weiss
[SW]. However, even if the Zariski closure of G is semisimple, (A2) fails in general.
For example, suppose the Zariski closure of G is G1 x G5 where GG; and G4 are simple.
Then, we have E(z) = V' (z) @ VE2(x), where V¥ (x) is the subspace corresponding
to the top Lyapunov exponent in Lie(G;). Then (A2) as stated fails, since vectors in
V& () and V&2 (z) grow at different rates under a typical z € SZ.

In fact, if the Zariski closure of G's is semisimple, then (A1) and (A2)" hold, where

(A2) E(z) = @], Ei(x) is a T-equivariant splitting, and for each 1 < i < n there
exists a cocycle \; : S% x Z — R such that for all v € E;,

I(T)v]| = e v,

At first glance, it seems that one can follow the above outline (i.e. that of of [EsL,
§1.5]), with ¢; replaced by some t;, 1 < i < n, and §3 replaced by some the §3; (see
Figure 3, where for reasons which will become clear later, we write ¢;; instead of ¢;
and g3 ;; instead of g3 ;). However, there is a difficulty, since if one follows the outline,
when one writes

(1.12) Gy = (42, 95) 4o = (a2,92) g = exp(V)go,

one get v close to @, E;(¢2) but in order to proceed with the arguments involving
the conditional measures, one needs v close to |J;_, E;(¢2). Thus, a “tie-breaking”
process is needed, i.e. one has to prove that if one changes u while keeping ¢, ¢’, and
¢ fixed, one can (for some fixed fraction of v make the vector v in (1.12) approach
Ui, Ei(G2). This tie-breaking process is done in §6. It is quite lengthy, and requires
a lot of infrastructure, developed in §2-85.
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The case where the Zariski closure of G is semisimple has been previously han-
dled in [BQ2], using the local limit theorem proved in [BQ3]. This paper gives an
alternative proof of the main result of [BQ2]. Another potential approach to the
case where (A1) and (A2)" hold is the “floating” variant of the method of [BQ1],
used in [EMi, §16] and in the setting of smooth dynamics on surfaces in Brown-
Rodriguez-Hertz[B-RH]. We do not pursue this approach here, since it fails in most
non-semisimple cases.

In the non-semisimple case, there might not be an analogue of (A2) or (A2)" at all.
For example, consider the random walk on SL(3,R)/SL(3,Z) generated by the two
matrices

2 1 1 2 -1 -1
(1.13) 02 1 and 0o 2 -1,
0 0 (1/4) 0 0 (1/4)

where each matrix has weight 1/2. In this example (A1) holds with E(x) not de-
0 0 =

pending on z and equal to [ O 0 x |. However, the action of the cocycle on E has
0 00

a nilpotent part, and not all vectors in E grow at the same rate. This causes all the

methods based on a time-changed martingale convergence theorem as in [BQ1] to fail,

since one can not define a time change with the needed properties.

The main technical advantage of the method presented in this paper is that it
can handle cases where (A2)’ fails (but uniform expansion holds). For instance, the
example given by (1.13) is covered by Theorem 1.7. This is done by taking more care
during the “tie-breaking” procedure: we show that by changing u (and keeping g,
¢, and ¢ fixed) one can make the vector v in (1.12) approach one of finitely many
subspaces (called E;j)pqq in §6), each of which satisfies (up to a bounded amount)
some analogue of (A2). See Proposition 6.2 for an exact statement.

In the setting of Teichmiiller dynamics, the need to handle non block-conformal
situations analogous to (1.13) is the main difficulty in [EMi]. Ironically, it is proved
near the end of [EMi| (see also [EMat]) that such cases do not actually occur in
Teichmiiller dynamics, even though they can not be ruled out a-priori. In the homo-
geneous dynamics setting, non block-conformal situations like (1.13) are ubiquitous.

Finally, the setting in Sargent-Shapira [SS] is not covered by our setup, since it
does not satisfy uniform exansion (or even uniform exansion mod Z, for any 7).

Acknowledgements. This work was motivated by the work of Miryam Mirzakhani
and the first named author on classification of SL(2, R)-invariant measures on moduli
spaces [EMi], in an attempt to see how the ingredients in that paper which were
motivated by work in homogeneous dynamics can be used back in the homogenous
dynamics context. Unfortunately Maryam passed away while we where working on
this project and we dedicate this paper to her memory. Both of us have been greatly
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fortune to have been able to collaborate with Maryam, and cherish the memory of
working with her, with her sharpness of wit, her inspiration and her kindness.

The authors are very grateful to Ping Ngai Chung for his careful reading of the
paper, and helpful comments.

2. GENERAL COCYCLE LEMMAS

2.1. Setup and notation. Let ) = (SZx M) x [0, 1]. Let T* denote the suspension
flow on on €, i.e. T" is obtained as a quotient of the flow (z,s) — (z,t + s) on
(8% x M) x R by the equivalence relation (z,s+ 1) ~ (T'z, s), where T is as in (1.6).

Measures on (). Let m denote the Haar measure on M. Let the measure i on {2
be the product of the measure p” x m on 8% x M and the Lebesgue measure on [0, 1].

Let EBP C S% denote the set of sequences which are “eventually backwards peri-
odic”, i.e. w € EBP if an only if there exists n > 0 and s > 0 such that w;;; = w
for j < —n. Let Qup = EBP x M x [0,1) C Q. Since pu*(EBP) = 0, we have
[i(82erp) = 0.

Suppose x € 5. We will often denote the conditional measure measure u|W+ by
|- |. Under the identification between W, [z] and SI%*®), | - | becomes uN.

Cocycles and skew-products. For # € S x M and n € N, let 7" € G be as in
(1.8). We also set T, = (T2)~1, so that for n € Z, T"(z, g) = (T"x, T!*g). We then
define

T =T", where n is the greatest integer smaller than or equal to ¢.
We define QO =y X G. We then have a skew-product flow Tt on g, defined by
T'(z,g) = (T'z, Tlg).

Also T acts on € on the right (by rlght multiplication on the second factor). We also

use T to denote the induced map on € /T'. We have an action on the trivial bundle
Qp X g given by

Tt(x7v) = (Ttx7 (T;)*V)
We will also consider a certain finite set X and a lift of the flow T tto Q= x X,
and of the flow T" to 2 = Qy x ¥ x G/T. These will be defined in §2.3.

Lyapunov exponents. We fix some norm || - || on g, and apply the Osceledets
multiplicative ergodic theorem to the cocycle (T%),. Let ); denote the i-th Lyapunov
exponent of this cocycle. We always number the exponents so that

AL> Ay > > A,
Let
(2.1) {0} =Voo(z) C V() C - CVeu(z) =9
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denote the backward flag, and let
{0} =Vonsi(@) CVon(z) C--- CVai(z) =g

denote the forward flag. This means that for almost all = € Q and for v € V<;(z)
such that v & V<, (x),

¢
(2.2) lim 1log I(Tz)-vlo =\,
t>=oc0 1vllo
and for v € Vs;(x) such that v ¢ V>i+1( ),
[(T2)+v]lo
2.3 lim —10 — =\,
29 BLTY5
It follows from (2.2) that for y € W, [z], we have
(2.4) V<i(y) = Veila).
Similarly, for y € Wy [z],
(2.5) Vaily) = Vsi(x).
By e.g. [GM, Lemma 1.5, we have for a.e. x € Q,
Let

Then, in view of (2.6), for almost all =, we have

Vei(z) = P V(e V() = P V(e

1<t j<t
Voi(z) = P Vilx Vai(z) = PVila
j>t >t

We have v € Vj(z) if and only if

TY),
lim — log w = \.
|| o0 t Iv]o
The Lyapunov exponents \; and the Lyapunov subspaces V;(z) do not depend on
the choice of the norm || - ||o.

It it easy to see that the subspaces
GB V;(z) and @ V()
A;>0 A;<0

are both nilpotent subalgebras of g. We thus define the unipotent subgroups N*(z)
and N~ (x) of G by

Lie(N*)(z) = P Vj(= Lie(N =PV

A;>0 ;<0
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There are the subgroups which appeared in §1.4.

2.2. Equivariant measurable flat connections. The maps P*(z,y) and P~ (z,y).
For almost all z € Q and almost all y € Wi"[z], any vector v € V;(x) can be written
uniquely as

v=v'+v" Vv eV(y), v'eVyy).
Let P (x,y) : Vi(z) — Vi(y) be the linear map sending v to v/. Let Pt (z,y) : g — g
be the unique linear map which restricts to P;"(z,y) on each of the subspaces V;(z).
(We think of the domain of P*(x,y) as the tangent space TG and of the co-domain
of P*(z,y) as T,G). We call P*(xz,y) the “parallel transport” from z to y. The
following is immediate from the definition:

Lemma 2.1. Suppose x,y € Wi [z]. Then
(a) P*(z,y)Vi(z) = Vi(y).
(b) PH(T"z, T) = (T;)s 0 P (z,y) o (T,7)..
(c) PH(x,y)V<i(z) = V<ily) = V<i(z). Thus, the map Pt(z,y) : g — g is
unipotent.
(d) P™(z,2) = P¥(y,2) o P¥(x,y).
If y € Wi [z], then we can define a similar map which we denote by P~ (z,y).

Recall that || - ||o denotes some fixed norm on g.

Lemma 2.2. There exists a > 0 depending only on the Lyapunov spectrum, and for
every § > 0 there exists a subset K C Q with ji(K) >1—9 and a constant C'(§) > 0
such that for allx € K, ally € W [z] N K, and all t > 0,
P~ (T'x, T'y)v —
(27) sup || ( Z, y)V VHO
veg—{0} [vllo

< O(6)e o,

Proof. Pick ¢ > 0 smaller than 3 min;.; |A; — A;|. By the Osceledets multiplicative
ergodic theorem, [KH, Theorem S.2.9 (2)] for ji-a.e. x € Q,

1 : - -
tlgélo . log | sin 4(@ Vi(T "), @Vj(T )| = 0.
ies jgs

Therefore, there exists Ky C Q with a(K;) > 1 —9/2 and o9 = 00(d) > 0 such that
for z € K3, and any subset S of the Lyapunov exponents and any ¢ > 0,

(2.8) do(@PVi(T'z), P V;(T'2)) > goe "

ies jgs
(Here dy(-,-) is a distance on g derived from the norm || - ||p.) Then, (letting ¢ = 0 in

(2.8)), for all z € Ky, all y € W [z] N K, and all w € g,
(2.9) 1P~ (z,y)wllo < CO)[[wllo-
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By the multiplicative ergodic theorem, there exists Ky C Q with a(Ky) > 1 —§/2
and p = p(d) > 0 such that for z € Ky, any i, any ¢t > 0 and any w; € V;(z),
(2.10) pe N lwillo < (Th)ewillo < p~ ' e [wilo.

Now let K = K1 N K5, and suppose x € K, y € K. Let v be such that the supremum
in (2.7) is attained at v. By (2.8) we may assume without loss of generality that
v € V;(T"x) for some i. Let w € V;(x) be such that (T%).w = v. By (2.10),

(2.11) [vllo = pe=9|lwlo.
Note that
P (T'x, T'y)v = (T,).P (z,y)w.

Yy
Note that since y € Wi [2] and t > 0, (T}). = (T,)«. By the definition of P~ (x,y) we
have

P_(:v7y)vv:w+2wj, w; € Vj(x).
j>i
Thus,
(2.12) P (T'x, T'y)v — v = Z(Té)*wj.
>
By (2.9), for all j > i,
[w;llo < C1(8)[|wllo,

and then, by (2.10),

I(T2)ewjllo < p~ e lwjllo < Cr(8)p~ e lw]o,
Now, from (2.12) and (2.11),

1P~ (T2, Thy)v = vl < D Ci(6)p N2 v |,

>

which immediately implies (2.7) since \; < A; for j > 1. O

2.3. The Jordan Canonical Form of a cocycle. Recall that the Lyapunov expo-
nents of T* are denoted \;, 1 < i < n.

Zimmer’s Amenable reduction. The following is a general fact about linear
cocycles over an action of R or Z. It is a special case of what is often called Zimmer’s
Amenable Reduction Theorem, see [Zil].

Lemma 2.3. There exists a finite set ¥ and an extension of the flow T to Q = Qyx X
such that the following holds: For each i, for almost all x € 2, there there exists an
imvariant flag

(213) {0} = V@()(ZL‘) C Vijl(l‘) c---C V17nl<l’) = Vz(l’),



RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES 19

and on each V;;(x)/V; j—1(x) there exists a nondegenerate quadratic form (-,-);j. and
a cocycle Nij : Q@ X R — R such that for all u,v € V;;(x)/Vij-1(x),

(T, (T")uv)ijra = €95 (0, V)50
Remark. The statement of Lemma 2.3 is the assertion that on the “finite cover”

Q) = Qy x X of Qy one can make a change of basis at each x € € so that in the new
basis, the matrix of the cocycle restricted to V; is of the form

Oi71 * e *
0 Ci:Q e *
(2.14) o ,
. . . *
0 0 ... Cin,

where each C; ; is a conformal matrix (i.e. is the composition of an orthogonal matrix
and a scaling factor \;;).

Proof of Lemma 2.3. See [ACO]. Recall that a cocycle is block-conformal if in
a suitable basis it can be written in the form (2.14) with all the off-diagonal entries
labeled * in (2.14) 0, and in addition, the cocycle is allowed to permute the blocks.
The statement of Lemma 2.3 differs slightly from that of [ACO, Theorem 5.6] in that
we want the cocycle in each block to be conformal (and not just block-conformal).
However, our statement is in fact equivalent because we are willing to replace the
original space €y by Q2 = Qg x X. O

Lifting 1 to Q and 7 to Q/F. Let the measure fi on €2 denote the product of the
measure [i on {2y and the counting measure on X. Without loss of generality, we may
assume that [ is Tt—ergodic on  (or else we can make ¥ smaller). Similarly, let the
measure 2 on ) /T denote the product of the measure © on Qo /T" and the counting
measure on Y. Then, U is T-ergodic in view of Proposition 1.12.

2.4. Covariantly constant subspaces.

Lemma 2.4. Suppose M(-) C g is a T'-equivariant subbundle of the trivial bundle
Q2 x g over the base Q. Suppose also for a.e v € Q, Vi(x) € M(x) € V<i(x). Then,
(up to a set of measure 0), M(z) depends only on x~, and is thus constant along sets

of the form Wi [z].

Proof of Lemma 2.4. Note that the quotient bundle V<;(x)/V;(z) is constant
along W*[z] and has a single Lyapunov exponent. Now the result follows immediately
from [L, Theorem 1]. O

Lemma 2.5. Suppose M(-) C g is a T*-equivariant subbundle over the base Q. Then,
(up to a set of measure 0), fory € Wtz], M(y) = P*(z,y)M(z).
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Proof. Since M(+) is T'-equivariant, we have, for a.e. z € Q,

M(z) = @ M;(x) where M;(z) = M(z) NV;(x).

Let M;(z) = V(z) + M;(x). Then, Vo(z) € M;(x) C V<i(z), and thus by
Lemma 2.4, M;(y) = M;(x) for almost all y € W*[z]. Suppose v € M;(z), and
write v = v/ + v” where v/ € Vi(y) and v’ € V(y) = Vi(z). Since v € M;(x)
and M;(y) = M;(z), v. € M;(y). Since M;(y) D V.i(y), this implies that v/ €
M;(y) N Vi(y) = M;(y). But, by the definition of P*(x,y), P*(z,y)v = v'. Hence,

M;(y) = P*(x,y)M;(x), and therefore M(y) = P (xz,y)M(z). O
Lemma 2.6. Suppose x € Q and y € Wt[x]. Then, (outside of a set of measure 0),
we have

(215) <'a '>ij,x = C(Ia y)<a ‘>7;j7y

where (-, -)ij i the inner product on V; ;(x)/V; j-1(x) of Lemma 2.3, and c(x,y) €
R*. In other words, the inner products (-, -):; » are, up to a scaling factor, independent
of zT.

Proof. By Lemma 2.4 the V;;(y) are independent of y for y € W[z]. Let K C
denote a compact subset with ji(/) > 0.9 where the function x — (-, -);;, is uniformly
continuous. Consider the points T'x and Ty, as t — —oo. Then, d(T"z, T'y) — 0.
Suppose V,W € V,-j(x)/Vm,l(x) = Vij(y)/Vi,j,l(y). Let

v, = e Mu(®h) (TH,v, w;= e Nii (:t) (TH,.w,
where \;;(z,t) is as in Lemma 2.3. Then, by Lemma 2.3, we have
(2.16) (Vi, Wt>z‘j,Ttx = <V7W>ij,a:> <Vt7Wt>ij,Tty = c(z,y,t) <V7W>ij,y-

where c(z,y,t) = M@ =i W),

Now take a sequence t;, — —oo with Tz € K, T'y € K (such a sequence exists
for fi-a.e. x and y with y € WT[x]). After passing to a further subsequence, we may
assume that as t, — —oo, c(z,y,tr) — c¢(x,y), where ¢(x,y) € RT U {oo}. Also,

<VtkaWtk>z‘j,T%a: - <Vtk7 Wtk>ij7Ttky — 0.

Now the equation (2.15) follows from (2.16). Since both the inner products in (2.15)
are non-degenerate, we have that outside of a set of measure 0, ¢(x,y) is neither 0
nor oo. 0

The function =(z). For z € Q, let

=*(2) = maxswp { (v, V)if% ¢ v € Vi) Viga @), Ivllo = 1},
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and let
= (2) = mininf { (v, V)2, © v € Vy(@)/Viga(a), IVlo=1}.

ij 15,27
Let
E(r) = E"(2)/E" (2).

We have Z(z) > 1 for all z € Q. For z € €, we define Z(x) to be the maximum of
= over all the preimages of x under the projection €2 — €.

Distance between subspaces. For a subspace V of g, let SV denote the inter-

section of V' with the unit ball in the || - || norm. For subspaces V;, Vs of g, we
define

(2.17) do(V1, V) = The Hausdorff distance between SV; and SV,
measured with respect to the distance induced from the norm || - ||o.

Lemma 2.7. Fiz € > 0 sufficiently small depending on the dimension and on the
Lyapunov exponents. There exists a compact subset C C Q with i(C) > 0 and a
function Ty : C — NU {oo} with Ty(c) < oo for fi-a.e. ¢ € C such that the following
hold:

(a) There exists og > 0 such that for all ¢ € C, and any subset S of the Lyapunov
exponents,

do(EDVile), P V;(0) = 0.
€S j€Ss
(b) There exists M' > 1 such that for all c € C, Z(c) < M'.
(c) Forallc € C, forallt > Ty(c) and for any subset S of the Lyapunov spectrum,

(2.18) do(@P VAT o), P V(T ) > e,
i€s j¢S
where k is a constant depending only on the dimension. The constant k is

chosen so that (2.18) implies that for all ¢ € C and all t > Ty(c) and all
d € CNWi[g_ic], we have that

[P (T e, )vllo

|PT(T "¢, )|l = sup

VA0 vl
satisfies
(2.19) pre” <[ PH(T e, )]0 < py e
(d) There exists p > 0 such that for all ¢ € C, for all t > Ty(c), for all i and all
v e Vi(c),

pe—(/\i-i-e)tHVHO < H(Tc_t)*VHO < p—le—(/\i—e)t||vHo.
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Proof. Parts (a) and (b) hold since the inverse of the angle between Lyapunov
subspaces and the ratio of the norms are finite a.e., therefore bounded on a set
of almost full measure. Part (c) was already established as part of the proof of
Lemma 2.2, see (2.8). Also, (d) follows immediately from the multiplicative ergodic
theorem. U

2.5. A Markov Partition.

Proposition 2.8. Suppose C C Q) is a set with i(C) > 0, and Ty : C — RT is a
measurable function which is finite a.e. Then we can find o € Q, a subset C; C
Wi [zo] N C and for each ¢ € Cy a subset B*[c] C W, [c] depending measurably on c,
and a number t(c) > 0 such that if we let

= |J 7'BY[
0<t<t(c)
then the following holds:
(a) BT[c] is relatively open in Wi[c|, and fily+(g(B*[c]) > 0.
(b) J.NJs =0 ifc#C.
(¢) Ueee, Je is conull in Q.

)
)
(d) For every c € Cy there exists ¢ € Cy such that T~") B*[c] ¢ B*[¢].
(e) t(c) > To(c) for all c € C;.

Proof. This proof is essentially identical to the proof of [MaT, Lemma 9.1], except
that we need to take care that (e) is satisfied.
We choose a metric d(-,-) on Q so that for all ¢ € Q and all x € W;"[c],

1
d(Tz,Tc) < Ed(x, c).

For a > 0 and ¢ € Q, let V."[c] denote the intersection of W;"[¢] and the open ball of
radius c.

Lemma 2.9. Let C C Q be such that i(C) > 0, and let Ty : C — R™ is a measurable
function which is finite a.e. Then there exists a > 0, xg € C and C; C W [x] NC
such that the following hold:

(8) Al 5 (C1) > 0.

(b) For all c € Cy, every neighborhood of ¢ in Wi [c] has positive il v+ measure.
(c) For anye >0, i (UMQT Ueee, Vatle ]) > 0, where ay = a/10.

(d) For all v € J,ee, Vo'l and all 0 <t <Ti(c), T'x & U,.ce, Vo' lc]-

ceCy

Proof. Choose Ty > 0 so that if we let C; = {z € C : Ti(x) < 3T — 1} then
fi(Ce) > 0. Let C3 C Cy be such that fi(C3) > 0 and for ¢ € Cs, every neighborhood
of ¢ in Wi[c] has positive il v+ measure. Let p/ be the restriction of y to C5. By



RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES 23

Lusin’s theorem, we can choose C; C Cs with y/(C4) > 0 such that the conditional
measure j’ ’Wf (g depends continuously on ¢ as ¢ varies over Cj.

Let Qe C 2 denote the set of periodic orbits of T*. Since Qe C Qe and
f(Qepp) = 0 (see §2.1) we can find z € C4 such that zy & €2.,, for every neighborhood
V' of xg, i(V' N Cy) > 0, and also every neighborhood of zy in Wy [z¢] has positive
1|y = [ meBSUTE.

Since x is not periodic and x — T'z is continuous, we can find a neighborhood
V'~ of xp in Wy [x0] and @ > 0 such that for any z € U o - Vi [, T' & U, cr- Vi [c]
for 0 <t <Tj.

Now let C; = V™ NCy. Then (a), (b) and (d) follow by construction. Let Ey be the
set in (c). We will show that p/(Ey) = i(Eo NCs) > 0. To do that we disintegrate p’
along the partition whose atoms are of the form W [z]. Let Y denote the quotient
space, and g4 the quotient measure. Let Cy C Y denote the image of C, under the
quotient map. Then,

o (En) = /Y Wl (Bo VW [6]) iy (0) > / Wl (Bo OV W [6]) iy (2).

Let Zo € Y denote the image of x5 under the quotient map. Then the intersection with
C, of every neighborhood of Z; € Y has positive j4-measure (or else the intersection
with C4 of some neighborhood of zy would have 0 p/-measure). Also since Ej is a
product set, 1’|y (EoNWy [Zo]) > 0 and 1/'[yy— (EoNW7 [c]) depends continuously
on ¢ € Cy, we have 1t/ 4(Eo N Wy []) > 0 for all ¢ in the intersection with C4 with
some neighborhood of zy. Therefore p/(Ey) > 0. O

We now fix a, ap = a/10 and C; as in Lemma 2.9. Recall that V '[c] is the
intersection with W |c] of a ball in the d(-,-) metric of radius a and centered at c.
Most of the proof of Proposition 2.8 consists of the following:

Lemma 2.10. (¢f. [MaT, Lemma 9.1]) For each ¢ € Cy there exists a subset B [c] C
W[e| such that

(1) Viglel € BT[] C V,r[e].
(2) BT|c] is open in Wi [c], and for any € > 0 the subset E = |J ., BT|c] satisfies

i (U T'E) > 0.
(3) Whenever

T"BT[c]NnE #0, ceC, n >0,
we have T~"BT[c] C E.

Proof. Let BO[c] =V, [c], and for j > 0 let
BY[c] = BU V[ u{T™V, ] : ¢ €Cin>0and TV, [¢]NBY V] #0}.
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tlel = U BY[¢], and F = U Bt

>0 c€Cy

Let

It easily follows from the above definition that property (3) holds, BT[c| is open in
Wi le] and that Bt[c] D V,F[c]. Now (2) follows from Lemma 2.9(c). It remains to

show that B¥[c] C V,[¢]. Tt is enough to show that for each j,
(2.20) d(z,c) < a/2, forall x € BY[d.

This is done by induction on j. The case j = 0 holds since a9y = a/10 < a/2.
Suppose (2.20) holds for j — 1, and suppose x € BYW[c] \ BU=V[¢]. Then there exist

cop = ¢, c1,...,¢; = x in €y and non-negative integers ng = 0,...,n; such that for all
1<k <n,
(2.21) T (Vi feal) N T~ (Vi ) # 0.

Let 1 < k < j be such that ny is minimal. Recall that V' [y] NV [z] = 0 if y # 2,
y € Cq1, z € C;. Therefore, in view of the inductive assumption, ny > 1. Applying
T™ to (2.21) we get

(UT—WW )mt[ckw, and (U T ])mvauck#w

i=k+1

Therefore, in view of (2.21), and the definition of the sets BY[c],

J
<U T‘”l+”kv+ ) - B(k)[ck], and (U T—m+nkvat[ci]> C B(j—k)[ck]

i=k

By the induction hypothesis, diam(B®™[c;]) < a/2, and diam(BY=®[c;]) < a/2.
Therefore,

J

diam <U Tyt [cJ) < a.
i=1

Then, applying T~ we get,

J
diam (U TV [cz]) < 1%

i=1
Since diam(V,[c]) < a/10, we get

J J
diam (U TVt [c,]) < diam(V,"[¢o]) + diam <U TV [cz}) < 1—0 + 1—0 < g.

=0 =1
But the set on the left-hand-side of the above equation contains both ¢ = ¢y and
x = ¢j. Therefore d(c,x) < a/2, proving (2.20). Thus (1) holds. O
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Proof of Proposition 2.8. Let F = |J .., B[c]. For v € E, let t(z) € R be the

smallest such that 7-"@x € E. By property (3), the function #(z) is constant on
each set of the form BT [c¢]. Let F, = {x € E : t(x) =t}. By property (2) and the
ergodicity of 7%, up to a null set,

0= |_| |_| TF,.
t>0 s<t

Then properties (a)-(f) are easily verified. O

Warning. We lift the partition defined in Proposition 2.8 from €2y to €2 and denote
the resulting sets by the same letters. Also, we sometimes use fi as a measure on {2
as well as ().

Notation. For x € Qq, let J[z] denote the set J, containing .

Lemma 2.11. Suppose x € Q, y € W[z]| N J[x]. Then for any t > 0,
Ty e JT 2] nWH [T "z

Proof. This follows immediately from property (e) of Proposition 2.8. 0

Notation. For x € €, let
Bi[z] =T (J[T'z] n W [T x]).

Lemma 2.12.
(a) Fort' >t >0, By[r] C Bylx].
(b) Suppose t > 0,t' >0, x € Qy and z' € Qo are such that B[z] N By [x'] # 0.
Then either B,[x] D By [x'] or By[x']| D B[z| (or both).

Proof. Part (a) is a restatement of Lemma 2.11. For (b), without loss of generality,
we may assume that ¢ > ¢t. Then, by (a), we have B,[z] N B;[z'] # 0.

