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Abstract. In this paper, we investigate the notion of the diameter of a group

with respect to a given set of generators. In particular, we will give bounds for
the diameter of the symmetric group Sn with respect to a transposition and a

long cycle. We also bound the maximum diameter of Sn with respect to any

set of generators. To prepare for the latter task, we will look at the maximum
order of a group element in Sn. Finally, we will conclude with a conjecture on

the true bound for the diameter of all non-abelian finite simple groups, and

discuss some recent progress made on the subject.
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1. Introduction

What is the maximum number of moves required to solve a Rubik’s Cube puzzle
from any starting position? Since there are 8! ·37 ·12!/2 ·211 possible permutations,
and only 12 options for each move, a simple counting argument tells us that this
number, known as God’s Number, is at least 18. More accurate estimates, however,
are much more elusive, and it required 35 CPU years of computer time to prove that
the actual value of God’s Number is 20. Now, since Rubik’s Cube permutations
form a group, there is an associated Cayley graph. It turns out that God’s Number
is the diameter of this Cayley graph, which raises the question: Can we easily
estimate the diameters of Cayley graphs of groups that we know more about? In
this paper, we shall use elementary combinatorics and group theory to provide some
asymptotic bounds.

2. Preliminaries

In this section, we will formalize the notion of group diameter, and review some
pertinent concepts from discrete mathematics.
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Definition 2.1. Let G be a group and S a set of generators. The Cayley Graph
Γ(G,S) is a directed graph constructed as follows:

• The vertex set V (Γ) is G.
• The edge set E(Γ) consists of all ordered pairs (g, gs) such that g is in G

and s is in S.

We are interested in the undirected version of the Cayley graph, where the edge
set consists instead of the unordered pairs {g, gs} such that g ∈ G and s ∈ S. From
now on, any reference to Cayley graphs assumes this definition.

Definition 2.2. Let Γ be a (undirected) graph, and v, w two vertices in V (Γ). The
distance between v and w, denoted d(v, w), is the number of edges in a shortest
path connecting them.

Definition 2.3. Let Γ be a (undirected) graph. The diameter of Γ is the maximum
distance between any two vertices in V (Γ).

One suspects that the diameter of a Cayley graph relates strongly to the structure
of its underlying group, and indeed this is true. We introduce two more definitions
to make the connection clear.

Definition 2.4. Let G be a group and S a set of generators. Let g be an element
in G. The length of g in S is the minimum word length expressing g as a product
of elements of S ∪ S−1. We denote it by length(g, S).

Definition 2.5. Let G be a group and S a set of generators. The diameter of G
with respect to S is defined to be the maximum length of its elements. In other
words,

diam(G,S) = max
g∈G

length(g, S).

We now see that the group theoretic definition of diameter corresponds nicely to
the graph theoretic one.

Proposition 2.6. Let G be a group, S a set of generators, and Γ(G,S) its associ-
ated Cayley graph. Then diam(G,S) = diamΓ(G,S).

Proof. There is a one-to-one correspondence between words in S ∪ S−1 and walks
in Γ(G,S), where the word length is the same as the walk length. In particular,
the shortest word corresponds to the shortest path, which implies

d(g, h) = length(g−1h, S).

Setting k to be g−1h, it follows that

diamΓ(G,S) = max
g,h∈G

d(g, h) = max
k∈G

length(k, S) = diam(G,S).

�

In view of this proposition, the following is a simple consequence of the graph
theoretic triangle inequality:

Corollary 2.7. Let G be a group, S a set of generators, then for all g, h ∈ G,
length(gh, S) ≤ length(g, S) + length(h, S).

Let us now introduce some convenient notation and conventions for dealing with
permutation groups.
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Notation 2.8. We use [n] = {1, 2, . . . , n} to denote the domain of a permutation
group acting on n elements.

Notation 2.9. If π is a permutation, and x ∈ [n], then xπ = π(x). In accordance
with the exponent notation, we will compose permutations on the right. In other
words, given permutations π and σ, πσ is the permutation that sends x to (xπ)σ =
σ(π(x)).

Notation 2.10. Suppose we have two permutations π and σ. Then πσ = σ−1πσ.

Notation 2.11. Let c be a cyclic permutation. If c(i1) = i2, c(i2) = i3, . . .
c(ir) = i1, then we denote c by (i1i2 . . . ir).

Within a family of groups, the diameter of a group is often a function of its order
(or degree in the case of permutation groups). We are interested in studying the
rate of growth of these functions, and we formalize rate of growth comparisons with
the following concepts.

Definition 2.12. Let f, g : N→ R be functions. We say that

(1) ∼ g, or f is asymptotically equal to g, if limn→∞
f(n)
g(n) = 1,

(2) f = o(g), or f is “little oh” of g, if limn→∞
f(n)
g(n) = 0,

(3) f = O(g), or f is “big oh” of g, if
∣∣∣ f(n)g(n)

∣∣∣ is bounded,

(4) f = Ω(g), or f is “omega” of g, if g = O(f), and
(5) f = Θ(g), or f is “theta” of g, if f = O(g) and f = Ω(g).

The following properties of the asymptotic equality relation follow easily from the
definitions. They show that under some conditions, asymptotic equality behaves
like regular equality in the sense that it is preserved by arithmetic operations as
well as taking logarithms and series limits.

Proposition 2.13. Let f, g, h, k : N→ R be functions such that f ∼ g and h ∼ k.
Then f · h ∼ g · k.

Proof.

lim
n→∞

f(n)h(n)

g(n)k(n)
= lim
n→∞

f(n)

g(n)
· lim
n→∞

h(n)

k(n)
= 1.

�

Corollary 2.14. Given the same f, g, h, k, if h(n)k(n) 6= 0 for all sufficiently large
n, then f/g ∼ k/h.

Proposition 2.15. Given the same f, g, h, k, if f(n)h(n) > 0 for all sufficiently
large n, then f + h ∼ g + k.

Proof. First, observe that f(n)h(n) > 0 implies that all four functions have the
same sign eventually, and we can assume without loss of generality that they are
all positive. Now suppose a, b, c, d > 0 and a/b < c/d, then we have

b

a
· a+ c

b+ d
=
ab+ bc

ab+ ad
>
ab+ ad

ab+ ad
= 1 =

bc+ cd

bc+ cd
>
ad+ cd

bc+ cd
=
d

c
· a+ c

b+ d
,

which implies that a
b <

a+c
b+d <

c
d . Hence,

min

{
f(n)

g(n)
,
h(n)

k(n)

}
<
f(n) + h(n)

g(n) + k(n)
< max

{
f(n)

g(n)
,
h(n)

k(n)

}
,
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so limn→∞
f(n)+h(n)
g(n)+k(n) = 1 by the squeeze theorem. �

Proposition 2.16. Let f, g, h : N → R be functions such that f ∼ g + h and
h = o(f) or h = o(g). Then f ∼ g.

