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1. Historical roots

1.1. Von Mises. Around 1930, Kolmogorov and others founded the theory of prob-
ability, basing it on measure theory. Probability theory is concerned with the dis-
tribution of outcomes in sample spaces. It does not seek to give any meaning to the
notion of an individual object, such as a single real number or binary string, being
random, but rather studies the expected values of random variables. How could a
binary string representing a sequence of n coin tosses be random, when all strings
of length n have the same probability of 2−n for a fair coin?

Less well known than the work of Kolmogorov are early attempts to answer this
kind of question by providing notions of randomness for individual objects. The
modern theory of algorithmic randomness realizes this goal. One way to develop
this theory is based on the idea that an object is random if it passes all relevant
“randomness tests”. For example, by the law of large numbers, for a random real X,
we would expect the number of 1’s in the binary expansion of X to have limiting
frequency 1

2 . (That is, writing X(j) for the jth bit of this expansion, we would

expect to have limn→∞
|{j<n:X(j)=1}|

n = 1
2 .) Indeed, we would expect X to be

normal to base 2, meaning that for any binary string σ of length k, the occurrences
of σ in the binary expansion of X should have limiting frequency 2−k. Since base
representation should not affect randomness, we would expect X to be normal in
this sense no matter what base it were written in, so that in base b the limiting
frequency would be b−k for a string σ of length k. Thus X should be what is known
as absolutely normal.

The idea of normality, which goes back to Borel (1909), was extended by von
Mises (1919), who suggested the following definition of randomness for individual
binary sequences.1 A selection function is an increasing function f : N → N.
We think of f(i) as the ith place selected in forming a subsequence of a given
sequence. (For the definition of normality above, where we consider the entire
sequence, f(i) = i.) Von Mises suggested that a sequence a0a1 . . . should be random
if any selected subsequence af(0)af(1) . . . is normal.

There is, of course, an obvious problem with this approach. For any sequence
X with infinitely many 1’s we could let f select the positions where 1’s occur, and
X would fail the test determined by f . However, it does not seem reasonable to
be able to choose the testing places after selecting an X. The question is then:
What kinds of selection functions should be allowed, to capture the intuition that
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we ought not to be able to sample from a random sequence and get the wrong
frequencies? It is reasonable to regard prediction as a computational process, and
hence restrict ourselves to computable selection functions. Indeed, this suggestion
was eventually made by Church (1940), though von Mises’ work predates the defi-
nition of computable function, so he did not have a good way to make his definition
mathematically precise.

As we will see, von Mises’ approach had a more significant flaw, but we can build
on its fundamental idea: Imagine that we are judges deciding whether a sequence
X should count as random. If X passes all tests we can (in principle) devise given
our computational power, then we should regard X as random since, as far as we
are concerned, X has all the expected properties of a random object. We will use
this intuition and the apparatus of computability and complexity theory to describe
notions of algorithmic randomness.

Aside from the intrinsic interest of such an approach, it leads to useful mathe-
matical tools. Many processes in mathematics are computable, and the expected
behavior of such a process should align itself with the behavior obtained by provid-
ing it with an algorithmically random input. Hence, instead of having to analyze
the relevant distribution and its statistics, we can simply argue about the behavior
of the process on a single input. For instance, the expected number of steps of a
sorting algorithm should be the same as that for a single algorithmically random
input. We could also be more fine-grained and seek to understand exactly “how
much” randomness is needed for certain typical behaviors to arise. (See Section 4.)

As we will discuss, algorithmic randomness also goes hand in hand with other
parts of algorithmic information theory, such as Kolmogorov complexity, and has
ties with notions such as Shannon entropy and fractal dimension.