Suppose y € B;[z] N B,[2']. Then T'y € Bo[T x| and Tty € By[T 2']. Since the
sets By[z], z € Qp form a partition, we must have Bo[T"z] = Bo[T?2']. Therefore,
B[z] = B:[2], and thus, by (a),

B[] C Byl2'] = By[x].
0

Recall the notation | - | from §2.1. Then, in view of Proposition 2.8(a), for almost
all z € Q and all t > 0, |B;[z]| > 0.

Lemma 2.13. Suppose § > 0 and K C Qy is such that i(K) > 1— 6. Then for any
n > 0 there exists a subset K* C K with i(K*) > 1 —n such that for any x € K*,
and any t > 0,

[K 0By [z]] = (1= (6/n))[B[x]].
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Proof. Let £ = K¢ so i(F) < 4. Let E* denote the set of z € )y such that there
exists some 7 > 0 with

(2.22) |E N B, [z]| = (6/n)|B-[z]|.

It is enough to show that fi(E*) < n. Let 7(z) be the smallest 7 > 0 so that (2.22)
holds for z. Then the (distinct) sets {B;(y)[]}zep+ cover E* and are pairwise disjoint
by Lemma 2.12(b). Let

zeb*

Then E* C F. For every set of the form Bg[y|, let A(y) denote the set of distinct
sets B, (y)[x] where 2 varies over By[y]. Then, by (2.22)

[FNBolyll = Y 1Brwlall < (n/6) Y |ENBrwlall < (n/8)|E N Bolyl.
A(y) A(y)

Integrating over y, we get f(F) < (n/d)i(E). Hence,

A(E") < p(F) < (n/0)a(E) <1,
O

2.6. Dynamically defined norms. For almost all z € ), we will define a cetain

dynamical norm || - ||, on g, which has some advantages over the fixed norm || - ||o. If
it is clear from the context, we sometimes drom the subscript and write || - || instead
of [| -l

The main result of this subsection is the following:

Proposition 2.14. There exists a T -invariant subset H C Q with f(H) = 1 and for
all x € H there exists an inner product (-,-), on g and cocycles \;; : @ x R — R with
the following properties:

(a) For all x € H, the distinct eigenspaces V;(x) are orthogonal.

(b) Let V;(x) denote the orthogonal complement, relative to the inner product
(,)z of Vij1(x) in Vij(x). Then, for all x € H, allt € R and all v €
Vij(z) Cg

1] )
(T;)*V _ eAij(z,t)V/ + VH,
where \ij(z,t) € R, v/ € Vi;(T'x), v € V;j_1(T"x), and ||V'|| = ||v||. Hence
(since v and v" are orthogonal),
I(TDv]l = @D v]].

(¢) There exists a constant k > 1 such that for all x € H and for allt > 0, and
all © such that A\; > 0,

k< \j(n,t) < Kt
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(d) There exists a constant k > 1 such that for all x € H and for all v €
Lie(NT)(z), and all t > 0,
K1 K
" vl < I(Tp)evll < evll,
and for all x € H and for all v € Lie(N~)(z), and all t > 0,
—K —kL
e vl < TVl < e vl
Also, for all v € g and all t € R,
e vl < (Tl < eMlv]].

In particular, the map t — ||(TL)«v]| is continuous.
(e) Forallxz € H, ally € Bylx] N H and all t <0,

Aij(,1) = Nij(y, 1)
(f) For a.e. x € H, a.e. y € Bo[r| N H, and any v,w € g,
(P*(x,y)v, P+<x73/)w>y = <V7W>x-

We often omit the subscript from (-, -), and from the associated norm | - ||.

Proof strategy. Let C and Tj be as in Lemma 2.7. Let T} : C — R* be a finite
a.e. measurable function to be chosen later. We will choose 77 so that in particular
Ti(c) > To(c) for a.e. ¢ € C. Let C; and BT|c| for ¢ € C; be as in Proposition 2.8. For
¢ € Cy, let t(c) be the smallest ¢t > 0 such that T"c € C;.

The inner product (-,-), is first defined for x € C;, and then extended to any
r € B*[c], using P*(c,x). We then interpolate between x € B*[c] and T4z,

The inner products (-, );; on B¥[c]. Note that the inner products (-, -);; and the R-
valued cocycles \;; of Lemma 2.3 are not unique, since we can always multiply (-, );j.
by a scalar factor ¢(x), and then replace A\;j(z,t) by Aij(x,t) + log (T x) — log ¢(z).
In view of Lemma 2.4 and (2.15) we may (and will) use this freedom to make (-, -);; .
constant on each set BT [c].

(223) {O} = V§0(0> C Vgl(C) C ...
be the Lyapunov flag for the cocycle (TF)., and for each i, let
(224) Vgi_l(c) = V§i70(0) C Vi,l(C) cC... Vgimi(C) = Vgi(c)

be a maximal invariant refinement.
Suppose ¢ € C;. By Lemma 2.7 (b), we can (and do) rescale the inner products
(+,*)ijc so that after the rescaling, for all v € V;;(c)/V; j-1(c),

(M) v]lo < (v, v) /2 < M'|[v]lo,

ij,c

where M’ > 1 is as in Lemma 2.7.
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Now for ¢ € C; we can choose V/;(c) C Vi;(c) to be a complementary subspace to
Vij-1(c) in Vi (c), so that for all v € V;;_1(c) and all v/ € Vj;(c),

v +vllo > o max(|[vlos [V,

and p” > 0 depends only on the dimension.
Then,

Vi(e) = V() /Vij-al(c).
Let m;; : V<;; = V<ij/V<i;—1 be the natural quotient map. Then the restriction of
mij to Vi;(c) is an isomorphism onto Ve, (c)/V<i;-1(c).
We can now define for u,v € g,

(,v)e = > (i (wig), 735 (Vig))ijes

ij

where u = ZUU’ vV = ZVU, u;; € V’ (c), Vi; € Véj(c).

In other words, the distinct V;;(c) are orthogonal, and the inner product on each V/;(c)
coincides with (-, -);;. under the identification 7;; of Vj;(c) with Ve ;(c)/V<ij-1(c).
We now define, for x € B[c], and u,v € g

(u,v), = (P*(x,c)u, Pt (z,c)v).,

where P (-, -) is the connection defined in §2.2. Then for z € B*|c], the inner product
(-, )z induces the inner product (-, -);;. on V<; ;(x)/V<ij—1(x).

Symmetric space interpretation. We want to define the inner product (-, -), for
any = € J[co]. We may write x = T fc where 0 < t < t(c) and ¢ € BT[¢g]. We
then define (-,-), by interpolating between (-,-), and (-,-)», where ¢ = T~*%¢. To
define this interpolation, we recall that the set of inner products on a vector space V'
is canonically isomorphic to SO(V)\GL(V'), where GL(V) is the general linear group
of V- and SO(V) is the subgroup preserving the inner product on V. In our case,
V' = g with the inner product (-, -)..

Let K. denote the subgroup of GL(g) which preserves the inner product (-, -).. Let
Q denote the parabolic subgroup of GL(g) which preserves the flags (2.23) and (2.24),
and on each successive quotient V<; ;(¢)/V<; j—1(c) preserves (-, -);;.. Let K A’ denote
the point in K.\GL(g) which represents the inner product (-, )., i.e.

(u,v)y = (A'u, A'v)..

Then, since (-, -) induces the inner products (-, -);; » on the space V<; ;(¢')/V<i j—1(c)
and (T: "), V< i(c) = V< (c), we may assume that A'(7. T, 1, € Q.

Let Ng be the normal subgroup of @ in which all diagonal blocks are the identity,
and let @ = Q/Ng. (We may consider Q" to be the subgroup of Q in which all
off-diagonal blocks are 0). Let 7’ denote the natural map Q — Q'.
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Claim 2.15. We may write
A/(Tc—t(c))* _ AAH,

where A € Q' is the diagonal matriz which is scaling by e on V;(c), A” € Q and
|A”|| = O(e?), where the implied constant depends only on the constants oo, M, p, py
of Lemma 2.7.

Proof of claim. Suppose z € BT[c] and t = —t(c) < 0 where ¢ € C; and t(c) is as
in Proposition 2.8. By construction, t(c) > Ty(c), where Ty(c) is as in Lemma 2.7.
Then, the claim follows from (2.19) and Lemma 2.7 (d). O

Interpolation. We may write A” = DA, where D is diagonal, and det A; = 1. In
view of Claim 2.15, | D|| = O(e) and ||A;|| = O(e).

We now connect K.\ A; to the identity by the shortest possible path I' : [—#(c), 0] —
K \K.Q, which stays in the subset K.\ K.Q of the symmetric space K \SL(V). (We
parametrize the path so it has constant speed). This path has length O(et) where the
implied constant depends only on the symmetric space and the constants og, M, p, p1
of Lemma 2.7.

Now for —t(c) <t <0, let

(2.25) A(t) = (AD)~HOT(1).

Then A(0) is the identity map, and A(—t(c)) = A’(Tc_t(c))*. Suppose = € J(cp).
Then, x = T"c, where —t(¢) <t < 0 and ¢ € B™[¢o]. Then, we define,

(2.26) (u,v)o = (AT, ")sw, AT, )v)e.

In particular, since ¢ = T-"<)¢ and (T\?), = (Tz "), we have, letting t = —t(c)

in (2.26),
(u, Vo = (A(=t(e))(TE) ), A=) (T )iv)e = (A'u, AV),,

C

as required.

Proof of Proposition 2.14. Suppose first that = € C;. Then, by construction, (a)
and (b) hold. Also, from the construction, it is clear that the inner product (,-).
induces the inner product (-, -);;. on V;;(c)/Vi—1(c).

Now by Lemma 2.5, for z € BT[c], P*(x,c)V;j(x) = V;(c), and for u,v €
Vii(@)/Vij-1(x), (0, V)ij» = (Pt(z,c)u, P (x,c)V)j.. Therefore, (a), (b), (e) and
(f) hold for x € BT[¢], and also for € B*[c|, the inner product (,-), induces the
inner product (-,);;» on V;;(x)/Vi;j_1(x). Now, (a),(b),(e) and (f) hold for arbitrary
x € J[c| since A(t) € Q.

Let v;; : @ — R, denote the homomorphism taking the block-conformal matrix
Q' to the scaling part of block corresponding to V;;/V;j—1. Let ¢;; = 1;; o 7’5 then
@ij 1 @ — R, is a homomorphism.
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From (2.25), we have, for z € B*[c] and —t(c) <t <0,
Aij(x, 1) = log @i (A(t)) = tA; + i5(x, 1),
where t); is the contribution of AY#¢) and ~;;(x,t) is the contribution of DY*9T(¢).
By Claim 2.15, for all —t(c) <t <0,
0
(227) |§’}/¢j(l’,t>| = k’,€—|—0(1/t),

where k' depends only on the symmetric space, and the implied constant depends
only on the symmetric space and the constants og, M, p, p1 of Lemma 2.7. Therefore,
if € > 0 in Lemma 2.7 is chosen small enough and 77 (c) in Lemma 2.9 is chosen large
enough, |v;;(x,t)| < A;/2 and (c) holds.

The lower bound in (d) now follows immediately from (b) and (c). The upper
bound in (d) follows from (2.27). O

Lemma 2.16. For every 0 > 0 and every € > 0 there exists a compact subset K(J) C

Q with (K (0)) > 1 =9 and a number C1(0,€) < oo such that for all x € K(J) and

allv e g and allt € R,
(2.28) Cy(6)temdtl < Vliza < Cy(6)el

1vlo

where || - || is the dynamical norm defined in this subsection and || - ||o is some fized
norm on g.

Proof. Since any two norms on a finite dimensional vector space are equivalent,
there exists a function Z, : Q — R™ finite a.e. such that for all z € Q and all v € g,

Zo(@) " Ivllo < [Ivlle < Zo() v llo.

Since Jyent® @ Zo(z) < N}is conull in €, we can choose K (d) C Q2 and C; = C(9)
so that Z¢(z) < C1(0) for x € K(J) and i(K(5)) > (1—0). This implies (2.28) for the
case t = 0. The general case follows from the case t = 0 and the ergodic theorem. [J

3. THE INERT SUBSPACES E;(z)

For x € Qq, let

(3.1) Fsj(z)={veg : foralmostall uz € Uz, v € V>;(ux)}.
In other words, if v € Fx;(z), then for almost all ux € U; z,
1
(3.2) limsup — log ||(T%,)«v]lo < A;.
t—00 t

It follows from (3.2) that if M and ¢ are trivial, F>;(z) does not in fact depend on
z € Q. In the general case, F5;(z) depends on z € 8% x M x [0,1) only through the
M component.
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From the definition of Fx;(z), we have
(33) {0} = Fonea(s) CFult) € Fopy(2) C ... Fala) CFy(2) = g.
Let
E;(r) = Fx;(z) N Vg ().
In particular, E;(2) = V<i(z) = Vi(2). We may have E;(z) = {0} if j # 1.

Lemma 3.1. For almost all x € § the following holds: suppose v € E;(z) ~ {0}.
Then for almost all ux € Uz,

o1
(3.4) Jim =~ Tog [(T4,).(v)lo = ;.

Thus we have
E;(z) C V;(2).
In particular, if i # j, E;(z) N E;(x) = {0} for almost all x € Q.

Proof. Suppose v € E;(z). Then v € V<j(x). Since in view of (2.2), V< (uz) =
Vej(z) for all u € U, we have for almost all ux € Uz, v € V<;(ux). Tt follows
from (2.6) that (outside of a set of measure 0), v & V- ;(ux). Now (3.4) follows from
(2.3). O

Lemma 3.2. There exists a subset W C Qqy of full measure such that for any v € ¥
and any t € R,

(T1)E;(z) = E;(T'x), and (T}).F>;(zx) = F»;(T"z).

Proof. From (3.1), for z € €,
(T;).Fij(x)={veg : forae ureT " (UTz), veVsur)}.

x

Note that for ¢t > 0, T4 (U z) C U T~tx. Therefore,
Foj(T™'2) € (T,):Fx;(@).

Let ¢(x) = dimFs;(z). Then, ¢ is bounded, integral valued and is decreasing
under the flow T—*. Therefore, ¢ is constant a.e., and Fs;(T 'z) = Fs;(x) al-
most everywhere. Then the corresponding statement about E;(z) also holds since
E;(r) = Fx;(x) N Vg ().

By considering a transversal for the flow 7%, it is easy to check that it is possible
to modify E;(x) and Fx;(z) on a subset of measure 0 of {2y in such a way that the
lemma holds for z in a subset of full measure and all ¢t € R. U

Remark 3.3. Suppose that M and 9 are trivial in the sense of §1.3. Then, since
F,(z) does not depend on x, Lemma 3.2 implies that the subspaces Fx; are Gs-
invariant. Thus, if the Zariski closure of Gs is simple, then F>; = g and F>; = 0 for
J=>2.
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Recall that | - | denotes the conditional measure of fi on Wi [z] = Uz (see §2.1).

Lemma 3.4.
(a) For almost all x € Qo and almost all ux € Wz], we have E;(ur) = E;(x),
and Fs;(ux) = Fs;(x).
(b) Forxz € Qo and v € g, let

Qv)={uzx ez : veEVs(ux)}

Then for almost all x, either |Q(v)| = 0, or |Q(v)| = U x| (and thus v €
F>;(x)).

Proof. For (a) note that since for ux € Uz, U ur = Uz, Fs;(x) = Fsj(ux) by
the definition (3.1). By (2.4), V<;(ux) = V<j(x). Since E;(z) = F>;(z) N V<;(z),
E;(uz) = E;(z).

We now start the proof of (b). For a subspace V C g, let

Q(V) = {ux c %0[1’} : VC VZ](UZE)}
Let d be the maximal number such that there exists £’ C Qg with v(E") > 0 such
that for x € E’ there exists a subspace V C g of dimension d with |Q(V)| > 0. For
a fixed z € E', let W(z) denote the set of subspaces V of dimension d for which
|Q(V)| > 0. Then, by the maximality of d, if V and V' are distinct elements of W(x)
then Q(V)NQ(V’) has measure 0. Let V,, € W(x) be such that |Q(V,)| is maximal
(among elements of W(z)).

Let ¢ > 0 be arbitrary. By the same Vitali-type argument as in the proof of
Lemma 2.13, there exists ty > 0, a positive measure subset E” C E’ and for each
x € E" asubset Q(V,)* C Q(V,) with |Q(V,)*| > 0 such that for all ux € Q(V,)*
and all t > 1,

(3.5) B [uz] N Q(Ve)| = (1 — €)[By[ux]|.
(In other words, Q(V,)* are “points of density” for Q(V,), relative to the “balls”
%t‘) Let

E*={ux : z€FE", ureQ(V,)}
Then, i(E*) > 0. Let © = {z € Qy : T 'z € E* for an unbounded set of ¢t > 0 }.
Then i(©) = 1. Suppose x € ©. We can choose t > tq such that T *x € E*. Note
that
(3.6) Bolz] = T8, [T "x)].
Let 2/ = T 'z, and let V;, = (T"). V. Then in view of (3.5) and (3.6),

[Q(Viz)| 2 (1 —€)[B(z)].
By the maximality of d (and assuming € < 1/2), V,, does not depend on ¢. Hence,

for every x € O, there exists V C g such that dim'V = d and |Q(V)| > (1 —¢€)|By[x]|.
Since € > 0 is arbitrary, for each x € ©, there exists V C g with dim'V = d, and
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IQ(V)| = |®Bo[z]|. Now the maximality of d implies that if v ¢ V then |Q(v) N
Bo[z]| = 0. Then, equivariance by T* implies that |Q(v)| = 0. O
By Lemma 3.1, E;(z) N Ex(x) = {0} if j # k. Let
Ay ={i : E;(x) # {0} for a.e. x}.

and let
N={ieAy : X\ >0}
In view of (3.2), (3.3) and Lemma 3.1, we have Fs;(x) = F>,41(x) unless j € Aj.

Therefore if we write the elements of A{ in decreasing order as iy, ..., 4, we have the
flag (consisting of distinct subspaces)
(3.7) {0} =F>i,,, CFs,(2) CFx,  (2) C...Fop(z) CF5y(2) = 0.

For z € Q and any subspace V C g, we write V* for its orthogonal complement
using the inner product (-,-), defined in §2.6. For a.e. x € Qy, and 1 < r < m, let
F) () = (Fxi.,,) () N Fx; (x). Then, F(z) is only defined for j € Aj, and for
J € Ao,

F(z) = (F2j01) " (2) N Fx().

Lemma 3.5. Given 6 > 0 there exists a compact Ko1 C Q with v(Ky) > 1 — 0,
B(8) > 0, B'(8) > 0, and for every x € Ky any j € Ay any 0 # v/ € (Fs;11)*(2)
a subset Qo1 = Qo1 (z,v'/||V'|)) C U with |Qoix| > (1 — 8)|[U;T | such that for any
u € Qo1, we can write

vVi=v,+w,, v,€V(ux), w,€V.;(ux),

with ||vy| > BV, and ||vu| > B'(0)||Wul|. Furthermore, if j € Ay and v/ €
F':(x), then v, € Ej(ux).

Proof. This is a corollary of Lemma 3.4(b). Let ® C Q be the conull set where (2.6)
holds and where Fs;(z) = Fs;41(x) for all ¢ € Aj,. Suppose x € ®. By Lemma 3.4(b),
since v/ & Fx;11(x), for almost all u if we decompose using (2.6)

V/ =V, t+tW,, V,E ng(ua:) w, € V>j(ux),
then v, # 0. Let
En(x) ={V € P(Fj1)"(2) : Huz €Ufa o |lvall = LIV} > (1= d)leh =]}

Then the &,(z) are an increasing family of open sets, and | Jo—, &, (x) = P(Fx;11)*(
Since P(F»;41)*(z) is compact, there exists n(z) such that &, (z) = P(Fx;41)*(
We can now choose Ky; C ® with fi(Ky) > 1—6 such that for x € Ko, n(x) < 1/5(9)
This shows that for x € Ky, and any v/ € (Fx;1)*(2), for (1—0)-fraction of ur € U x
we have [|v,|| > 5(5)||v'].

It remains to prove the final assertion. Suppose j € Aj and v’ € F/;(x) C Fx;(z).
By Lemma 3.2, Fs; is T"-equivariant, and therefore, by the multiplicative ergodic

x)
z)
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theorem applied to Fx;, Fx; is the direct sum of its Lyapunov subspaces. Therefore,
in view of Lemma 3.4(a), for almost all uz € U;" x,

(3.8) Fsj(r) = Fxj(uz) = (Fxj(ur) N Ve;(uz)) & (Fxj(ur) N Vsj(uz)).

Therefore, v, € Fs;(ux) N V<;(uz) = E;(uz) for almost all ux € U z. O

Lemma 3.6. For any 0 > 0 and any € > 0 there exists K(0) C Q with i(K(J)) > 1—0
and for every x € K(0) and every v € g and every 1 < j < n, there exists a subset
Q= Q(x,v) CU with |Qx| > (1 — §)|U x| such that for z € K(0), u € Q and any
t > 0 we have

(T vlrtue = Cle, )™ /D1d(v, Fxji (2)),

where d(-,-) is distance using the norm || - ||. Also

(3.9) I(The)«vllo = Cule, )™V do (v, Fajia ().

Proof. Let Ky be as in Lemma 3.5. Write v = v/ + v” where v/ € (Fx;.1)* (),
V" € Fxjp(x). Then, [|V'|| = d(v,F>j.(x)).

Let Qo1 = Qoi(z, V') be as in Lemma 3.5. Also, by the multiplicative ergodic
theorem, for any § > 0 there exists Ky C Q with fi(K3) > 1 —§ and for z € K,
a subset Qy(z) C U with |Qqalx > (1 — §)|Ufz| such that for any u € Qq(x)
and any v; € Vsj(ur) and any t > 0, [|(T¢,).v;]| > Ca(e,8)eP=<?||v;||. Now
let K = Koy N Ky and Q = Qo1 (z,v') N Q2(x). Let v, and w, be as in Lemma 3.5.
Then, by Lemma 3.5, for u € @,

(T )evall = Cole, 6)e =2 v || > B(8)Cale, 8)e™ /2 ||v.
Since (T7,)«wy, € V(T uz) and also by Lemma 3.2 and Lemma 3.4(a), (T7,).v" €

Vs.;(Ttux), we have, in view of Proposition 2.14(a),

T vl = (Thn)wvall = Cle, 6)e 2|V || = Cle, 6)e™ 92 d(v, F 24 ().

The final assertion follows from Lemma 2.16. O

Remark. In the case when ¥ is trivial, the assertion (3.9) does not depend on z.
Therefore, if we are interested in (3.9), we may take K (J) = 2.

Lemma 3.7. For all § > 0 there exists n(6) > 0 with n(d) — 0 as 6 — 0 such
that the following holds: Suppose v € Q, Q° C U, x = W' [x] is such that |Q°| =
fily+2(Q°) < 6. Then, for anyn € N and any v € g,

1 [(Toe)«vllo ;-
1 - 1 Uz d < .
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[9(wo,m)v][o

vl ~
Let ||g]lo denote the operator norm on G (or G') derived from || - ||o, and let ||g||+ =
max(1, [|g]lo, |97 o). Let op : @ — R be defined by o, (z) = log ||wo|+, where

x = (w,m,s). Then, by (1.5),

Proof. Let 0 : 2 x g — R be given by the formula o(w,m,s,v) = log

o(z,v) <oy(z)+C,

where C' is a constant (depending only on ).
Let xs denote the characteristic function of the set

{(w7m7 S) SRUN log ||w0||+ > 6_1/2}'

Then, let 11(0) = [, xs(o4 + C) di. We have n,(d) — 0 as § — 0.

Let o1 = (1 — xs)o, 02 = xs0. Then, we have o(z,v) = o1(x,v) + 02(x,v) where
for all (z,v) € Q x g, |o1(x,v)] < 672, |og(x,v)| < (04 (x) + C)xs(z), and for all
x €,

B [ ) )+ O i) = [ o+ € < mo).

Now we write
n

* 1 I
H( |T:/)HOVHO = E;U(T uzT, V) Zol TJ (ux,v) Zaz (uzx,v)
and integrate both sides over uxr € Q°. The contribution of the ﬁrst sum is at most
612 since |0y (z,v)| < 6712, The contribution of the second sum is bounded by 7;(9)
by (3.11) and the L' ergodic theorem, applied to the shift 7' : S — S% and the
L'-function o : S — R. Thus we can set 7(8) = 6%/2 4 1,(9). O

3.1. Inert subspaces, uniform expansion and the bounceback condition. Let
j1 be the index of smallest positive Lyapunov exponent of T% and let j, > j; be the
index of the largest negative exponent. Then,

Lie(N*)(z) = @ Vj(=

J<j1

Lie(N @ Vi(x

Jzj2
If there is a 0-exponent, its index is j; +1 = jo — 1. If not, then j, = 77+ 1, and j; +1
is a negative exponent. In any case Aj 41 < 0. Then, Fxj () is the set of vectors
in g which fail to grow exponentially fast under almost all possible futures uz.

and

Lemma 3.8. Suppose V' is a Gs-invariant subspace of g and that M and ¥ are trivial
in the sense of §1.3. Then the following are equivalent:

(i) p is uniformly expanding on V.

(i) For a.e. v € Q, Fsj,11(x) NV = {0}.
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(ii)’ For any non-zero v € V, for almost all ux € W[z, v & Vs, 41().

(iii) There exists A > 0 and for any 6 > 0 each x € Q and each v € V there exists
Q(z,v) C U with |Q(z,v)z| > (1 — &)U x| such that for u € Q(z,v) and
t>0,

I(To)svllo = C(0)e |V llo.

Note that Lemma 1.5 is the equivalence of (i) and (ii) in Lemma 3.8. Also (ii) is
equivalent to (ii)’ in view of Lemma 3.4(b).

Proof of (i) = (ii). Suppose that (i) holds. By iterating (1.1), we get for a.e. z,
and some N € N and any ve V,
L)l

(3.12) lim log

— df >C > 0.
k=00 ik KN [vIlo Pl () =

Now suppose Fx;,11(2)NV # {0}. Pick v € F>;1(x)NV. Then, by the multiplicative
ergodic theorem and the definition of F>; 11, for any € > 0 and any 6 > 0 there exists
Q = Q(z,v, ) with |Q| > (1 — §)|W;"[z]| such that

TiN),
lim sup/ log Iz ) vllo dfi|yy+p (ur) < e
Q 1vlo :

n—oo
This contradicts (3.12), in view of Lemma 3.7.
Proof of (ii) = (iii). This follows immediately from Lemma 3.6.
Proof of (iii) = (i). This follows immediately from Lemma 3.7. O

Recall that Fx; () is the set of vectors in g which fail to grow exponentially fast
under almost all possible futures ux.

Lemma 3.9. Suppose p satisfies the bounceback condition (see Definition 1.10). Then
for almost all x € €y,

(3.13) F.jo1(2) N Lie(N ) (x) = {0}.

Proof. Suppose that there exists a set E of positive measure such that for x € F,
F-, +1(z) NLie(N™)(z) # {0}. Pick 2 € E, and v € F>;,41(z) N Lie(N~)(x). Then,
arguing as in the proof of the assertion (i) = (ii) of Lemma 3.8, we see that the
bounceback condition fails for (z,v). O

Remark 3.10. In fact we prove Theorem 1.13 with the bounce-back condition re-
placed by the weaker assumption that (3.13) holds.
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4. PRELIMINARY DIVERGENCE ESTIMATES

Standing Assumption. In §4-§10 we assume that (3.13) holds.