Proof. If h(n) = o(f(n)), then

1 = lim
n→∞

g(n) + h(n)

f(n)
= lim
n→∞

g(n)

f(n)
+ lim
n→∞

h(n)

f(n)
= lim
n→∞

g(n)

f(n)
.

On the other hand, if h(n) = o(g(n)),

1 = lim
n→∞

g(n) + h(n)

f(n)
= lim
n→∞

g(n)

f(n)
· lim
n→∞

(
1 +

h(n)

g(n)

)
= lim
n→∞

g(n)

f(n)
.

�

Proposition 2.17. Let f, g : N→ R be functions such that f ∼ g and limn→∞ f(n) =
limn→∞ g(n) = ∞. If we define h, k : N → R by h(n) =

∑n
i=1 f(i) and k(n) =∑n

i=1 g(i), then h ∼ k.

Proof. Fix ε > 0 and pick N such that for all n ≥ N ,

(2.18)

∣∣∣∣f(n)

g(n)
− 1

∣∣∣∣ =

∣∣∣∣f(n)− g(n)

g(n)

∣∣∣∣ < ε.

Then ∣∣∣∣∑n
k=N f(k)∑n
k=N g(k)

− 1

∣∣∣∣ =

∣∣∣∣∑n
k=N (f(k)− g(k))∑n

k=N g(k)

∣∣∣∣ ≤ ∑n
k=N |f(k)− g(k)|∑n

k=N g(k)
.

We want the quantity on the right to be less than ε. But that is equivalent to
n∑

k=N

|f(k)− g(k)| <
n∑

k=N

ε · g(k),

which follows from (2.18). Since we can always remove a finite number of terms
from an infinite sum which is tending to infinity, while n was arbitrary, the result
follows. �

Proposition 2.19. Let f, g : N→ R be functions such that f ∼ g and both f and
g are bounded away from 1 (i.e. there exists a constant c such that f(n) > 1 + c or
f(n) < 1− c for large n). Then ln f ∼ ln g.

Proof. Fix 0 < ε < 1. Then by hypothesis, for large n, we have 1−ε < f(n)
g(n) < 1+ε.

Since log is a monotone function, this implies ln(1−ε) < ln f(n)−ln g(n) < ln(1+ε),
or ln(1− ε) + ln g(n) < ln f(n) < ln(1 + ε) + ln g(n). Dividing by ln g(n) yields

ln(1− ε)
ln g(n)

+ 1 <
ln f(n)

ln g(n)
<

ln(1 + ε)

ln g(n)
+ 1.

We know that ln g(n) is bounded away from 0. On the other hand, we can choose
ε arbitrarily small by making n large enough. Hence, the result follows from the
squeeze theorem. �

Remark 2.20. Note that f ∼ g need not imply that ln f ∼ ln g if f and g are not

bounded away from 1. For instance, let f(n) = n1/n and g(n) = n1/n
2

.

The following proposition gives a handy characterization of asymptotic equality.
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Proposition 2.21. Let f, g : N → R be functions. Then f ∼ g if and only if
f = g · (1 + o(1)).

Proof.

lim
n→∞

f(n)

g(n)
= 1 ⇐⇒ lim

n→∞

(
f(n)

g(n)
− 1

)
= 0 ⇐⇒ f(n)

g(n)
− 1 = o(1).

�

Remark 2.22. If f, g : N → R are functions such that ln f ∼ g, we say that
f = g1+o(1).

Using the asymptotic equality relation, we can give a nice analytic formula for
otherwise unwieldy step functions. The canonical example of this is the Prime
Number Theorem, which was proved independently by both Hadamard and de la
Valle-Poussin in 1896. We shall make extensive use of this result later in the paper.

Theorem 2.23 (The Prime Number Theorem). Let π(x) be the number of primes
less than or equal to x ∈ N. Then π(x) ∼ x

ln x .

Corollary 2.24. Let pk be the k-th prime. Then pk ∼ k ln k.

Proof. By the PNT,

(2.25) k ∼ pk
ln pk

⇐⇒ pk ∼ k ln pk.

Taking log of both sides, we get

(2.26) ln pk ∼ ln(k ln pk) = ln k + ln(ln pk) ∼ ln k,

where the last asymptotic equality follows from Proposition 2.16. Finally, we com-
bine (2.25) and (2.26) using Proposition 2.13 to conclude that pk ∼ k ln k. �

3. The diameter of Sn given some generators

To get a taste of some of the techniques used to calculate the diameter of groups,
it helps to first look at an example. A natural place to start seems to be permu-
tation groups, whose structure is relatively well-understood. So let us try giv-
ing asymptotic bounds for the symmetric group Sn given the set of generators
{(12), (12 . . . n)}.

Given any group G, one method for obtaining an upper bound for its diameter
(with respect to a fixed set of generators) is to define an algorithm that takes an
arbitrary element g ∈ G and finds a word for g of length less than cn2, where c is
an absolute constant independent of n. In this particular case, we will decompose
a permutation into transpositions and then generate each of these transpositions
one by one.

Observe that every permutation has a unique cycle decomposition. If we can
prove that permutations of the same cycle decomposition form a conjugacy class,
then, in particular, we will know that all transpositions are conjugates of (12), and
we can then bound the length of an arbitrary transposition by finding the length
of the permutation it has to be conjugated with to obtain (12). Hence, let us begin
with the following useful lemma:
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Lemma 3.1. Let σ, π ∈ Sn. Then σ−1πσ has the same cycle structure as π. That
is, if we write π = (i11i12 . . . i1r(1)) · · · (ik1ik2 . . . ikr(k)), then we have

σ−1πσ = (iσ11i
σ
12 . . . i

σ
1r(1)

) · · · (iσk1i
σ
k2 . . . i

σ
kr(k)

).

Proof. Every permutation is the product of a series of transpositions, and we can
write σ = τ1τ2 · · · τs. Then σ−1πσ = τs . . . τ2τ1πτ1τ2 · · · τs, and it suffices to prove
the lemma for conjugation of π by a transposition τ . Suppose τ swaps a and b.
Then we have 3 cases.

