THE STRENGTH OF SOME COMBINATORIAL
 PRINCIPLES RELATED TO RAMSEY'S THEOREM FOR PAIRS

DENIS R. HIRSCHFELDT, CARL G. JOCKUSCH, JR., BJØRN KJOS-HANSSEN, STEFFEN LEMPP, AND THEODORE A. SLAMAN

Abstract

We study the reverse mathematics and computability-theoretic strength of (stable) Ramsey's Theorem for pairs and the related principles COH and DNR. We show that SRT_{2}^{2} implies DNR over RCA_{0} but COH does not, and answer a question of Mileti by showing that every computable stable 2 -coloring of pairs has an incomplete Δ_{2}^{0} infinite homogeneous set. We also give some extensions of the latter result, and relate it to potential approaches to showing that SRT_{2}^{2} does not imply RT_{2}^{2}.

1. Introduction

In this paper we establish some results on the reverse mathematics and computability-theoretic strength of combinatorial principles related to Ramsey's Theorem for pairs. This topic has attracted a large amount of recent research (see for instance $[2,4,9,10]$), but certain basic questions still remain open.

For a set X, let $[X]^{2}=\{Y \subset X| | Y \mid=2\}$. A 2-coloring of $[\mathbb{N}]^{2}$ is a function from $[\mathbb{N}]^{2}$ into $\{0,1\}$. A set $H \subseteq \mathbb{N}$ is homogeneous for a 2 -coloring C of $[\mathbb{N}]^{2}$ if C is constant on $[H]^{2}$. Ramsey's Theorem for pairs $\left(\mathrm{RT}_{2}^{2}\right)$ is the statement in the language of second-order arithmetic that every 2 -coloring of $[\mathbb{N}]^{2}$ has an infinite homogeneous set. A 2-coloring C of $[\mathbb{N}]^{2}$ is stable if for each $x \in \mathbb{N}$ there exists a $y \in \mathbb{N}$ and a $c<2$ such that $C(\{x, z\})=c$ for all $z>y$. Stable Ramsey's Theorem for pairs $\left(\mathrm{SRT}_{2}^{2}\right)$ is RT_{2}^{2} restricted to stable colorings.

It follows from work of Jockusch [5, Theorem 5.7] that if $n>2$ then Ramsey's Theorem for n-tuples is equivalent to arithmetical comprehension $\left(\mathrm{ACA}_{0}\right)$, but Seetapun [11] showed that RT_{2}^{2} does not imply ACA_{0}. (All implications and nonimplications discussed here are over the standard base

[^0]theory RCA_{0} of reverse mathematics. For background on reverse mathematics and discussions of many of the techniques used below, see Simpson [12].)

A long-standing open question in reverse mathematics is whether RT_{2}^{2} implies Weak König's Lemma $\left(\mathrm{WKL}_{0}\right)$, the statement that every computable infinite binary tree has an infinite path. (That WKL_{0} does not imply RT_{2}^{2} follows from a result of Jockusch [5, Theorem 3.1] discussed below.) As is well-known, WKL_{0} is equivalent to the statement that for each set A, there is a 0,1 -valued function function f that is diagonally noncomputable relative to A (where a total function f is diagonally noncomputable if $\forall e\left(f(e) \neq \Phi_{e}(e)\right)$.) A natural way to weaken this statement is to drop the requirement that f be 0,1 -valued, and allow it to take arbitrary values in ω; the corresponding axiom system has been named DNR. In Section 2 we show that RT_{2}^{2} implies DNR over RCA_{0}. In other words, whereas we do not know whether RT_{2}^{2} implies WKL_{0}, we have a partial result toward this implication. In fact, we show that the possibly weaker system SRT_{2}^{2} already implies DNR. It is not known whether SRT_{2}^{2} is strictly weaker than RT_{2}^{2}; we will discuss this question further below.

An infinite set X is cohesive for a family R_{0}, R_{1}, \ldots of sets if for each i, one of $X \cap R_{i}$ or $X \cap \bar{R}_{i}$ is finite. COH is the principle stating that every family of sets has a cohesive set. Having seen that $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2} \vdash \mathrm{DNR}$, and recalling that RT_{2}^{2} is equivalent over RCA_{0} to $\mathrm{SRT}_{2}^{2}+\mathrm{COH}$ (see [2, Lemma 7.11] and [9, Corollary A.1.4]), we proceed to compare COH and DNR. As noted by Cholak, Jockusch, and Slaman [2, Lemma 9.14], even WKL_{0} does not imply COH , so certainly DNR does not imply COH. We establish that COH does not imply DNR in Section 3. This result was independently and simultaneously obtained by Hirschfeldt and Shore [4, Corollary 2.21], and as we will see, the main ideas of the proof were already present in [2].

Jockusch [5, Theorem 3.1] constructed a computable 2-coloring of $[\mathbb{N}]^{2}$ with no Δ_{2}^{0} infinite homogeneous set. On the other hand, computable stable 2 -colorings always have Δ_{2}^{0} infinite homogeneous sets. Indeed, the problem of finding an infinite homogeneous set for a computable stable 2-coloring is essentially the same as the problem of finding an infinite subset of either A or \bar{A} for a Δ_{2}^{0} set A. More precisely, we have the following. If A is Δ_{2}^{0} then there is a computable stable 2 -coloring C of $[\mathbb{N}]^{2}$ such that if H is homogeneous for C then $H \subseteq A$ or $H \subseteq \bar{A}$. Conversely, if C is a computable stable 2-coloring of $[\mathbb{N}]^{2}$ then there is a Δ_{2}^{0} set A such that any infinite set B with $B \subseteq A$ or $B \subseteq \bar{A}$ computes an infinite homogeneous set for C. (See [5, Proposition 2.1] and [2, Lemma 3.5], or [9, Claim 5.1.3].)

Cholak, Jockusch, and Slaman [2, Theorem 3.1] showed that every computable 2-coloring of $[\mathbb{N}]^{2}$ has a low 2 infinite homogeneous set, and suggested the possibility of separating SRT_{2}^{2} and RT_{2}^{2} by showing that every computable stable 2 -coloring of $[\mathbb{N}]^{2}$ has a low infinite homogeneous set. Such a result, if relativizable, would allow us to build an ω-model of SRT_{2}^{2} consisting entirely of low sets, which would therefore not be a model of RT_{2}^{2}.
(An ω-model of second-order arithmetic is one whose first-order part is standard, and such a model is identified with its second-order part.) However, Downey, Hirschfeldt, Lempp, and Solomon [3] constructed a computable stable 2-coloring of $[\mathbb{N}]^{2}$ with no low infinite homogeneous set.

Mileti [9, Theorem 5.3.7] showed that for each $X<_{T} 0^{\prime}$ there is a computable stable 2-coloring of $[\mathbb{N}]^{2}$ with no X-computable infinite homogeneous set. (He also showed that this is true for any low_{2} set X.)

In light of these results, Mileti [9, Question 5.3.8] asked whether there is an infinite Δ_{2}^{0} set A such that every infinite Δ_{2}^{0} subset of A or \bar{A} is complete (i.e., has degree $\mathbf{0}^{\prime}$); in other words, whether there is a computable stable 2-coloring of $[\mathbb{N}]^{2}$ such that any Δ_{2}^{0} infinite homogeneous set is complete. Hirschfeldt gave a negative answer to this question; this previously unpublished result appears as Corollary 4.10 below. In Theorem 4.5, we modify the proof of this result to show that, in fact, if $C_{0}, C_{1}, \ldots>_{\mathrm{T}} 0$ are uniformly Δ_{2}^{0}, then for every Δ_{2}^{0} set A there is a Δ_{2}^{0} subset X of either A or \bar{A} such that $\forall i\left(C_{i} \star_{\mathrm{T}} X\right)$. In proving that RT_{2}^{2} does not imply ACA_{0}, Seetapun [11] showed that if $C_{0}, C_{1}, \ldots>_{\mathrm{T}} 0$ then every 2-coloring of $[\mathbb{N}]^{2}$ has an infinite homogeneous set that does not compute any of the C_{i}. Our result can be seen as a Δ_{2}^{0} analogue of this theorem. The restriction to stable colorings is of course necessary in this case, since as mentioned above, there are 2-colorings of pairs with no Δ_{2}^{0} infinite homogeneous set.