1.2. Some basic computability theory. In the 1930’s, Church, Gödel, Kleene,
Post, and most famously Turing (1937) gave equivalent mathematical definitions
capturing the intuitive notion of a computable function, leading to the Church-
Turing Thesis, which can be taken as asserting that a function (from N to N,
say) is computable if and only if it can be computed by a Turing machine. (This
definition can easily be transferred to other objects of countable mathematics. For
instance, we think of infinite binary sequences as functions N→ {0, 1}, and identify
sets of natural numbers with their characteristic functions.) Nowadays, we can
equivalently regard a function as computable if we can write code to compute
it in any given general-purpose programming language (assuming the language
can address unlimited memory). It has also become clear that algorithms can be
treated as data, and hence that there is a universal Turing machine, i.e., there are
a listing Φ0,Φ1, . . . of all Turing machines and a single algorithm that, on input
〈e, n〉 computes the result Φe(n) of running Φe on input n.2

2The realization that such universal machines are possible helped lead to the development

of modern computers. Previously, machines had been purpose-built for given tasks. In a 1947
lecture on his design for the Automated Computing Engine, Turing said, “The special machine
may be called the universal machine; it works in the following quite simple manner. When we

have decided what machine we wish to imitate we punch a description of it on the tape of the
universal machine . . . The universal machine has only to keep looking at this description in order

to find out what it should do at each stage. Thus the complexity of the machine to be imitated

is concentrated in the tape and does not appear in the universal machine proper in any way. . . .
[D]igital computing machines such as the ACE . . . are in fact practical versions of the universal
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It is important to note that a Turing machine might not halt on a given input, and
hence the functions computed by Turing machines are in general partial. Indeed, as
Turing showed, the halting problem “Does the eth Turing machine halt on input n?”
is algorithmically unsolvable. Church and Turing famously showed that Hilbert’s
Entscheidungsproblem (the decision problem for first-order logic) is unsolvable, in
Turing’s case by showing that the halting problem can be coded into first-order
logic. Many other problems have since been shown to be algorithmically unsolvable
by similar means.

We write Φe(n)↓ to mean that the machine Φe eventually halts on input n.
Then ∅′ = {〈e, n〉 : Φe(n)↓} is a set representing the halting problem. This set is an
example of a noncomputable computably enumerable (c.e.) set, which means that
the set can be listed (not necessarily in numerical order) by some algorithm.

Another important notion is that of Turing reducibility (which we define for
sets of natural numbers but is similarly defined for functions), where A is Turing
reducible to B, written as A 6T B, if there is an algorithm for computing A when
given access to B. That is, the algorithm is allowed access to answers to questions
of the form “Is n in B?” during its execution. This notion can be formalized using
Turing machines with oracle tapes. If A 6T B, then we regard A as no more
complicated than B from a computability-theoretic perspective. We also say that
A is B-computable or computable relative to B. Turing reducibility naturally leads
to an equivalence relation, where A and B are Turing equivalent if A 6T B and
B 6T A. The (Turing) degree of A is its equivalence class under this notion.
(There are several other notions of reducibility and resulting degree structures in
computability theory, but Turing reducibility is the central one.)

In general, the process of allowing access to an oracle in our algorithms is known
as relativization. As in the unrelativized case, we can list the Turing machines
ΦB0 ,Φ

B
1 , . . . with oracle B, and let B′ = {〈e, n〉 : ΦBe (n)↓} be the relativization of

the halting problem to B. This set is called the (Turing) jump of B. The jump
operation taking B to B′ is very important in computability theory, one reason
being that B′ is the most complicated set that is still c.e. relative to B, i.e., B′ is
c.e. relative to B and every set that is c.e. relative to B is B′-computable. There
are several other important classes of sets that can be defined in terms of the jump.
For instance, A is low if A′ 6T ∅′ and high if ∅′′ 6T A

′ (where ∅′′ = (∅′)′). Low sets
are in certain ways “close to computable”, while high ones partake of some of the
power of ∅′ as an oracle. These properties are invariant under Turing equivalence,
and hence are also properties of Turing degrees.

1.3. Martin-Löf randomness. As mentioned above, Church suggested that a
sequence should count as algorithmically random if it is random in the sense of von
Mises with selection functions restricted to the computable ones. However, in 1939,
Ville showed that von Mises’ approach cannot work in its original form, no matter
what countable collection of selection functions we choose. Let X � n denote the
first n bits of the binary sequence X.

Theorem 1.1 (Ville (1939)). For any countable collection of selection functions,
there is a sequence X that passes all von Mises tests associated with these functions,
such that for every n, there are more 0’s than 1’s in X � n.

machine.” From our contemporary point of view, it may be difficult to imagine how novel this
idea was.