Case 1: aπ = b and bπ = a. Clearly τπτ = π, so there is nothing to prove here.
Case 2: aπ = b and bπ 6= a. Since π fixes neither a nor b, we get

a
τ7−→ b

π7−→ bπ
τ7−→ bπ

b
τ7−→ a

π7−→ b
τ7−→ a

aπ
−1 τ7−→ aπ

−1 π7−→ a
τ7−→ b

c
τ7−→ c

π7−→ cπ
τ7−→ cπ,

where the last mapping holds for any c ∈ [n] other than a, b, or aπ
−1

.
Case 3: aπ 6= b and bπ 6= a. Possibly, π may fix either a or b, but assume first

that it fixes neither. We then have

a
τ7−→ b

π7−→ bπ
τ7−→ bπ

b
τ7−→ a

π7−→ aπ
τ7−→ aπ

aπ
−1 τ7−→ aπ

−1 π7−→ a
τ7−→ b

bπ
−1 τ7−→ bπ

−1 π7−→ b
τ7−→ a

c
τ7−→ c

π7−→ cπ
τ7−→ cπ.

On the other hand, if π fixes a, then τπτ clearly fixes b, while bπ
−1

is still mapped
to a, and a to bπ by above. If π fixes b, we conclude analogously. �

We can now prove

Proposition 3.2. Let S be {(12), (12 . . . n)}. Then diam(Sn, S) = O(n2).

Proof. We first give a bound for the number of steps required to generate an ar-
bitrary transposition (ab), where, without loss of generality, we can assume a < b.

Let π = (12), σ = (12 . . . n), b = a+k, and consider π(σπ)k−1σa−1

, i.e. the conjugate
of π by (σπ)k−1σa−1. We have

1
(σπ)k−1

7−→ 1
σa−1

7−→ a

2
(σπ)k−1

7−→ k + 1
σa−1

7−→ a+ k = b

It follows from the lemma that π(σπ)k−1σa−1

= (ab).
Now,

length(π(σπ)k−1σa−1

, S) ≤ 2 · length((σπ)k−1σa−1, S) + length(π, S)

≤ 2 · (2(k − 1) + a− 1) + 1

≤ 2 · (2n+ n) + 1

≤ 5n.

Let ρ ∈ Sn. It is clear that ρ is the product of at most n− 1 transpositions. Hence,

length(ρ, S) ≤ (n− 1) · 5n = O(n2),
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and since ρ was arbitrary, we conclude that diam(Sn, S) = O(n2). �

In the above proof, we used a well-known set of generators, namely the set of
all transpositions, as a stepping stone in our algorithm for generating Sn. We then
calculated the diameter of Sn given S by multiplying the maximum length of a
transposition and the maximum number of transpositions required to generate any
permutation. It will be helpful to extract and formalize this principle for use later.

Definition 3.3. Let S be a set of generators for a group G, and T be a subset of
G. The length of T with respect to S is the maximum length of the elements in T
with respect to S.

Lemma 3.4. Let S and T be sets of generators for a group G. Then diam(G,S) ≤
diam(G,T ) · length(T, S).

One way to obtain a lower bound on the diameter of a group G is to define
a potential function f : G → Z≥0 such that f(e) is small and |f(gs)− f(g)| is
bounded for all elements g ∈ G and generators s ∈ S. If we can find an element
h such that f(h) is large, we can then use the triangle inequality to give a lower
bound on the length of h.

In our case, an example of such a function is f(π) =
∑

1≤i<j≤n επ,ij , where

επ,ij = 1 if π(i) > π(j) and 0 otherwise. This function counts the number of
“inverted pairs”, and it is clear that f(e) = 0 while f(g) =

(
n
2

)
for some g. Moreover,

|f(πs)− f(π)| ≤ 2 · (n − 2) + 1, when s is either σ or π giving a lower bound of
Ω(n). This bound, however, is suboptimal, and to obtain one that is tight, we have
to resort to a different trick.

We count not the number of “inverted pairs”, but the number of “inverted
triples”. Let us make Z/nZ the vertex set of a directed graph Γ(V,E) where
E = {(x, x + 1) : x ∈ Z/nZ}. Then every ordered triple of distinct numbers
i, j, k ∈ Z/nZ has one of two orientations. If the path from i to k passes through
j, we call the orientation of (i, j, k) clockwise. Conversely, if the path from i to k
does not pass through j, we say that (i, j, k) has an anti-clockwise orientation.

Lemma 3.5. Let us define a function φ : Sn → Z by

φ(ρ) =
∑

1≤i<j<k≤n

δρ,ijk,

where δρ,ijk = 1 if (ρ(i), ρ(j), ρ(k)) has an anti-clockwise orientation and 0 other-
wise. Let π = (12), σ = (12 . . . n), and γ be defined as follows:

γ 1 2 3 . . . n-2 n-1 n
n n-1 n-2 . . . 3 2 1

Then the following are true:

(1) φ(e) = 0,
(2) φ(γ) =

(
n
3

)
,

(3) ∀ρ ∈ Sn, φ(ρσ)− φ(ρ) = φ(ρσ−1)− φ(ρ) = 0, and
(4) ∀ρ ∈ Sn, |φ(ρπ)− φ(ρ)| ≤ n− 2.

Proof. Fix i < j < k. Then (i, j, k) is clearly clockwise so δe,ijk = 0 and (1) is
obvious. On the other hand, γ(i) > γ(j) > γ(k) so δγ,ijk = 1, and (2) follows from
there being

(
n
3

)
triples. Now, observe that σ(i) = i+1, σ(j) = j+1, and σ(k) ≡ k+1

mod n. This means that σ is a graph isomorphism, and (σρ(i), σρ(j), σρ(k)) has
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the same orientation as (ρ(i), ρ(j), ρ(k)). The same argument applies for σ−1, so it
also does not change the orientation of any triple. Hence, φ(ρσ) = φ(ρ) = φ(ρσ−1),
which gives us (3).

It remains to prove (4), but it is clear that the orientation of (ρ(i), ρ(j), ρ(k)) is
swapped by π if and only if (ρ(i), ρ(j), ρ(k)) contains both 1 and 2. There are n−2
such triples, so the difference between φ(ρπ) and φ(ρ) is at most n− 2. �

The following proposition is now an easy corollary of the previous lemma.