There is still a large gap between the negative answer to Mileti's question and the result of Downey, Hirschfeldt, Lempp, and Solomon [3] mentioned above. In particular, we would like to know the answer to the following question.

Question 1.1. Let A be Δ_{2}^{0}. Must there be an infinite subset of either A or \bar{A} that is both Δ_{2}^{0} and low_{2} ?

A relativizable positive answer to this question would lead to a separation between SRT_{2}^{2} and RT_{2}^{2}, since it would allow us to build an ω-model of RCA_{0} $+\mathrm{SRT}_{2}^{2}$ that is not a model of RT_{2}^{2}, as we now explain. We begin with the ω model \mathcal{M}_{0} consisting of the computable sets. Let C_{0} be a stable 2-coloring of $[\mathbb{N}]^{2}$ in \mathcal{M}_{0}. Assuming a positive answer to Question 1.1, we have an infinite homogeneous set H_{0} for C_{0} that is both Δ_{2}^{0} and low ${ }_{2}$. Note that H_{0}^{\prime} is low over 0^{\prime} and c.e. over 0^{\prime}.

Now let \mathcal{M}_{1} be the ω-model consisting of the H_{0}-computable sets, and let C_{1} be a stable 2 -coloring of $[\mathbb{N}]^{2}$ in \mathcal{M}_{1}. Again assuming a (relativizable) positive answer to Question 1.1, we have an infinite homogeneous set H_{1} for C_{1} such that $H_{0} \oplus H_{1}$ is both Δ_{2}^{0} in H_{0} and low 2 . As before, $\left(H_{0} \oplus H_{1}\right)^{\prime}$ is low over 0^{\prime}. It may no longer be c.e. over 0^{\prime}, but it is 2 -CEA over 0^{\prime} (that is, it is c.e. in and above a set that is itself c.e. in and above 0^{\prime}).

Now let \mathcal{M}_{2} be the ω-model consisting of the $H_{0} \oplus H_{1}$-computable sets, and continue in this way, making sure that for every i and every stable 2coloring C of $[\mathbb{N}]^{2}$ in \mathcal{M}_{i}, we have $C_{j}=C$ for some j. Let $\mathcal{M}=\bigcup_{i} \mathcal{M}_{i}$. By construction, \mathcal{M} is an ω-model of $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$, and for every set X in
\mathcal{M}, we have that X^{\prime} is low over 0^{\prime} and m-CEA over 0^{\prime} for some m. By the extension of Arslanov's Completeness Criterion given by Jockusch, Lerman, Soare, and Solovay [6], no such X can have PA degree over 0^{\prime} (that is, X cannot be the degree of a nonstandard model of arithmetic with an extra predicate for 0^{\prime}). However, Jockusch and Stephan [8, Theorem 2.1] showed that a degree contains a p-cohesive set (that is, a set that is cohesive for the collection of primitive recursive sets) if and only if its jump is PA over 0^{\prime}. Thus \mathcal{M} is not a model of COH , and hence not a model of RT_{2}^{2}.

Note that to achieve the separation described above, it would be enough to show (in a relativizable way) that every Δ_{2}^{0} set A has a subset of either it or its complement that is both Δ_{2}^{0} and low $_{n}$ for some n (which may depend on A). However, we do not even know whether every Δ_{2}^{0} set has a subset of either it or its complement that is both Δ_{2}^{0} and nonhigh.

The ultimate refutation of this approach to separating SRT_{2}^{2} and RT_{2}^{2} would be to build a computable stable 2-coloring of $[\mathbb{N}]^{2}$ for which the jump of every infinite homogeneous set has PA degree over 0^{\prime}. (Without the condition of stability, such a coloring was built by Cholak, Jockusch, and Slaman [2, Theorem 12.5].) Indeed, such a construction (if relativizable) would show that every ω-model of $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$ is a model of RT_{2}^{2}, as we now explain. Suppose that such stable colorings exist, and let \mathcal{M} be an ω-model of $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$. Relativizing the result of Jockusch and Stephan [8, Theorem 2.1] on p-cohesive sets mentioned above, we can show that \mathcal{M} is a model of COH . But as mentioned above, $\mathrm{SRT}_{2}^{2}+\mathrm{COH}$ is equivalent to RT_{2}^{2} over RCA_{0}, so \mathcal{M} is a model of RT_{2}^{2}.

2. SRT_{2}^{2} IMPLIES DNR

The proof that SRT_{2}^{2} implies DNR over RCA_{0} is naturally given in two parts: first we show that each ω-model of SRT_{2}^{2} is a model of DNR, and then that we can in fact carry out the proof of this implication in RCA_{0}, that is, using only Σ_{1}^{0}-induction.
2.1. The argument for ω-models. A set A is effectively bi-immune if there is a computable function f such that for each e, if $W_{e} \subseteq A$ or $W_{e} \subseteq \bar{A}$, then $\left|W_{e}\right|<f(e)$.

Lemma 2.1. There is an effectively bi-immune set $A \leqslant_{T} 0^{\prime}$. In fact, we can choose the function f witnessing the bi-immunity of A to be defined by $f(e)=3 e+2$.

Proof. We build A in stages, via a 0^{\prime}-computable construction. At each stage we decide the value of $A(n)$ for at most three n 's. At stage e, we check whether W_{e} has at least $3 e+2$ many elements. If so, then there are at least two elements $n_{0}, n_{1} \in W_{e}$ at which we have not yet decided the value of A. Let $A\left(n_{0}\right)=0$ and $A\left(n_{1}\right)=1$. In any case, if $A(e)$ is still undefined then let $A(e)=0$.

We also need the following lemma, which follows immediately from the equivalence mentioned above between finding homogeneous sets for computable stable colorings and finding subsets of Δ_{2}^{0} sets or their complements. A Turing ideal is a subset of 2^{ω} closed under Turing reduction and join. A subset of 2^{ω} is a Turing ideal if and only if it is an ω-model of RCA_{0}.
Lemma 2.2. A Turing ideal \mathcal{I} is an ω-model of $S R T_{2}^{2}$ if and only if for each set A, if $A \leqslant{ }_{T} C^{\prime}$ for some $C \in \mathcal{I}$, then there is an infinite $B \in \mathcal{I}$ such that either $B \subseteq A$ or $B \subseteq \bar{A}$.

We can now prove the implication between SRT_{2}^{2} and DNR for ω-models.
Theorem 2.3. Each ω-model of $S R T_{2}^{2}$ is a model of $D N R$.
Proof. Let \mathcal{I} be a Turing ideal that is an ω-model of SRT_{2}^{2}. We show that \mathcal{I} contains a diagonally noncomputable function. The proof clearly relativizes to get a function that is diagonally noncomputable relative to X for any $X \in \mathcal{I}$.

Let A be as in Lemma 2.1. By Lemma 2.2, there is an infinite $B \in \mathcal{I}$ such that B is a subset of A or \bar{A}. By the choice of A, for all e, if $W_{e} \subseteq B$ then $\left|W_{e}\right|<3 e+2$.