Let the inert subbundle E be defined by
E(z) = P Ei(x).
e
Then E(z) C Lie(NT)(z).
The map A(q,u,l,t). Forqu € Quelt, ¢ >0andt >0, let Alq,u,l,t):g—g

denote the map

(4.1) Alqr,u, 0, t)v = (T )*(Tiﬁ,gql)*v.

uqi

Proposition 4.1. For every § > 0 there exists a subset K C o of measure at
least 1 — § and for ¢ € K and any v € Lie(N~)(T*q,), there exists a subset Q =
Qlq,v) CUf with |Qq| > (1 —8)|U q1| such that for any u € Q(q1) and any t > 0,

(4.2) (g, w, £, t)v]| > C (@)™ vll,

where Kk 1s as in Proposition 2.1/, and X\ > 0 depends only on the Lyapunov spectrum
of Tt. Also fort > 0,

A(qbuvgv t)V t —at
(4.3) d (||A(q1,u,£, o B ) ) < C@)e

where d(-, ) is the distance on g defined by the dynamical norm ||-||7tuq, and o depends
only on the Lyapunov spectrum of T".

Proof. Suppose v € Lie(N~)(T~%q) and let w = (Tf,zq)*v. Then, w € Lie(N~)(q1),

and by Proposition 2.14, ||w| > e "||v||. Now (4.2) follows immediately from
Lemma 3.6 and Lemma 3.9.

We now begin the proof of (4.3). Let € > 0 be smaller than one third of the differ-
ence between any two Lyapunov exponents for the cocycle (T%).. By the Osceledets
multiplicative ergodic theorem, there exists a compact subset K; C Qo with f(K;) >
1 — 6% and L > 0 such that for x € K| and all j and all t > L,

vl < eNF v, v e Vay(a)
and
HTDvll = X v, v e Ve(a).
By Fubini’s theorem there exists K} C Qg with fi(K7) > 1 — 2§ such that for z € K7,
Hur e Uz : ux e Ki}| > (1—46/2)|U x|
Let K = Ko N K7, where Ky is as in Lemma 3.5 (with 0 replaced by 0/2).
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Let ¢ = T *q;, and suppose v € Lie(N~)(q). We can write
(4.4) (T)av =V},  V;eFi(q)
jEN)
Since
(Ty). v € Lie(N7)(q1),

by Lemma 3.9, in the decomposition (4.4), the sum goes over j € A’ (and not over
J € Ay). Thus, for every j with v} # 0, we have \; > 0.

Suppose ¢1 € K, u € Qoi(q1, (T[f)*v) and uq; € K7, where Qo is as in Lemma 3.5.
Then, by Lemma 3.5, we have

(4.5 (T)v = 3 (v, +w))

where v; € E;(ug1), w; € V>j(ug), and for all j € A/,

(4.6) vl > B'(6)[|w]|.
Then,
(L, )ew;]| < Pttt fw |
and,
(4.7) Tk )evsll > €M™V vyl > e 3 (8) || w].

Thus, for all j € A/,
(T, ws || < em i 290 6 (§) 1| (T )|

uq1

Since (T}, ).v; € E and using part (a) of Proposition 2.14, we get Proposition 4.1. O

uqi

The following variant of Proposition 4.1 will be used in §6.

Proposition 4.2. There exists € > 0 (depending only on the Lyapunov spectrum)
and for every 6 > 0 compact sets K, K" with i(K) > 1—0, p(K") > 1 — ¢(d) where
c(0) = 0 as & — 0 such that the following holds: Suppose x € K, v € Lie(N*1)(x)
and that there exist arbitrarily large t > 0 with T 'z € K" so that for at least (1 —0)-
fraction of z € Bo[T '], the number s > 0 satisfying

(4.8) T (T)avl = vl
also satisfies

(4.9) s> (1—€)t.
Then v € E(x).
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Proof. Let Ko = {x € Q : |Bo[z]| > 6 Ui z|}. Let K(5) be as in Lemma 3.6,
and let K" = Ko N K(62).
Suppose v ¢ E(z). We may write

V:Z‘A/'l, \A/'Z EF;(SC)
ieN
Let j be minimal such that v; & E;(z). Let & > j be such that F>;(z) C Fx;(x) is
the subspace preceding F>;(z) in (3.7). Then, Fs;(z) = Fs;(z) for j+1<i<k. In
particular, F> ;11 (z) = Fi(x).
Since v; ¢ E;(x), v; must have a component in V;(z) for some ¢ > j+1. Therefore,
by looking only at the component in V;, we get

(T )] = Cv)em Pt

Also since Fs ;4 is T'-equivariant, we have Fs;1(z) = @, Fsi(x) NV, (2). Note
that by the multiplicative ergodic theorem, the restriction of g_; to V; is of the form
e Nithy, where ||h:]| = O(e'). Therefore, (again by looking only at the component in
V; and using Proposition 2.14 (a)), we get

A(T; 1)V, Fsj (T'2)) > C(v)e Mt

(Here and below, d(-, -) denotes the distance on g given by the dynamical norm ||-||,.)
Suppose T 'z € K”. Now, in view of Lemma 3.6, there exists a subset Q C Bo[T ']
with |Q| > (1 — §)|Bo[T"x]|, such that for u € Q,

(4.10) [(Tp-ep) oV = €X79C (8, ) C (v)em Poert29r,
If s satisfies (4.8), then [[(T° o u),v,|| = O(1). Therefore, in view of (4.10),
ePi—€)s o= (Aj+1+2€)t <c=c(v,d,€).
Therefore,
(Aj41 + 2€)t +loge(v, 0, €)
s < .
(A —¢€)

Since A; > Ajiq, this contradicts (4.9) if € is sufficiently small and ¢ is sufficiently
large. 0

5. THE ACTION OF THE COCYCLE ON E

In this section, we work on £ = y x X. Recall that if f(-) is an object defined
on €, then for z € Q we write f(z) instead of f(oo(z)) (where o : Q — g is the
forgetful map).

In this section and in §6, assertions will hold at best for a.e x € €2, and never for
all x € ). This will be sometimes suppressed from the statements of the lemmas.
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5.1. The Jordan canonical form of the cocycle on E(z). We consider the action
of the cocycle (T%), on E. The Lyapunov exponents are \;, ¢ € A, so in particular
Ai > 0. For each i € A’; we intersect E;(z) C V;(z) with the maximal flag as in
Lemma 2.3, to get a T-invariant flag

(5.1) {0} C Ei(2) C -+ C By (z) = Eq(2).

(The second index in (5.1) has been renumbered if needed to take all integer values
from 1 to n; with all the subspaces in (5.1) distinct.) Let A” denote the set of pairs 7j
which appear in (5.1). By Lemma 3.4(a) and Lemma 2.4, we have for a.e. ux € Bg[z],

Let || - ||z and (:,-), denote the restriction to E(x) of the norm and inner product on
g defined in §2.6. (We will often omit the subscript from (-,-), and || - ||;.) Then,
the distinct E;(z) are orthogonal. For each ij € A" let Ej;(x) be the orthogonal

complement (relative to the inner product (-,-),) to E; ;_1(x) in E;;(x).
Then, by Proposition 2.14, we can write, for v € Ej;(z),

(5.2) (T),v = i@y 4"
where v/ € Ej;(T"z), v" € E;;_1(T"r), and [|v'|]| = |[v||. Hence (since v/ and v" are
orthogonal),

(T = XDy

In view of Proposition 2.14 for a.e. z € 2 the map ¢ — \;(z,t) is monotone increasing
and there exists a constant x > 1 such that for a.e. z € Q and for all v € E(z) and
all t > 0,

k1 K
(5.3) " vl < INTR)evl < v,
Lemma 5.1. For a.e. x € 2 and for a.e. ux € Uz,

P (z,ur)E(x) = E(uz).
Proof. This follows immediately from Lemma 2.5. U

5.2. Time changes.

The flows 7" and the time changes 7;;(x,t). We define the time changed flow
T'" so that (after the time change) the cocycle \j;(z,t) of (5.2) becomes A\;t. We
write Ttz = TT@x. Then, by construction, \;;(x,7;(z,t)) = Nt. In view of
Proposition 2.14, we note the following:

Lemma 5.2. Suppose y € By[x]. Then for any ij € " and any t > 0,
Tty € By [T ).
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Proof. In view of Proposition 2.14(e), for all ¢ > 0, and for all y € By[z],
Nij(x, —t) = X\ij(y,—t). Now the lemma follows immediately from Lemma 2.12(a)
and the definition of the flow T O

In view of Proposition 2.14, we have for ¢ > t/,
1
(54) —<t—t/) S ﬁ](a:,t) —%Z'j<ilf,t,) S /i(t—t/),
K
where k depends only on the Lyapunov spectrum.

5.3. The foliations F;;, 7, and the parallel transport R(x,y).

The sets ., and . Let Q, be as in §2.1. We have ji(2e,) = 0 (see §2.1). Let
Q' =Qg,, so p() = 1.
For z € V', let

H[z) ={T ocuoT "z : t>0,s>0,ucl}
For y = (T*ouo T %) x € H[z], let
R(z.y) = (g2 (T)..
It is easy to see that for x € (', given y € H[z] and ¢ > 0 there exist unique u € U;"
and s € R such that y = (T° ouwo T ") xz. Therefore, for z € O, R(z,y) : g — @
depends only on z,y and not on the choices of ¢, u, s. Note that R(z,y)E(x) = E(y).

In view of (5.2), Lemma 5.1, and Proposition 2.14 (e) and (f), for any =z € 0,
v € Ej;(r), and any y = T*uT 'z € H[z], we have

(5.5) R(z,y)v = i@y 4y
where v/ € Ej;(y), v € Eij_1(y), [Vl = [[vl|, and Aij(,y) is defined by
(56) )\ij (QZ', y) = )\ij ([L’, —t) + )\ij (UT_t[L', S).

For z € Q and ij € A", let F;[z] denote the set of y € H[z] such that there exists
¢ > 0 so that

(5.7) Tty € Bo[T 2.
By Lemma 5.2, if (5.7) holds for some ¢, it also holds for any bigger ¢. Alternatively,
Fijlo] = {7 T2+ 0>0, ul™ 'z € Bo[T7 ']}
In view of (5.6), it follows that for y € H[z],
(5.8) Aij(z,y) =0 if and only if y € F;;[x].
We refer to the sets F;j[x] as leaves of a foliation corresponding to the index ;.
For any compact subset A C F;;[x] there exists ¢ large enough so that 7% ¢(A) is
contained in a set of the form By[z] C W, [z]. Then the same holds for T%~(A), for

any t > /.
Recall that the sets B[] support the conditional measure fi|y+,; which we some-

times denote by | - |. We have, for a.e. z, |By[x]| > 0. As a consequence, the leaves
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Fijlx] also support a measure (defined up to normalization), which we also denote by
| - |. More precisely, if A C F;[z] and B C F;[x] are compact subsets, we define
|A] _ [T75(A)]

|B| [T 4(B)|

where / is chosen large enough so that both T%~¢(A) and T%~*(B) are contained in
a set of the form By[z], z € . It is clear that if we replace ¢ by a larger number ¢,

the right-hand-side of (5.9) remains the same.
We define the “balls” F;;[x, (] C Fi;lx] by

(5.10) Fijlw, 6] = {y € Fylw] © Tty € Bo[T7 ]}

(5.9)

Lemma 5.3. Suppose x € Q) and y € F;;[z]. Then, for { large enough,
Fijle, €] = Fijly, €.

Proof. Suppose y € F;;[x]. Then, for £ large enough, 7%ty € Bo[T%*z], and then
%O[Tij’izy] = %O[Tij’igl'}. [l

The flows Tt.ASuppose re€Qandv e g Let Tt Q x g — 2 X g be the flow defined
by Tt(x,v) = T™®"(z,v), where the time change 7,(z,t) is chosen so that
(TN vllpren, = V]
We have, for x € ,
T (x,v) =TT (x,v).

By (5.3), (5.4) holds for 7, instead of 7;;.

Let mq : €2 X g — ) denote projection onto the first factor. For x € 2, v € g and
(eR,let g7 : H[zx] — H be defined by
(5.11) 3 (y) = mo(T (y,w)), where w = R(x,y)v.
(When there is no potential for confusion about the point = and the vector v used,
we denote §* by g_,.) Note that Lemma 5.2 still holds if 7%~ is replaced by g"}'.

The “system of curves” F,. For v € E(x) we can define the “leaves” F,[z] and
the “balls” Fy [z, /] as in (5.7) and (5.10), with §}" replacing the role of T%".
For y € F[x], we have

Folr] = Fwlyl, where w = R(z,y)v.

We can define the measure (up to normalization) |-| on Fy [z, ¢] asin (5.9). Lemma 5.3
holds for F,[z] without modifications.
The following follows immediately from the construction:

Lemma 5.4. For a.e. x € (2, any v € E(z), and a.e. y € Fy[z], we have
1Rz, y)vlly = [Iv].
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Remark 5.5. We will need to consider the somewhat artificial object F, for the
following reason. Suppose we follow the outline of [EsL, §1.2] and have picked ¢, ¢/,
¢ and u. Then we get points Go = (¢o,92) and ¢, = (qa, g5) with dg(gs, g5) = €, and
write gy = exp(v)ge, where v € g, and ||v|| = €. (In fact, we will have v very near
E(g2)).

Now suppose in the scheme of [EsL, §1.2] we replace u by wu; near u, but keep g,
¢, ¢ the same. Let ¢a(uy), ¢5(uq) be the analogues of ¢, and ¢, but with u replaced
by 1y, and write () = (ga(ur), g2(w1)), (ur) = (gh(eur), exp(v(ur)ga(u)). Then,
in view of Lemma 5.4, to a high degree of approximation, ¢s(u;) € Fy[ge], and
v(u1) = R(q2,q2(u1))v. (The error comes from the fact that v is not exactly in E
and we are defining F, only for v € E).

5.4. Time changes for nearby points.

Lemma 5.6. For every § > 0 there ezists a compact set K C Q with f(K) >1—46
such that the following holds: Supposet >0, x € K, y € Wi [x] N K, and T'z € K
and Tty € T K. Then,

(5.12) [Aij (2, 1) = Aij(y, )] < Ch,
where C depends only on a and 9.
Proof of Lemma 5.6. Let K be as Lemma 2.2. Suppose v € E;;(z), and that v is
orthogonal to E; ;_1(z) C E;;(x). Let
v =P (z,y)v.

Then, v/ € E;;(y) and v’ is orthogonal to E; ;_;(y) C E;j(y). For an invertible linear
operator A : g — g, let [|A[|Y = |A]% 4+ |A7"[Z, where for a linear operator B : g — g,
| B|¥ denotes operator norm of B relative to the norms ||-||, on the domain and |- ||, on
the range. By Lemma 2.2 and Lemma 2.16, there exist C' = C(¢) and C, = C(a, )
such that

(5.13) 1P~ (2, 9)[[2 < C(6), and | P~(T"z, T'y)| 7.2 < Ci(a,0).
Therefore,

(5.14) )t < |\’|‘\,f!|\’y < C(5).

Note that

(T,)«v' = P~(T'z, T'y)(T})wv, and P~ (T'x, T'y)E; ;1 (T'x) = E; ;_1(T"y).
Then, in view of (5.13), there exists Cy = Cs(a,d) such that

Gl (Ty)v" + B i1 (T'y) |7ty
= NTE)ev + Eij 1 (Th7) [ 1te

(5.15) Cy(a, 8) < Cy(a, ).
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By the definition of A;;(-,-),

(T2)v + Bij 1 (T7) |70 I(T})+v" + Eijr (T'y) [l 12y
[Vl vl

Now (5.12) follows from (5.14) and (5.15). O

Nij(z,t) = log

) )\ij(y>t) = log

5.5. A maximal inequality. Let x be as in Proposition 2.14.

Lemma 5.7. Suppose K C Q with i(K) > 1 — 4. Then, for any ¢ > 0 there exists
a subset K* C Q with i(K*) > 1 —2k%5/0" such that for any x € K* and any £ > 0,

(5'16) |}—U[ZL‘,€] N K| > (1 - 9I)|E][$7£]|

Proof. For ¢t > 0 let
B lr] = T (Bo[T94]) = B[],
where 7 is such that 7%z = T7z. Let s > 0 be arbitrary. Let K, = T%*K. By
Proposition 2.14(c), 3
(T2 (K°)) < 5 (K€) < K.
Therefore, fi(Ks) > 1 — k6. Then, by Lemma 2.13, there exists a subset K. with
A(KL) > (1 —2k6/60') such that for x € K. and all ¢ > 0,
K N B [2]] > (1 0'/2)B[]].
Let K = T%*K!, and note that T8/ [z] = Fy;[T%*x, s — t]. Then, for all z € K}
and all 0 < s —t < s,
Falrs — N K| > (1 02| Fyle,s — 1],

We have ji(K?) > (1 — 2k%3/6'"). Now take a sequence s, — oo, and let K* be the
set of points which are in infinitely many K7 . ([l

6. BOUNDED SUBSPACES AND SYNCHRONIZED EXPONENTS

Recall that A” indexes the “fine Lyapunov spectrum” on E C N*. In this section
we define an equivalence relation called “synchronization” on A”; the equivalence
class of ¢j is denoted [ij], and the set of equivalence classes is denoted by A. For each
17 € A" we define a Tt-equivariant subbundle E;;;qq of the bundle E; = V; N E so
that E;j paa(uz) = E;jpaa(x ) a.e., and let

1,bdd (T g E paa(x

krelig]
In fact we will show that there exists an subset [ij]" C [z /| such that
(6.1) Ejij) pad(z @ E; paa(x

krelig)

Then, we claim that the following three propositions hold:



RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES 45

Proposition 6.1. There exist 0 < 6, < 1 depending only on U such that the following
holds: for every 6 > 0 and every n > 0, there exists a subset K = K(0,n) of measure
at least 1 — & and Ly = Lo(d,n) > 0 such that the following holds: Suppose x € €,
v e E(x), L > Ly, and

ITEYE A Folz, L)) > (1 — 64)| Fo[z, L]).

Then, for at least 61-fraction of y € Fy|z, L],

R(z,y)v
d| ——————, Epjpaa(y) | <n-
v U P
iJEA
Recall that under the condition of the Proposition, ||R(z,y)v|| = ||v||. In view of

Remark 5.5, we can (and will) use this Proposition for “tie-breaking”, see §1.5.
The following two Propositions will allow us to carry out the argument outlined in
§1.5 using conditional measures on exp(E;) paaq):

Proposition 6.2. There exists a function Cs : Q — R* finite almost everywhere so
that for all x € Q, for all y € Fij[x], for all v € Epjpaa(w),

Cs(x) "' Cs(y) IVl < Rz, y)v]| < Cs(@)Cs(y)Iv]).

In particular, for every 6 > 0 there exist C' > 1 and a compact set K C € with
A(K) > 1 =0 such that if v € K and y € Fi[x] N K then for all v € By paa(x),

CHIvIE < 1Rz, y)vIl < CIv]

The following Proposition will be used to show that for a.e. z, Epjjpaa(x) is a
subalgebra of g.

Proposition 6.3. There exists 0 > 0 (depending only on ©) and a subset ¥ C Q with
a(¥) =1 such that the following holds:

Suppose x € W, v € Lie(N*1)(z), and there exists C > 0 such that for all £ > 0,
and at least (1 — 0)-fraction of y € F;j[x, (],

|R(z,y)v] < C|v].
Then, v € Egj)pda().

The numbers 6 > 0 and #; > 0, the synchronization relation and the subspaces
E;; paq are defined in §6.1. Also Proposition 6.1 is proved in §6.1. Proposition 6.2 and
Proposition 6.3 are proved in §6.3.

6.1. Bounded subspaces and synchronized exponents. For x € 2, y € €, let

t|  ify="T',
p(ﬂf,y)z{"

oo otherwise.

If z € Qand E C Q, we let p(z, E) = inf cp p(x,y).



46 ALEX ESKIN AND ELON LINDENSTRAUSS

Lemma 6.4. For every n > 0 and ' > 0 there exists h = h(n',n) such that the
following holds: Suppose v € E;;(z) and

v /
d (M, Ei,j—l(x)) >1.

Then if y € Fylz] and
Py, Fijlal) > h
then
d(R(z,y)v, Eij1(y)) < nllv]l.

Proof. There exists ¢t € R such that v = T'y € F;;[z]. Then
p(y, Fislz]) = py, y') = [t| > h.

We have the orthogonal decomposition v = v + w, where v € Ej(z) and w €
E; ;_1(x). Then by (5.5) we have the orthogonal decomposition.

R(x,y")v = @Yy 4w where v/ € E;.j(y’), w' e E; ;1(y), vl = IV
Since R(z,y")w € E; ;_1(y'), we have
1R,y )VI[* = 9O 0 ) + W'+ R(a,y )wl|? > 290 v)2.
By (5.8), we have \;;(z,y") = 0. Hence,
1Rz, y" ) = (V] = o'[| vl

Since y € Fy[z], by Lemma 5.4, ||R(z,y)v| = ||v||. Since |t| > h, we have either
t>hort<—h. Ift <—h,then by (5.3),

_ k1 k-1
VIl = 1R, y)v] = (T, ") Rz, y )Vl > e "R,y )v] > e "llv],
which is a contradiction if h > xlog(1/n"). Hence we may assume that ¢ > h. We
have,
R(z,y)v = edi@Vy" 4 w"
where v € E;;(y) with [[v"|| = |[v]|, and w" € E; ;_1(y). Hence,
d(R(z,y)v, Bij1(y)) = Vv < M@0 v]].
But,
Nij(2,y) = Nij(2,y') + Xy (', —t) < —r 7't
by (5.8) and Proposition 2.14. Therefore,
gl 1
d(R(x,y)v,Eija(y)) < e v < e vl
O

The bounded subspace. Fix 6 > 0. (We will eventually choose 6 sufficiently small
depending only on the dimension).
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Definition 6.5. Suppose x € Q. A vector v € E;;(x) is called (0, 4j)-bounded if there
exists C' < oo such that for all £ > 0 and for (1 — #)-fraction of y € F;;[x, ¢],

(6.2) Bz, y)v]| < Clv].

Remark. From the definition and (5.5), it is clear that every vector in E;(z)
is (6,i1)-bounded for every 0. Indeed, we have E;, = E;, and A\;(z,y) = 0 for
y € Fulz], thus for y € Fyi[z] and v € E;y(x), ||R(x,y)v] = [|v]-

Lemma 6.6. Let n = dim E;;(z) (for a.e x). If there exists no non-zero 8 /n-bounded
vector in E;j(x) N E; j_1(x), we set E;jpaq = {0}. Otherwise, we define E;jpqa(x) C
E;;(x) to be the linear span of the 8 /n-bounded vectors in E;;(x). This is a subspace
of E;j(z), and any vector in this subspace is 8-bounded. Also,

(a) Ejjpaa(x) is Tt -equivariant, i.e. (TL)Eijpaa(x) = Eijpaa(T ).

x

(b) For almost all ux € Bylz], Eijpaa(uvr) = Eijpaa(x).

Proof. Let E;;pq4(z) C E;j(x) denote the linear span of all (6/n, ij)-bounded vectors.
If vqi,...,v, are any n (0/n,ij)-bounded vectors, then there exists C' > 1 such that
for 1—6 fraction of y in F;;[x, L], (6.2) holds. But then (6.2) holds (with a different C)
for any linear combination of the v;. This shows that any vector in E;; pq4() is (6, 75)-
bounded. To show that (a) holds, suppose that v € E;;(z) is (6/n,ij)-bounded, and
t < 0. In view of Lemma 3.2, it is enough to show that v/ = (T%*),v € E;;(T""'z) is
(6/n,ij)-bounded. (This would show that for ¢ < 0, (T9"),E;; paa(z) C Eijpaa(T )
which, in view of the ergodicity of the action of 7", would imply (a).)

xz

Figure 2. Proof of Lemma 6.6 (a).

Let o’ = T%'z. By (5.3), there exists C; = C(¢) such that for all z € Q and all
w e E(2),

(6.3) Crtlwll < IT).wll < Ciflw.

Suppose y € Fyj[xz, L] satisfies (6.2). Let y' = T%'y. Then y € Fi;[z/]. Let v/ =
(T*),v. (See Figure 2). Note that

R(z',y" )V = R(y,y)R(z,y) R(z', )V = R(y,y' ) R(x,y)v
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hence by (6.3), (6.2), and again (6.3),

IR(2", 5 )WV < Cil|[R(z,y)v]l < CiC|v]| < CECIIV'].
Hence, for y € F;j[z, L] satisfying (6.2), ¢’ = Ty € F;;[2'] satisfies
(6.4) IR(z', )Vl < CCTIIV']).

Therefore, since F;; [T x, L +t] = T F;;[x, L], we have that for 1 — 6/n fraction of
y' € Fijl’, L +t], (6.4) holds. Therefore, v’ is (6/n,ij)-bounded. Thus, E;;paa(z) is
T'-equivariant. This completes the proof of (a). Then (b) follows immediately from
(a) since Lemma 5.3 implies that F;;[ux, L] = F;j[x, L] for L large enough. O

Remark 6.7. Formally, from its definition, the subspace E;;pqq4(z) depends on the
choice of 6. It is clear that as we decrease 6, the subspace E;; pqq(z) decreases. There-
fore there exists #y > 0 and m > 0 such that for all 8 < 6, and almost all z € €2, the
dimension of E;;pqq(z) is m. We will always choose 6 < 6.

Synchronized Exponents.

Definition 6.8. Suppose § > 0, and E C Q with a(E) > 0. We say that ij € A”
and kr € A" are (E,0)-synchronized if there exists C' < oo, such that for all x € E,
for all £ > 0, for at least (1 — 6)-fraction of y € F;j[x, (], we have

p(y, Frelz]) < C.

We say that ij € A” and kr € A’ are 0-synchronized if there exists £ C  with
f(E) > 0 such that ij and kr are (E, #)-synchronized.

Remark 6.9. By the same argument as in the proof of Lemma 6.6 (a), if ij and
kr are (E,6)-synchronized then they are also (U, T°E,0)-synchronized (with C
depending on t). Therefore, we can take the set £ in Definition 6.8 to have measure
arbitrarily close to 1.

Remark 6.10. Clearly if 757 and kr are not 6-synchronized, then they are also not
¢’-synchronized for any ¢’ < 6. Therefore there exists 6 > 0 such that if any pairs ij
and kr are not #-synchronized for some ¢ > 0 then they are also not 6-synchronized.
We will always consider 6§ < 6, and will sometimes use the term “synchronized” with
no modifier to mean #-synchronized for 6 < 6.

By the definition, if ij and kr are (Ey,0/2)-synchronized and kr and mn are
(Es,0/2)-synchronized, then ij and mn are (E; N Ey, 0)-synchronized. Then in view
of Remark 6.9, as long as 6 < 6}, synchronization (with no modifier) is an equivalence
relation.

We now fix § < min(6y, 6;)).
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If v e E(x), we can write

(65) VvV = Z Vij, where Vij c Eij(.f), but Vij g Ei,j—l(I>‘
ijely
In the sum, I, is a finite set of pairs ij € A”. Since for a fixed ¢ the E;;(z) form a flag,
without loss of generality we may (and always will) assume that I, contains at most
one pair ij for each i € A’. (Recall that A’ denotes positive the Lyapunov spectrum
of E).
For v € E(z), and y € F,[z], let

Hy(z,y) = max p(y, Fij[]).

ij€ly

Lemma 6.11. There exists a set ¥ C Q with i(V) = 1 such that the following holds:
Suppose v € ¥, C' < 00, and there exists v € E(z) so that for each L > 0, for at least
(1 —0)-fraction of y € Fy|z, L]

Hy(z,y) < C.

Then, if we write v =3 _..; vij as in (6.5), then all {ij}ijer, are synchronized, and
also for allij € I, v;j € Ejjpaa(x).