Proposition 3.6. Let S be as in Proposition 3.2. Then diam(Sn, S) = Ω(n2).

Proof. Let γ be as defined in Lemma 3.5, and let ρ0ρ1 · · · ρk be a word for γ, where
ρ0 = e, and ρi is a generator for 1 < i ≤ k. Then we have

φ(γ) =

k∑
i=1

φ(ρ0ρ1 · · · ρi)− φ(ρ0ρ1 · · · ρi−1)

≤
k∑
i=1

|φ(ρ0ρ1 · · · ρi)− φ(ρ0ρ1 · · · ρi−1)|

=
∑
ρi=π

|φ(ρ0ρ1 · · · ρi)− φ(ρ0ρ1 · · · ρi−1)|

≤
∑
ρi=π

(n− 2)

≤ k · (n− 2).

But since φ(γ) =
(
n
3

)
= n(n−1)(n−2)

6 , this implies that k ≥ n(n−1)
6 = Ω(n2). �

Finally, combining Propositions 3.2 and 3.6 gives us

Theorem 3.7. Let S be {(12), (12 . . . n)}. Then diam(Sn, S) = Θ(n2).

4. Landau’s function

In this section, we shall prove the following theorem:

Theorem 4.1 (Landau). Let g : N → N, be defined for every n to be the largest
order of an element of the symmetric group Sn. Then

ln(g(n)) ∼
√
n ln(n)

or equivalently,

g(n) = e
√
n lnn(1+o(1)).

This function g(n), called Landau’s function, is named after Edmund Landau,
who proved the above theorem in a 1903 paper [1]. Let us first try to develop an
intuition for what exactly it measures before embarking on the proof of the theorem.

Now, any permutation π can be written as the product of disjoint cycles c1, c2, . . . , ck
of length r1, r2, . . . , rk. If we count the singleton cycles, we see that the lengths of
these cycles sum to n. Also, πt = 1 if and only if cti = 1 for all i, which is only the
case if ri | t. Hence,

ord(π) = min{t : πt = 1} = min{t : ∀i, ri | t} = lcm{r1, . . . , rk}.
In other words, g(n) is the value of the largest least common multiple of any

partition of n. Given small values of n, it is easy to compute the corresponding
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values of g(n) by looking at all possible partitions of n. The table for n < 20 (taken
from [2]) is presented below:

n g(n) cycle lengths n g(n) cycle lengths
2 2 2 11 30 1,2,3,5 or 5,6
3 3 3 12 60 3,4,5
4 4 4 13 60 1,3,4,5
5 6 2,3 14 84 3,4,7
6 6 1,2,3 or 6 15 105 3,5,7
7 12 3,4 16 140 4,5,7
8 15 3,5 17 210 2,3,5,7
9 20 4,5 18 210 1,2,3,5,7 or 5,6,7
10 30 2,3,5 19 420 3,4,5,7

Looking at all possible partitions, however, becomes impossible as n tends to
infinity, while a simple analytic formula for g(n) seems unlikely in light of the table
above. Indeed, for each n, it is difficult to even identify a candidate permutation
having order g(n). We thus turn our investigation on its head and ask: If we have
a permutation of order m, what is the minimum number of elements it must act
upon?

Proposition 4.2. Let
∏k
i=1 p

ri
i be the prime power factorization of m, and let

s(m) =
∑k
i=1 p

ri
i . Then there exists a permutation on n elements having order m

if and only if s(m) ≤ n.

To prove Proposition 4.2, we will need the following lemma.

Lemma 4.3. Let a1, a2, . . . , ak be positive integers and let m = lcm{a1, . . . , ak}.
Then s(m) ≤

∑k
i=1 ai.

Proof. First, we note that we can assume each ai > 1, or else we can remove ai
to get a list of numbers with a smaller sum and the same lowest common mul-
tiple. Next, suppose gcd(aj , al) = d > 1. Then lcm{a1, . . . , aj , ald , . . . , ak} =

lcm{a1, . . . , aj , al, . . . , ak} but
∑
i 6=l ai + al

d <
∑k
i=1 ai. Hence we can assume that

a1, a2, . . . , ak are relatively prime. Now suppose one of the ai is not the power of a
prime, i.e. there are two distinct primes p and q such that p|ai and q|ai. Let t be
the highest power of p that divides ai. Then

ai =
ai
pt

(pt − 1) +
ai
pt
≥ 2(pt − 1) +

ai
pt
≥ pt +

ai
pt

but lcm{a1, . . . , ai, . . . , ak} = lcm{a1, . . . , aipt , p
t, . . . , ak}. �

Proof of Proposition 4.2. Suppose s(m) ≤ n. Then we can pick a permutation
having cycles with lengths prii and this permutation clearly has order m. Conversely,
suppose s(m) > n and there exists a permutation π ∈ Sn of order m. Let a1, . . . , ak
be the lengths of the cycles of π. Then since lcm{a1, . . . , ak} = m, Lemma 4.3 tells

us that
∑k
i=1 ai > n, giving a contradiction. �

Corollary 4.4. For all n ∈ N, g(n) = maxs(m)≤nm.

It is clear from the above discussion that order g(n) is attained by a permutation
whose nontrivial cycles have lengths that are the powers of distinct primes. But
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even though we have narrowed down candidate permutations of order g(n), it is still
not straightforward to establish a clear relationship between n and the partition of
n that gives rise to g(n). Hence, we consider instead a permutation of suboptimal
order, and show that it is a good approximation.

We now define two new functions θ, ν : N→ R whose asymptotic values will help
us later.

Definition 4.5. Let x ∈ N. Then

(1) θ(x) =
∑
p≤x

ln p = ln

∏
p≤x

p


(2) ν(x) =

∑
p≤x

p,

where both sums are taken over all the primes p less than x.

Remark 4.6. The function θ(x) is well studied and known as the first Chebyshev
function.

Lemma 4.7. We have θ(x) ∼ x.

Proof. The upper bound is easy. We have∑
p≤x

ln p ≤
∑
p≤x

lnx = π(x) lnx ∼ x

lnx
· lnx = x.

On the other hand, for any ε > 0,∑
p≤x

ln p ≥
∑

x1−ε<p≤x

ln p ≥
∑

x1−ε<p≤x

lnx1−ε =
(
π(x)− π(x1−ε)

)
lnx1−ε.