Let g be such that $W_{g(e)}$ is the set consisting of the first $3 e+2$ many elements of B (in the usual ordering of ω). For any e, if $W_{e}=W_{g(e)}$ then $W_{e} \subseteq B$, and so $\left|W_{e}\right|<3 e+2$. But $\left|W_{g(e)}\right|=3 e+2$, so this is a contradiction. Thus $\forall e\left(W_{e} \neq W_{g(e)}\right)$.

Now let f be a computable function such that $W_{f(e)}=W_{\Phi_{e}(e)}$ if $\Phi_{e}(e) \downarrow$, and $W_{f(e)}=\emptyset$ otherwise. Then $h=g \circ f$ is diagonally noncomputable, since it is total and for each e, if $\Phi_{e}(e) \downarrow$ then $W_{h(e)} \neq W_{f(e)}=W_{\Phi_{e}(e)}$. But h is also computable in B, and hence belongs to \mathcal{I}.
2.2. The proof-theoretic argument. We now simply need to analyze the above proof to ensure that Σ_{1}^{0}-induction suffices to carry it out. The formal analog of Lemma 2.2 is the statement that SRT_{2}^{2} is equivalent to the following principle, called D_{2}^{2} : For every 0 , 1-valued function $d(x, s)$, if $\lim _{s} d(x, s)$ exists for all x, then there is an infinite set B and a $j<2$ such that $\lim _{s} d(x, s)=j$ for all $x \in B$. The equivalence of SRT_{2}^{2} and D_{2}^{2} over RCA_{0} is claimed in [2, Lemma 7.10]. However, the argument indicated there for the $\mathrm{D}_{2}^{2} \rightarrow \mathrm{SRT}_{2}^{2}$ direction appears to require Π_{1}^{0}-bounding, which is not provable in RCA_{0}. It is unknown whether $\mathrm{D}_{2}^{2} \rightarrow \mathrm{SRT}_{2}^{2}$ is provable in RCA_{0}. Fortunately, we need only the other direction, since we are starting with the assumption that SRT_{2}^{2} holds. This direction is proved as in [2, Lemma 7.10], and we reproduce the proof here for the reader's convenience. Work in $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$. Let a function $d(x, s)$ be given that satisfies the hypothesis of D_{2}^{2}. Give the pair $\{x, s\}$ with $x<s$ the color $d(x, s)$. The infinite homogeneous set produced by SRT_{2}^{2} for this stable coloring satisfies the conclusion of D_{2}^{2}.
Theorem 2.4. $R C A_{0} \vdash S R T_{2}^{2} \rightarrow D N R$.

Proof. Given the existence of a set A as in Lemma 2.1 (or more precisely, of a function $d(x, s)$ such that $\left.A(x)=\lim _{s} d(x, s)\right)$, the definition of the diagonally noncomputable function h given in the proof of Theorem 2.3 can clearly be carried out using D_{2}^{2} and Σ_{1}^{0}-induction.

So the only part of the proof of Theorem 2.3 we need to consider more carefully is the construction of A and the satisfaction of all bi-immunity requirements. More precisely, fix a model \mathcal{M} of $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}$. Within that model, we have an enumeration of the \mathcal{M}-c.e. sets W_{0}, W_{1}, \ldots (where the indices range over all elements of the first-order part of $\mathcal{M})$. We need to show the existence of a function $d(x, s)$ in \mathcal{M} such that $\lim _{s} d(x, s)$ exists for all x, and for every W_{e}, if there is a $j<2$ such that $\forall x \in W_{e}\left(\lim _{s} d(x, s)=j\right)$, then $\left|W_{e}\right|<3 e+2$. (We will actually be able to use $2 e+2$ instead of $3 e+2$.)

We can build d in much the same way as we built A, but we need to be more careful because we no longer have access to an oracle for 0^{\prime}. So we need a computable construction to replace the 0^{\prime}-computable construction in the proof of Lemma 2.2. Let R_{e} be the e th bi-immunity requirement.

In this construction, R_{e} may control up to two numbers n_{e}^{0} and n_{e}^{1} at any point in the construction. At stage $t=\langle e, s\rangle$, if $\left|W_{e, s}\right| \geqslant 2 e+2$, then for each $i<2$ such that n_{e}^{i} is undefined, define n_{e}^{i} to be different from each $n_{e^{\prime}}^{j}$ for $e^{\prime} \leqslant e$, and undefine all $n_{e^{\prime}}^{j}$ for $e^{\prime}>e$. In any case, for each n, if $n=n_{k}^{j}$ for some j and k, then let $d(n, t)=j$, and otherwise let $d(n, t)=0$.

It is now easy to check (in RCA_{0}) that $\lim _{t} d(n, t)$ exists for all n, since for each n, either n is never controlled by a requirement, in which case $d(n, t)=0$ for all t, or there is a stage t at which n is controlled by R_{e} for some e. In the latter case, since control of a number can only pass to stronger requirements, there are at most e many $u \geqslant t$ such that $d(n, u+1) \neq d(n, u)$.

The last thing we need to check is that each R_{e} is satisfied. It follows by induction that for each e, there are at most $2 e$ many numbers that are ever controlled by any $R_{e^{\prime}}$ with $e^{\prime}<e$, and thus there is a stage v_{e} by which all such numbers have been controlled by such requirements. (This is an instance of Π_{1}^{0}-induction, which holds in RCA_{0} (see Simpson [12, Lemma $3.10]$), using a formula saying that for all finite sequences of size $2 e+1$ of distinct elements and for all t, it is not the case that each element of the sequence has been controlled by some $R_{e^{\prime}}$ with $e^{\prime}<e$ by stage t.) So if $\left|W_{e}\right| \geqslant 2 e+2$, then picking a stage $t=\langle e, s\rangle \geqslant v_{e}$ such that $\left|W_{e, s}\right| \geqslant 2 e+2$, the n_{e}^{i} must be defined at stage t, and will never be undefined at a later stage, so $\lim _{u} d\left(n_{e}^{i}, u\right)=i$. Thus R_{e} is satisfied.

3. COH DoEs not imply DNR

In this section we show that COH does not imply DNR over RCA_{0}. We first recall a connection between diagonally noncomputable functions and special Π_{1}^{0} classes.

Definition 3.1. For $n \geqslant 1$ and $A \in 2^{\omega}$, a Π_{n}^{0} subclass of 2^{ω} is A-special if it has no A-computable members. A class is special if it is \emptyset-special.

Theorem 3.2 (Jockusch and Soare [7, Corollary 1.3]). If A computes an element of a special Π_{2}^{0} class, then A computes an element of a special Π_{1}^{0} class.

Corollary 3.3. Any diagonally noncomputable function computes an element of a special Π_{1}^{0} class.
Proof. Consider the special Π_{2}^{0} class

$$
\begin{aligned}
\{A \mid \forall x, t \exists y \exists s>t[\langle x, y\rangle \in A & \left.\wedge \neg\left(\Phi_{x, s}(x) \downarrow=y\right)\right] \wedge \\
& \forall x, a, b[(\langle x, a\rangle \in A \wedge\langle x, b\rangle \in A) \rightarrow a=b]\}
\end{aligned}
$$

It is easy to check that any diagonally noncomputable function computes an element of this class. The corollary now follows from Theorem 3.2.

We now consider the relationship between cohesiveness and special Π_{1}^{0} classes.

Lemma 3.4 (Cholak, Jockusch and Slaman [2, Lemma 9.16]). Let $A \in 2^{\omega}$, let P be an A-special Π_{1}^{0} class, and let $R_{0}, R_{1}, \ldots \leqslant_{T} A$. Then there is an \vec{R}-cohesive set G that does not compute any element of P.