Proof. Let ¥ = J,.x T*E, where E is as in Definition 6.8. (In view of Remark 6.9,
we may assume that the same F works for all synchronized pairs). Suppose ij € I,
and kr € I,. We have for at least (1 — @)-fraction of y € F, [z, L],

ply, Fijle]) <, ply, Firl2]) < C.

Let y;; € Fijlz] be such that p(y, Fij[x]) = p(y,yi;). Similarly, let yp, € Fprx] be
such that p(y, Fir2]) = p(y, yrr). We have

Note that §¥7 (Fy [z, L]) = T~ (Fyj[z, L']), where L' is chosen so that 7o (T~ (z,v)) =
T9~L'g where the notation § is as in (5.11). Hence, in view of (6.6) and (5.9), for
any L' > 0, for (1 — @)-fraction of y;; € Fi;[x, L], p(vij, Fir[z]) < 2C. Then, for any
t € R, for any L” > 0, for (1—60)-fraction of y;; € Fi;[T"x, L"], p(yij, Fir [T x]) < C(t).
Since x € ¥, we can choose t so that T%x € E where E is as in Definition 6.8. This
implies that 7j and kr are synchronized.

Recall that I, contains at most one j for each ¢ € A’. Since R(z,y) preserves each
E;, and the distinct E; are orthogonal, for all " € H|x],

1B,y )WVIP =D IR,y )vis 1>
ij€ly
Therefore, for each ij € I, and all y" € H|x],
IRz, y")vis|| < [|1R(z,y")v]].
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In particular,
1R (2, yi5)vigl| < [|R(2, yig) v

By the assumption of the Lemma, and by the definitions of the measures on F;;[z]
and F[z], we have for (1 — 6)-fraction of y;; € F;j[x, L'], there exists y € F,[z] with
p(vij,y) < C. We have, by Lemma 5.4, |R(x,y)v| = ||v||, and hence, by (5.3), for
(1 — 0)-fraction of y;; € Fij[x, L],

17(2, yi) v < Caflv].
Hence, for (1 — #)-fraction of y;; € Fi;lz, L],

1Rz, yig)vis || < Coflv].
This implies that Vij € Eij,bdd(x)- O

We write ¢7 ~ kr if ¢j and kr are synchronized. With our choice of 6 > 0,
synchronization is an equivalence relation, see Remark 6.10. We write [ij] = {kr
kr ~ij}. Let

Lemma 6.12. There exists a ¥ C Q with i(V) = 1 such that the following holds:
Suppose ij ~ ik, j < k, v € U and Eypaa(z) # {0} (see Definition 6.5). Then
Eij,bdd(x) C Eikz,bdd(x)' Thus, (6 ]) holds.

Proof. In view of Remark 6.9, we may assume that the same E C 2 works in
Definition 6.8 for all synchronized pairs. Choose a conull subset ¥ C J,.p T*E such
that for all ij € A”, dim E;; is constant on V. Suppose x € V. Then, it follows from
Definition 6.8 (see also Remark 6.9) that there exists C' = C'(x) > 0 such that for all
¢ > 0 and at least (1 — #)-fraction of y;, € F[z, (],

p(Yir, Fijlz]) < C.
Suppose v € E;; pqa(z). By Definition 6.5, for any ¢ > 0 and at least (1—6)-fraction of
Yi; € Fijlz, 0], | R(z,yi;)v|| < C1 = Ci(z). Note that T4~ Fy;[z, '] = T~ Fy [z, (]
where £ is chosen so that T%~‘z = T%~g. Therefore, in view of (5.9), for any ¢ > 0,
for at least (1 — 20)-fraction of yu, € Fiulz, ¢,

| R(z, yir) V]| < Cao(z)|lv].
Thus, (as long as E;; # {0}, see Definition 6.5), we have v € Ejj, paa(). O

For v € E(z), write v =} _,..; vy, as in (6.5). Define

ije
height(v) = ) (dimE + j)
ijely
The height is defined so it would have the following properties:
o If veE;(x)\E;;_1(z) and w € E; ;_;(x) then height(w) < height(v).
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elfv=>, viivi€E;v;#0,and w = Zjejwj, w; € E;, w; # 0, and
also the cardinality of J is smaller than the cardinality of I, then height(w) <
height(v).
Let Pr(x) C E(x) denote the set of vectors of height at most k. This is a closed
subset of E(z).

Lemma 6.13. For every 6 > 0 and every n > 0 there exists a subset K C € of
measure at least 1 — 0 and L" > 0 such that for any v € K and any unit vector
v € Py(z) with d(v,U;; Egijjpaa) > n and d(v, Py_1(z)) > n, there exists 0 < L' < L"
so that for at least O-fraction of y € Fy[x, L],

Rz, y)v
! (HR(x,y)VH ’Pkl(y)> <.

Proof. Suppose C' > 1 (we will later choose C' depending on 7). We first claim that
we can choose K with ji(K) > 1—§ and L” > 0 so that for every € T-HK and
every v € Py(x) such that d(v,,; Ejijjpaa) > 1 there exists 0 < L' < L” so that for
O-fraction of y € Fy[z, L'],

(6'7) Hv(m,y) >C.

(Essentially, this follows from Lemma 6.11, but the argument given below is a bit
more elaborate since we want to choose L” uniformly over all v € Py(z) satisfying
d(v, Ul.j Epjjpaa) > n). Indeed, let E; C Pi(z) denote the set of unit vectors v €
Pr(x) such that for all 0 < L' < L, for at least (1 — #)-fraction of y € Fy[z, L],
Hy(z,y) < C. Then, the E}, are closed sets which are decreasing as L increases, and
by Lemma 6.11,

m E; C U E[ij],bdd(x) N Pk($)
L=1 ijeA

Let F' denote the subset of the unit sphere in Py (x) which is the complement of the

n-neighborhood of (J;; Efij paa(2). Then the Ef are an open cover of F, and since F

is compact, there exists L = L, such that F' C Ef. Now for any 6 > 0 we can choose

L" so that L” > L, for all z in a set K of measure at least (1 —J).

Now suppose v € F. Since F C Ef,, v € Ep», hence there exists 0 < L' < L”
(possibly depending on v) such that the fraction of y € F[x, L] which satisfies
Hy(x,y) > C is greater than 6. Then, (6.7) holds.

Now suppose (6.7) holds (with a yet to be chosen C' = C(n)). Write

as in (6.5). Let
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Since y € Fy[z], by Lemma 5.4, ||w| = ||v|] = 1. Let ij € I, be such that the
supremum in the definition of Hy (z,y) is achieved for ij. If ||w;;|| < n/2 we are done,
since w' = >, .. Wi, has smaller height than v, and d(w, ﬁ) < n. Hence we may
assume that 1 > ||w;;|| > n/2.
Since d(v, Px—1(z)) > n, we have
d(vij, Eij1(2)) = n = nllvij]].
where the last inequality follows from the fact that ||v;;|| < 1. In particular, we have
12> vl = n.
Let ' = T*y be such that y' € Fy, [z]. Note that
[viill = 1 R(z, y")vis | = IRy, y ) wis || = I1(T*).cw |
Hence, we have
1> [[(T)wyll=2n and 12> [lwyll = n/2.

Then, in view of (5.3), |t| < Cy(n), and hence [|R(Y,y)|| < C{(n).

Let Cy = Co(n) + h(n,3n/Cy(n)), where h(-,-) is as in Lemma 6.4. We now
choose the constant C' in (6.7) to be Cy. If Hy(x,y) > C) then, by the choice of
ij, ply, Fijlx]) > Cy. Since y = T'y and [t| < Cy(n), we have

p(y', Fijlz]) > C1 = Co(n) = h(n, 3n/C(n)).

Then, by Lemma 6.4 applied to v;; and y' € Fy,[z],
d(R(z,y)vij, Ei 1 (y) < 5(n/Com)lIvisll < 50/ Ci(n).-
Then, since w;; = R(y', y)R(z, y')vij,
ld(wij, Eij—1 ()| < 1R p)ld(R(z, 9 )vij, Bi -1 (y) < (IR 9)ll(n/Co(n)) <
Let w;; be the closest vector to w;; in E; ;_1(y), and let w' = wij; +3>, .. wg,. Then

d(w, ) <nand W' € Pp_1. O

Tl

N3

Proof of Proposition 6.1. Let n denote the maximal possible height of a vector.
We claim that Proposition 6.1 holds with §; = (6/2)"".

Let ¢’ = §/n. We choose n; > 0, K; C ©Q and L; > 0 inductively as follows: Let
m = n/n. If n; > 0 was already chosen, let L; = L;(¢’,n;) and K; = K;(§',n;) be
chosen so that Lemma 6.13 holds for & = j, K = K;, L" = L; and n = n;. Then,
let 1,41 be chosen so that exp(k(L; 4+ 1))n;11 < n;, where & is as in Proposition 2.14.
We repeat this process until we choose L,, K,, n,. We then let Ly = L,, + 1, and let
K=K nNn---NK,. Then a(K) >1-4.

Let

R(x,y)v
E,={yeFz, L] : d mﬂ)}c(y) U U Epijpaa(y) | <k

ijeA
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r C Bolz], where z = §_px. Since E! = F,[z, L], we have E, = By[z]. Let
= §_ (TSI K N Fylx, L]). Then, by assumption,

(6.8) Q1 = (1= (6/2)")|By]].

By Lemma 6.13, for every point uz € (Ex N Q) ~\ Ej_; there exists a “ball” B,[uz]
(where t = L — I/ and L' is as in Lemma 6.13 for L” = L) such that
(

6.9) |Ex—1 N Bi[uz]| > 0B:[uz]|.

(When we are applying Lemma 6.13 we do not have v € Py, but rather d(v/||v]], Px) <
Nk; however by the choice of the n’s and the L’s this does not matter). The collection
of balls {B¢[uz]}uze(m,n0) B, asin (6.9) are a cover of (E;NQ) \ Ej_1. These balls
satisfy the condition of Lemma 2.12 (b); hence we may choose a pairwise disjoint
subcollection which still covers (Fr N Q) \ Fr_1. We get |Ex_1| > 0|Ex N Q|, and
hence by (6.8), |Ey_1| > 0| Ex| — (6/2)"T1DB¢[z]|. Hence, by induction over k, we have
for all £,
| Bx| = (6/2)"*|Bo[2]|-

Hence, |Eqo| > (0/2)"|B0[z]|. Therefore |E}| > (0/2)"|Fy[x, L]|. Since Py = 0, the
Proposition follows from the definition of Ej. O

6.2. Invariant measures on vector bundles over (). Recall that any bundle is
measurably trivial.

In this subsection, L is any finite dimensional vector bundle over €2 on which the
cocycle (T%). acts. (We will only use the cases L = Ejjp00 and L = E;;/E; ;1 @
Ei, /Ei,—1). We fix once and for all a measure py on P(L) in the measure class of
Lebesgue measure and independent of x.

Lemma 6.14. Let ji, be the measure on Q x P(L) defined by

N 1 .
©10)  w= [ [ o [ e Ry dydo(v) i),
Q JPL) |]:z‘j[$, Il Fijl,0)
Let [iy be the measure on 2 x P(L) defined by
X 1 _
o) = [ [ [ i Ry dydp ) dito)
Q JP(L) ’}-ij[xa 1l Fijlz,0)
Then jip 15 in the same measure class as fig, and
o djig
6.12 K2 < L2 < K2
(6:12) ~dje T

where k is as in Proposition 2.14.
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Proof. Let
Fla) = | I B2 dn ()
Then,
(6.13 w0 = [ g L e dvdite)
. 1 .
(6.14) ) = | ], P i)

Let o’ = T%*x. Then, in view of Proposition 2.14, k' dju(z) < di(z') < kdji(z).
Then,

1 hy 1 i3l ! %l ~ ~
—fe(f) < / F(T9 ' T %) dz dju(x') < ki f),
K [Bo[2']]| Bola']

and . .
—fie(f) < / F(T% 2, T ") dz dji(z') < wjie(f)
K Bo[2']| Jasofar

Let Q" consist of one point from each By[z]. We now disintegrate dji(x') = df(z")dz’
where 2" € Q", 2 € By[2]. Then,

/ F(T7', T 2) dz dji(a' / / F(T7, T %) d2' dz dB(z")
|%0 | Bo[z'] " J B[z xBo[z"']
— / / F(T %, T ) d2 dz dB(z")
4 %O[III]X%O[I/I]

1 - -
— / — F(T 2, T ) dz dji(a”).
o [Bolz']] Jasofar
)

Now (6.12) follows from (6.13) and (6.14). O

Lemma 6.15. Let [i,, be any weak-star limit of the measures [iy. Then,
(a) We may disintegrate dfiso(x,v) = dfi(x) dA(v), where for each x € Q, A\, is
a measure on P(L).
(b) Forz € Q and y € F;j[z],

)\y = R(QT, y)*)\:w
(c) Let w € P(L) be a point. Forn >0 let
B(w,n) ={vePlL) : dlv,w)<n}

Then, for any t < 0 there ezists Cy = Cy(t,w) > 0 and ¢y = c2(t,w) > 0 such
that for x € €,

Aree(B((T3)ew, C1n)) > cado(B(w, 1))
Consequently, fort <0, the support of Art, contains the support of (T%) )\
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(d) For almost all x € S there exist a measure ¢, on P(L) such that

for some h(z) € SL(L), and also for almost all y € F;j[x], ¢, = ¢, (so that
Y is constant on the leaves F;j). The maps x — 1, and x — h(x) are both
v-measurable.

Proof. If f(x,v) is independent of the second variable, then it is clear from the
definition of fi, that fie(f) = [, fdi. This implies (a). To prove (b), note that
Ry y) = R(z,y)R(y', x). Then,

1
Ay = lim ———— (R(Y' y)spo) dy’
Y 5o \Fijly, Gkl J 7, iYy:Lk] i
1

= R(z,y), lim ———— (R(Y', x)«po) dy
( ) k—o0 ’}—w[y?gk” Fijly,Le] ( 0)

= R(x, hm / x dy
( y) hsoo |]:Z] x ék | Fijl xék y pO) !

where to pass from the second line to the third we used the fact that F;;[x, {] = Fi;[y, {]
for ¢ large enough. This completes the proof of (b).

We now begin the proof of (¢). Let w(z) = w. Working in the universal cover, we
define for y € H[z|, w(y) = R(x,y)w(z). We define

wy(2) = {v € P(L(z)) : d(v,w(z)) <n}.

(Here we are thinking of the space as Q2 x P(L) and using the same metric on all the
P(L) fibers).
Let o' = Tz, ¢ = T%'y. We have
Ry, ') = R(z,2")R(y, 2)R(Y', y)-
Since ||R(z,2')7 || < ¢!, where ¢ depends on t, we have R(z,2') 'w,,(2') C w,(z).
Then,
polv + R(y,2)v € wey(a)} = po{v + R(y,2)R(y, y)v € R(z,2") " wey(2)}
> pofv Ry, 2)R(yY,y)v € wy(x)}
=po{R(y,y)"u + R(y,)u € wy(x)}
=R(y.y). pofu : Ry, x)u e wy(x)}
> dpo{u : R(y,z)u € w,(z)}.

Note that for t < 0, T9'F;;[x, (] C Fy [T 2, €] and [T Fijlx, )] > e(t)| Fiy [Tz, £
Substituting into (6.10) completes the proof of (c).
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To prove part (d), let M denote the space of measures on P(L). Recall that by
[Zi2, Theorem 3.2.6] the orbits of the special linear group SL(L) on M are locally
closed. Then, by [Ef, Theorem 2.9 (13), Theorem 2.6(5)] ! there exists a Borel cross
section ¢ : M/SL(L) — M. Then, let ¥, = ¢(mw()\;)) where 7 : M — M/SL(L) is
the quotient map. [l

We also recall the following well known Lemma of Furstenberg (see e.g. [Zi2, Lemma
3.2.1]):

Lemma 6.16. Let V be a vector space, and suppose p and v are two probability
measures on P(V). Suppose T* € SL(V) are such that T* — oo and Ty — v. Then
the support of v is contained in a union of two proper subspaces of V.

In particular, if the support of a measure v on P(V) is not contained in a union of
two proper subspaces, then the stabilizer of v in SL(V) is bounded.

Lemma 6.17. Suppose that 6 > 0, and suppose that for all 6 > 0 there exists a set
K C Q with i(K) > 1—06 and a constant Cy < 0o, such that for all x € K, all { >0
and at least (1 — 0)-fraction of y € Fij[x, (],

(6.15) |R(z,y)v| < Ci||v]| for all v € L.

Then for all § > 0 and for all £ > 0 there exists a subset K"(¢) C Q with i(K"(¢)) >
1 —¢(0) where ¢(6) — 0 as 0 — 0, and there exists 0" = 0"(0,0) with " — 0 as € — 0
and 6 — 0 such that for all x € K"({), for at least (1 — 8")-fraction of y € F;j|x, ],

(6.16) YVl < [RGz, y)vIl < Ciliv]| for all v € L.
Proof. Let f be the characteristic function of K x P(L). By (6.10), fi,(f) > (1 —9).

By Lemma 6.14 we have ji,(f) > (1 —k28). Therefore, by (6.11), there exists a subset
K'(¢) c Q with fi(K’'(£)) > 1 — (k26)"/? such that such that for all x € K'(¢),

[Filz, )N K| > (1= (520)'72)|Fyla, ).
For zy € (), let
Zylxo) = {(x,y) € Fijlzo, l] x Fijlxe,¢] : x€ K, yeK, and(6.15) holds }.
Then, if 2o € K'(¢) and 6’ = 0 + (x26)'/? then, by Fubini’s theorem,
Ziwel| > (1 - 8)|Fylwo, 6 x Filao, €]
Let
Zy[wo]" = {(z,y) € Fijlwo, €] x Fylzo, €] + (y,x) € Zy[o]}.
Then, for xq € K'(¢),
o] 0 Zefwol!] = (1= 26\ Fig oo, € x Filao, €]
For z € F;;[xzo, (], let
Yi(2) ={y € Fyle, 0] : (2,y) € Zi[2] N Z[z]'}.

IThe “condition C” of [Ef] is satisfied since SL(L) is locally compact and M is Hausdorff.
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Therefore, by Fubini’s theorem, for all 2o € K'(¢) and 6" = (260')'/2,
617) o€ Fylao ] 1Y/@)] = (1= ) Filao, A} = (1 ")\ Fyleo, A
(Note that Fi;[zo, (] = Fij|x, {].) Let

K'(0) ={z e+ |[Y/(z)] = (1= 6")|Fy[x, ]}
Therefore, by (6.17), for all 2o € K'(¢),

| Fijlao, €] N K"(O)] = (1 = 07)|Fijlzo, €]].

Then, by the definition of /i,

fu(K"(0) x P(L)) = (1 = 6")v(K'()) = (1 —20"),
and therefore, by Lemma 6.14,

AK"(0) = fu(K"(0) x P(L)) > (1 — 2x°0").

Now, for x € K"({), and y € Y/(x), (6.16) holds. O

6.3. Proofs of Proposition 6.2 and Proposition 6.3.

Lemma 6.18. There exists a function C : Q — R finite almost everywhere such
that for all x € Q, all v € Eyjpaa(z), and all y € Fij[x],

C2) ' Cy) vl < R, y)vll < Cx)C W)V,

Proof. Let fi, and fi, be as in Lemma 6.14, with L = Ej;544. Take a sequence
l;, — oo such that fiy, = [ieo, and fly, — floo. Then decomposing as in Lemma 6.15
(a), we have dfio(z,v) = dfi(z) d\,(v) where A, is a measure on P(E;;;q4). Let
E C Q) be such that for z € E, A\, is supported on at most two proper subspaces. We
will show that f(E) = 0.

Suppose not; then fi(E) > 0, and for z € E, A, is supported on Fy (z)UF3(x), where
F,(z) and Fy(x) are subspaces of E;; pqa(z). We always choose F(x) and Fy(z) to be
of minimal dimension, and if A\, is supported on a single subspace F(z) (of minimal
dimension), we let Fy(z) = Fo(x) = F(z). Then, for z € E, Fy(x) UFy(z) is uniquely
determined by x. After possibly replacing E by a smaller subset of positive measure,
we may assume that dim Fy(z) and dim Fy(z) are independent of « € E.

Let

UV={ze€Q : T'zr € Fand T *z € F for some t > 0 and s > 0.}
Then, (V) = 1. If € ¥, then, by Lemma 6.15 (c),

(6.18) (Tj-s,)«F1(T%x) U (T5-s,)Fo(T°z) C supp A\, C
(T ) F1(T'2) U (T)) Fao(T ),
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Since F;(T'x) and F;(T*x) have the same dimension, the sets on the right and on
the left of (6.18) coincide. Therefore, £ D ¥ (and so E has full measure) and the set
Fi(z) UFy(z) is T'-equivariant.

Fix 6 > 0 (which will be chosen sufficiently small later). Suppose ¢ > 0 is arbitrary.
By the definition of E;; p4q, there exists a constant C'; independent of £ and a compact
subset K C 2 with fi(K) > 1 — ¢ and for each z € K a subset Yy(x) of F;;[z, (] with
Yy ()] > (1 — 8)|Fij[x, €]|, such that for z € K and y € Y,(z) N K we have

HR(iL’,y)VH S 01HVH fOI' all v € Eij,bdd(x)-

Therefore by Lemma 6.17, there exists 0 < 0" < 1/2, K"(¢) C Q with g(K"(¢)) >
1 — ¢(9) where ¢(d) — 0 as 6 — 0, and for each x € K"({) a subset Y/ (z) C F;j[x, (]
with |Y/(z)| > (1 —6")|F;;[z, ¢]| such that for x € K”(¢) and y € Y/(z), (6.16) holds.
Let
Z(z,n) ={v € P(Eijpaa) : d(v,Fi(z) UFy(z)) > n}.

We may choose n > 0 small enough so that for all x € (,

po(Z(z,Cin)) > 1/2.

Let
Sm) ={(z,v) : z€Q, veZlx,n}

Let f denote the characteristic function of the set S(n). We now claim that for any
£,

(6.19) fu(f) = p(K"(0)(1 = 0")(1/2).

Indeed, let ¥ denote the set of triples (z,y,v) such that x € K"({), y € Y/(z),
v € Z(z,Cyn). Then by (6.16), if (z,y,v) € ¥, then f(y, R(z,y)v) = 1. Therefore,
in view of the definition (6.11), we can estimate fi,(f) from below by the fi X |- | X po-
measure of W'. This implies (6.19). Thus, (provided § > 0 and # > 0 in Definition 6.5
are sufficiently small), there exists ¢y > 0 such that for all ¢, [1,(S(n)) > ¢ > 0.
Therefore, by Lemma 6.14, ji,(S(n)) > co/K>.

There exists compact Ky C Q with i(Ky) > 1 — ¢o/(2x%) such that the map = —
F,(x) UFy(x) is continuous on Ky. Let Kj = {(x,v) : x € Ko}. Then S(n)N K] is a
closed set with f1,(S(n) N K}) > co/(2x%). Therefore, fino(S(n) N K}) > co/(26%) > 0,
which is a contradiction to the fact that A, is supported on Fy(x) U Fy(z).

Thus, for almost all z, A, is not supported on a union of two subspaces. Thus
the same holds for the measure 1, of Lemma 6.15 (d). By combining (b) and (d) of
Lemma 6.15 we see that for almost all  and almost all y € F;;[z],

hence h(y) ' R(z,y)h(z) stabilizes ¢,. Hence by Lemma 6.16,
h(y) ' R(z,y)h(z) € K(x)
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where K(z) is a compact subset of SL(Eyjpqa), and R(z,y) is the image of R(x,y)
under the natural map GL(E;;paq) = SL(Eijpaq). Thus, R(z,y) € h(y)K (x)h(x) ™,
and thus

(6.20) [R(z, )| < C(z)C(y).
Since R(z,y)~! = R(y, ), we get, by exchanging x and y,
(6.21) [R(z,y) 7| < C(2)C(y).

Note that by Lemma 6.6, there exists v € E;; pqa(z) C E;j(x) such that v € E; ;_;(z).
Then, (5.5) and the fact that \;;(z,y) = 0 for y € Fj;z] shows that (6.20) and
(6.21) must hold for R(x,y) in place of R(z,y). This implies the statement of the
lemma. O

Lemma 6.19. Suppose that for all 6 > 0 there exists a constant C' > 0 and a compact
subset K C Q with i)(K) > 1 — 6§ and for each { > 0 and x € K a subset Y,(z) of
Fijlz, 0] with |Ye(z)| > (1 — 0)|Fij]x, {]|, such that for x € K and y € Yi(x) we have

Then, ij and kr are synchronized, and there exists a function C : Q — RT finite
fi-almost everywhere such that for all x € Q, and all y € Fj[x],

(6.23) p(y, Firlz]) < C(z)C(y).

Remark. From the definitions, 45 and kr are synchronized if the assumptions of
Lemma 6.19 hold, with (6.22) replaced by —C' < Mg (z,y) < C. In Lemma 6.19
we are only assuming the upper bound, so to prove synchronization of ij and kr an
argument is needed.

Proof. The proof is a simplified version of the proof of Lemma 6.18. Let L; =
E;/E;;—1, Ly = Et,/E;,_1, and L = L; x L.
We have, in view of Proposition 2.14, for y € H[z], and (v,w) € L,
(6.24) R(z,y)(v,w) = (MW Mr@9)g!)
where [|[V'|| = ||v[| and [[W'[| = [|w]|.

Recall that \;j(z,y) = 0 for all y € F;;[z]. Therefore, (6.22) implies that for all
x € K, al ¢>0and all y € Yy(x),

IRz, y)(v, W)l| < Cif[(v, W)][.

Therefore, by Lemma 6.17, there exists a subset K”(¢) C Q with (K" (¢)) > 1 —¢(6)
where ¢(0) — 0 as § — 0, and for each z € K"({) a subset Y, C Fj;[x,{] with
1Y)| > (1 —6")|Fij|x, {]| such that for all y € Y,

Cr (v, W)l < [[R(z, ) (v, w)|| < Cull(v, w)].
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This implies that for z € K"(¢), y € Y/(x),

(6.25) [Aer (2, y)| = [Aij (@, y) = A (2, )| < Ch

Let fi, and fi, be as in Lemma 6.14. Take a sequence ¢,,, — oo such that fi,,, — fico,
and fiy,, — Us. Then by Lemma 6.15 (a), we have dfio(z,Vv) = dfi(z) d\, (V) where
A is a measure on P(L). We will show that for almost all z € 2, A, is not supported
on Ll X {O} U {O} X L2.

Suppose that for a set of positive measure A, is supported on (L; x {0}) U ({0} x

L,). Then, in view of the ergodicity of 7% and Lemma 6.15 (c), A, is supported on
(Ly x {0}) U ({0} x Lg) for almost all = € . Let

Z(z,n) ={(v,w) eL(x), [[(v,w)[[=1 d(v,Li)=n, d(w,Ly)=>n}.
and let
Sn) =A{(z,(v,w)) = z€Q,(v,w) € Z(z,1)}.
Then we have [io(S(n)) = 0. By Lemma 6.14, fi,,(S(n)) = 0.
By (6.24) and (6.25), for v € K"({;,) and y € Y] (),
(6.26) R(x,y) Z(x,Cin) C Z(y,n).

Choose 1 > 0 so that for all z € Q, po(Z(x,C1n)) > (1/2). Let f be the characteristic
function of S(n). Let ¥ denote the set of quadruples (x,y,v,w) such that x €
K"(ly,), y € Y, (v), and (v,w) € Z(x,C1n). Then by (6.26), for (z,y,v,w) € ¥,
f(y, R(x,y)v) = 1. Therefore, in view of the definition (6.11), we can estimate fi,,, (f)
from below by the i X | - | X pp-measure of W. This implies that for all m,

i, (S(m)) = (K" (€n) N K') (1= 60")(1/2).