But

π(x1−ε)

π(x)
∼ x1−ε

(1− ε) lnx
· lnx

x
=
x1−ε

1− ε
= o(1)

by Corollary 2.14, so by Propositions 2.13 and 2.16,(
π(x)− π(x1−ε)

)
lnx1−ε ∼ π(x) lnx1−ε ∼ x

lnx
· (1− ε) lnx = x(1− ε).

Since ε was arbitrary, the result follows. �

Remark 4.8. Lemma 4.7 is equivalent to the Prime Number Theorem.

Lemma 4.9. We have ν(x) ∼ x2

2 ln x .

Proof. Using Corollary 2.23 and Proposition 2.17, we know that

∑
p≤x

p =

π(x)∑
k=1

pk ∼
d x
ln x e∑
k=1

pk ∼
d x
ln x e∑
k=1

k ln k.

Given n, define f : R → R by f(t) = t ln t, and let P1 = {1, 2, . . . , d x
ln xe}. Then∑d x

ln x e
k=1 k ln k is a Riemann upper sum for f on [1, d x

ln xe] with partition P1, and we
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have that
d x
ln x e∑
k=1

k ln k ≥
∫ x

ln x

1

t ln t dt

=

[
1

2
t2 ln t− 1

4
t2
] x

ln x

1

=
1

2

x2

(lnx)2
ln
( x

lnx

)
− 1

4

( x

lnx

)2
+

1

4

∼ x2

2 lnx
.

The last asymptotic equality sign is due to Propositions 2.13 and 2.16, and the
fact that lnx ∼ ln( x

ln x ).

If we let P2 = {2, 3, . . . , d x
ln xe + 1}, then

∑d x
ln x e
k=1 k ln k is a Riemann lower sum

for f on [2, d x
ln xe+ 1], which implies that

d x
ln x e∑
k=1

k ln k ≤
∫ x

ln x+2

2

t ln t dt

=

[
1

2
t2 ln t− 1

4
t2
] x

ln x+2

2

=
1

2
(
x

lnx
+ 2)2 ln(

x

lnx
+ 2)− 1

4
(
x

lnx
+ 2)2 − 2 ln 2 + 1

∼ x2

2 lnx
.

Once again, we made use of Propositions 2.13 and 2.16. Finally, by the squeeze

theorem, it follows that
∑d x

ln x e
k=1 k ln k ∼ x2

2 ln x . �

Using the above two lemmas, we can now prove

Proposition 4.10. Fix n ∈ N, and let k(n) = max{k :
∑k
i=1 pi ≤ n}. Let

f(n) =
∏k(n)
i=1 pi. Then ln f(n) ∼

√
n lnn.

Proof. Fix n ∈ N. Recall that k(n) is defined such that
∑k(n)
i=1 pi ≤ n <

∑k(n)+1
i=1 pi,

so by Lemma 4.7, we have

(4.11) ln f(n) =

k(n)∑
i=1

ln pi ∼ pk(n).

On the other hand, Lemma 4.10 tells us

(4.12) n ∼
k(n)∑
i=1

pi ∼
1

2

p2k(n)

ln pk(n)
.

Taking log of both sides, this becomes

(4.13) lnn ∼ 2 ln pk(n) − ln(2 ln pk(n)) ∼ 2 ln pk(n).

Combining (4.12) and (4.13),

(4.14) n ∼
p2k(n)

lnn
⇐⇒ pk(n) ∼

√
n lnn,
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and now (4.11) and (4.14) together give ln f(n) ∼
√
n lnn. �

It easy to see that f(n) is the order of a permutation whose cycle lengths are
p1, . . . , pk(n). From the above discussion, we know that f(n) ≤ g(n). In fact, the
two functions are asymptotically equal. We will prove this via two lemmas due to
Shah and Miller [2].

Lemma 4.15 (Shah). Given n ∈ N, n > 1, let

• Fn = {p prime : p | f(n)} ∪ {pk(n)+1} = {p1, . . . , pk(n)+1}
• Gn = {p prime : p | g(n)}.

Then ∑
p∈Gn

ln p < 2 + ln f(n) + ln pk(n)+1.

Proof. Recall that if
∏k
i=1 p

ri
i is the prime power factorization of m, then s(m) =∑k

i=1 p
ri
i . Proposition 4.2 tells us that s(g(n)) ≤ n, from which we get∑

p∈Gn

p ≤ s(g(n)) ≤ n <
∑
p∈Fn

p

Subtracting
∑
p∈Gn∩Fn

p from both sides, this becomes

(4.16)
∑

p∈Gn\Fn

p <
∑

p∈Fn\Gn

p.

Now, ln x
x is a decreasing function for x > e. Since for all p ∈ Gn\Fn, 3 ≤

pk(n)+1 < p, we have ln p < p · ln pk(n)+1

pk(n)+1
. Analogously, for all p ∈ Fn\Gn except for

2, 3 ≤ p ≤ pk+1 implies that ln p > p · ln pk(n)+1

pk(n)+1
. Using (4.16), we get the following

string of inequalities: ∑
p∈Gn\Fn

ln p <
∑

p∈Gn\Fn

p ·
ln pk(n)+1

pk(n)+1

<
∑

p∈Fn\Gn
p 6=2

p ·
ln pk(n)+1

pk(n)+1
+ 2

<
∑

p∈Fn\Gn
p 6=2

ln p+ 2.

Adding back
∑
p∈Gn∩Fn

ln p to both sides, we get∑
p∈Gn

ln p <
∑
p∈Fn
p 6=2

ln p+ 2 < 2 + ln f(n) + ln pk(n)+1.

�

Lemma 4.17 (Miller). Let pe be a prime power such that e > 1. If pe divides g(n),
then pe ≤ 2pk(n)+1.



ON THE DIAMETER OF CAYLEY GRAPHS OF FINITE GROUPS 13

Proof. Let q = pj be the smallest prime not dividing g(n). Then
∑j−1
i=1 pi ≤ n <∑k(n)+1

i=1 pi, which implies that j ≤ k(n) + 1. Hence it is sufficient to prove that
pe ≤ 2q. Now suppose, for contradiction, that pe > 2q, and let n ∈ N be such

that qn−1 < p < qn. Note that qn = qn−1 · q < pq. If we let m = qn

p · g(n), then

m > g(n) and

s(m) = s(g(n)) + (qn − pe + pe−1).

We claim that the quantity in parentheses on the right is negative. If p < q,
then n = 1 and

q − pe + pe−1 ≤ q − pe

2
< q − 2q

2
= 0.