This lemma is proved using Mathias forcing with A-computable conditions. We will use two results about Mathias forcing, but since we will not work with this notion directly, we refer to [2, Section 9], [1, Section 6], and [4, Section 2] for the relevant definitions. Analyzing the proof of Lemma 3.4, we immediately obtain the following result.

Corollary 3.5 (to the proof of Lemma 3.4). There is an $m \in \omega$ such that if G is m-A-generic for Mathias forcing with A-computable conditions, then G is cohesive with respect to any collection of sets $\vec{R} \leqslant_{T} A$.

It is clear that Lemma 3.4 generalizes to deal with all Π_{1}^{0} classes at once; this is proved directly in [1, Lemma 6.3].
Lemma 3.6 (Binns, Kjos-Hanssen, Lerman, and Solomon [1, Lemma 6.3]). Let P be a Π_{1}^{0} class and let A be a set. Let G be $3-A$-generic for Mathias forcing with A-computable conditions. If P is A-special, then P is $(G \oplus A)$ special.

We are now ready to establish the result in the section heading.
Theorem 3.7. There is an ω-model of $R C A_{0}+C O H$ that is not a model of DNR.

Proof. Let $m \geqslant 3$ be as in Corollary 3.5. Let $A_{0}=\emptyset$, and inductively let A_{n+1} be $A_{n} \oplus G_{n}$, where G_{n} is m - A_{n}-generic for Mathias forcing with A_{n} computable conditions. Let \mathcal{I} be the Turing ideal generated by $\left\{A_{n} \mid n \in \omega\right\}$.

Let \mathcal{M} be the ω-model determined by \mathcal{I}. If $\vec{R} \in \mathcal{I}$ is a collection of sets then $\vec{R} \leqslant{ }_{\mathrm{T}} A_{n}$ for some n. By Corollary $3.5, G_{n}$ is \vec{R}-cohesive. Since $G_{n} \in \mathcal{I}$, it follows that \mathcal{M} is a model of COH .

On the other hand, if B computes a diagonally noncomputable function, then by Corollary 3.3 , there is a special Π_{1}^{0} class P such that B computes an element of P. In other words, P is not B-special. However, if $B \in \mathcal{I}$ then $B \leqslant_{\mathrm{T}} A_{n}$ for some n. By Lemma 3.6 and induction, P is A_{n}-special, and hence P is B-special. So if B computes a diagonally noncomputable function, then $B \notin \mathcal{I}$. Thus \mathcal{M} is not a model of DNR.

So DNR separates SRT_{2}^{2} from COH . That is, SRT_{2}^{2} implies DNR, whereas COH does not.

4. Degrees of homogeneous sets for stable colorings

In this section we give our negative answer to Mileti's question mentioned in the introduction. We will need two auxiliary results. One is an extension of the low basis theorem noted by Linda Lawton (unpublished).

Theorem 4.1 (Lawton). Let T be an infinite, computable, computably bounded tree, and let $C_{0}, C_{1}, \ldots>_{T} 0$ be uniformly Δ_{2}^{0}. Then T has an infinite low path P such that $\forall i\left(C_{i} \star_{T} P\right)$, and an index of such a P can be 0^{\prime}-computed from an index of T.
This theorem is proved by forcing with Π_{1}^{0} classes, and lowness is achieved just as in the usual proof of the low basis theorem. Steps are interspersed to guarantee cone avoidance, which is possible by the following lemma.

Lemma 4.2. Let C be a noncomputable set and let Q be a nonempty computably bounded Π_{1}^{0} class. Let Φ be a Turing reduction. Then Q has a nonempty Π_{1}^{0} subclass R such that $\Phi^{f} \neq C$ for all $f \in R$. Furthermore, there is a fixed procedure that computes an index of R from indices of Q and Φ and an oracle for $C \oplus 0^{\prime}$.

Proof. Let U be a computable tree with $Q=[U]$. For each n, let U_{n} be the set of strings σ in U such that $\Phi^{\sigma}(n)$ is either undefined or has a value other than $C(n)$. (Here we use the convention that computations with string oracles σ run for at most $|\sigma|$ steps.) Then U_{n} is a computable tree, and an index of it can be computed from a C-oracle. Note that U_{n} is infinite for some n, since otherwise C is computable. Furthermore, $\left\{n \mid U_{n}\right.$ is infinite $\} \leqslant_{\mathrm{T}}$ $C \oplus 0^{\prime}$, since C can compute an index of U_{n} as a computable tree, and then 0^{\prime} can determine whether U_{n} is infinite by asking whether it contains a string of every length. Let $R=\left[U_{n}\right]$ for the least n with U_{n} infinite.

Below, we will use the following relativized form of Theorem 4.1, which can be proved in the same way: Let L be a low set. Let T be an infinite, L-computable, L-computably bounded tree, and let $C_{0}, C_{1}, \ldots \not \star_{\mathrm{T}} L$ be uniformly Δ_{2}^{0}. Then T has an infinite low path P such that $\forall i\left(C_{i} \not \chi_{\mathrm{T}} P\right)$, and an index of such a P can be 0^{\prime}-computed from indices of L and T.

The other result we will use below is that if $C_{0}, C_{1}, \ldots>_{\mathrm{T}} 0$ are uniformly Δ_{2}^{0} and the complement \bar{A} of the Δ_{2}^{0} set A has no infinite Δ_{2}^{0} subset Y such that $\forall i\left(C_{i} \not{ }_{\mathrm{T}} Y\right)$, then A cannot be too sparse.

Definition 4.3. An infinite set Z is hyperimmune if for every computable increasing function f, there is an n such that the interval $[f(n), f(n+1))$ contains no element of Z.

If Z is not hyperimmune, then a computable f such that $[f(n), f(n+$ 1)) $\cap Z \neq \emptyset$ is said to witness the non-hyperimmunity of Z.

Proposition 4.4. Let A be Δ_{2}^{0}. Let C_{0}, C_{1}, \ldots be uniformly Δ_{2}^{0} and let L be an infinite Δ_{2}^{0} set such that $C_{i}{ }_{T} L$ for all i. If $A \cap L$ is L-hyperimmune, then there is an infinite Δ_{2}^{0} set $Y \subseteq \bar{A}$ such that $\forall i\left(C_{i} \star_{T} Y\right)$.

Proof. We build Y by finite extensions; that is, we define $\gamma_{0} \prec \gamma_{1} \prec \cdots$ and let $Y=\bigcup_{i} \gamma_{i}$.

For a string σ and a set X, we write $\sigma \sqsubset X$ to mean that $\{n<|\sigma| \mid$ $\sigma(n)=1\} \subseteq X$.