Hence fio(S(n)) > 0 which is a contradiction. Therefore, for almost all x, A, is
not supported on L; x {0} U {0} x Ly. Thus the same holds for the measure 1, of
Lemma 6.15 (d). By combining (b) and (d) of Lemma 6.15 we see that for almost all
z € Q and almost all y € F;;[x],

hence h(y) ' R(z,y)h(x) stabilizes 1,. Note that in view of (6.24), h(z) and h(y) are

conformal, and hence

h(y) " R(z, y)h(z) (v, W) = (2@ ' @VF"),
where a(z,y) € R, o/ (z,y) € R, |[V/|| = [|v]| and [[W'[| = [[w].
For ¢ = 1,2 let Conf,(L;) denote the subgroup of GL(L;) which preserves the inner
product (-,-), up to a scaling factor. Let Conf,(L) = Conf,(L;) x Conf,(Ls). Then,
by an elementary variant of Lemma 6.16, since 1, is not supported on L; x {0} U
{0} x Lo, we get
h(y)™ Rz, y)h(z) € K ()
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where K (x) is a compact subset of Conf,(L). Thus, R(z,y) € h(y)K(z)h(x)™!, and
thus

[R(z,y)|| < Cx)C(y).
Note that by reversing = and y we get ||R(z,y)7!|| < C(x)C(y). Therefore, by (6.24),

i (2, y) = Ak (2, )] < C(2)C(y)-

This completes the proof of (6.23).

For any 0 > 0 we can choose a compact K C Q with g(K) > 1—4§ and N < o0
such that C(z) < N for x € K. Now, the fact that ij and kr are synchronized follows
from applying Lemma 5.7 to K. U

Proof of Proposition 6.2. This follows immediately from combining Lemma 6.19
and Lemma 6.18. O

Proof of Proposition 6.3. Choose € < € /(10\,;n), where A = min{\; @ A, >
0}, and where € is as in Proposition 4.2. By the multiplicative ergodic theorem, there
exists a set K C Q with a(K{) > 1—6 and T > 0, such that for x € KY and [¢t| > T,

(6.27) N (2,) — Nit| < €]t

where \;;(z,t) is as in (5.2). Then, by Fubini’s theorem there exists a set Kj C KY
with fi(KY) > 1—30 such that for x € K7, for (1—6)-fraction of uz € Bylz], ur € K.

Let K” be as in Proposition 4.2 with 6 = . We may assume that the conull set
U in Proposition 6.3 is such so that for z € ¥, T~'z € K" N K for arbitrarily large
t > 0. Suppose T 'z € K" N KY and y € F;;[z]. We may write

y =TV uT7 Vg = T5uT 2.
Then, \;;(z, —t) = —A;t’. Hence,
At = Ait'| = At + Nij(@, —t)] < et,

where for the last estimate, we used (6.27) with (—t) in place of t.

By the definition of F;;[x, ], and since T 'z € K}, we have T 'z € K| and for at
least (1 — @)-fraction of y € F;;[x, ¢], we have uT 'z € K|, and thus, using (6.27) as
above, we have

| = t'| < (e/A)t and |t =] < (e/ M)t

Therefore for (1 — 6)-fraction of y € F;;[z,t'] or equivalently for (1 — 6)-fraction of
uT'x € Bo[T '],

(6.28) Is' — | < 4(e/\)t.

Now suppose v € Lie(NT)(z). Note that if [|R(z,y)v| < CJv]|, and s is as in
Proposition 4.2, then s > s’ — O(1) (where the implied constant depends on C.)
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Therefore, in view of (6.28), for (1 — #)-fraction of uT 'z € By[T x|, (4.9) holds.
Thus, by Proposition 4.2, we have v € E(x). Thus, we can write

where the indexing set I, contains at most one r for each k € A’. Without loss of
generality, ¥ is such that for z € ¥, T~ 'z satisfies the conclusions of Proposition 2.14
infinitely often. Note that for y € F;;[x],

1R, y)v| = IRz, y)virl| = X9 vy |

By assumption, for all ¢ > 0 and for at least 1—6 fraction of y € F;;[x, (], | R(z,y)v| <
C||v||. Therefore, for all £ > 0 and for at least (1 — 6) fraction of y € F;[z, (], (6.22)
holds. Then, by Lemma 6.19, for all kr € I, kr and ij are synchronized, i.e. kr € [ij].
Therefore, for at least (1 — 260)-fraction of ¢ € Fy.[z, (],

|1R(z,y" )il < [[R(z,y")v]] < C'|lv]| = C"||vie |-
Now, by Definition 6.5, Vi, () € Egypaa(z). Therefore, v € Epj) paa(2). O

7. BILIPSHITZ ESTIMATES

The subspace £ (%). For & = (z,9) € Q, let W_[i] = {(y,¢) € W[ [3]
da(g,9') < 1}. Let £L7(2) C Lie(N7)(z) C g denote the smallest subspace of
Lie(N~)(z) such that the projection to G of the conditional measure D|Wl_ ] 18 sup-

ported on exp(L(2)g). The assumption that we are in Case I (see §1) implies
dim(L£~(2)) > 0 for a.e. 7.

Lemma 7.1. For almost all € Q and all t € R,

(7.1) L (T'2) = (TH.L7(2).

Also, for almost all & = (z,g) € Q, L™ (%) is a subalgebra of Lie(N~)(x).

Proof. From the definition, for ¢ > 0, (T;%).L7(2) € L~ (T7'%). Let ¢(2) =
dim(L~(z)). Then, ¢ is a bounded integer valued function which is increasing under
the flow T~'. Since the flow is ergodic on /T, it follows that ¢ is constant, and
therefore (7.1) holds.

For the second assertion, the proof of [Eili1, Proposition 6.2] goes through almost
verbatim. 0

The function A(q,u,?,t). Suppose ¢ = (q1,9), v € U, £ > 0 and t > 0.
For x € Q, let 7/g : g — E(x) denote the orthogonal projection using the inner
product (-,-),. We consider the restriction of A(qy,u,¢,t) to £L~(T'G), so we are
considering A(qy, u,¢,t) as a linear map from £ (T~'¢) to g. Let A(Gy,u,l,t) =
|me o A(q1,u, £, t)|| (the norm of the restriction) where the operator norm is with
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respect to the dynamical norms || - [|7—¢,, and || - ||ptuq, - In view of (4.2), for almost
all ¢, and ugy € Uy G1, A(Gy,u,l,t) — 0o as t — oo.
The function 7 (Gi,u, ). For e > 0, almost all ¢; € Q), almost all uq, € UG, and
(>0, let

7o (G, u, €) =sup{t : t>0and A(G,u,l,t) <€}

Note that 7 (g1, u,0) need not be 0. The following easy estimate plays a key role in
our proof.

Proposition 7.2. Suppose 0 < € < 1/100. For almost all ¢ € Q, almost all uq, €
U qr, all £ >0 and all s > 0,
(7.2) Folqi, u, 0) + k7% < Ty (qu, u, £+ 8) < Foy(qu, u, £) + ks,

where K is as in Proposition 2.14(d).

Proof. For & = (z,9) € Qand t > 0 let A, (i,t) = Ay (z,t) denote the restriction of
(T, to E(z) C Lie(NT)(z). For & = (z,g9) € Q, let A_(Z,s) : L™ (2) = L (T*Z) de-
note the restriction of (7). to L (z). It follows immediately from Proposition 2.14(d)
that for some k > 1, almost all £ and t > 0,

(7.3) > A& e e < A(E )] < e
and,
(7.4) e A, -t = e, e <A (@, )| < e

Note that by (4.1)
(7TE © A)(le u, 0+ s, t+ T) = (Tittuql) (ﬂ—E © A)(Q1, u, 14 t) ( T— (4+S)q1)
Let t = 7(¢)(q1,u,¢), so that A(q:,u,?,t) = e. Therefore, by (7.3) and (7.4),

A(QhU l+ s, t—I—T) < ||A+( ugy, T )HA((]hU l, t)“.A ( —(t+s) Qh )H <
el Ay (T ugy, 7)|| A (T~ 9y, s)|| < ee™™ ",

where we have used the fact that A(¢,u,?,t) =€ If t +7 = 7(¢1,u, £ + s) then
A(Gr,u, 0+ s,t + 1) = €. It follows that k7 — k~1s > 0, i.e. 7 > k2?s. Hence, the
lower bound in (7.2) holds.

The proof of the upper bound is similar. Note that we have

A(Qla u, f, t) (TTt:—Tuq1) (ﬂ-E © A) (Q1> u, 14 + S, t+ 7-) (TT Séql)
Let t + 7 = T(o)(qu,u, 0 + s). Then, by (7.3) and (7.4),

A(élv u, éa t) S ||A+(Tt+7—u{j17 _T)HA(QD u, g + S, t + T)||A—(T_€Cj1’ _S)” S
el AL (T ugy, =) || A (T Gr, —s)|| < ee™ T8,
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where we have used the fact that A(Gy,u,? + s,t +7) = €. Since A(¢r,u,?,t) =€, it
follows that —x'7 + ks > 0, i.e. 7 < k?s. It follows that the upper bound in (7.2)
holds. U

8. CONDITIONAL MEASURES.

8.1. Conditional Measure Lemmas. We note the following

Lemma 8.1. For any p > 0 there is a constant c(p) with the following property: Let
AV = W be a linear map between Fuclidean spaces. Then there exists a proper
subspace M C V such that for any v € V with ||v| =1 and d(v, M) > p, we have

[A]l = [[Av][ = e(p)[|All.

Proof of Lemma 8.1. The matrix A’A is symmetric, so it has a complete orthogonal

set of eigenspaces W1, ..., W,, corresponding to eigenvalues p; > o > ... [y,. Let
M =W 0

Let B be an abstract finite measure space.

Proposition 8.2. For every § > 0 there exist constants c¢1(3) > 0, €,(6) > 0 with
c1(0) = 0 and €,(0) — 0 as 6 — 0, and also constants p(d) > 0 and p'(6) > 0, such
that the following holds:

For any T-invariant subset K' C Qo with 0(K'JT) > 1—0, there exists a T-invariant
subset K C K" with 0(K/T') > 1 — ¢1(0) such that the following holds: suppose for
each ¢ € Qo we have a measurable map from B to proper subspaces of L™(q), written
as u — My(q). Then, for any ¢ = (q,9) € K there exists ¢ = (¢',exp(w)g) € K’
with ¢ € Wy lq], w € L7(q),

(8.1) p'(0) < [lwllo < 1/100
and
(8.2) do(w, My(q)) > p(9) for at least (1 — €;(0))-fraction of u € B.

In the rest of this subsection we will prove Proposition 8.2.

Notation. For & = (z,9) € Q, let #; denote conditional measure of & on W [#].
Let 3 denote the projection of 7 to the GG factor. By abuse of notation, we think
of U; as a measure on g. Then, by the definition of £ (), ¥; is supported on L~ (z).
Recall that £7(Z) is a subalgebra of g, by Lemma 7.1.

Lemma 8.3. For -almost all & = (z,g) € Q, for any e > 0 (which is allowed to
depend on &), the restriction of the measure g to the ball B(0,e) C L™ (&) is not
supported on a finite union of proper affine subspaces of L™ (Z).



RANDOM WALKS ON LOCALLY HOMOGENEOUS SPACES 65

Outline of proof. Suppose not. Let N(z) be the minimal integer N such that for
some € = €(Z) > 0, the restriction of 7z to B(0, €) is supported on N affine subspaces.
Since L™ (&) C Lie(N~)(z), the induced action on on £~ of T~ for t > 0 is expanding.
Then N (%) is invariant under 7%, ¢ > 0. This implies that N(Z) is constant for -
almost all Z, and also that the only affine subspaces of £~ (2) which contribute to N(-)
pass through the origin. Then, N(Z) > 1 almost everywhere is impossible. Indeed,
suppose N (%) = k a.e., then for & = (z,g) pick § = (y,exp(w)g) € Wi [#] near &
such that w is in one of the affine subspaces through 0; then there must be exactly
k affine subspaces of non-zero measure passing though w, but then at most one of
them passes through 0. Thus, the measure restricted to a neighborhood of 0 gives
positive weight to at least k + 1 subspaces, contradicting our assumption. Thus, we
must have N (&) = 1 almost everywhere; but then (after flowing by T for sufficiently
large t > 0) we see that for almost all Z, 7; is supported on a proper subspace of
L~ (z), which contradicts the definition of £~ (). O

The partitions B~ and B~. We may choose a [-invariant partition of B~ of
subordinate to W™, so that for each # = (z*, 2™, g) the atom B~ [#] containing & is of
the form Wy [zT] x B~ [xT, g], where B~ [zT, g] C N~ (x)g. Following our conventions,
we will write B~ [z, g['] as B~ [Z]. We may also assume that the diameter of each
B~ [z] is at most 1/100.

The measure v/,. For z € Q, let v/, = Us|s—[s]), 1.e. v is the restriction of 7; (which

is a measure on N~ (x)g) to the subset B~ [#]. Then, for § € B[], vy = V.

Lemma 8.4. For every n > 0 and every N > 0 there exists $ = 51(n,N) >0, p; =
p1(n,N) > 0 and a I'-invariant subset K, y with K, n/I' compact and of measure at

least 1 —n such that for all & € K, n, and any proper subspaces My(z), ..., Mn (&) C
L(2),

(8.3) vi(B7[#] N | Nbhd(My(2), p1)) = Brvj (B [2]).

Outline of Proof. By Lemma 8.3, there exist £z = 5z(N) > 0 and pz = pz(N) > 0
such that for any subspaces M;(Z),... Mn(2) C L7(2),

(84) vi(B~[2] \ | J Nbhd(M(#), ps)) > Bsvs(B [2]).

Let E(p1, 1) be the set of & such that (8.3) holds. By (8.4),

v U E(pl;ﬁl) =1.

p1>0
£1>0
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Therefore, we can choose p; > 0 and 51 > 0 such that o(E(p1,81)) > 1 —n. O

Lemma 8.5. For every n > 0 and every ¢, > 0 there exists f = B(n,e) > 0, a
I'-invariant K, = K,(e1) C Q with K, /T compact and of measure at least 1 —n, and
p = p(n,€e1) > 0 such that the following holds: Suppose for each u € B let M, (Z) be
a proper subspace of L~ (&). Let

Epood(Z) ={v e B (2] : for at least (1 — &)-fraction of u in B,
do(v, M.(2)) > p/2}.
Then, for & € K,,
(8.5) Vi (Egooa(2)) = Br (B (2]).

Proof. Let n = dim £7[#]. By considering determinants, it is easy to show that
for any C' > 0 there exists a constant ¢, = ¢,(C) > 0 depending on n and C' such
that for any > 0 and any points vy, ..., v, in a ball of radius C' with the property
that ||vy]| > n and for all 1 < ¢ < n, v; is not within 1 of the subspace spanned by
v1,...,U;_1, then vy,..., v, are not within ¢,n™ of any n — 1 dimensional subspace.
Let kmar € N denote the smallest integer greater then 14 n/e;, and let N = N(¢;) =
(:m_axl) Let 81, p1 and K, y be as in Lemma 8.4. Let 5 = (1, e1) = B1(n, N(e1)),
p = p(n,e1) = cupr(n, N(er))", Ky(e1) = Ky nier). Let Epaa(2) = BT[] N Eyooa().
To simplify notation, we choose coordinates so that & = 0. We claim that FEy.q(Z) is
contained in the union of the p;-neighborhoods of at most NV subspaces. Suppose this

is not true. Then, for 1 < k < kyq, we can inductively pick points vy, ..., vp € Epeq(Z)
such that v; is not within p; of any of the subspaces spanned by v;,,...,v;, , where
17 < --- <1 < j. Then, any n-tuple of points v;,...,v;, is not contained within

p = cpp1 of a single subspace. Now, since v; € Ep.q(), there exists U; C B with
\Ui| > €1|B| such that for all u € U;, do(v;, M) < p/2. We now claim that for any
1< <tg<-- <1, <k,

Indeed, suppose u belongs to the intersection. Then each of the v;,...v;, is within

p/2 of the single subspace M,, but this contradicts the choice of the v;. This proves
(8.6). Now,

km(lft kmaw
6lkmtm|B| < Z ‘Uz‘ <n U U;| < Tl‘B‘
i=1 i=1

This is a contradiction, since kpq: > 1+ n/e;. This proves the claim. Now (8.3)
implies that

Vi(Egood(£)) > v4(B7[2] \ | Nbhd(My(2), p1)) > Br4 (B~ [2]).
k=1
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Proof of Proposition 8.2. Let 7|y, denote the conditional measure of 7 on the
stable leaf TW~[2]. Let
SfEeQ s dly (K B[] = (1— 0Vl (B 2]},

Since B~ is a partition, we have »(K”/T) > 1 — §'/2,

Let g denote the projection Q — G. We have, for & € K",
(8.7) vi(me(K') N B~ [2]) > (1 - 8'%)vy(B~[4]).

Let 5(n,€1) be as in Lemma 8.5. Let

o(6) = 6+ inf{(n? + )2+ B(n,er) > 862},

We have ¢(0) — 0 as § — 0. By the definition of ¢(J) we can choose n = n(J) < ¢(9)
and €, = ¢,(8) < ¢(d) so that 3(n, e;) > 86/2.

By (8.5), for & € K,
(8.8) Vi (Egood()) = 51/2V4(‘3_[5%])-
Let K = K'N K" N K,. We have 0(K/T) > — 612 — ¢(8), so D(K/T) — 1 as
d — 0. Also, if § € K, by (8.7) and (8.8),

o (K') N B7[4] N Egooa(q) # 0.

Thus, we can choose ¢ € K’ N B [§] such that 7¢(§") € Egooa(q). Then (8.2) holds
with p = p(n(d),€1(5)) > 0. Also the upper bound in (8.1) holds since B[] has
diameter at most 1/100. Since all M, (¢) contain the origin, the lower bound in (8.1)
follows from (8.2). O

9. EQUIVALENCE RELATIONS ON W

Proposition 9.1. For allij € A and a.e x € Q, the subspace Ejij)paa() s in fact a
subalgebra of g.

Proof. Suppose v,w € E;jjp4q(x). Then, (since R(x,y) acts by conjugation), [v, w]
satisfies all the conditions of Proposition 6.3. Thus, by Proposition 6.3, [v,w]| €
Efij).baa(2). O

Forij € A and z € Q let
Eij(r) = eXP(E[z‘j],bdd(l’))-
In view of Proposition 9.1, this is a subgroup of G.
Equivalence relations. For # = (z,g), 2/ = (2, ¢') €  we say that
&'~ 2 if o' =2 and ¢ € &;j(x)g.

The following is clear from the definitions:
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Proposition 9.2. The relation ~;; is a (measurable) equivalence relation.

The sets &;[i]. For & € Q, we denote the equivalence class of & by &;[7].
It is clear that the following equivariance properties hold:

Lemma 9.3. Suppose z € Q, t € R and u € U is such that uz € Bolx].
(a) TE[z] = Ey[T ).
(b) u&ila] = Ejlua].

Proof. Note that the sets Ey;) paq(x) are T*-equivariant. Therefore, so are the &;(x),
which implies (a). Part (b) is also clear, since by Lemma 3.4(a), E;j(z) = E;;(ux). O

The measures f;;. Write 2 = (x,¢9). Recall that &;(z) is a unipotent subgroup
of G. We now apply the leafwise measure construction described in [EiL2] to get
leafwise measures f;;(Z) of  on &;;(z). (Roughly speaking, f;;(Z) is the pullback to
&ij(x) of the “conditional measure of o along &;;(x)g”). The measure f;;(Z) is only
defined up to normalization. We view f;;(Z) as a measure on GG which happens to be
supported on the subgroup &;;(z).

~

Lemma 9.4. Suppose j = (y,¢') € Q, & = (z,9) € Q and y € H[z]. We have
fi5(9) o< R(x, y)« fi (£).
Proof. See [EiL2, Lemma 4.2(iv)]. O

10. THE E1GHT POINTS

Let g : Q0 — Q denote the forgetful map. If f() is a function on €2, and & € Q,
we will often write f(Z) instead of f(mo(2)). Let mg : © — G denote projection to
the second factor.

We will derive Theorem 1.13 from the following:

Propos1t10n 10.1. Suppose u satisfies the weak bounceback condition (3.13), and v is
a T-invariant and U -invariant measure on Q/F Suppose also that Case I holds (see
§1). Then for almost all x € /T there exists a unipotent subgroup U, (x) C Nt (x)
and for almost all & € QT there exists a nontrivial unipotent subgroup Ut (&) C
Uy () such that the following hold:
(a) For almost all x € Q and all t € R, Uy (T'x) = AA(TH)US (z) and for almost
all w e U, Uy (ux) = U (x ).
(b) For almost all & = (x,g) € Q and all t € R, U,
for almost all w € U;", UL, (u T) = Uy (2)-
(c) For almost all & = (x,9) € Q, the leafwise measure of U along Uj[2] =
{z} x Uy (x)g (which is by definition a measure on Uy (x)) is right invariant
by U, (%) C U ().

(T'2) = Ad(TH U

new

() and
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~

q
Figure 3. Outline of the proof of Theorem 1.13

Most of the rest of §10 will consist of the proof of Proposition 10.1. The argument
has been outlined in [EsL, §1.2] and §1.5, and we have kept the same notation (in
particular, see Figure 3)

For & = (z,9) € Q, let f;(#) be the measures on &;(z) C G defined in §9.
Proposition 10.1 will be derived from the following:

Proposition 10.2. Suppose . and U are as in Proposition 10.1. Then there exists
0 < &y < 0.1, a T-invariant subset K, C Q with v(K,/T) > 1 — 8y such that all the
functions fij, ij € A are uniformly continuous on K, and C' > 1 (depending on K,)
such that for every 0 < e < C~1/100 there exists a T-invariant subset E C K, with
D(E/T) > &y, such that for every & € E there exists ij € A and § € &[] N K, with

(10.1) C~le < dg(ma(), 7a()) < Ce
and
(10.2) fii(9) o< fij(2).

10.1. Outline of the proof of Proposition 10.2. We use the same notation as in
§1.5. Recall that for z € Q, g : g — E(x) denotes the orthogonal projection, using
the inner product (,-),.

Similarly to [EsL], a simplified scheme for choosing the eight points is as follows:

(i) Choose ¢ in some good set, so that in partlcular for most ¢, 1%G g1 € K, and
T q1 € K, and for most u and most t, Ttuql € K,.
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(i)

(v)

(vi)
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Let A(Gr,u,?,t) be as in §4, so that if 75(¢') = exp(w)me(¢) then we have
ma (@) = exp(A(Gr, u, £, )W) me(ds). Let ¢ = TG and let Gy = T ugy, where
t = 7(¢(q1,u,l) is the solution to the equation ||7g.A(¢1,u,,t)|| = €. Since
by Proposition 7.2, for fixed ¢i, u, €, 7(¢(q1,u,£) is bilipshitz in ¢, for most
choices of ¢, ¢ € K, and ¢, € K,.

For all ij € A, let tij = tij(G1,u,£) be defined by the equation \;;(ugi,t) =
Aij(q1,ti;). Since Ai;(z,t) is bilipshitz in ¢, the same argument shows that for
most choices of £, §3,;; = Tt g, € K,.

Let M, C L£7(¢) be the subspace of Lemma 8.1 for the linear map (7g o
A)(q1,u, £, t) restricted to £7(¢). By Proposition 8.2, we can choose § €
K, with 7¢(¢') = exp(w)ms(§) with ||w| ~ 1 and so that w avoids most
of the subspaces M, as u varies over U;". Then, for most u, (provided
meA(G1,u, {,t)w is a good approximation to A(qy, u, £, t)w),

da(mc(d2), ma(q2)) ~ AL, u, & t)wl| ~ | A(GL, u, £ D) [w]] ~ €,
as required.
In view of Proposition 4.1, for most choices of u, ¢, is close to exp(E(§2))ge,
justifying the assumption that mg.A(¢1,u, ¢, t)w is a good approximation to
A(G1,u, €, t)w. Then, in view of Proposition 6.1, we can then choose u so that
gy is close to exp(Ejj paa(dz))ds for some ij € A.
We now proceed as in §1.5. Let ¢} = T, G = Ttucji where t = 70 (q1, u, {),

and let ¢3,; = T, Since ¥ is T-invariant and U; -invariant and since
)\ij (él; t”) = )\ij(udl, t), we have,
[ij(@2) o< [fij(ds,5)-

Also, since one can show \;;(ug),t) = X\;;(qq, tij) we have,

fij(dé) ~ fij(@:ls,ij)-
Since §3,; and g3 ,; are very close, we can ensure that, fi;(¢;.;) = fij(q3:5)-
Then, we get, up to normalization,

fij(G2) = £ij(d5)-
Applying the argument with a sequence of £’s going to infinity, and passing to
a limit along a subsequence, we obtain points Z, y satisfying (10.1) and (10.2).

The formal proof uses the same ideas, but we need to take a bit more care, mostly
because we also need to make sure that g5 and g3 ,;; belong to K.. We now give a
slightly more precise outline of the strategy.

Suppose ij € A. We define a Y -configuration Y;; = Y;;(G1,u,¢) depending on the

parameters ¢, € Q, uw € U, ¢ > 0 to be a quadruple of points ¢, ¢i1, G2, g3 such
that ¢, g2, {3,; are chosen as in (ii) and (iii) (depending on ¢, u, ¢). Given a Y-
configuration Y, we refer to its points as ¢(Y), ¢:1(Y), etc. A Y-configuration Y;;
is good it ¢(Yi;), ¢1(Yi;), ¢2(Yij), and gs;(Y;;) all belong to some good set K,. The
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argument of (i),(ii), (iii) and Fubini’s theorem show that for an almost full density set
of £, there are very many good Y-configurations with that value of /. See Claim 10.4
below for the exact statement.

We say that two Y-configurations Y = Y;(¢1,u,?) and Y’ = Y;;(¢},«,¢') with
the same 4j are coupled if £ = ¢/, u = o/, G(Y') € Wi [§(Y)], and also if we write
q(Y) = (q,9) with ¢ € Q and g € G, §(Y') = (¢/,exp(w)g) then ||w| =~ 1 and also
w avoids the subspace M, of (iv). Then the argument of (iv) shows that we can
(for most values of ¢) choose points ¢;, ¢} such that for most v and all ij, the Y-
configurations Y;;(gi,u, ) and Y;;(q],u,?) are both good and also are coupled. (see
“Choice of parameters #2” below for the precise statement).

We then choose u as in (v). (See Claim 10.7, Claim 10.11 and “Choice of parameters
#5”7). We are now almost done, except for the fact that the lengths of the legs of
Yij = Yij(qr,u, £) and Y, = Yi;(qy,u,£) are not same. (The bottom leg of Yj; has
length ¢, and so does the bottom leg of Y}, but the two top legs of Y;; can potentially
have different lengths than the corresponding legs of Y;). We show that the lengths
of the corresponding legs are close (see Claim 10.8 and (10.24)) then make some
corrections using (10.4). Then we proceed to part (vi).

10.2. Choosing the eight points. We now begin the formal proof of Proposi-
tion 10.2.

Choice of parameters #1. Fix 6; > 0 as in Proposition 6.1 We then choose 6 > 0
sufficiently small; the exact value of § will be chosen at the end of this section. All
subsequent constants will depend on 4. (In particular, 6 < 6;; we will make this
more precise below). Let € > 0 be arbitrary and n > 0 be arbitrary; however, we will
always assume that € and n are sufficiently small depending on 9.