If p > q, we have

qn − pe + pe−1 < pq − p(p− 1) ≤ pq − pq = 0,

where the first inequality holds because e > 1 and p ≥ 2. In either case, s(m) <
s(g(n)) but m > g(n), which contradicts Corollary 4.4. �

Corollary 4.18. Given the conditions of Lemma 4.17, p ≤
√

2pk(n)+1.

With these two lemmas, we can now prove

Proposition 4.19. We have ln f ∼ ln g.

Proof. Let
∏j
i=1 q

ei
i be the prime factorization of g(n). Then ln g(n) =

∑j
i=1 ei ln qi.

Without loss of generality, we can let t be such that ei > 1 for 1 ≤ i ≤ t and
et+1 = et+2 = . . . = ej = 1. Then t ≤ qt ≤

√
2pk(n)+1 by Corollary 4.19, and we

have

ln g(n) =

j∑
i=1

ei ln qi =

t∑
i=1

ei ln qi +

j∑
i=t+1

ln qi

≤
t∑
i=1

ei ln qi +
∑
p∈Gn

ln p

≤
(
ln(2pk(n)+1) ·

√
2pk(n)+1

)
+ (2 + ln f(n) + ln pk(n)+1),

where we get the last equality by applying the bounds given by Lemma 4.15 and
4.17. We also know trivially that f(n) ≤ g(n), so after dividing everything by
ln f(n), we get

1 ≤ ln g(n)

ln f(n)
<

ln(2pk(n)+1) ·
√

2pk(n)+1

ln f(n)
+

2

ln f(n)
+ 1 +

ln pk(n)+1

ln f(n)
.

By Lemma 4.7, ln f(n) ∼ pk(n)+1 − 1, so, we have

lim
n→∞

ln(2pk(n)+1) ·
√

2pk(n)+1

ln f(n)
= lim
n→∞

ln pk(n)+1

ln f(n)
= 0.

The result follows. �

When we combine this result with Proposition 4.10, we see that we have com-
pleted the proof of Theorem 4.1.
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5. The maximum diameter of Sn and An

In Section 3, we considered the diameter of Sn with respect to a given set of
generators. Since the diameter of a group varies depending on the generators we
consider, it will be interesting to know what the diameter is on average and how
big the diameter can get in the worst case scenario. We shall investigate the latter
question with respect to Sn, reproducing a proof of an upper bound due to Babai
and Seress [3].

Definition 5.1. Let G be a group. Define diammaxG to be the maximum of
diam(G,S) taken over all sets of generators S.

Theorem 5.2 (Babai - Seress). Let G be Sn or An. (For the rest of this section,
G will denote either Sn or An.) Then

diammax(G) ≤ e
√
n lnn(1+o(1)).

This proof, like that of Proposition 3.2, is algorithmic. We define a procedure for
generating any group element from an arbitrary set of generators and show that the
length of the word we get has the upper bounds we want. Recall that in Proposition
3.2, we used transpositions as “stepping stones”. In this proof, however, we shall
let the 3-cycles play that role.

Definition 5.3. The support of a permutation π, denoted supp(π), is the set of
elements displaced by π.

Definition 5.4. The degree of a permutation π is the size of its support, i.e.
deg(π) = |supp(π)|.

Lemma 5.5. Let S be the set of all 3-cycles. Then diam(An, S) ≤ n.

Proof. Fix π ∈ G and consider its cycle decomposition. Let c = (i1, . . . , ik) be a
cycle in π. Clearly, c = (ikik−1)(ik−1ik−2) · · · (i2i1). Hence, if k is odd, c is the
product of an even number of transpositions, and conversely, if k is even, c is the
product of an odd number of transpositions.

If c is an odd degree cycle so that k = 2m+ 1, one can check that we can write

c =

m terms︷ ︸︸ ︷
(ik−2ik−1ik)(ik−4ik−3ik−2) · · · (i1i2i3), which implies that length(c, S) ≤ m ≤

deg(c).
Now, since π is an even permutation, it contains an even number of even degree

cycles. Hence, if k = 2m for some m, we can pair c with another even degree cycle
c′ = (j1 . . . jl), where l = 2q for some q. We can then write cc′ as the product
of even degree cycles (i1 . . . ik−1j1ik) and (j1ikj2 . . . jl). Since these cycles are of
degree 2m+ 1 and 2q + 1 respectively, length(cc′, S) ≤ m+ q ≤ deg(c) + deg(c′).

Let π = c1c2 · · · cr be the cycle decomposition of π. Corollary 2.7 shows that

length(π, S) ≤
r∑
i=1

length(ci, S) ≤
r∑
i=1

deg(ci) ≤ n

�

Notice that if we have a single 3-cycle γ, we can obtain all other 3-cycles by
taking conjugates of γ. We can thus bound the diameter of G with respect to the
length of γ. Proving this first requires the following definition and lemma.
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Definition 5.6. Let G be either An or Sn. Suppose T ⊂ G and 1 ≤ k ≤ n. We
say that T is a k-transitive subset if for every pair of k-tuples (x1, . . . , xk) and
(y1, . . . , yk), where xi 6= xj and yi 6= yj for i 6= j, there exists a permutation π ∈ T
such that xπi = yi.

Lemma 5.7. Let G be either An or Sn. For any set S of generators and any
k such that 1 ≤ k ≤ n − 2, there exists a k-transitive subset Rk ⊂ G such that
length(Rk, S) ≤ nk.

Proof. Let Ωk be the set of all k-tuples of elements in {1, . . . , n}, and consider
the action of S on this set. We represent this in the form of a directed graph
Γ(V,E), where the vertex set V = Ωk and the edge set E consists of all ordered
pairs ((x1, . . . , xk), (y1, . . . , yk)) such that there exists a permutation s ∈ S with
(x1, . . . , xk)s = (y1, . . . , yk). Now

|V | = n(n− 1) · · · (n− k + 1) ≤ nk.
Since G acts transitively on Ωk, and S generates G, Γ is connected, and the distance
between any two vertices is at most |V |. This distance corresponds to length(Rk, S).

�

Proposition 5.8. Let G be either An or Sn. Suppose S is a set of generators for
G, and γ is any 3-cycle in G. Then diam(G,S) ≤ 1 + 2n4 + n · length(γ, S).