Begin with γ_{0} defined as the empty sequence. At stage $s=\langle e, i\rangle$, given the finite binary sequence $\gamma_{s} \sqsubset \bar{A} \cap L$, we 0^{\prime}-computably search for either
(1) an m and extensions $\gamma_{s} \sigma_{0}$ and $\gamma_{s} \sigma_{1}$ such that $\Phi_{e}^{\gamma_{s} \sigma_{0}}(m) \downarrow \neq \Phi_{e}^{\gamma_{s} \sigma_{1}}(m) \downarrow$ and $\gamma_{s} \sigma_{k} \sqsubset \bar{A} \cap L$ for $k=0,1$; or
(2) an m such that for all extensions $\gamma_{s} 0^{m} \sigma \sqsubset L$, either $\Phi_{e}^{\gamma_{s} 0^{m} \sigma}(m) \uparrow$ or $\Phi_{e}^{\gamma_{s} 0^{m} \sigma}(m) \downarrow \neq C_{i}(m)$.
We claim one of these must be found. Suppose not. Then for every m we can find an extension $\gamma_{s} 0^{m} \sigma_{0} \sqsubset L$ such that $\Phi_{e}^{\gamma_{s} 0^{m} \sigma_{0}}(m) \downarrow=C_{i}(m)$. Since $C_{i} \nless \mathrm{~T} L$, there must be infinitely many m for which there is also an extension $\gamma_{s} 0^{m} \sigma_{1} \sqsubset L$ such that $\Phi_{e}^{\gamma_{s} 0^{m} \sigma_{1}}(m) \downarrow \neq C_{i}(m)$. So we can L computably enumerate an infinite set M such that for each $m \in M$, there are $\gamma_{s} 0^{m} \sigma_{k} \sqsubset L$ for $k=0,1$ such that $\Phi_{e}^{\gamma_{s} 0^{m} \sigma_{0}}(m) \downarrow \neq \Phi_{e}^{\gamma_{s} 0^{m} \sigma_{1}}(m) \downarrow$. Let $m \in M$. Since we are assuming that case 1 above does not hold, there must be a k such that $\gamma_{s} 0^{m} \sigma_{k} \not \subset \bar{A} \cap L$. So letting l_{m} be the maximum of $\left|\gamma_{s} 0^{m} \sigma_{k}\right|$ for $k=0,1$, we are guaranteed the existence of an element of $A \cap L$ in the interval $\left[m, l_{m}\right)$. Now we can find $m_{0}, m_{1}, \ldots \in M$ such that $m_{j+1}>l_{m_{j}}$, and define $f(j)=m_{j}$. Then f is a witness to the non- L-hyperimmunity of $A \cap L$, contrary to hypothesis.

So one of the two cases above must eventually hold. If case 1 holds, let k be such that $\Phi_{e}^{\gamma_{s} \sigma_{k}}(m) \neq C_{i}(m)$ and define $\gamma_{s}^{\prime}=\gamma_{s} \sigma_{k}$. If case 2 holds, define $\gamma_{s}^{\prime}=\gamma_{s} 0^{m}$. In either case, let $\gamma_{s+1} \sqsubset \bar{A} \cap L$ be an extension of γ_{s}^{\prime} such that $\gamma_{s+1}(j)=1$ for some $j>\left|\gamma_{s}\right|$. Such a string must exist since $\gamma_{s}^{\prime} \sqsubset \bar{A} \cap L$ and $\bar{A} \cap L$ is infinite (as otherwise $A \cap L$ would be cofinite within L, and hence not L-hyperimmune). This definition ensures that $\Phi_{e}^{Y} \neq C_{i}$.

We are now ready to prove the main result of this section.
Theorem 4.5. Let A be Δ_{2}^{0} and let $C_{0}, C_{1}, \ldots>_{T} 0$ be uniformly Δ_{2}^{0}. Then either A or \bar{A} has an infinite Δ_{2}^{0} subset X such that $C_{i} \star_{T} X$ for all i.

Proof. Assume that \bar{A} has no infinite Δ_{2}^{0} subset Y such that $C_{i} \not_{\mathrm{T}} Y$ for all i. We use Proposition 4.4 to build an infinite Δ_{2}^{0} set X such that $C_{i} \not{ }_{\mathrm{T}} X$ for
all i, via a 0^{\prime}-computable construction satisfying the following requirements:

$$
R_{e, i}: \Phi_{e}^{X} \text { total } \Rightarrow \exists n\left(\Phi_{e}^{X}(n) \neq C_{i}(n)\right) .
$$

We first discuss how to satisfy the single requirement $R_{0,0}$. By Proposition 4.4 (with $L=\omega$), A is not hyperimmune. Suppose we have a computable function f witnessing the non-hyperimmunity of A. Let the computable, computably bounded tree \widehat{T} consist of the nodes $\left(m_{0}, \ldots, m_{k-1}\right)$ with $f(j) \leqslant$ $m_{j}<f(j+1)$ for all $j<k$. Such a node represents a guess that $m_{j} \in A$ for each $j<k$. Note that the choice of f ensures that \widehat{T} has at least one path along which all such guesses are correct.

Now prune \widehat{T} as follows. For each node $\sigma=\left(m_{0}, \ldots, m_{k-1}\right)$, if there are nonempty $F_{0}, F_{1} \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{0}^{F_{0}}(n) \downarrow \neq \Phi_{0}^{F_{1}}(n) \downarrow$ with uses bounded by the largest element of $F_{0} \cup F_{1}$, then prune \widehat{T} to ensure that σ is not extendible to an infinite path. Note that we can do this pruning in such a way as to end up with a computable tree T.

Now 0^{\prime} can determine whether T is finite. If so, then we can find a leaf σ of T such that $\operatorname{rng}(\sigma) \subset A$. There are nonempty $F_{0}, F_{1} \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{0}^{F_{0}}(n) \downarrow \neq \Phi_{0}^{F_{1}}(n) \downarrow$ with uses bounded by the largest element z of $F_{0} \cup F_{1}$, so if we let k be such that $\Phi_{0}^{F_{k}}(n) \neq C_{0}(n)$ and define X so that $X \upharpoonright z+1=F_{k} \upharpoonright z+1$, then we ensure that $\Phi_{0}^{X}(n) \neq C_{0}(n)$.

On the other hand, if T is infinite then by Theorem 4.1, 0^{\prime} can find a low path P of T such that $C_{i} \not_{\mathrm{T}} P$ for all i. There must be an n such that either $\Phi_{0}^{Y}(n) \uparrow$ for every $Y \subseteq \operatorname{rng}(P)$ or there is a $Y \subseteq \operatorname{rng}(P)$ such that $\Phi_{0}^{Y}(n) \downarrow \neq C_{0}(n)$, since otherwise we could P-compute $C_{0}(n)$ for each n by searching for a finite $F \subset \operatorname{rng}(P)$ such that $\Phi_{0}^{F}(n) \downarrow$. But by the construction of T, this means that there is an n such that for every infinite $Y \subseteq \operatorname{rng}(P)$, either $\Phi_{0}^{Y}(n) \uparrow$ or $\Phi_{0}^{Y}(n) \downarrow \neq C_{0}(n)$. So if we now promise to make $X \subseteq \operatorname{rng}(P)$, we ensure that $\Phi_{0}^{X} \neq C_{0}$. Notice that we can make such a promise because $C_{i} \not_{\mathrm{T}} P$ for all i, and hence $C_{i} \not_{\mathrm{T}} \mathrm{rng}(P)$ for all i (since P is an increasing sequence), which implies that $A \cap \operatorname{rng}(P)$ is infinite.

Let us now consider how to satisfy another requirement, say $R_{0,1}$. The action taken to satisfy $R_{0,0}$ results in either a finite initial segment of X being determined, or a promise being made to keep X within a given infinite low set that does not compute any of the C_{i}. We can handle both cases at once by assuming that we have a number r_{1} and an infinite low set L_{1} containing the finite set F_{1} of numbers less than r_{1} currently in X, such that $C_{i} \not{ }_{\mathrm{T}} L_{1}$ for all i. We want $X \upharpoonright r_{1}=F_{1}$ and $X \subseteq L_{1}$.