We will show that Proposition 10.2 holds with §y = 6/10. Let K, C Q be any
[-invariant subset with (K, /T") > 1 —dy on which all the functions f;; are uniformly
continuous. It is enough to show that there exists C' = C'(J) such that for any € > 0
and for an arbitrary [-invariant set Ky C € with Koo/T' compact and 0(Ky/T') >
(1 — 28y), there exists & € Koo N K, ij € A and § € &;[2] N K, satisfying (10.1) and
(10.2). Thus, let Koy C € be an arbitrary D-invariant set with Kgo/T' compact and
V(Koo/r) >1— 250

Let ¢ > 0 be a constant which will be chosen later depending only on the Lyapunov
exponents. Then, by the multiplicative ergodic theorem, for any § > 0 there exists a
T-invariant set K} C Q with K)/T" compact and #(K}/T) > 1 — 6§ and T, = T}(6) > 0

A

such that for ¢t > 7§, 2 € K|, and any v € V;(2),
(10.3) e O v < (Tl < ey

We can choose a I'-invariant set Ky C Koo N K, N K| with K,/T" compact and
v(Ko/T) > 1—50p =1—0/2 so that Proposition 6.2 holds.
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Let k > 1 be as in Proposition 7.2, and so that (5.4) holds. Without loss of
generality, assume § < 0.01. We now choose a I-invariant subset K C 2 with K/T’
compact and (K /T") > 1 — § such that the following hold:

e There exists a number Tj(d) such that for any 2 € K and any 7' > Tg(0),
(10.4) {te[-T/2,T/2] : T'd € Ko} > 0.9T.

(This can be done by the Birkhoff ergodic theorem).
e Proposition 4.1 holds.
e Proposition 6.1 holds.
e There exists a constant C' = C/(§) such that for & = (x,g) € K, C3(z)? < C(9)

where (' is as in Proposition 6.2.
e Lemma 2.16 holds for € = ¢/, K(0) = mo(K) and Cy = C1(9).
For u € U, ij € A and ¢ € Qand t > 0, let tij = tij(¢1,u,t) be the unique
solution to
Xij(q1, tij) = Nij(ugr, t)
Then, in view of Proposition 2.14(c), for fixed ¢1,u, t;;(¢1, u,t) is bilipshitz in ¢. Let
T(o(q1,u,£) be as in §7. Let

EQ((jlyu) - EQ(qua Uu, KOO: 67 6777) = {E : T%(e)((il’u’Z)Ule € K}7

ES((_?la U) = E3(qu7 u, K007 57 €, n) =
={l € BEy(Gi,u) : Vijel, Thloawio@wg e g1,

Note that if we make choices as in §10.1 (ii) and (iii), then if ¢ € F3(¢, u) then ¢, € K
and g3 € K.

Claim 10.3. There exists (3 = {5(Kq, 0,€,m) > 0, a ['-invariant set K3 = K3(Kq, 0, €,m)
with K3 C K and K3/U of measure at least 1 — ¢3(6) and for each ¢ € K3 a sub-
set Qs = Qs(¢iT, Koo, 0, €,m) C U with |Qsqi| > (1 — c4(0))|U¢i| such that for all
G € K3, u € Q3, ugy € K, and for £ > U3, |E3(G1,u) N[0, ¢]| > (1 —c5(5))L. Also, we
have ¢3(6), ¢5(8) and 5(5) — 0 as 6 — 0.

Proof of claim. By the ergodic theorem, for any § > 0 there exists a I'-invariant
set K5(6) C Q with K5/T compact and 7(K,/T') > 1 —§ and ¢, > 0 such that for any
G € Ky, and L > 0, the measure of {t € [0,L] : T'G € K} is at least (1 —6)L. We
choose
Ks=FK,N{teQ : |UfinK,|>(1-08Uz}

Suppose ¢; € K3, and ug, € Ks.

Let

Epoa = {t : Ttucjl S KC}

Then, since ug; € K, for £ > {5, the density of Ej.q is at most . We have

EQ(dla u)c = {E : 7:(6)(qu7 u, é) € Ebad}'
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Then, by Proposition 7.2, for £ > kfy, the density of Ey(¢,u) is at least 1 — 4k24.
Similarly, since for any ij € A the function ¢ — ti5(Gr, w, Ty (Gr, u, 0)) is k*-bilipshitz
(since it is the compostion of two k-bilipshitz functions), for £ > x?(,, the density of
Es(G1,u) is at least 1 — 8x*3[A. O

The following claim states that good Y-configurations are plentiful for an almost
full density set of £.

Claim 10.4. There exists a set Dy = Dy(Kp,0,¢,m) C R and a number €, =
l4(Koo, 9,€,m) > 0 so that Dy has density at least 1 — c4(5) for € > £y, and for { € D,
a T-invariant subset K4(0) = K4(0, Koo, 6, €e,1) C Q with Ky C K and p(K4(0)/T) >
1 — ) (6), such that for any §1 € K4({) there exists a subset Qq = Qa(q:1I',¢) C Q3 C
U with |Qagy| > (1 — &{(6))|U G| so that for all £ € Dy, for all G € K4(¢) and all
u € Qy,

(10.5) ¢ € Es(dy, ).

(We have c4(9), ¢4(0) and cj(§) — 0 as § — 0).

Proof of Claim. This follows from Claim 10.3 by applying Fubini’s theorem to
Qp x [0, L], where Qp = {(2,uz) : % €, ur € Uz}, where L € R. O

Suppose ¢ € Dy.

Choice of parameters #2: Choice of ¢, ¢, ¢; (depending on 0, €, G, ). Sup-
pose ¢ € Dy, and let A(Gy,u,l,t) be as in (4.1). (Note that following our conventions,
we use the notation A(qy,u,?,t) for ¢ € (), even though A(q1,u, £ t) was originally
defined for ¢; € Q). For u € Q4(¢:T,¢) let M,, be the subspace of Lemma 8.1 ap-
plied to the restriction of the linear map wgA(G1, u, ¢, 7o) (41, u, £)) to L (T Gq). We
now apply Proposition 8.2 with K’ = T*£K4(£). We denote the resulting set K by
K5(0) = Ks5(¢, Koo, d,€,m). We have v(K5(¢)/T') > 1 — ¢5(0), where c5(0) — 0 as
5 — 0. Let Kq(0) = T'K5(0).

Suppose € Dy and §; € K¢(¢). Let ¢ = T~%Gy. Then, § € K5(¢). Write ¢ = (¢, g)
where ¢ = mq(q) € 2. By Proposition 8.2 and the definition of K5(¢), we can choose

(10.6) §' = (¢, exp(w)g) € T~ K4(0)
so that ¢ € W [q], and w € L7(§) with p'(J) < ||w| < 1/100 and so that (8.2) holds
with €;(6) = 0 as 6 — 0. Let ¢} = T*%¢’. Then ¢, € K4(¢).

Standing Assumption. We assume ¢ € Dy, ¢; € K4({) and ¢, ¢, ¢ are as in Choice
of parameters #2. (This means that in the language of §10.1, for all ij, for most u,
the Y configurations Y;; (g1, u, ) and Y;;(q;,u, £) are both good and are coupled). We
think of ¢ as a measurable function of ¢;.

Notation. For u € U, let
T(u) = TG, u,l),  7'(u) =T, u,l),
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Claim 10.5. For u € Q4(q¢:I',0) N Q4(q1T, 0),

(10.7) T Wug € K,  and T7“ug, € K.

Proof of Claim. Suppose u € Q4(¢:I',¢). Since ¢, € K4 and ¢ € Dy, it follows
from (10.5) that ¢ € Fy(¢1,u), and then from the definition of Ey(G,u) is follows

that 77Wug, € K. Similarly, since ¢, € Ky, we have for u € Q4(g,T',¢) we have
T Wug, C K. This completes the proof of (10.7). O

The numbers t;; and t;;. Suppose u € Q4(¢:T',¢), and suppose ij € A. Let
tij = tij(G1, £, u) be defined by the equation
(10.8) Aij(ugu, (w)) = Aij (41, t;)-

Then, since ¢ € D, and in view of (10.5), we have ¢ € FE3(¢i,u). In view of the
definition of FEj, it follows that

(10.9) Tt € K.

Similarly, suppose u € Q4(¢T', ¢) and ij € A. Let ti; be defined by the equation
(10.10) Aij (udy, ' () = Aij(dr, t5;)-

By the same argument,

(10.11) Th§, € K.

The map v(u). For u € U;, let

(10.12) v(u) =v(q,q,u,l,t) = AlG,u, b, t)w

where ¢ = 7(¢)(¢1,u, ¢) and w is as in (10.6).

Claim 10.6. There exists a subset Qs = Qs(¢:T, T, ¢, Koo, 6, ¢,m) C Qu(qiT, ) C Ut

with |Qs5q1| > (1 —c2(8)) Uy G1| (with Z(8) — 0 as § — 0), and a number {5 = {5(d, €)
such that if £ > s, for all u € Qs5,

(10.13) C'(6) e < |lmr(v(n)| < C'(d)e.

Proof of claim. Let M, C £7(¢) be the subspace of Lemma 8.1 applied to the
restriction to £7(¢) of the linear map (g o A)(q1,u, £, 7(¢)(¢1,u, £)), where A(,,,) is
as in (4.1). Let Q5 C Q4(¢:1I") N Q4(¢1T") be the set of u € Qa(G:I") N Q4(¢ ") such
that

d(w, My) > p(6)
Then, by (8.2),

Q561 > [(Qu(@D) N Qu(@iT)) 1| — ex () U G| > (1 — ex(6) — €4 ()) UGl
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We now apply Lemma 8.1 to the linear map (7g o A)(¢1,u,?,t). Then, for all
u € Q57

)l (me 0 A)(Gr, u, £, )| < [[(7m 0 A)(Gr, u, £, )W || < |[(me 0 A) (G, u, £, )]
Therefore, since t = () (G1,u, £), (10.13) holds. O

Standing assumption: We assume C(d)e < 1/100 for any constant C(§) arising
in the course of the proof. In particular, this applies to Cy(d) and C%(9) in the next
claim.

Claim 10.7. There exists a number lg = ls(0) and constants cg(0) and c4(d) > 0 with
c6(0) and c5(0) — 0 as 6 — 0, a I'-invariant subset K = K{({, Koo, d,€) C K5 with
D(K§/T) > 1 —c6(8), for each ¢ € K§ a subset Qs = Qo(¢i 1, ¢, ¢, Koo, 6,€) C Uy
with |Qeq1| > (1 — cs(0))|Uy G| such that for € > lg, G, € K}, u € Q,

(10.14) 1 B i) ) < o
v ()|’

where o depends only on the Lyapunov spectrum. In addition,

(10.15) C1(8)e < d(T™™ugy, T™ug)) < Cy(6)e,

(10.16) C1(0)e < [[v(u)ll < C3(d)e,

and

(10.17) az'l < 7(u) < asl.

where ag > 1 depends on the Lyapunov spectrum.

Proof. Let @ be as in Proposition 4.1 for v = w, and let Qs = Q5N Q. Then, (10.14)
follows immediately from Proposition 4.1 and the definition of v(u). This immediately
implies (10.15) and (10.16), in view of (10.13). Now the upper bound in (10.17) follows
easily from (4.2). The lower bound in (10.17) follows from Proposition 2.14(d). O

Standing Assumption. We assume ¢; € K| and ¢ > /(.
Claim 10.8. Suppose u € Qg¢(¢: I, ¢1T',¢). Then, there exists Co = Co(0) such that
(10.18) I7(u) — 7' (u)| < Co(9).
Proof of claim. Note that ¢ = (¢,9), ¢ = (¢/,¢') where ¢ € Wi [¢q] and ¢ €
exp(L7[¢'])g. This implies in particular that N~ (¢’) = N~ (¢), and

AGr,u, 0,t) = A(G),u, 0, 1),
By Lemma 7.1, we have £7(¢') = £7(¢). Thus, in view of Lemma 2.16 and (10.14)

176 (a1, 4 €) = T (415w, )] < Co(9)
i.e. (10.18) holds. O
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The next few claims will help us choose u (once the other parameters have been
chosen). Recall that Bolx] C W [z] is defined in §2.5.

Claim 10.9. There exists a constants c7(6) > 0 and ¢4(3) with cz(0) — 0 and &,(5) —
0 as 0 — 0 and a '-invariant subset K;({) = K7 (¢, Koo, d, €,n) with K;(¢) C Kg(¥),
V(K7(0)/T) > 1 — c7(9) such that for ¢ € K({),

Bo[d1] N Qe(i T, T, 0) a1 | > (1 = ¢7(0))|Bold1]-
Proof of Claim. Given 6 > 0, there exists ¢7(d) > 0 with ¢J/(§) — 0 as § — 0 and

a compact set K2 C Q with 2(K.) > 1 — (), such that for ¢, € K2, |Bolq]| >
s (0)Y2 U Gi|. Then, for ¢, € KL N Kg,

Bolda] N (Qe)41)| < [(Q)Gr| < ch(O)U 1| < ch(8)"?|Bolda]].
Thus, the claim holds with ¢7(8) = ¢6(8) + ¢2(8) and ¢ (8) = c(5)1/2. O

Standing Assumption. We assume that ¢; € K7().

Let
Q7( T, T, 0) = {u € Qs(¢uT, ¢\, ¢) = udr € Bold]}-

Claim 10.10. There exists a subset Q% = Qi(I', ¢\, ¢, Koo, d,€6,m) C Q7 with
|Q3q1| > (1 — ¢5(9))[Bo[d1]| such that for u € Q% and any t > (7(5) we have

(10.19) B [ugi] N Q7(Gr, O)gi| = (1 = c7(0))[Bifudi]|,
where ¢3(6) — 0 as 0 — 0.

Proof. This follows immediately from Lemma 2.13. U

Choice of parameters #3: Choice of §. We can choose § > 0 so that
(10.20) c(0) < 6,/2,
where 6, is as in Proposition 6.1.

Claim 10.11. There exist sets Qg = Qo(iI", ¢TI, £, Koo, 6, €,1) C Q% with |Qo(¢: T, £)¢1| >
(01/4)|Bo[q1]| and by = ly( Koo, 0,€,7), such that for € > ly and u € Qq,

(10.21)

v(u . .
(w) ; U Ejijipaa(T™ug) | < 4n.
Mul' 9

2

Proof of claim. Suppose u € @Q%. Then, by (10.14) we may write
v(u) = v'(u) + v (u),
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where v/(u) € B(T™™ugy) and ||v”(u)|| < C(6,e)e ‘. Then, by Proposition 6.1
applied with L = Ly(d,n) and v = v'(u), we get that for at least 6;-fraction of
y e fv’ [TT(U)UQD L]J

TT(U) ~ /
R( uqi,y V U U E” bdd
IR(T™®@ugy, y)v'(u)

< 2n.
ijeA

Then, for at least #;-fraction of y € F, [TT uqy, L], using Proposition 2.14 (d),

R(T™ugy, y)v(u
IR(T™ @ ugy, y)v(u

(10.22) d U Epjipaa(y) | <3n+ Cle, §)edrleet,

where £ is as in Proposition 2.14 (d).

We may choose {g = lo( Koo, €,0,n) so that for £ > {g the right-hand side of (10.22)
is at most 4n. For y € F, [TT(”)UQI], write y = T°u;G1, where u; € U;". Then, (see
§5.3),

y € Fy [ Wugy, L] if and only if  wuigy € B (w)—r[u1].
Therefore, in view of (10.22), (10.19) and (10.20), for at least (6,/2)-fraction of u; g, €
B (w)—r[udi], Ty, € K and (10.21) holds (with u replaced by wu;).

The collection of “balls” {B,()—r[udi]}ueqz(gr.e are a cover of Q7(¢:T', £)Gi. These
balls satisfy the condition of Lemma 2.12 (b); hence we may choose a pairwise disjoint
subcollection which still covers Q%(¢:I',¢)¢;. Then, by summing over the disjoint
subcollection, we see that the claim holds on a set of measure at least (6;/2)|Q%¢| >

(61/2)(1 — ¢3(6))|Bo[G]] = (61/4)|Bo[d1]]- O
Choice of parameters #4: Choosing ¢, ¢, 4, ¢, ¢;. Choose { > ly(Koo, €,0,n).
Now choose ¢; € K7({), and let ¢, ¢/, ¢; be as in Choice of Parameters #2.

Choice of parameters #5: Choosing u, §2, ¢3, 17, G3,j, qﬂéﬁij (depending on ¢,
ds 0). Choose u € Qo(G1,0) N Qu(d,, ) so that (10.15) holds. We have T™Wug, € K
and T7 g, € K. By (10.18),

|7-(e)((j17 u, f) - ~(e)((ﬁa u, E)' S 00(5)7
therefore,
Ty, e TEOC K,
where C' = C(9).
By the definition of K we can find Cy4(9) and s € [0, Cy(d)] such that
Go = T°T" Mg, € K, ¢ = TT" g, € K.
Since u € Q9(q1, ) there exists ij € A be such that

viu ~
(10.23) d (W E[ij],bdd(TT(u)uql)) < 4n
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Note that mq(ug;) € Wi [ra(udi)] and 7;;(z,t) = 7;(ma(x),t). Then, by Lemma 5.6,
[Aij(ud, () = Aij(ugy, 7(u))| < C4(6).

Then, by (10.18) and (5.4),
|Aij(ugy, 7(w)) = A (ugy, 7'(w))| < C(9).

Hence, by Proposition 2.14 (e) (cf. Lemma 5.2), (10.8), (10.10) and Lemma 5.6
(applied to the points mo(¢1) and mq(q)) € Wy [ma(d1)]) we have

(10.24) iy — ti;| < C5(6).
Therefore, by (10.9) and (10.11), we have
Ttiqu € K, and Ttijqi e T1=0s00).C(0)] ¢
By the definition of K, we can find s” € [0, C¥(0)] such that
G35 =T 94 € Ko, and g, =T, € K.
Let 7 = s+ 7(u), 7" = s” + t;;. Then we have
o=Tuq, @=T"u, Guy=T"d0, @;=1"0
Note that for any ¢ > 0, if ¢ is sufficiently large,
(10.25) |T— 7| < €.

10.3. Completing the proofs. Since mo(qs,;) € W [ma(ds:;)] and ma(g5) € W™ [ma(g2)],
in view of Lemma 2.5,

Eij16da(3) = P~ (G2, @) Biij) paa(2)
and
Epij10ad(33.45) = P~ (33,5, G5.65) Eig) paa (3,15 )-
Note that since ¢ and ¢’ have the same combinatorial future,
(10.26) R(G3.5, G2) = R(d555 G)-

Let B : E[m’bdd(q}’ij) — E[ij],bdd(cb) denote the restriction of R((j?;,ija (jg) to E[ij},bdd(q&ij)-
Let B" : Byij) paa(q3.:;) — Biij),paa(dz) denote the restriction of R(§sij, G2) t0 Eiij) paa(d3.;)-
By Proposition 6.2, there exists C' = C'(d) such that

(10.27) max(||B|, |B7'[) < C(6) and  max(||B']], [(B)'[| < C(9).
Claim 10.12. For all v € Ey;0aa(qs,5), for € sufficiently large,

(1028) (1R} 5080 (dsiss i)V — P (s 89) Rl igs d2)V1| < Co(@)e (@521,
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Proof of claim. Let Vi(z) = Ejjjpaa(x) N Vi(x). Then, for any ij there exists a
subset A;; of the Lyapunov exponents such that

E[iijdd(ZL') = @ Vk(ZL‘)
kel

A key point in the proof is that R(z,y)Vi(z) = Vi(y) (by Lemma 6.6 and the
fact that Epjpaa(z) C E(x)). Also, P~ (x,y)Vi(z) = Vi(y). In view of Proposi-
tion 2.14(a), it is enough to prove (10.28) on V) working mod V<j_4, i.e. to show
that for all v € Vi(ds,;),

(10.29) || R(q5,4,42) P~ (33,3, G3.4;)V — P~ (G2, 3a) RG34, G2)V + V<iu-1(a)]| <
< 02(6)67(0401;1/2)4
By Lemma 2.2 and (10.17), there exists C' = C'(d) such that

(10.30) 1P (G2, @) — I|| < C(8)e !
and

~ N 7aa71
(10.31) 1P~ (G315, Gb.i5) — 11| < C(6)e s ",

Choose € = aag' /4. Write w = (P~ (G345, G5,;) — 1)v. Then, by (10.3),
1T )ewl] < e fwl

Hence,
(T, Tj)*w + Vara(ugh)|| < eI fw]],

3,1
and then, since by (10.3) and Proposition 2.14(a), the norm of (77

i ) viewed as a
(Akt+e)T '
Y

linear map from g/V<x—1(ug)) to g/V<k—1(¢}) is at most e
1R (G 55 ) w+Veraa (@) = (T )« (T3, Yw+Vara(@))l| < eIl 3t .
The above equation, together with (10.25), (10.26), (10.27), (10.30) and (10.31) im-
plies (10.29). O

For the next claim, we need a metric on the leafwise measures. There exists a
function p : G — R* which is integrable with respect to Haar measure on any
unipotent subgroup of G. Then, by [EiL2, Theorem 6.30], p is integrable with respect
to any leafwise measure. Let M, denote the space of positive Radon measures w
on G for which fG pdw < 1 equipped with the weakest topology for which for any
continuous compactly supported ¢ the function w — fG ¢ dw is continuous. Then,
M, is compact and metrizable, by some metric d’ (see e.g. [Kal, Theorem 4.2]). Then,
if w; and wy are leafwise measures, we can define d(w;,wy) = d'(ciwy, caws), where

' = [, pdw;.
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Claim 10.13. There exists c19(9, £), with c10(6,¢) — 0 as £ — oo such that
(10.32) d(fij(d2), fij(d3)) < c10(8, ).

In (10.32) we consider f;;(z) to be a measure on G (defined up to scaling) which
happens to be supported on the subgroup &;;(z).

Proof of claim. By Lemma 9.4,
(10.33) fi5(G2) o B fij(q3,i), fi(83) o< By fi(d3.45)-
Since Cj?),ij € KQ and qé,ij € Ko,
d(fij(d3.5), fZ](Qéz])) — 0 as £ — oo.

Then, also by (10.31),

d(P~ (G345, qé,ij)*fij(QB,ij)v fw(‘jgzj)) — 0 as £ — oo.
Then, applying B’ to both sides and using (10.27) and (10.33), we get

d(B'P™(G3,ij» G3,1j)«fi5(d3.17): fi3(d3)) — 0 as £ — oo,
Using (10.28), we get

d(P™ (G2, G3) B+ fij(G3.45), fi5(d5)) — 0 as £ — oo.

Then, by (10.33) and (10.30), (10.32) follows. O
Taking the limit as n — 0. For fixed ¢ and ¢, we now take a sequence of 1, — 0
(this forces ¢ — oo) and pass to limits (mod I') along a subsequence. Let ¢ € K
be such that @I is the limit of the ¢I', and ¢, € Ky be such that ¢,I" is the limit of

the g,I". We may also assume that along the subsequence ij € A is fixed, where ij is
as in (10.23). We get (after possibly replacing ¢, by ¢,y for some v € I'),

1 ~
- € S d(q27 q2) S 0(5)67

C(0)
and in view of (10.23),
@ € EijlGo)-
Now, by (10.32), we have
fij(@2) o< fij(d5)-
We have ¢, € Ko C Ky N K., and ¢, € Ky C K,. This concludes the proof of
Proposition 10.2. ([l

Proof of Proposition 10.1. Take a sequence €,, — 0. We now apply Proposi-

tion 10.2 with € = ¢,,. We may assume that 75 € A is constant along the subsequence.
Let Uy (z) = &;(z).
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We get, for each m, a I-invariant set E,, C K, with v(E,,/T") > §, and with the
property that for every & € E,, there exists § € &;[x]N K, such that (10.1) and (10.2)

hold for € = ¢,,. Let
F = ﬂ U E, C K.,

k=1m=k
(so F' consists of the points which are in infinitely many F,,). Suppose & € F.
Then there exists a sequence y,, — & such that g,, € &;[z], ¥ # &, and so that
[ij(Um)  fi;(2). We may write & = (2, 9), Um = (Ym, Ymg)- Since §p, € Eij[z], ym =
and v, € &;(z). By (10.1), v, tends to the identity of G as m — oc.
By (10.2)

(10.34) [ij(&) o< ()4 fi5(2),

where (7). denotes the action on measures induced by right multiplication by g. For

z € Flet U}, (2) denote the maximal connected subgroup of &;;(z) such that for
n € Uy, (),

The set of n € &;j(x) satisfying (10.35) is closed, and by (10.34) is not discrete. There-
fore, for & € F, U}, (%) is non-trivial. Let U (z) denote &;(z). By construction, the
subgroup U, (%) is constant as & varies over &;[2] = {z} x U (z)g, where we wrote
T = (z,9).

Suppose & € F and u € U;". Then, since f;;j(uz) = f;;(2), we have that (10.35)
holds for n € U}, (uz). Therefore, by the maximality of U} (2), for & € F, u € U;"

new new

such that uz € F,
(10.36) Ut (uz)=Ut (2).

new new

Suppose & € F, t < 0 and T'# € F. Then, since the &;[2] are T'-equivariant (see
Lemma 9.3) we have that (10.35) holds for n € T'U,L (T"#). Therefore, by the

new

maximality of U7 (Z), for # € F, t < 0 with T'# € F we have

(10.37) 77U (T'7) = UL, (2),
and (10.35) and (10.36) still hold.
From (10.35), we get that for & € F and n € U}, (),

new

(10.38) (n).fij(2) = %) £i5(),

where f3; : U, (Z) — R is a homomorphism. Since v(F) > 8§ > 0 and T* is ergodic,
for almost all € € there exist arbitrarily large ¢ > 0 so that T'% € F. Then, we
define U (Z) to be T'U,:, (T'&). (This is consistent in view of (10.37)). Then,

(10.38) holds for a.e. & € Q. It follows from (10.38) that for a.e. & € Q, n € Ul (&)
and t > 0,

(10.39) Bi-es(T~'nT*) = Bi(n).
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We can write
Bz(n) = Lz(logn),

where L; : Lie(UT)(2) — R is a Lie algebra homomorphism (which is in particular

a linear map). Let K C Q be a I-invariant set with K /T of positive measure for

which there exists a constant C' with ||Lz|| < C for all £ € K. Now for almost all

i e Qandn e U

+o(Z) there exists a sequence t; — oo so that T7%% € K and
T~ %inT"% — e, where e is the identity element of U, . Then, (10.39) applied to the
sequence t; implies that 8;(n) = 0 almost everywhere (cf. [BQL, Proposition 7.4(b)]).
Therefore, for almost all & € ©, the conditional measure of  along the orbit Utz
is the push-forward of the Haar measure on U%, ().

This completes the proof of Proposition 10.1. 0

Proof of Theorem 1.13(a). This argument follows closely [BQ1, §8]. Let P(G/I)
denote the space of probability measures on G/I". For a € P(G/TI), let S, denote the
connected component of the identity of the stabilizer of o with respect to the action
of G by left-multiplication on G/I". Let

F={aeP(G/T) : S, # {1} and « is supported on one S, orbit.}

The set F is endowed with the weak-x topology. The group G naturally acts on
F. By Ratner’s theorems [Ra], F contains all of the measures invariant and ergodic
under a connected non-trivial unipotent subgroup.

Let v be an ergodic p-stationary measure on G/I'. We construct a T'-invariant
measure o on () as in §1, so that (1.9) holds.