Proof. We can obtain any 3-cycle from γ by conjugating it with an element from a
3-transitive set, R3. Recall that length(R3, S) ≤ n3, and that any even permutation
is the product of at most n 3-cycles. Thus, for an arbitrary even permutation π,

length(π, S) ≤ n·(length(R3, S)+length(γ)+length(R3, S)) ≤ 2n4+n·length(γ, S),

so the proposition holds for An. To extend the result to Sn, we just need to show
that the bound also holds for odd permutations. If S generates Sn, it must contain
an odd permutation σ. Let π ∈ Sn be an odd permutation, then σ−1π is an even
permutation, so

length(π, S) ≤ length(σ, S) + length(σ−1π, S) ≤ 1 + 2n4 + n · length(γ, S).

�

It remains to find out how to reach a 3-cycle. The following proposition gives us
a way of achieving this:

Proposition 5.9. Let σ and π be permutations such that |supp(σ) ∩ supp(π)| = 1.
Then the commutator [σ, π] = σ−1π−1σπ is a 3-cycle.

Proof. Let x ∈ supp(σ) ∩ supp(π). Then we have

x
σ−1

7−→ xσ
−1 π−1

7−→ xσ
−1 σ7−→ x

π7−→ xπ

xσ
−1 σ−1

7−→ xσ
−2 π−1

7−→ xσ
−2 σ7−→ xσ

−1 π7−→ xσ
−1

xσ
σ−1

7−→ x
π−1

7−→ xπ
−1 σ7−→ xπ

−1 π7−→ x

xπ
−1 σ−1

7−→ xπ
−1 π−1

7−→ xπ
−2 σ7−→ xπ

−2 π7−→ xπ
−1

xπ
σ−1

7−→ xπ
π−1

7−→ x
σ7−→ xσ

π7−→ xσ.

Since [σ, π] clearly does not affect any other elements, we conclude that [σ, π] =
(xπxσx) �



16 YAN SHUO TAN

It follows immediately from this proposition that if we have a permutation π
with degree t < n, and a t-transitive subset Rt, then there exists a permutation
σ ∈ Rt such that [σ, π] is a 3-cycle. Furthermore, we have length([σ, π] , S) ≤
2 · (length(π, S) + length(Rt, S)). However, the bound on length(Rt, S) given by
Lemma 5.7 grows exponentially in t, which is larger than the bound we want (recall

that we want diam(G,S) = e
√
n lnn(1+o(1)) so we need to reduce the size of t.

We shall achieve this using two tricks. First, we observe that if π contains cycles
that are the lengths of distinct primes, we can raise π to a power to kill off most of
these cycles and yet not arrive at the identity permutation.

Definition 5.10. Let π be a permutation and x ∈ supp(π). Then the period of x
with respect to π is the smallest positive integer m such that πm(x) = x.

Proposition 5.11. Let π be a permutation of degree n, and suppose p1, . . . , pk are
distinct primes such that

• p1, . . . , pk | ord(π), and

•
∏k
i=1 pi ≥ ns for some positive integer s.

Then there exists m ∈ N such that 2 ≤ deg(πm) < n
s .

Proof. First, let us write ord(π) =

k∏
i=1

prii · L, where gcd(L, pi) = 1. If we define,

for each pi, a number li = ord(π)

p
ri
i

, then li is the largest factor of ord(π) coprime

with pi. We claim that one of these li gives the value of m we want.
Recall that a permutation can be partitioned into disjoint cycles. If we consider

a point x ∈ [n], then the period of x is clearly the length of the cycle in π that acts
upon it. Hence, if we define A(x) = {i : pi | period(x)}, then this set contains the
indices of all primes that divide the length of that cycle. Observe that for each x,

(5.12)
∏

i∈A(x)

pi ≤ n.

If x is fixed by πli , then pi - period(x), so i /∈ A(x). Since deg(πli) counts the
number of elements not fixed by πli , its value is just the number of x such that
i ∈ A(x). We call this number Ni. To prove our claim, we need to show that there
exists an i such that Ni ≤ n

s .
Let R(i, x) be the indicator function of the relation “i ∈ A(x)”. Then (5.12)

implies

(5.13)
∑
i∈[k]

R(i, x) ln pi =
∑
i∈A(x)

ln pi ≤ lnn.

Also, our hypothesis
∏k
i=1 pi ≥ ns implies

(5.14)

k∑
i=1

ln pi ≥ s lnn.
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Observing that
∑
x∈[n]R(i, x) = Ni, we can compute the weighted average of the

Ni.

k∑
i=1

Ni ln pi

k∑
i=1

ln pi

=

k∑
i=1

∑
x∈[n]

R(i, x) ln pi

k∑
i=1

ln pi

=

∑
x∈[n]

(
k∑
i=1

R(i, x) ln pi

)
k∑
i=1

ln pi

.

Since the quantity in parentheses is bounded above by lnn by (5.13) while the
denominator is bounded below by s lnn by (5.14), the last quantity on the right
is less than or equal to n lnn

s lnn = n
s . Therefore, there exists an Ni ≤ n

s , as we
wanted. �

The previous ”degree-reducing” trick only works if π contains cycles of the right
length. In general, this is not the case. We can, however, modify π at low cost to
inject the necessary cycles into it. In the process we increase the degree of π by a
factor of 2, but this is more than compensated by the reduction that follows upon
application of Proposition 5.11.

Proposition 5.15. Let G be either An or Sn. Let S be a set of generators for
G, and suppose π ∈ G has degree k ≥ 2. Let d ∈ N be such that d ≤ k

3 and
d = d1 + . . .+ dr, where di ∈ N. Then there exists λ ∈ G such that

(1) deg(λ) ≤ 2k,
(2) λ includes cycles of length d1, . . . , dr,
(3) length(λ, S) ≤ 2 · length(π, S) + 2 · length(R2d, S).

Proof. Let B ⊂ supp(π) be such that |B| = d and B∩Bπ = ∅. We can choose such
a subset because we can pick every other element in each cycle to be in B. Then
select τ ∈ R2d such that τ |B is a product of cycles of length di, but τ fixes each
point of Bπ. Such a permutation exists because R2d is 2d-transitive by definition.

Let λ = πτπ−1τ−1. Now it is clear that the degree of a product of two per-
mutations is less than or equal to the sum of their individual degrees. By Lemma
3.3, deg(τπ−1τ−1) = deg(π), and hence, we have that deg(λ) ≤ deg(τπ−1τ−1) +
deg(π−1) = 2k. Since λ|B = τ−1|B , λ also satisfies (2), while (3) is true because of
Corollary 2.7. �

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 5.2. Let pi denote the i-th prime number, and let

• φ(n, s) = min

{
k :

k∏
i=1

pi > ns

}
,

• ψ(n, s) =

φ(n,s)∑
i=1

pi.