Suppose that we have an L_{1}-computable function g witnessing the non-L_{1}-hyperimmunity of $A \cap L_{1}$. We can then proceed much as we did for $R_{0,0}$, but taking r_{1} and L_{1} into account, in the following way. We can assume that $g(0) \geqslant r_{1}$. Define \widehat{T} to consist of the nodes $\left(m_{0}, \ldots, m_{k-1}\right)$ with $g(j) \leqslant m_{j}<g(j+1)$ and $m_{j} \in L_{1}$ for all $j<k$. For each node $\sigma=\left(m_{0}, \ldots, m_{k-1}\right)$, if there are nonempty $G_{0}, G_{1} \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{1}^{F_{1} \cup G_{0}}(n) \downarrow \neq \Phi_{1}^{F_{1} \cup G_{1}}(n) \downarrow$ with uses bounded by the largest element of
$G_{0} \cup G_{1}$, then prune \widehat{T} to ensure that σ is not extendible to an infinite path, thus obtaining a new L_{1}-computable tree T.

If T is finite then find a leaf σ of T such that $\operatorname{rng}(\sigma) \subset A \cap L_{1}$. Then there is a nonempty $G \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{1}^{F_{1} \cup G}(n) \downarrow \neq C_{0}(n)$ with use bounded by the largest element z of G, so if we define X such that $X \upharpoonright z+1=\left(F_{1} \cup G\right) \upharpoonright z+1$ then we ensure that $\Phi_{1}^{X}(n) \neq C_{0}(n)$.

If T is infinite then 0^{\prime} can find a low path P of T. If we now promise that all future elements of X will be in $\operatorname{rng}(P)$, we ensure that $\Phi_{1}^{X} \neq C_{0}$ as before. Notice that we can make such a promise because $\operatorname{rng}(P) \subseteq L_{1}$ and, as before, $A \cap \operatorname{rng}(P)$ is infinite.

Thus we can satisfy $R_{0,1}$, and the action we take results in a number r_{2} and an infinite low set L_{2} that does not compute any of the C_{i} (and contains the finite set F_{2} of numbers less than r_{2} currently in X) such that we want $X \upharpoonright r_{2}=F_{2}$ and $X \subseteq L_{2}$. In other words, we are in the same situation we were in after satisfying $R_{0,0}$, and we could now proceed to satisfy another requirement as we did $R_{0,1}$.

However, there is a crucial problem with proceeding in this way for all the $R_{e, i}$ at once, which is that we know no 0^{\prime}-computable way to determine the witnesses to non-hyperimmunity required by the construction. The best we can do is guess at them. That is, we have a $0^{\prime \prime}$-partial computable function w such that if l is a lowness index for an infinite set L (that is, $\Phi_{l}^{0^{\prime}}=L^{\prime}$) then $\Phi_{w(l)}^{L}$ witnesses the non- L-hyperimmunity of $A \cap L$.

We are now ready to describe our construction. We give our requirements a priority ordering by saying that $R_{e, i}$ is stronger than $R_{e^{\prime}, i^{\prime}}$ if $\langle e, i\rangle<\left\langle e^{\prime}, i^{\prime}\right\rangle$. All numbers added to X at a stage s of our construction will be greater than s, thus ensuring that $X \leqslant_{\mathrm{T}} \emptyset^{\prime}$. Let X_{s} be the set of numbers added to X by the beginning of stage s.

Throughout the construction, we run a 0^{\prime}-approximation to w. Associated with each $R_{e, i}$ are a number $r_{\langle e, i\rangle}$ and a low set $L_{\langle e, i\rangle}$ with lowness index $l_{\langle e, i\rangle}$ (all of which might change during the construction). If the approximation to $w\left(l_{\langle e, i\rangle}\right)$ changes, then for all $\left\langle e^{\prime}, i^{\prime}\right\rangle \geqslant\langle e, i\rangle$ the strategy for $R_{e^{\prime}, i^{\prime}}$ is immediately canceled, $R_{e^{\prime}, i^{\prime}}$ is declared to be unsatisfied, and $r_{\left\langle e^{\prime}, i^{\prime}\right\rangle}, L_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$, and $l_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$ are reset to the current values of $r_{\langle e, i\rangle}, L_{\langle e, i\rangle}$, and $l_{\langle e, i\rangle}$, respectively. It is important to note that the approximation to w continues to run during the action of a strategy at a fixed stage. That is, we may find a change in the approximation to some $w\left(l_{\langle e, i\rangle}\right)$ with $\langle e, i\rangle \leqslant\left\langle e^{\prime}, i^{\prime}\right\rangle$ in the middle of a stage s at which we are trying to satisfy $R_{e^{\prime}, i^{\prime}}$. If this happens then we immediately end the stage and cancel strategies as described above.

Initially, all requirements are unsatisfied. At the beginning of stage 0 , for every e, i, let $r_{\langle e, i\rangle}=0$ and $L_{\langle e, i\rangle}=\omega$, and let $l_{\langle e, i\rangle}$ be a fixed lowness index for ω.

At stage s, let $R_{e, i}$ be the strongest unsatisfied requirement and proceed as follows.

We have a number $r_{\langle e, i\rangle}$ and a low set $L_{\langle e, i\rangle}$ with lowness index $l_{\langle e, i\rangle}$, such that $L_{\langle e, i\rangle}$ contains $X_{s} \upharpoonright r_{\langle e, i\rangle}$, and $C_{j} \not{ }_{\mathrm{T}} L_{\langle e, i\rangle}$ for all j. As before, we want to ensure that $X \upharpoonright r_{\langle e, i\rangle}=X_{s} \upharpoonright r_{\langle e, i\rangle}$ and $X \subseteq L_{\langle e, i\rangle}$. Let v be the current approximation to $w\left(l_{i}\right)$ and let $g=\Phi_{v}^{L_{\langle e, i\rangle}}$. By shifting the values of g if necessary, we can assume that $g(0) \geqslant \max \left(r_{\langle e, i\rangle}, s\right)$. Define \widehat{T} to consist of the nodes (m_{0}, \ldots, m_{k-1}) with $g(j) \leqslant m_{j}<g(j+1)$ and $m_{j} \in L_{\langle e, i\rangle}$ for all $j<k$. Note that g may not be total, in which case \widehat{T} is finite.

For each node $\sigma=\left(m_{0}, \ldots, m_{k-1}\right)$, if there are nonempty $G_{0}, G_{1} \subseteq \sigma$ and an n such that $\Phi_{e}^{X \backslash r_{i} \cup G_{0}}(n) \downarrow \neq \Phi_{e}^{X \mid r_{i} \cup G_{1}}(n) \downarrow$ with uses bounded by the largest element of $G_{0} \cup G_{1}$, then prune \widehat{T} to ensure that σ is not extendible to an infinite path, thus obtaining a new $L_{\langle e, i\rangle}$-computable tree T.

We want to 0^{\prime}-effectively determine whether T is finite. More precisely, the question we ask 0^{\prime} is whether the pruning process described above ever results in all the nodes at some level of \widehat{T} becoming non-extendible. A positive answer means T is finite. If g is total then a negative answer means T is infinite. However, if g is not total, so that \widehat{T} is finite, we may still get a negative answer, because the pruning process may get stuck waiting forever for a level of \widehat{T} to become defined.

If the answer to our question is positive, then look for a leaf σ of T such that $\operatorname{rng}(\sigma) \subset A \cap L_{\langle e, i\rangle}$. If no such leaf exists, then either $L_{\langle e, i\rangle}$ is finite or $v \neq w\left(l_{\langle e, i\rangle}\right)$, so end the stage and cancel the strategies for $R_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$ with $\left\langle e^{\prime}, i^{\prime}\right\rangle \geqslant\langle e, i\rangle$ as described above. (That is, declare $R_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$ to be unsatisfied, and reset $r_{\left\langle e^{\prime}, i^{\prime}\right\rangle}, L_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$, and $l_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$ to the current values of $r_{\langle e, i\rangle}, L_{\langle e, i\rangle}$, and $l_{\langle e, i\rangle}$, respectively.) Otherwise, there are a nonempty $G \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{e}^{X \mid r_{i} \cup G}(n) \downarrow \neq C_{i}(n)$ with use bounded by the largest element of G. Let $r_{\langle e, i\rangle+1}$ be the largest element of G, let $L_{\langle e, i\rangle+1}=L_{\langle e, i\rangle}$, and let $l_{\langle e, i\rangle+1}=l_{\langle e, i\rangle}$. Put every element of G into X.