By Proposition 10.1 for almost all Z = (z, gT') € €, there exists a subgroup Uy () C
N*(z) such that the conditional measures 19|U2+[50} of 7 on the U; (z) orbits on the
G/T-fiber at x are right invariant under a non-trivial unipotent subgroup U (Z) of
Uy (z). Without loss of generality we may assume that UF

-+ »(Z) is the stabilizer in
U2Jr (z) of ¥ |U;‘[;%] (otherwise we replace U, (Z) by the stabilizer).

~

For (z,gT") € Q, let
Az, gT) ={g' € G/T : Uny(z,gT) = Uy, (2,90}

Let 7, denote the conditional measure of # on {z} x G/T. We now disintegrate ©
under the map (z, gI') — (x, U}, (x,9T")), or equivalently for fi-almost all x € 2 we

new
disintegrate 2, under the map gI' — U" (z, gT"). We get, for almost all (z, gI") € €,
probability measures 7, 4ry on G/I" supported on A(z, gI') so that for fi-a.e. z € €,

Uy = / V(s gr) Dz (gL).
G/T

By [EiL3, Corollary 3.4] (cf. [BQ1, Proposition 4.3]), for i-a.e. (z,gT') € Q, the

measure (; gy is (left) U, (z, gT')-invariant.
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We can do the simultaneous U,jew(% gI')-ergodic decomposition of all the measures

V(z,gr) for almost all (z, gI') € Q to get

(10.40) (pgT) = /C(:v,g’F)dﬁ(x,gm(gT),
G/T

where ( : () — F is a D-measurable map such that for almost all (z,gI") € Q, ¢ is
constant along the fiber A(z, ¢I"). (In fact, for any a € F, {(z,¢I") = « if and only
if gI" is a-generic for the action of Uf, (z, gT') on A(x, ¢T")). Integrating (10.40) over

gI' € G/T" we obtain for almost all z € Q,

(10.41) Uy = ¢(z, gI) dig(gT').
G/T

The uniqueness of the ergodic decomposition and the T and U, -equivariance of
the subgroups U, (z) and U,%, (%) shows that

new

(10.42) C(,gT) = (L)L (T"(, gT))

and for u € U],

<1o.43> ((u, gT) = C(z, gT)
et ¢ : Q = Q x F be defined by é(:p gI') = (z,((x,gI")). Then, the push-forward
= (¢ ) (D) is a T*-invariant probability measure on Q x F. Since © is ergodic, so is

= Q?»

By [Ra, Theorem 1.1] the set G of G-orbits on F is countable (and therefore count-
ably separated). Let i) denote the push-forward of 7 to Q x G. Since 7 is ergodic, so
it 7. But the action of (T%), on G is trivial, therefore 7 is supported on the product
of Q2 and a one-point set. Then, 7 is supported on €2 x Gy, where vy € F. Let H
denote the stabilizer of 1. By the definition of F, 14 is supported on a single H-orbit.
By the definition of {, gvy is U, (x, gT")-ergodic. Therefore, the unipotent elements
of H act ergodically on vj.

We can now write ((z, gI") = 0(x, ")y, where 6 : O — G/H. Then (10.42) and
(10.43) hold, with € in place of .

Let a¢ :  — S% denote the natural projection. Write z = (w, m) where w € SZ and
me M, let 0 : Q — SExMxG/H be defined by 6(z, gL) = (oo(w,m), m, B(w, m gF))
and let \ denote the pushforward of o by 6. Note that \ is T-invariant, projects to u”
and has the U, -invariance property in the sense of §1.4. Therefore, if we disintegrate

d\w, m, gH) = dp”(w) d\,(m, gH),

then A, depends only on w™. The T-invariance of A translates to the fact that the
measure A = |, 5z Aw dp?(w) on M x G/H is stationary. Finally, integrating (10.41)

over x € () we get (1.11) as required. 0
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For future use, we note that as a consequence of our construction,

(10.44) Ut (x,gl) C N"(z)ngH,

new

and for almost all (x, gT"), the U, (z, gT") orbit closure of gI" is given by

new

(10.45) Ut (z,g0)gl = gH°T.

Proof of Theorem 1.13(b). For z = (x,g9) € Q, let IT(Z) C NT(z) denote the
(right) invariance group of the leafwise measure of © along {x} x N*(z). Then, if
(1.11) holds, then for almost all z,

(10.46) I (#) D Nt (x)ngH g D UL (2),

new

where for the last inclusion we used (10.44). Then, we can apply the argument
labelled “Proof of Theorem 1.14(a)” with N (x) in place of Uy(x) and I (%) in place
of Ut (Z) to obtain a Lie subgroup H' C G an H’-homogeneous probability measure
v, on G/I' such that the unipotent elements of H' act ergodically on 1, a finite p-
stationary measure A on M x G/H’ such that © = X' %1/, and also, in view of (10.45),

such that for almost all (z, gI'),
(10.47) I+(z,gl) gl = g(H')T.

Then, in view of (10.45), (10.46), and (10.47), we have H® C (H')°. Then, if we
assume that dim H° is maximal, we get that H® = (H')°, hence the conjugacy class
of HY is uniquely determined by v. O

11. CasE II

In this section, we will prove Theorem 1.14. Let u be as in §1 and let M, ¢} be as
in §1.3.

11.1. Invariance of the measure. In §11.1-§11.3 we prove the following, which was
proved in a related but different context by Brown and Rodrigues-Hertz in [B-RH,
§11.1):

Proposition 11.1. Let v be an ergodic p-stationary probability measure on M x G /T,
and suppose that Case II holds, (see §1.4). Then v is G invariant with respect to
the action of Gs on M x G/T" given in (1.4).

Let F* denote the o-algebra whose atoms are Wi [z], and let F*t denote the
product of F* with the Borel g-algebra B(M x G/T") of M x G/T" (we will sometimes
consider B(M x G/T) also as a o-algebra of subsets of SZx M x G/TI"). Let Q denote
the product of the Borel o-algebra on 8% with the trivial o-algebra on M x G/T" and
Q" denote the product of the o-algebra F* with the trivial o-algebra on M x G/T.
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In particular, the atoms of QF are of the form W [x] x M x G/T'. For a partition «
of 8% x M x G/T, let
at = \/ T "a.
n=0

The following technical result about existence of finite entropy partitions of S% x
M x G/T' with good properties will be used throught the proof of Proposition 11.1.

Lemma 11.2. (¢f. [B-RH, Lemma 11.2]) There exists a finite entropy partition a of
SZ x M x G/T such that each element of o is in F*, and such that for almost all
= (z,m,gl) € 8% x M x G/T, the atom (o™ Vv QV)[&] is contained in W [z].

We defer the proof of this lemma to §11.3.

Lemma 11.3. Let v, U be as in Proposition 11.1, and let o be a finite entropy partition
as in Lemma 11.2. Suppose that Case II holds. Then the o-algebras (o™ V QF) and

Ft are equivalent mod v-null sets.

Recall that two o-algebra A and B are equivalent modulo -null sets if for every
A € A there is an A’ € B so that 0(AAA’) = 0. We leave the rather straightforward
proof of Lemma 11.3 to the reader.

11.2. An auxiliary construction. A substantial nuisance in proving Theorem 11.1
is that the entropy of the process defined by pZ on SZ may be infinite. To compensate
for this fact, we choose the component w = (..., w_1,wp,wi,...) € SZ of a point in
SZ x M x G/T in two steps: first we choose for every j € Z two candidates for

w; which we denote by w](.€) for ¢ = 0,1, and only then choose randomly which w](-e)
to use at each place independently with equal probability. We now formalize this
construction. .

Let €2 denote the space S x M x G/T" and let 2 denote the space

A

Q= 8% xS x {0,1}* x M x G/T.

Denote an element in O by (W@, w® € m,gT') where as before we often will write

w® = (WO wWO+) ete. By w© we denote the sequence (. ..,w T, w{®™, w!®, . ..);

w(_eg_ 2), w(fl_ 1)). We define a map T on the space Q similarly

by w(€~ the sequence (...,
to (1.7) by setting

A

T(W, w' e,m, gl') = (Tw®, Tw', Te, w - m, I (ws, m)gl).

Let Z denotes the g-algebra of subsets of Q) which is a product of the Borel o-algebra
on each SZ factor with the trivial o-algebra on the other factors, and similarly define
& to be the o-algebra of subsets of () corresponding to the Borel o-algebra on {0,1}%
component, i.e. the minimal o-algebra according to which all €; : ¢ € Z are measurable
functions. Let £7 denote the minimal o-algebra according to which all €; : i > 0 are
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measurable. Finaly, we let B(M x G/I') denote the Borel o-algebra of M x G/T
considered also as a o-algebra of subsets of Q. A
Let p1 1 denote the uniform measure on {0,1}. We define the measure o on (2 by

(111)  di(w®, W e;m, gT) = du® (W) dp® (W) du 1 (€) dvo.-(m, gT),

1
2
where the measure v, ). is as in (1.9) with w(®~ in place of w™. Under the natural
map (w ©, w®, e,;m,gl') = (W, m,gl), the measure o is mapped to ¥, and ¥ is
T-invariant.

Proof of Proposition 11.1. Let a be a generating partition for T as in Lemma 11.2.
Define a partition & = {A . y= a} of Q by setting for every A € a

A

ﬁ:{(wo,wl,e,m,gf‘) e (W mgF)EA}

Let ¢ denote the two element partition of Q according to the digit ¢, of a point

0

(W, W' e,m,gl) € Q. Then the conditions on given by Lemma 11.2 imply that

\/ Tkin(&\/é) vV Z

nez

is equivalent to the Borel o-algebra on Q modulo #-null sets. It follows form a
relativised version of Kolmogorov-Sinai generator theorem [EilLWa, Thm. 2.20] that

we may calculate the entropy hl,(f |Z) the following way:

ZV f”(&w)) .

n=0

he(T|2) = H’(Hav@

The (relative) entropy hl,(f’|Z) is at least log2, since each digit of the sequence
€ is chosen i.i.d. with equal probability independently of Z, hence using [EiLWa,
Prop. 2.19(1)],

ho(T|Z) > hy(T, €| 2) = H, (T

ZV <7 f‘”s) = log 2.

n=0

On the other hand it follows easily from Lemma 11.3 that up to null sets

zv@f%@ Zvv e) VvV B(M x G/T)
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T(&aVe)ZV \/ T4V 5)>

:m(f(&ve)zv\/ vBM><G/F)>

zv \/(T7") vV B(M x G/F)) +

n=0

zv \/ (T7"¢) v B(M x G/F))

zv \/ (T7"e) v B(M x G/T)
n=-—1
we have that
(11.2) = H; <Ts ZvV \/ )V B(M x G/F)) < log?2
n=0

since the cardinality of the partition ¢ is 2. Since we already know that
ho(12) = log2,
the last inequality is in fact an equality.

Since for any k, ThZ* is a sub-o- algebra of Z, by the monotonicity properties of
conditional entropy (cf. [EiLWa, Prop. 1.7])

(11.3) H, (Ts

TZtv \/ T() vV B(M x G/F))
> H (Ts

Using again the fact that the cardinality of the partition ¢ is 2, log 2 is an upper bound
to the first term of the above displayed equation, hence we have equality throughout.

AV, \/T vB(MxG/F)) = log 2.

n=0
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Let f be measurable with respect to the o-algebra Z+V\/ >, T-n (e)VB(M xG/T).
Writing p* for [[)",pu, p~ for H;l_oo p and similarly for pu1 1, applying (11.1),

[ o= [ auw @) a0 duf, (€)
[ i @) @) diy (€ ) i m. gT)
f(w(O),Jr, w(1)7+7 €+7 m, gl")
= [ @) @) ]
[ @) (mg) O O )

:/d/ﬁ(w(o)’ﬂdu*(w(l)’+)duf (€) dv(m, gT) f(wF WV et m, gT).
27

[NIE

In other words, with respect to the measure v, the two c-algebras B(M x G/TI")
and ZT Vv \/ 7, 7&*”(5) are independent, i.e. for every A € B(M x G/I') and A’ €
ZTVv L, T-"(e) we have that #(A N A') = D(A)P(A’). By T-invariance of 7, we
similarly have that T B(M xG/T') and fﬂZ*\/\/Z@:_1 T-n (¢) are mutually independent.

Let 2 = (w° w', e,m, gT") € Q be distributed according to v, and let (m’, ¢'T') be
the M x G /I'-component of T 2. By definition of f,

(m, gl) = (WS - m/, 9w, m)g'T),

or in the notation of (1.4), (m,gl') = w™'.(m/,¢"). Both (m,gl') and (m’,¢'T)
are distributed according to pushforward with respect to the projection from Q to
M x G/T' — i.e. the stationary measure v. Moreover by (11.3) we have that e_;
considered as a random variable, is independent of (w°,,w!,,m,gl'). This implies
that for g x p-a.e. W% ,w!,,

(W2y)ev = (W),
that is to say there is a fixed measure /' so that for p-a.e. w_ it holds that (w_q),v =

V. Since v is a p-stationary measure, it follows that v is invariant under the support

of u. ([l

11.3. Construction of the finite entropy partition. In this subsection, we will
prove Lemma 11.2. (It is proved under a different set of assumptions in [B-RH,
§11.2]).

Before starting the proof proper, we will need to deal with some issues related to
zero Lyapunov exponents. First, we recall the following well-known lemma, due to
Atkinson [At] and Kesten [Ke].
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Lemma 11.4. Let T : Q0 — Q be a transformation preserving a probability measure
B. Let F: Q — R be an L' function. Suppose that for B-a.e. x € Q,

nh_)n;@ZI:F(T r) = +o00.

Then [, F'd3 > 0.

Suppose the cocycle ('), has a zero Lyapunov exponent. Let us denote it’s index
by jo, so Aj, = 0. Then, A\j,_1 > 0 and \j,41 < 0. We have, for z € Q,

Lie(N")(&) = Ve (7).
For x = (27, 2%, m) € §, let

(11.4) E(x)=FE(@T,m)={veg : limsup|(TF).v]o < co.}

n—oo

Then, (cf. §6) on a set of full measure, E is a subspace, and for a.e. z = (z7,2%,m) €
2, there exists C'(z) = C(x*, m) such that for all v € E(x) and all n € N,

(11.5) I(T)vllo < C(z)[[v]o-

Furthermore, E is T-equivariant, and Lie(N~)(z) C E(z) C Vsj,(x). Let Vy(z) =
E(z)/Lie(N~)(z). For consistency, if the cocycle (77'). does not have a zero Lya-
punov exponent, we set E(x) = Lie(N~)(z) and Vy(z) = {0}.

Lemma 11.5. There exists a F-measurable map Cy : Q — RT bounded a.e. such
that for x € Q, all v € Vy(x) and alln € N,

(11.6) Co(2) ™' Co(T"x) M [vllo < I(T7)xvllo < Co(2)Co(T" )|V o,

where by the norm || - ||o we mean the quotient norm induced by the norm || - ||o on g.

Proof. By Lemma 2.3 (and the definition of ) for a.e. z € €2 there exists a linear
map M, : Vo(x) — R* such that A(z,n) = Mgpa,(T7). M1 has the form (2.14),
with the orthogonal matrices fixing a fixed inner product (-,-)’ on R*. Furthermore,
in view of Lemma 2.5 and Lemma 2.6 the map z — M, can be chosen to be F*-
measurable. (Lemma 2.5 and Lemma 2.6 are stated on unstable manifolds, while here
we are dealing with stables. Thus, the maps P in the statements of the these lemmas
should become P~. Also, these lemmas are stated in terms of Lyapunov subspaces
Vi(z), but here we are dealing with the quotient Vs, (x)/V>j,+1(x), which contains
Vo(z). In the translation, the analogues of the maps P~ become the identity map).
There exists a compact set K C Q with K € F' and of positive measure such that
the function C(-) of (11.5) is uniformly bounded on K and also max(||M,||, || M,|™")
is uniformly bounded for x € K, where by ||M,|| we mean the operator norm relative
to the norms || - ||p on Vp(z) and the norm || - || induced by the inner product (-, -)’
on R*.
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As in Lemma 2.3, let e*(®") denote the scaling factors in the conformal blocks of

A(z,n), see (2.14). Then, for each j, Ag; : 2 x N — R is an additive cocycle.

For x € K, let ng(x) denote the smallest integer ng such that 7™z € K, and
let F': K — K denote the first return map, so F(z) = T™®@z, For x € K, let
Ny (2, 1) = Xoj (2, no(2)), and let Ny (w, €) = 37— No; (F¥x, 1). Then, Ny, : KxN — R
is an additive cocycle over the action of F'. Furthermore, since Ay, (x, () = Ao; (F'z,n’)
for some n’ = n/(¢,x) € N, we have, in view of (11.5) and the definition of K,
Aoj(7,€) < C for a uniform constant C, all ¥ € K and all £ € N.

We now claim that there exists a function C : K — R finite a.e. such that for all
r € K, all jand all / € N,

(11.7) — Ci(z) < Xg;(z,0) < C.

The upper bound is true by assumption. Suppose that the lower bound fails, i.e.
that for z in some set of positive measure, liminf, ., A\j;(z,£) = —oc. Then, by the
ergodicity of T', the same holds for almost all x, and furthermore, in view of the upper
bound in (11.7) and the cocycle condition, for almost all x € K, limg o Ay;(z,£) =
—oco. Then, by Lemma 11.4, we have [, Ao; (1) < 0. Therefore, JoAoi(+1) =
[ Ao;(,1) < 0. Then, by e.g. the subadditive ergodic theorem, for a.e. x € Q,
lim sup,,_, %)\Oj(x,n) < 0. But, all the Lyapunov exponents of the action of the
cocycle (T7), restricted to Vj are 0, which is a contradiction. Therefore, (11.7) holds.
In view of the form (11.7), we may assume without loss of generality that C is
Ft-measurable.

In view of (11.7), there exists K’ C K with K’ € F* and of positive measure and
a constant C] > 0 such that for all x € K" and all n € N such that T"x € K,

(11.8) Noy(a,m)| < €.

It follows from the definitions of E, Vjj and K that there exists C3 > 0 such that for
all x € K" and all n such that 7"z € K, ||A(z,n)|" < Cs. Now it follows from the
form of (2.14) and (11.8) that ||A(x,n)~!||' < C4 for some Cy depending on C3, Cy
and the dimension. Then, by the definition of K, we have [|(T2).]3,|lo < Cs for all
x € K’ and all n such that 7"z € K. Now (11.6) follows by considering the smallest
k > 0 such that 7%z € K’ and the smallest n’ > n such that 7"z € K. O

The construction of the partition « uses the following:

Lemma 11.6. (Mané) Let E be a compact measurable subset of G/T", with v(E) > 0.
If ¢ : E — (0,1) is such that logq is v-integrable, then there exists a partition P of
E with finite entropy such that, if P(x) denotes the atom of P containing x, then

diam P(z) < ¢(x).
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Proof. See [M1] or [M2, Lemma 13.3] O

Proof of Lemma 11.2. We now construct the desired partition «. For any 6 > 0
there exists Cy € FT of measure at least 1 — ¢, and Ty = To(9) such that for n > T,
and any x € Cy, we have for all v € g,

(11.9) e lvllo < [I(Z5)vllo < e [[v]lo,

where k depends only on the Lyapunov spectrum. Then there exists C; C Cy with
C, € F' and of positive measure such that for z € C;, T"x € C; for 1 < n < Ty,

Without loss of generality, we may assume that I' is torsion free. Choose r > 0
sufficiently small so that the set B, = {exp(v) : v € g,||vl]o < r} satisfies
B,yN B, ={ for v € T not the identity.

Let Co = Cy X B, C 8% x G/T. For & € Cy, let n(2) € N be the first return time to
Cy. Recall that # is a T-invariant measure on S% x G /L.

By the classical Kac formula,

(11.10) / ndi = 0(C) = 1.

Ca
Let Cp : S — RY be as in Lemma 11.5. In view of (11.10) we can choose a F*-
measurable function ¢ : Co — R* with the following properties:

(i) () < Femrn@).

(ii) fc2 |log q|d(uN x v) < oo.
(iii) The essential infimum of ¢(2)Cy(Z) is 0.

By (ii) and Lemma 11.6 there exists a finite entropy J"-measurable partition «y
of Cy such that if & = (z,¢T") and § = (y,exp(v)gl') € ag[z] then v < ¢(Z). Let
K,=Cn{z : n(&) =n}, and let o denote the partition of a conull subset of
S% x G /T whose atoms are of the form T9(F N K,,) where 0 < j <n —1 and F is an
atom of . In view of (i) and (11.9), every atom of oV Q is contained in a set of the
form W, [z] x B,gT for some (z,gT") € S x G/T.

We now claim that « satisfies the conditions of Lemma 11.2. Suppose & = (z, gI)
and § = (y,¢'T') where z,y € S% are in the same atom of a~ V Q. Then, by the
definition of Q, y € Wy [z], so that y* = z™. Since § € a[Z], we may write ¢'T =
exp(v)gl' where |[v|lp < 7. The condition § € «~[z] implies that for all n > 0,
T"(z, (expv)gl') C a[T™(x,¢T)], which implies that there exist 7, € I' such that
(exp((T1).v))Tg € BTl gy, But, in view of (i) and (11.9), it follows (by induction
on n) that we may take v, = e for all n. Thus, ||(T2).v]lo < r for all n, and so
v € E(x), where E(z) is as in (11.4). If there is no zero Lyapunov exponent, we have
E(z) C Lie(N7)(z), and thus v € Lie(N~)(x).

Suppose there is a zero exponent. Let w = v + Lie(N7)(x) € Vy(x). By (iii)
and the ergodicity of T, for a.e. x there exists a sequence n; — oo such that
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Co(T™x)||(Tr*)«w||og — 0. Nowever, in view of Lemma 11.5, we have, for all n € N,
Co(T™2)|(T™)ww||o > Co(x)~t|wllo- Thus, w = 0 and v € Lie(N~)(z).
Now the lemma follows in view of (1.10). O

11.4. Reduction to the compactly supported case Suppose that M and ¢ are
trivial in the sense of §1.3. Then the fact that 7 = u% x v and the T-invariance of ¥
implies that v is Gg-invariant. This completes the proof of part (a) of Theorem 1.14.
We now begin the proof of part (b) of Theorem 1.14.

Thus, in the rest of §11 we will assume that M and 9 are trivial, and v is Gs-
invariant. This implies that without changing v, we have the freedom to change p as
long as the support of the new measure is contained in the support of the old measure.
The next Lemma states that we can exploit this freedom to reduce to a compactly
supported setup.

Lemma 11.7. Let Z be a (possibly trivial) subgroup of G. Suppose i is a measure on
S with finite first moment satisfying uniform expansion mod Z. Then, there exists a
measure (i supported on a compact subset of S which also satisfies uniform expansion
mod Z.

Proof. Note that u™¥) has finite first moment if  does. Therefore, after replacing
by 1), we may assume that for all v € V,

u(oy) > C >0, where oy (g) = log

For R € R*, let xr denote the characteristic function of the set {g € G : ||g|| < R}.
Let pugr = xgp. Then, since oy (g) < log ||¢||, for each v € V|

(ov) — ur(ow)] < / log g1l dys()

llgll=R

and since p has finite first moment, the right-hand side of the above equation tends
to 0 as R — oo. Therefore,

lim /’LR(O-V) - ,u(av),
R—o0

and the convergence is uniform in v. Thus, there exists R > 0 such that
pr(oy) > C’/2 >0

for all v € V. Thus after replacing u by Tn(@ MR, WE may assume that p is compactly
supported. [l

The fiber entropy. Let £ be a finite measurable partition of G/T". Then the limit

lim 1H (\_/(T;)_lé) = lim ! Z V- (A)log v,- (A)

n—oo N, n—oo 1
1=0 Aevn 1(T7') f
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exists and is constant for y%-a.e. z. We denote its value by hf/ F(T, €). Then, we define

the fiber entropy hg/ F(T) to be the supremum over all finite measurable partitions &
of hSN(T,¢).

In view of Lemma 11.7, it is enough to prove Theorem 1.14(b) in the case where
the measure p is compactly supported. Hence we may assume the following hold:

Standing assumptions. p is a measure on G whose support S is compact. Also

1 satisfies uniform expansion mod Z. The measure v is a Gg-invariant probability

measure on G/T', with o = % x v an ergodic T-invariant measure on S% x G JT.
Furthermore, we have

G/T 7
hel (1) =0,
(i.e. the fiber entropy is 0). This is a consequence of the assumption that we are in

Case II.

11.5. Dimensions of invariant measures. Let Z C G, V C g and Kg C Aut(Z2)
be as in Definition 1.6. Choose a right-invariant and Kg-invariant metric dz(-,-) on
Z, and choose a norm || - || on V. Fix e > 0. For g € G and r > 0, let

Bz(re) ={exp(v)z € G : veV,z€Z dz(z,e) <eand ||v|]| <r}.
We define, for gI' € G/I", the “mod Z lower local dimension”

1 B T
dim/Z(Va gI') = lim <liminf og v( /Z(T7 €)g )) |

—0 r—0 log r
(The outer limit exists since the quantity in parenthesis is increasing as a function
of €). By the ergodicity of T, for v-a.e. g € G, dim/z(v, g) is independent of g. We
denote the common value by dimz(v).

Proposition 11.8. Under the assumptions of Theorem 1.14, dim,z(v) = 0.

Remark. If there are no zero Lyapunov exponents, this follows from [LX] (which
is based on [BPS]). We will give a proof of the trivial special case we need below
(allowing for zero exponents).
Let
By(e) ={exp(v)z : veV,ze Z, |v| <eand d(z,e) <€}
For z € 8% and n € N let B"(x,¢) denote the “Bowen ball” centered at the identity
1 of G, ie.
B'(z,e)={he G : foral0<m<n, (Tp...20)M(T...70)"" € By(e)}.

Lemma 11.9. For any unit v € V there exists a positive measure set K(v) C 8%,
such that for all x € K(v) there exists n(v) > 0 and N(v) € N so that for all
n > N(v) and for all unit w € V with ||v — wl|o < n(v),

(11.11) {t : exptw € B"(z,e)}| <e ",
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where a > 0 depends only on the Lyapunov spectrum.