4 ROD DOWNEY AND DENIS R. HIRSCHFELDT

Clearly, Ville’s sequence cannot be regarded as random in any reasonable sense.
We could try to repair von Mises’ definition by adding further tests, reflecting

statistical laws beyond the law of large numbers. But which ones? Ville suggested
ones reflecting the law of iterated logarithms, which would take care of his specific
example. But how could we know that further examples along these lines—i.e.,
sequences satisfying both von Mises’ and Ville’s tests, yet failing to have some
other property we expect of random sequences—would not arise?

The situation was finally clarified in the 1960’s by Martin-Löf (1966). In proba-
bility theory, “typicality” is quantified using measure theory, leading to the intuition
that random objects should avoid null sets. Martin-Löf noticed that tests like von
Mises’ and Ville’s can be thought of as effectively null sets. His idea was that,
instead of considering specific tests based on particular statistical laws, we should
consider all possible tests corresponding to some precisely defined notion of effec-
tively null set. The restriction to such a notion gets around the problem that no
sequence can avoid being in every null set.

To give Martin-Löf’s definition, we work for convenience in Cantor space 2ω,
whose elements are infinite binary sequences. (We associate a real number with
its binary expansion, thought of as a sequence, so we will also obtain a definition
of algorithmic randomness for reals. The choice of base is not important. For
example, all of the notions of randomness we consider are enough to ensure absolute
normality.) The basic open sets of Cantor space are the ones of the form [σ] = {X ∈
2ω : X extends σ} for σ ∈ 2<ω, where 2<ω is the set of finite binary strings. The
uniform measure λ on this space is obtained by defining λ([σ]) = 2−|σ|. We say
that a sequence T0, T1, . . . of open sets in 2ω is uniformly c.e. if there is a c.e. set
G ⊆ N× 2<ω such that Tn =

⋃
{[σ] : (n, σ) ∈ G}.

Definition 1.2. A Martin-Löf test is a sequence T0, T1, . . . of uniformly c.e. open
sets such that λ(Tn) 6 2−n. A sequence X passes this test if X /∈

⋂
n Tn. A

sequence is Martin-Löf random (ML-random) if it passes all Martin-Löf tests.

The intersection of a Martin-Löf test is our notion of effectively null set. Since
there are only countably many Martin-Löf tests, and each determines a null set in
the classical sense, the collection of ML-random sequences has measure 1. It can be
shown that Martin-Löf tests include all the ones proposed by von Mises and Ville,
in Church’s computability-theoretic versions. Indeed they include all tests that
are “computably performable”, which avoids the problem of having to adaptively
introduce more tests as more Ville-like sequences are found.

Martin-Löf’s effectivization of measure theory allowed him to consider the laws
a random sequence should obey from an abstract point of view, leading to a math-
ematically robust definition. As Jack Lutz said in a talk at the 7th Conference on
Computability, Complexity, and Randomness (Cambridge, 2012), “Placing com-
putability constraints on a nonconstructive theory like Lebesgue measure seems a
priori to weaken the theory, but it may strengthen the theory for some purposes.
This vision is crucial for present-day investigations of individual random sequences,
dimensions of individual sequences, measure and category in complexity classes,
etc.”

1.4. The three approaches. ML-randomness can be thought of as the statisti-
cian’s approach to defining algorithmic randomness, based on the intuition that
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random sequences should avoid having statistically rare properties. There are two
other major approaches:

• The gambler’s approach: random sequences should be unpredictable.
• The coder’s approach: random sequences should not have regularities that

allow us to compress the information they contain.

The gambler’s approach may be the most immediately intuitive one to the av-
erage person. It was formalized in the computability-theoretic setting by Schnorr
(1971), using the idea that we should not be able to make arbitrarily much money
when betting on the bits of a random sequence. The following notion is a simple
special case of the notion of martingale from probability theory. (See [9, Section
6.3.4] for further discussion of the relationship between these concepts.)

Definition 1.3. A martingale is a function f : 2<ω → R>0 such that

f(σ) =
f(σ0) + f(σ1)

2

for all σ. We say that f succeeds on X if lim supn→∞ f(X � n) =∞.