If we set s = lnn, then we have φ(n, 2s) ∼ (lnn)2

ln lnn , and ψ(n, 2s) ∼ 2(lnn)4

ln lnn (c.f.
[4]). We let t = 3 · ψ(n, 2s). Now, observe that if we have a permutation σ ∈ G
of degree at most t, then we can select ρ ∈ Rt such that |supp(σ) ∩ supp(ρ)| = 1.
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Then Proposition 5.9 tells us that [σ, ρ] is a 3-cycle, and

length([σ, ρ] , S) ≤ 2 · (length(σ, S) + length(Rt, S))

≤ 2 · length(σ, S) · length(Rt, S)

≤ 2nt · length(σ, S).

Now, the idea is to reach a permutation of degree at most t by iteratively trans-
forming an initial permutation π using Proposition 5.15 and 5.11. Suppose at round
j of this process we have a permutation πj ∈ G with degree m > t = 3 · ψ(n, 2s).
We then apply Proposition 5.15 to transform πj into π′j , with d = ψ(n, 2s) and
di = pi. Observe that deg(π′j) = 2m. Since, π′j now satisfies the hypotheses for

Proposition 5.11, we can transform it once again into πj+1 of degree < 2m
2s = m

s .
Let us compute the cost of each step. Recall that t = 3d, so by Proposition 5.15

and Lemma 5.7,

length(π′j , S) ≤ 2 · (length(πj , S) + length(R2d, S))

≤ 2 · length(πj , S) + 2n2d

≤ 2nt · length(πj , S).

Also, recall that Landau’s function g(m) gives the maximum order of permutations
of degree less than or equal to m. This is an upper bound on length(πj+1, π

′
j).

Hence, using Lemma 3.5, we know that

length(πj+1, S) ≤ length(πj+1, π
′
j) · length(π′j , S)

≤ g(m) · 2nt · length(πj , S).

Next, we want to find out the number of iterations, l we need to undergo before
the algorithm terminates. But since the degree of our permutation is reduced by
a factor of lnn during each round, even in the worst case scenario, this number l
need only satisfy

n

(lnn)l
≤ t ∼ 6(lnn)4

ln(lnn)
⇐⇒ (lnn)l &

n ln(lnn)

6(lnn)4
.

This means we require

l & ln

(
n ln(lnn)

6(lnn)4

)
· 1

ln(lnn)

= lnn+ ln(ln(lnn))− ln 6− 4 ln(lnn)− ln(lnn)

∼ lnn.

Hence, we take l = lnn, and we have

length(πl, S) ≤ g(n)g(n/s) · · · g(n/sl) · (2nt)l

=

(
l∏
i=0

e
√
n/(lnn)i·ln(n/(lnn)i)(1+o(1))

)
· (2nt)l.
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Taking log of both sides, this becomes

ln length(πl, S) .
lnn∑
i=0

√
n

(lnn)i
· ln
(

n

(lnn)i

)
+ ln 2 ln(lnn) +

2(lnn)6

ln(lnn)

∼
lnn∑
i=0

√
n

(lnn)i
· ln
(

n

(lnn)i

)

≤
√
n lnn+

√
n

lnn
ln
( n

lnn

)
+

√
n

(lnn)2
ln

(
n

(lnn)2

)

+ lnn ·

√
n

(lnn)3
ln

(
n

(lnn)3

)
∼
√
n lnn,

which implies that length(πl, S) = e
√
n lnn(1+o(1)). Obviously, multiplying this value

by n or 2nt does not change the asymptotics, so by Propositions 5.9 and 5.8, we

have diam(G,S) ≤ e
√
n lnn(1+o(1)). �

6. Outlook

The diameter of abelian groups can be very large. Suppose G is cyclic of order
2n+1, and g is a generator of G, then gn cannot be expressed as a word in {g, g−1}
of length less than n. On the other hand, non-abelian simple groups are believed
to have small diameter. In a later paper [5], Babai and Seress made the following
conjecture:

Conjecture 6.1. If G is a non-abelian finite simple group of order N , then

diammax(G) < (lnN)C

for some absolute constant C.

In particular, the true diameter of An is believed to be much smaller than what
we proved in the previous section. This result, however, has remained elusive,
and almost no progress was made in general until 2008 when Helfgott proved the
conjecture for SL2(Z/pZ) [6] and hence PSL2(Z/pZ).

His proof relies on the following key proposition:

Proposition 6.2. Let p be a prime. Let A be a subset of SL2(Z/pZ) not contained
in any proper subgroup.

(1) Assume that |A| < p3−δ for some fixed δ > 0. Then

|A ·A ·A| > c|A|1+ε

where c > 0 and ε > 0 depend only on δ.
(2) Assume that |A| > pδ for some fixed δ > 0. Then there is an integer

k > 0, depending only on δ, such that every element of SL2(Z/pZ) can be
expressed as a product of at most k elements of A ∪A−1.

Let S be a set of generators for SL2(Z/pZ). Then |(S ·S)∪S| ≥ |S|+ 1, so if we

let A =
⋃d
i=1 S

i, then length(A,S) = d and |A| ≥ d. Now, we set δ = 3/2. We then
apply part (1) of the proposition to A iteratively, until we reach a set A′ = A3e of
size |A′| > p3/2 so that we can invoke part (2) of the proposition.
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Obviously, this algorithm bounds diammax(SL2(Z/pZ)) by 3edk, where d and k
are absolute constants not depending on p, so we need to obtain a bound for e in
terms of p, and an easy computation shows that this is polylogarithmic in p. In
other words we have

Theorem 6.3. Let p be a prime and G = SL2(Z/pZ). Then diammax(G) =
O((ln p)c).

Helfgott extended this result to SL3(Z/pZ) in a more recent paper [7] using
similar methods. Meanwhile, Pyber and Szabó managed to generalize Proposition
6.2 to produce the following theorem [8]:

Theorem 6.4. Let L be a finite simple group of Lie type of rank r and A a gener-
ating set of L. Then either A3 = L or

|A3| � |A|1+ε

where ε and the implied constant depend only on r.

This proves that the conjecture holds much more generally for all finite simple
groups of Lie type of bounded rank.

Acknowledgments. I would like to thank Peter May for organizing the REU
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