If the answer to our question is negative, then use the relativized form of Theorem 4.1 to 0^{\prime}-effectively obtain a low path P of T such that $C_{j} \nless \mathrm{~T} P$ for all j, and a lowness index $l_{\langle e, i\rangle+1}$ for $L_{\langle e, i\rangle+1}=X \upharpoonright r_{i} \cup \operatorname{rng}(P)$. If g is not total, then the construction in the proof of Theorem 4.1 will still produce such an $L_{\langle e, i\rangle+1}$ and $l_{\langle e, i\rangle+1}$, but $L_{\langle e, i\rangle+1}$ may be finite. (Which will of course be a problem for weaker priority requirements, but in this case the strategy for $R_{e, i}$ will eventually be canceled, and hence $L_{\langle e, i\rangle+1}$ will eventually be redefined.) Let $r_{\langle e, i\rangle+1}=r_{\langle e, i\rangle}$. Search for an element of $A \cap L_{\langle e, i\rangle+1}$ greater than $\max \left\{r_{\left\langle e^{\prime}, i^{\prime}\right\rangle} \mid\left\langle e^{\prime}, i^{\prime}\right\rangle \leqslant\langle e, i\rangle\right\}$ not already in X and put this number into X. If $L_{\langle e, i\rangle+1}$ is infinite, such a number must be found. Otherwise, such a number may not exist, but this situation can only happen if the approximation to $w\left(l_{\left\langle e^{\prime}, i^{\prime}\right\rangle}\right)$ at the beginning of stage s is incorrect for some $\left\langle e^{\prime}, i^{\prime}\right\rangle \leqslant\langle e, i\rangle$, in which case the strategy for $R_{e, i}$ will be canceled, and the stage ended as described above.

In either case, if the action of the strategy for $R_{e, i}$ has not been canceled, then declare $R_{e, i}$ to be satisfied, and for $\left\langle e^{\prime}, i^{\prime}\right\rangle>\langle e, i\rangle$, declare $R_{e^{\prime}, i^{\prime}}$ to be
unsatisfied, let $r_{\left\langle e^{\prime}, i^{\prime}\right\rangle+1}=r_{\langle e, i\rangle+1}$, let $L_{\left\langle e^{\prime}, i^{\prime}\right\rangle+1}=L_{\langle e, i\rangle+1}$, and let $l_{\left\langle e^{\prime}, i^{\prime}\right\rangle+1}=$ $l_{\langle e, i\rangle+1}$.

This completes the construction. Since every element entering X at stage s is in A and is greater than s, we have that X is a Δ_{2}^{0} subset of A. Furthermore, at each stage a number is added to X unless the strategy acting at that stage is canceled, so once we show that every requirement is eventually permanently satisfied, we will have shown that X is infinite.

Assume by induction that for all $\left\langle e^{\prime}, i^{\prime}\right\rangle<\langle e, i\rangle$, the requirement $R_{e^{\prime}, i^{\prime}}$ is eventually permanently satisfied, and that $r_{\langle e, i\rangle}, L_{\langle e, i\rangle}$, and $l_{\langle e, i\rangle}$ eventually reach a final value, for which $L_{\langle e, i\rangle}$ is infinite. Let s be the least stage by which this situation obtains and the approximation to $w\left(l_{\langle e, i\rangle}\right)$ has settled to a final value v. Note that at stage $s-1$, either the strategy for some $R_{\left\langle e^{\prime}, i^{\prime}\right\rangle}$ with $\left\langle e^{\prime}, i^{\prime}\right\rangle<\langle e, i\rangle$ acted, or the approximation to $w\left(l_{\langle e, i\rangle}\right)$ changed, so at the beginning of stage s, it must be the case that $R_{e, i}$ is the strongest unsatisfied requirement. Thus at that stage the strategy for $R_{e, i}$ acts, and the function $g=\Phi_{v}^{L_{\langle e, i\rangle}}$ it works with at that stage is in fact a witness to the non- $L_{\langle e, i\rangle}$-hyperimmunity of $A \cap L_{\langle e, i\rangle}$. Thus $R_{e, i}$ will become satisfied at the end of the stage, and $r_{\langle e, i\rangle+1}, L_{\langle e, i\rangle+1}$, and $l_{\langle e, i\rangle+1}$ will not be redefined after the end of the stage.

If the tree T built at stage s is finite, then a leaf σ of T is found such that $\operatorname{rng}(\sigma) \subset A \cap L_{\langle e, i\rangle}$, and there are a nonempty $G \subseteq \operatorname{rng}(\sigma)$ and an n such that $\Phi_{e}^{X \upharpoonright r_{\langle e, i\rangle} \cup G}(n) \downarrow \neq C_{i}(n)$ with use bounded by the largest element $r_{\langle e, i\rangle+1}$ of G. Since $r_{\langle e, i\rangle+1}$ is never again redefined, $\Phi_{e}^{X}(n) \neq C_{i}(n)$, and thus the requirement $R_{e, i}$ is satisfied. Furthermore, $L_{\langle e, i\rangle+1}$ is defined to be $L_{\langle e, i\rangle}$ at this stage, and hence is infinite.

If T is infinite, then $L_{\langle e, i\rangle+1}$ is defined to contain the range of a path of T, and hence is infinite. Furthermore, $L_{\langle e, i\rangle+1}$ is never redefined, and by the way X is defined, $X \subseteq A \cap L_{\langle e, i\rangle+1}$. There must be an n such that either $\Phi_{e}^{Y}(n) \uparrow$ for every $Y \subseteq L_{\langle e, i\rangle+1}$ or there is a $Y \subseteq L_{\langle e, i\rangle+1}$ such that $\Phi_{0}^{Y}(n) \downarrow \neq C_{i}(n)$, since otherwise we could $L_{\langle e, i\rangle+1}$-compute $C_{i}(n)$ for each n by searching for a finite $F \subset L_{\langle e, i\rangle+1}$ such that $\Phi_{e}^{F}(n) \downarrow$. But by the definition of T, this means that there is an n such that for every infinite $Y \subseteq L_{\langle e, i\rangle+1}$, either $\Phi_{e}^{Y}(n) \uparrow$ or $\Phi_{e}^{Y}(n) \downarrow \neq C_{i}(n)$. So since $X \subseteq L_{\langle e, i\rangle+1}$, we have $\Phi_{e}^{X} \neq C_{i}$, and hence the requirement $R_{e, i}$ is satisfied.

Theorem 4.5 gives the negative answer to Mileti's question mentioned above.

Corollary 4.6 (Hirschfeldt). Every Δ_{2}^{0} set has an incomplete infinite Δ_{2}^{0} subset of either it or its complement. In other words, every computable stable 2 -coloring of $[\mathbb{N}]^{2}$ has an incomplete Δ_{2}^{0} infinite homogeneous set.

We can improve on this result by using the following unpublished result due to Jockusch.

Proposition 4.7 (Jockusch). Let Z be hyperimmune. Then there is a 1generic $G \leqslant_{T} Z \oplus 0^{\prime}$ such that $Z \subseteq G$.

Proof. We build G by finite extensions; that is, we define $\gamma_{0} \prec \gamma_{1} \prec \cdots$ and let $G=\bigcup_{i} \gamma_{i}$. Let S_{0}, S_{1}, \ldots be an effective listing of all c.e. sets of finite binary sequences.