Proof. Let j; be as in Lemma 3.8, so that A\;, > 0 and ;41 < 0. Fix € > 0 smaller
than one quarter the difference between any two Lyapunov exponents. For § > 0, let
K(6) C 8% be as in Lemma 2.16. By the multiplicative ergodic theorem, there exists
a subset K; C K(§) with u?(Ks) > 1 — 26 and N(§) € N, such that for any = € Kj,
any n > N(§) and any w; € V;(x),

(11.12) eI w, | < (T0)wi| < Ot

(Here we are using the dynamical norm of Proposition 2.14). For any x € K and
w € g we may write w = > ", w;, where w; € V;(z). By assumption, yx is uniformly
expanding on V. Then, by Lemma 3.8(ii)’ for all v € V there exists a positive measure
subset K(v) C K; such that for x € K(v), v & V>;,+1(x). Therefore, we can choose
n > 0 small enough such that for all unit w with ||[v —w||o < 7, we have ||w;|| > C(v)
for some 1 < ¢ < j;. Then, by (11.12) and Proposition 2.14(a), for all unit w € V'
with [|[w — v|jo > 4, and for all n > N(6), |[(T7).w]| > C(v)e®1=9"  Note that
Aj, > 0. Also in view of Lemma 2.16, we have ||(T").wllo > C;(v)eii=29m This
implies (11.11). O

We recall the following:

Lemma 11.10. Fore > 0, ¢ > 0, n € N and x € S%, let N(n,xz,¢,€") denote the
smallest number of Bowen balls B"(x,€)gl’ C G/T" needed to cover a set of v-measure
at least 1 — €". Then, for p“-a.e. v € S* and any 0 < €’ < 1,

T | o 1
lim lim inf — log N(n, z,¢,€”) = limlimsup — log N(n, z,¢,€") = e,

e—~0 n—oo N e—0 300 N

Proof. The analogous formula for the case of a single measure preserving trasfor-
mation is due to Katok [Ka, Theorem LI]. The precise statement we need is given as
[Zhu, Theorem 3.1]. O

Corollary 11.11. Let N(n,x,€,€”) be as in Lemma 11.10. Then for any € > 0, any
0<¢ <1 and p*-ae z € S?,

1
lim —log N(n,x,€,€") =0.

n—oo M

Proof. In our setting the fiber entropy hfz/iy(TA) is zero. Now the statement fol-

lows immediately from the fact that for fixed n, z,€”, N(n,x, ¢, €”) is decreasing as a
function of e. ]

Proof of Proposition 11.8. Let ¢ > 0 be arbitrary. By Lemma 11.9 and the
compactness of the unit sphere of V, there exist x!,...,2™ € §% and o > 0 such that
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for any ¢1,...,9m € G, such that for n sufficiently large,
M

(11.13) ﬂ B"(z™,€)gm C Byz(e ", €)g’ for some ¢’ € G.
m=1

Then, by Corollary 11.11, for every ¢ > 0 and for all sufficiently large n, for each
1 < m < M, there exists compact Qﬁ,if) C G/T of measure at least 1 — ¢’/M such
that Q,(ff) can be covered by ¢“™ Bowen balls of the form B"(z™,¢)g'T. Then, Q" =

ﬂnj‘il Q'Y satisfies v(Q™) > 1 —¢€", and also Q™ can be covered by at most e™<™
sets of the form

M
(11.14) () B" (=™, €)gmT.
m=1

Recall that we are assuming that I' is torsion free. We may assume that € > 0 is small
enough so that for any g € G with By(e)gI' N Q™ # 0, we have By(e)gy N By(e) = ()
for all v # e. Then, by (11.13) and (11.14), there exists a finite set A C G/T" of
cardinality at most eM<” such that

Q(n) C U B/Z(e_a”,e)g’F.

gTeA
Let
A'={¢T €A : v(Bz(e ™, €dT) <eA|}
Then,
v ( U B/Z(e_a”,e)gT> < Z v(Bz(e7*", €)gT) < |A| (]A]TY) =
gTen! gTen’

Let QM = Ugreawar Byz(e™", €)g'T. Then, QM) > (1 — 2¢), and each gI" € Q™
is contained in a set of the form Bz (e ", €)¢g'T" with v(B,z(e~*",€)g'T) > e|lA|™*.
Therefore, for each gI" € Q("),

v(B)z(3¢7%",3€)gT) > e|A|7! > ee M,

Let o denote the set of gI' € G/T" such that gI" € Q™ for infinitely many n. Then,
V(@) > 1 — 2¢ and for each gI' € @ there exists a sequence 1, = 3e~*" with
rr — 0 such that

V(B)(ry, 3€)gT) > e/,

le.
log V(B z(ry, 3€)gl) < (/o) + log ] |
log 7y, Tog s

Since € and € are arbitrary and |logry| — 0o as 7, — 0, this implies dim,z (v, gI") =
0. U
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Recall that u is a probability measure on GG, supported on a compact set S. Let V|
Z and Kg be as in Definition 1.6. Choose a right-invariant and Kg-invariant metric
dz(-,-) on Z. Choose N, C' and a norm || - || on V' so that (1.1) holds. Let r be small
enough so that for any z with d(z,e) < r the exponential map V' — G sending v to
exp(v)z restricted to the set {v € V' : ||v|| <r} is a diffecomorphism onto its image.
Suppose 0 < e < r. Let d. : G Xx G — R be defined by

e
d.(g.9) = vl if ¢ =exp(v)zg, z € Z, dz(z,e) <€, veV and ||v] <k,
€ otherwise.

Let 6 > 0 be a small parameter to be chosen later (idependently of ¢) and let f, :
G x G — R be defined by

fe(g1,92) = sup (de(ghgﬂ)ﬂ;) :
yerl

Then, f. descends to a function G/I" x G/T' — R which we also denote by f.. For
n €N, let

S"={s1...5, : 8, €S} CQG.

The proof of Theorem 1.14 is based on the following estimate:

Lemma 11.12. There ezists n € N sufficiently large (depending only on u), and
d > 0 sufficiently small (depending only on n and u), so that the following holds:

(a) There exists Cmar = Cmaz(it,n,0) > 0 such that for any 0 < e < r, for all
g1,92 € G/T, and all g in the support of u™,

(1115) fe(gglagg2) S Cmazfe(glaQQ)-

(b) There exists constant ¢y < 1 and c_ < 1 depending on u, n and & such that for
any compact subset K C G/T, there exists a constant €g = €o(u, K,n,d) > 0
and for each 0 < € < € there exists a constant b = b(K,€) = b(K,n, u,€e,0) > 0
and a function ¢ : G x G/T x G/T' = Rt (depending on u, n, 0, K ) such that

for g in the support of u™ and g, € K,

(11.16) fe(991,992) < (g, g1, 92) fe(g1, g2) + b(K ).
In addition, for all 1,92 € G/T,

(11.17) / c(g, 91, 92) du'™ (g) < o < 1,
G
and

(11~18) 6(9791792) = Co if g1 € K.

We stress that ¢paz, and cg do not depend on K and e.
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Remark. We cannot use the Margulis function from [BQ1, §6.3] since we are not
assuming uniform expansion on all exterior powers.

Proof. In the proof, we will be using repeatedly the following obervation. Suppose
g2 = exp(v)zgy, where v € V and z € Z, and suppose g € Gs. Then,

(11.19) ggo = exp(v')Z g1,
where v/ = Ad(g)v and 2’ € Z with dz(2',e) = dz(z,e).

Since the support S of u is compact, we can choose R > 10 such that for all v e V
and all g e SUS™!,

1
(11.20) IVl < TAd(g)vll < Eljv].

It follows that for any n € N, any ¢ in the support of ™, and any g1, g» € G,

(11.21) R™"d(g1,92) < de(991,992) < R"de(91, 92).

Note that while it is always true that f.(¢:, g2I') = dc(g1, goy)~° for some v € T,
it is possible that for some g € 8™ we have f.(ggiT', ggoI') = dc(gg1, gg27")~° where
v F

We first prove (11.15), where there is no real issue. Suppose g € S", ¢1,¢92 € G.
Let v € T be such that f.(ggil, gg2I') = dc(gg1,9goy)~°. Then, for any g € 8", in
view of (11.21) (applied to g~ € (SUS™H)"),

f(giT, ggoT) = de(ggr, ggay)~° < R™d (g1, goy)~° < R™ fo (T, goT).

This means that (11.15) holds, with ¢, = R™.

Recall that we are assuming that I' is torsion free. For € > 0, let Bz(¢) = {2z €
Z : dgz(z,e) <e€}. Let g = €o(K) > 0 be such that for all ¢ € G with gI' € K and
all v € T with v # e, Bz(e9)g N Bz(€o)gy = 0. Suppose € < ey. Then there exists
p = p(K) > 0 such that for all g € G with ¢gI' € K and all v € I" with vy # e,

Byz(p,€)g N Byz(p, €)gy = 0.
Let p' = p/R". Then, for g;I' € K, goI' € Byz(p', €)1, if we write fc(giT', goI') =
d.(g1, 927)~° then for any g in the support of ;u(™,
(11.22) flgoiT, 9goT) = de(ggn, 9927) ™",

We now define the function c¢(-,-,-). Suppose g1,92 € G, ¢1I' € K and gI' €
Bz (p',€)giI". Then, there exists unique v € I' such that gyy € B/z(p',€)g1. Hence,
there exists unique v € V with ||v|| < p’ and z with dz(z,e) < € such that goy =
exp(v)zg;. For g in the support of u(™, we set

de(991,9927)"° _ (H Ad(gv)| ) .
de(917927)76 HVH

(1123) C(gaglr792r) =
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If )I' € K or go.I' & Bz(p',€)gi ', we set c(g, 1T, goI') = co. Now (11.17) follows
from (11.23) and [EMar, Lemma 4.2]. ([EMar, Lemma 4.2] is stated for semisimple
groups, but in fact only uniform expansion, i.e. the conclusion of [EMar, Lemma 4.1]
is used in the proof).

Note that there exists b' = '(p) such that if goI' & B,z (0, €)1 then fe(giT', goI') <
b'. Now (11.16) follows from (11.22), (11.23) and (11.15). O

Proposition 11.13. Suppose for any R > 0 and any gI" € G/T', v({zgl' : dz(z,e) <
R}) = 0. Then, for any n > 0 there exists ¢¢ = €9(n) > 0 and K" C G/T" with
v(K") > 1 — c¢(n) where ¢(n) — 0 asn — 0 and for any 0 < € < €y a constant
C = C(n,€) such that for any gI" € K",

(11.24) fe(gT, ¢'T)dv(¢'T) < C.
G/r

Proof. Suppose n > 0 is abitrary, and fix K such that v(K) > 1 —7. We will always
assume that 1 > 0 is small enough so that

(11.25) (1 —n'?)log co + n"/*10g Cpae < 0.510g ¢y < 0,
where ¢g and ¢y, are as in Lemma 11.12. o R

Let @ = S§*x G/T, Q@ =S8*xG/T'x G/T. Let T : Q — € denote the skew product
map where the fiber is G/T", and let T': Q —  denote the skew product where the

fiber is G/T' x G/T. Let ¥ denote the T-invariant measure % x v, and let 7 denote

the T-invariant measure % x v x v. We are not assuming that o is T- ergodic. Let
U be as in §1. Then, ;" acts on Q) and on ( by

0 (w,gl') = (ow,gl') and 7 - (w, gT', ¢'T') = (ow, g, ¢'T).

For each & € Q the orbit U; @ is isomorphic to a half-infinite Bernoulli shift. We
denote the Bernoulli measure on U@ by uY. We also adapt the same notation for
@€ Q.

Let K = 8% x K. Then ﬁ(f() >1—1n. Let ¥ : Q — R denote the characteristic
function of K¢, and for & € Q let

) = sup - Zz/) T7™(w))

J>1‘711

Then, by the maximal ergodic theorem, for any A € R,
(11.26) MQ@EQ:¢N@>AD§/‘1Mﬁ§/w§n
PF>A 9)

Choose A =702, and let T = {0 € Q : ¢*(&) < n/2}. Then, in view of (11.26),
() >1—n'2
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Write x = (..., x_1, %0, 21,...). Set ¢: Q — R by

C(.T, g1F7 QQF) - C<x07 glr7 g2r)7

and set
_ c(zo, i’y goI') i I’ € K

11.27 L, gl =
( ) C(wmgl y 92 ) {Cmag; 1f glr c Ke.
Let Ag(@) = A(@) = 1 and for any j € N and & € €, let

J J
(11.28) Aj(@) =[[eT™ @), Aj@)=]]aT"@)),

i=1 i=1

Fix k € N. By repeatedly applying Lemma 11.12 we get, for all u € U;",

(11.29) Fo(T™ (ui)) < Ap(ui) fo() + b(K, €) ST (ug)).

HMpr

Let xy denote the characteristic function of T C Q. We may consider xr to be a
function from 2 — R (by ignoring the third component). Let f. : {2 — R be defined
by

(11.30) fe(z, gT, ¢'T) = xr(x, gT) fo(gT, g'T).
Let
kij A . A
0, kyu, &) =Y o(T~™(T* (ud))),
=1

i.e. £(j,k,u, %) is the number of j < s < k such that T"(ui) € K¢. By (11.27),
(11.28), and (11.18), for any 0 < j < k — 1,

(11.31) By (T (ui) < (eman o) 04 Ay (T (u)),

Suppose T¥"(uz) € Y. Then, by (11.30) and the definition of Y, for all j, £(4, k, u, 2) <
n'/2(k — 7), and thus, by (11.29) and (11.31), for all u € U;',

(11.32)  fo(T"™ (uZ)) < (Cmaz/co)" "Ap(u) fo(&)+
k
+ b, €)Y (Cmas /o)™ F ) Ay (17" (u)).
By (11.17), and (11.28), for any 0 < j < k,

/u+~ Ap i (TP (u)) dp® (uz) < C(()k—j)'
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Substituting into (11.32), we get for any & € Q, using (11.25),

=

¢ (kn (~ / /2y /2( 1/2
FE @) di(§) < F@)r e 4 (K, ) 3 0 i) o

4 a max max —_—
ul r 7j=1

P f(F) + (K, €) Zc(k D < K2 p (7)1 0K, €) /(1= ).

Therefore, for all # € Q with f (7) < 0,

(11.33) hmsup—z FATH(@§)) dpN (§) < b(K, €) /(1 — /).
N—=o00 uﬂi
By our assumption, 7({ € Q : f.(i) = o0o0}) = 0. By the ergodic theorem

(apphed to the non-necessarily ergodic transformation T'), there exists a function
¢ : Q0 — RU {oo} such that for almost all & € Q,

(11.34) lim —Zfe T (%)) = (%)

N—ooo N

and

(11.35) /ngdﬁ:/ﬂfedﬂ.

Then, by (11.33), (11.34) and Fatou’s lemma, for almost all & € €,

$(§) dp™(5) < DK, €)/(1 — ¢?).

utz

Integrating over Z and using (11.35), we get
(11.36) /fe )di(@) < b(K, e)/(1 — ct/?) < .

Let

K ={gl e G/T : y*({z€8* : (x,9T) € Y}) >1/2.}.
Then, by Fubini’s theorem, v(K’) > (1—2n'/?), and thus v(K') — 1 as n — 0. Then,
in view of (11.30) and (11.36),

[ ([ stargmyan)) aviar) < 2.0/ - i)

K’ \JG/r

Therefore, there exists K C K’ with v(K") > v(K’) — n such that for gI' € K",
f(gD, gT) du(g'T) < 207 'b(K, €)/(1 = c?).

G/T
This completes the proof of Proposition 11.13. 0
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Proof of Theorem 1.14. For r > 0, let
Bz(r)={z€Z : dz(z,e) <r}.

We first show that for some R > 0 and some gI' € G/T", v(Bz(R)gI') > 0. Suppose
not. Choose 7 > 0 and suppose 0 < € < ¢y(n), where ¢, is as in Proposition 11.13.
Let K", C be as in Proposition 11.13. Then it follows from (11.24) that for all » > 0
and all gI' € K",
Z/<B/Z(7a7 6)9F> < C(na E)Téa

hence

log V(B z(r,€)gT) Ss |log C'(n, €)|

logr - |[logr|

This implies dim,z (v, gI') > ¢, contradicting Proposition 11.8.
Thus, there exists R > 0 and ¢gI' € G/I" such that

or(9l") = v(Bz(R)gl') > 0.

Then by the ergodicity of T, there exists ¢; > 0 and a set U C G /T of full v-measure
such that ¢r(gI") = ¢ for all gI' € ¥. We now pick ¢;I" € ¥, and then inductively
pick gxI' € ¥ such that
k—1
ol & | ) Bz(2R)giT.
i=1
Then, since the sets Bz(R)g;I', 1 <i < k are pairwise disjoint, for any k,

1 =u(G/T) = v(| | Bz(R)gl) = Z v(Bz(R)gil') = ke;.

=1

Thus, & < ¢! and so the process must stop after finitely many steps. This shows
that for some k < €7,

k
v | JBz(2R)g T,
i=1
and thus v is supported on finitely many compact pieces of Z-orbits. 0

12. PROOF OF THEOREM 1.2.

Suppose G is a Zariski-connected algebraic group generated by unipotents over
C. Then, G has no non-trivial characters, and thus the radical of G is equal to its
unipotent radical R, (G).

Let mss : G — G/R,(G) denote the quotient map. Thus, if G is a Zariski-connected
algebraic group generated by unipotents over C, then the quotient 74,(G) is semisim-
ple.

We recall the following well known result of Furstenberg ([F, Theorem 8.6]):
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Proposition 12.1. Suppose G is a semisimple algebraic group with no compact fac-
tors, and 'V 1is a G-vector space with no fired G-vectors. Let u be any probability
measure on G such that the group generated by the support of p is Zariski dense in
G. Then there exists X > 0 such that for any v € V {0} and pN-a.e. w € GN,

llwn - - wov||

1
liminf — log >A>0.

n—oo vl
Lemma 12.2. Suppose G is an algebraic group generated by unipotents over C and
V' is a G-vector space. Let u be any probability measure on G such that the group
generated by the support of v is Zariski dense in G. Then p satisfies a type of weak
bounceback condition. More precisely, let

1
Fy={veV : forae xe8% limsup—log|(T")-v| <0}
n

n—oo

and for x € 8%, let

1
Ny (z) ={veV : limsup—log||(7}) - v| < 0}.

n—oco T

Then, for a.e. x € Q, Fy NNy, () = {0}.

Proof. It is easy to see that Fy is G-invariant. Let prp : G — GL(Fy) denote the
restriction homomorphism. Then pg(G) is also generated by unipotents over C.

In view of Proposition 12.1, ms(pp(G)) is compact. Therefore, pr(G) is compact
by unipotent, and thus Fy N Ny, (z) = {0} for a.e. z € % O

Lemma 12.3. Suppose G is an algebraic group generated by unipotents over C and
W is a G-vector space. Let p be any probability measure on G such that the group
generated by the support of p is Zariski dense in G. Suppose 0 is an ergodic -
stationary probability measure on W ~. {0}. Then, 0 is G-invariant.

Furthermore, if 6 is not supported on a proper G-invariant subspace of W, the G-
action on W factors through a compact subgroup M' of GL(W), and 0 is supported
on a single orbit of M’.

Proof. Without loss of generality, we may assume that 6 is not supported on a
proper G-invariant subspace of W (or else we replace W by that subspace). Since
W is a G-vector space, there is a linear representation p : G — GL(W). Since the
radical of G is the unipotent radical, we have p(G) € SL(W). Then, by (the proof
of) [F, Theorem 1.2], p(G) is compact. Since the Furstenberg-Poisson boundary of a
compact group is trivial (e.g. by Louiville’s theorem), 6 is p(G)-invariant. Then, by
ergodicity, 6 is supported on a single G-orbit. O

Proof of Theorem 1.2. Let v be an ergodic p-stationary measure on G'/T". If
Case II holds, then by Theorem 1.14 (with ¢ trivial) we get that v is Gs-invariant as
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required. Therefore, we may assume that Case I holds. The measure p satisfies the
bounceback condition by Lemma 12.2. Thus, Theorem 1.13 applies (with ¢ trivial).
Let the subgroup H C G’ and the measures A on G'/H and 1y on G'/I” be as in
Theorem 1.13. We choose H so that dim(H) is maximal.

Let pg be as in §1, and let L C G’ denote the stabilizer of py in G’. Then, L
is an H-envelope. The measure A on G'/H projects to a p-stationary measure A on

G'/L. We may identify G'/L with the orbit of py in A (g’). Thus, we may think
dim H 3
(

of A as a p-stationary measure on g'). By ergodicity, we may assume that A

is supported on a single ag—orbit. After possibly replacing H and L by a conjugate
and making the corresponding change to vy, we may assume that A is supported on
@gL C G'/L, and thus A is supported on @iL/H C G'/H. By Lemma 12.3, ) is
5§—invariant.

If L = H° then v is @g—invariant, which implies the statement of Theorem 1.2.
Thus, we may assume that H° is a proper normal subgroup of L.

The group wss(ﬁg) is semisimple. Let M"” denote the product of the compact
factors of wss(@f). Let Gt C Eﬁ denote the subgroup of Eﬁ generated by unipotent
elements. Then G is a normal subgroup of Eﬁ, and the quotient M’ = Eﬁ /Gt is
compact. Then, M’ is a quotient of M". Let 7y : Eﬁ — M’ denote the natural map.

By assumption, there exists a compact set K such that 55 -pg C K- py. This
implies that py is fixed by any unipotent element of @g. Since G is generated by
the unipotent elements of Gf, this implies that G* - py = py, i.e. Gt C L.

Let W denote the smallest @g—invariant subpace of A" (g') containing the Gf
orbit of py. Then, since G* is normal and stabilizes py, G fixes every point of W.

Thus, M' = EE/GJ“ acts on W. Let My be the stabilizer of py € M’. Then, A is
supported on a single orbit M’ py of M’" and thus we can think of A as a measure on

M = M'/My. Let my :GgL — M denote the natural map, i.e. mp(¢') = m'My € M
where m’ € M’ is such that ¢’ - py = m’ - py. (Note that neither the domain nor the

codomain of 7y, is a group). Then, for all g1, g, € @iL with mp(g1) = ma(g2), we
have g, € g1 L.

Let G = Eﬁ NL={g¢€ @ﬁ . mar(g) € My} denote the stabilizer of pg.
Choose a bounded measurable map s : M — 7' (M") C @i with mpyos: M — M
the identity map. We say that s : M — 7 '(M") is a section.

We now define a cocycle 9 : Eﬁ X M — G§ C L. Note that for g € 6§ and m € M,
ma(gs(m)) = ma(s(g - m)).
We set, for g € 65 and m € M,

gs(m) = s(g-m)d(g,m),
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so that 9¥(g,m) € L. Also, since g, s(m) and s(g - m) all belong to Ei, we have
(g, m) € éf. Thus, 9(g,m) € 6§ NL=Gyg.

Also, since s(m) € 7 (M") and s(gm) € 7-(M"), and 7! (M") is normal in G,
we have
(12.1) J(g,m) € gm ;' (M").

We now claim that 9 : G x M — L is a cocycle. Indeed,

91925(m) = g1(g25(m)) = g15(g2m) (g2, m) = 5(g192m)9 (g1, g2m)V(ga, m),
so that
5(9192,”1) = 5(gl,g2m)1§(g2,m),
as required. Thus, Eﬁ acts on M x L by

(12.2) g - (m,g) = (g -m,9(m,g")g).

Now since L is an H-envelope, L NI” is discrete in L, and H is a normal Lie
sugroup of L with H° N T’ discrete in H°. Let G = L/H°, let 7o : L — G denote
the quotient map, and let I' = mzo(I" N L) C G. Then, I is a discrete subgroup of

G. Let 9 =Y ompo, s0 ¥ : Gs — G is a cocycle. Then, @ﬁ acts on M x G/T" by
(12.3) g+ (m,gl') = (g" - m, 9(g",m)gT).

We now claim that the action (12.3) satisfies the weak bounceback condition (3.13).
Let

{0cvicVe---CVip=g

denote a maximal invariant flag for the action of the subgroup G¢/H C L/H on
g = Lie(L/H). Suppose z € Q and we have v € Fx; 1 (z) N Lie(N™)(z) with v # 0.
(Recall that if we write z = (w, m) where w € S% and m € M, then Fs;, .1 (z) depends
on z only via the coordinate m). Let ¢ be maximal so that v € V; (so in particular
v Vi) Let V.=V;/V, 1, and let w = v+ V; ; € V. Note that G /H acts on
Vi/Vi_1 by some semisimple quotient G;. If G; is compact, then v ¢ Lie(N™)(z),
which is a contradiction. Therefore, we may assume that G; is not compact. Note
that G; is also a semisimple quotient of G§ and Gi, and let m; : @f — G, denote the
quotient map. Then, in view of (12.1), for any g € @ﬁ and any m € M,

mi(9(g,m)) = mi(g).

Thus on V' we have an i.i.d. random walk with measure m;(x), and thus by Proposi-
tion 12.1 and the fact that v € Fsj 11(z) we have w = {0}. This implies v € V;_4
which is a contradiction. Thus the claim is proved.

Suppose ¢’ € éﬁL C G'. We may write
(12.4) g =s(mu(g))g, for some g € G'.
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Since my(g') = mar(s(mar(g'))), we have g € L. Let f : @gL — M x L be defined
by f(¢) = (7m(g), g), where g as in (12.4). We now claim that for ¢’ € éf and
geQsl,
flg9) =4 fla),

where the action on the left is that of (12.2). Indeed, my;(¢'g) = ¢' - map(g), and
s(mu(9'9)) ™" g'g = s(g' - mau(9))) " g's(mar(9))s(mar(9)) g = V(g mar(9))s(mar(9)) g
as required.

Note that f descends to a function f : @gL/H — M x G/T". We have, for ¢ € @§
and g € @g/[—l,

(12.5) fld'g) =4 flg),

where the action on the right hand side is that of (12.3).

Let & = f.(A\). Then, in view of (12.5), # is u-stationary, where the action on
(M,G/T) is given by (12.3). If Case I holds for #, then by Theorem 1.13 there exists
H' C G with dim H" > 0 and we have § = X % 1) where 1| is an H’-homogeneous
probability measure on G/I", with the unipotent elements of H’ acting ergodically on
v}, and X is a stationary measure on M x G/H'. Then, since A = f, () we have

A=FH0) = £V xvp) = £V v = N
where N’ is a p-stationary probability measure on G'/H'H. Thus, we may write
v = N"x (V) % 1y) where ) * 1 is a H'H-homogeneous probability measure with the
unipotent elements of H'H acting ergodically on /) *1y. Since dim(H'H) > dim(H),
this contradicts the maximality of dim(H).
Thus, we may assume that case IT holds for 6. Let 0 be as in (1.9) (with 6 in place

of v). Then, by Theorem 1.14, 0 is a product of the Bernoulli measure % on S% and
the measure  on M x G/T.

Let ¢ : S x G/T' — S% x @gL/H be given by ¢(w, m, gl') = (w, f~1(m, gT)).
Then, ¢.(0) is a T-invariant measure on S%x G/ H which is a product of the Bernoulli
measure 4% on S% and the measure A = f1(6) on G'/H. Then, the T-invariance of
u” x X translates into the Gg-invariance of \. Since v = X x v this implies that v is
(G s-invariant. O

Proof of Theorem 1.3. By assumption, éﬁ is semisimple with no compact factors.

Then p satisfies uniform expansion mod Z where Z is the centralizer of éf in G
(see e.g. [EMar, Lemma 4.1]). Let v be an ergodic u-stationary measure on G’/I".
Therefore, we can apply Theorem 1.7. If (b) of Theorem 1.7 holds, then by ergodicity,
v is finitely supported (and thus homegeneous). Therefore we may assume that (a)
of Theorem 1.7 holds.

Let the subgroup H C G’ and the measures A on G'/H and vy on G'/I" be as in
Theorem 1.7. We choose H so that dim(H") is maximal.
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Let py be as in §1, and let L C G’ denote the stabilizer of py in G'. Then, L
is an H-envelope. The measure A on G'/H projects to a p-stationary measure A on
G’'/L. We may identify G'/L with the orbit of pgy in A“™"(g'). Let W denote the
linear span of this orbit. Thus, we may think of \ as a (-stationary measure on the
vector space W. By Lemma 12.3, the action of @ﬁ on W factors through a compact

quotient of Eﬁ. By assumption, Eﬁ has no compact quotients, and thus E§ C L.

If L = H then v is homogenous, and we are done. Thus we may assume that H°
is a proper subgroup of L. Let G = L/H® and let T' = H/H°.

We now apply Theorem 1.7 to the p-stationary measure A on G/I' = L/H. Note
that we still have uniform expansion mod Z’ where Z’ is the centralizer of Eﬁ in L.
Thus, as above, if (b) of Theorem 1.7 holds, then A is finitely supported, which implies
that v is homogeneous. Thus, we may assume that (a) of Theorem 1.7 holds. But
then, A = X' % 1), where 1/} is invariant by a subgroup H' C G with dim H’ > 0. But
then v = X x (1 * 19) and v * vy is (H')? H-invariant, contradicting the maximality
of H. O
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