Begin with γ_{0} defined as the empty sequence. At stage i, given the finite binary sequence γ_{i}, search for an extension $\alpha \in S_{i}$ of $\gamma_{i} 1^{f(n)}$. If one is found then let $f(n+1)=|\alpha|$.

If f is total then, since Z is hyperimmune, there is an n such that the interval $\left[\left|\gamma_{i}\right|+f(n),\left|\gamma_{i}\right|+f(n+1)\right)$ contains no element of Z. So $Z \oplus 0^{\prime}$ computably search for either such an interval or for an n such that $f(n+1)$ is undefined. In the first case, let α be as above and let $\gamma_{i+1}=\alpha$. In the second case, let $\gamma_{i+1}=\gamma_{i} 1^{f(n)}$.

It is now easy to check by induction that $Z \subseteq G$ and that G meets or avoids each S_{i}.

Corollary 4.8. Let $X \subset Y$ be such that X is Y-hyperimmune. Then there are $G, H \leqslant_{T} X \oplus Y^{\prime}$ such that
(1) $H \leqslant{ }_{T} G \oplus Y$,
(2) G is 1-generic relative to Y,
(3) $X \subseteq H \subset Y$, and
(4) $Y \backslash H$ is infinite.

Proof. Let $h(0)<h(1)<\cdots$ be the elements of Y, and let $Z=h^{-1}(X)$. By Proposition 4.7 relativized to Y, there is a $G \leqslant_{\mathrm{T}} Z \oplus Y^{\prime}$ such that G is 1-generic relative to Y and $Z \subseteq G$. Let $H=h(G)$. Since $h \leqslant_{\mathrm{T}} Y$ and h is increasing, we have $H \leqslant_{\mathrm{T}} G \oplus Y$, and $X \subseteq H \subset Y$ by the definition of h. Finally, $Y \backslash H=h(\bar{G})$, and hence is infinite.
Corollary 4.9. Let A be a Δ_{2}^{0} set such that \bar{A} has no infinite low subset, and let L be low. Then $A \cap L$ is not L-hyperimmune.

Proof. Suppose that $A \cap L$ is L-hyperimmune. We can apply Corollary 4.8 to $X=A \cap L$ and $Y=L$ to obtain G and H as above. Since $A \cap L$ and L^{\prime} are both Δ_{2}^{0}, so is G. Since G is also 1-generic relative to L, and L is low, $G \oplus L$ is low. But $H \oplus L \leqslant_{\mathrm{T}} G \oplus L$, and hence $H \oplus L$ is low. Thus $L \backslash H$ is an infinite low subset of \bar{A}, which is a contradiction.

Corollary 4.10 (Hirschfeldt). Let A be a Δ_{2}^{0} set such that \bar{A} has no infinite low subset. Then A has an incomplete infinite Δ_{2}^{0} subset.

Proof Sketch. The proof is similar to that of Theorem 4.5. Instead of working with the given sets C_{i}, we build a Δ_{2}^{0} set C while satisfying the requirements

$$
R_{e}: \Phi_{e}^{X} \text { total } \Rightarrow \exists n\left(\Phi_{e}^{X}(n) \neq C(n)\right)
$$

At stage s, we work with the least unsatisfied requirement R_{i}. We have a number r_{i} and a low set L_{i} with lowness index l_{i}, such that L_{i} contains
$X_{s} \upharpoonright r_{i}$. We define \widehat{T} as before. For each node $\sigma=\left(m_{0}, \ldots, m_{k-1}\right)$, if there is a nonempty $G \subseteq \sigma$ such that $\Phi_{e}^{X \mid r_{i} \cup G}(s) \downarrow$ with use bounded by the largest element of G, then we prune \widehat{T} to ensure that σ is not extendible to an infinite path, thus obtaining a new L_{i}-computable tree T.

If T is finite, then we look for a leaf σ of T and a G as above, let r_{i+1} be the largest element of G, define $C(s) \neq \Phi_{i}^{X \mid r_{i} \cup G}(s)$, let $L_{i+1}=L_{i}$, let $l_{i+1}=l_{i}$, and put every element of G into X.

If T is infinite, we 0^{\prime}-effectively obtain a low path P of T and a lowness index l_{i+1} for $L_{i+1}=X \upharpoonright r_{i} \cup \operatorname{rng}(P)$. We then let $r_{i+1}=r_{i}$ and $C(s)=0$, search for an element of $A \cap L_{i+1}$ greater than $\max \left\{r_{j} \mid j \leqslant i\right\}$ not already in X, and put this number into X.

The further details of the construction are as before, and the verification that it succeeds in satisfying all the requirements is similar.

References

[1] S. Binns, B. Kjos-Hanssen, M. Lerman and D. R. Solomon, On a conjecture of Dobrinen and Simpson concerning almost everywhere domination, J. Symbolic Logic, to appear.
[2] P. A. Cholak, C. G. Jockusch, Jr., and T. A. Slaman, On the strength of Ramsey's theorem for pairs, J. Symbolic Logic 66 (2001), 1-55.
[3] R. Downey, D. R. Hirschfeldt, S. Lempp, and R. Solomon, A Δ_{2}^{0} set with no infinite low subset in either it or its complement, J. Symbolic Logic 66 (2001), 1371-1381.
[4] D. R. Hirschfeldt and R. A. Shore, Combinatorial principles weaker than Ramsey's Theorem for Pairs, to appear.
[5] C. G. Jockusch, Jr., Ramsey's theorem and recursion theory, J. Symbolic Logic 37 (1972), 268-280.
[6] C. G. Jockusch, Jr., M. Lerman, R. I. Soare, and R. M. Solovay, Recursively enumerable sets modulo iterated jumps and extensions of Arslanov's completeness criterion, J. Symbolic Logic 54 (1989), 1288-1323.
[7] C. G. Jockusch, Jr. and R. I. Soare, Degrees of members of Π_{1}^{0} classes, Pacific J. Math. 40 (1972), 605-616.
[8] C. G. Jockusch, Jr. and F. Stephan, A cohesive set which is not high, Math. Log. Quart. 39 (1993) 515-530.
[9] J. R. Mileti, Partition Theorems and Computability Theory, PhD Dissertation, University of Illinois, 2004.
[10] J. R. Mileti, Partition theorems and computability theory, Bull. Symbolic Logic 11 (2005), 411-427.
[11] D. Seetapun and T. A. Slaman, On the strength of Ramsey's Theorem, Notre Dame J. Formal Logic 36 (1995), 570-582.
[12] S. G. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, Berlin, 1999.

Department of Mathematics, The University of Chicago, Chicago, IL 606371514, USA

E-mail address: drh@math.uchicago.edu
Department of Mathematics, 1409 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL 61801-2975, USA

E-mail address: jockusch@math.uiuc.edu
Department of Mathematics, University of Connecticut, Storrs, CT 062693009, USA

E-mail address: bjorn@math.uconn.edu
Department of Mathematics, University of Wisconsin, Madison, Wi 537061388, USA

E-mail address: lempp@math.wisc.edu
Department of Mathematics, The University of California, Berkeley, CA 94720-3840, USA

E-mail address: slaman@math.berkeley.edu

[^0]: All of the authors thank the Institute for Mathematical Sciences of the National University of Singapore for its generous support during the period July 18 - August 15, 2005, when part of this research was carried out. The first author was partially supported by NSF grants DMS-0200465 and DMS-0500590. The second author was supported by NSFC Grand International Joint Project 'New Directions in Theory and Applications of Models of Computation', No. 60310213. The fourth author was partially supported by NSF grant DMS-0140120. The fifth author was partially supported by NSF grant DMS-0501167.