We think of f as the capital we have when betting on the bits of a binary sequence
according to a particular betting strategy. The displayed equation ensures that the
betting is fair. Success then means that we can make arbitrarily much money when
betting on X, which should not happen if X is random. By considering martingales
with varying levels of effectivity, we get various notions of algorithmic randomness,
including ML-randomness itself, as it turns out.

For example, X is computably random if no computable martingale succeeds
on it, and polynomial-time random if no polynomial-time computable martingale
succeeds on it. (For the purposes of defining these notions we can think of the
martingale as rational-valued.) Schnorr (1971) showed that X is ML-random iff
no left-c.e. martingale succeeds on it, where a function f : 2<ω → R>0 is left-c.e.
if it is computably approximable from below, i.e., there is a computable function
g : 2ω × N → Q>0 such that g(σ, n) 6 g(σ, n + 1) for all σ and n, and f(σ) =
limn→∞ g(σ, n) for all σ. One way to think of a left-c.e. martingale is that initially
we might have no idea what to bet on some string σ, but as we learn more about
the universe, we might discover that σ seems more unlikely to be an initial segment
of a random sequence, and are then prepared to bet more of our capital on it.

The coder’s approach builds on the idea that a random string should have no
short descriptions. For example, in describing 010101 . . . (1000 times) by the brief
description “print 01 1000 times”, we are using regularities in this string to compress
it. For a more complicated string, say the first 2000 bits of the binary expansion of
eπ, the regularities may be harder to perceive, but are still there and can still lead
to compression. A random string should have no such exploitable regularities (i.e.,
regularities that are not present in most strings), so the shortest way to describe
it should be basically to write it out in full. This idea can be formalized using the
well-known concept of Kolmogorov complexity. We can think of a Turing machine
M with inputs and outputs in 2<ω as a description system. If M(τ) = σ then τ is
a description of σ relative to this description system. The Kolmogorov complexity
CM (σ) of σ relative to M is the length of the shortest τ such that M(τ) = σ.
We can then take a universal Turing machine U , which emulates any given Turing
machine with at most a constant increase in the size of programs, and define the
(plain) Kolmogorov complexity of σ as C(σ) = CU (σ). The value of C(σ) depends
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on U , but only up to an additive constant independent of σ. We think of a string
as random if its Kolmogorov complexity is close to its length.

For an infinite sequence X, a natural guess would be that X should be considered
random if every initial segment of X is incompressible in this sense, i.e., if C(X �
n) > n−O(1). However, plain Kolmogorov complexity is not quite the right notion
here, because the information in a description τ consists not only of the bits of τ , but
also its length, which can provide another log2 |τ | many bits of information. Indeed,
Martin-Löf (see [18]) showed that it is not possible to have C(X � n) > n − O(1):
Given a long string ρ, we can write ρ = στν, where |τ | is the position of σ in the
length-lexicographic ordering of 2<ω. Consider the Turing machine M that, on
input η, determines the |η|th string ξ in the length-lexicographic ordering of 2<ω

and outputs ξη. Then N(τ) = στ . For any sequence X and any k, this process
allows us to compress some initial segment of X by more than k many bits.

There are several ways to get around this problem by modifying the definition of
Kolmogorov complexity. The best-known one is to use prefix-free codes, that is, to
restrict ourselves to machines M such that if M(τ) is defined (i.e., if the machine
eventually halts on input τ) and µ is a proper extension of τ , then M(µ) is not
defined. There are universal prefix-free machines, and we can take such a machine U
and define the prefix-free Kolmogorov complexity of σ as K(σ) = CU (σ). The roots
of this notion be found in the work of Levin, Chaitin, and Schnorr, and in a certain
sense—like the notion of Kolmogorov complexity more generally—even earlier in
that of Solomonoff (see [9, 18]). As shown by Schnorr (see Chaitin (1975)), it is
indeed the case that X is Martin-Löf random if and only if K(X � n) > n−O(1).

There are other varieties of Kolmogorov complexity, but C and K are the main
ones. For applications, it often does not matter which variety is used. The following
surprising result establishes a fairly precise relationship between C and K. Let
C(1)(σ) = C(σ) and C(n+1)(σ) = C(C(n)(σ)).

Theorem 1.4 (Solovay (1975)). K(σ) = C(σ) + C(2)(σ) ± O(C(3)(σ)), and this
result is tight in that we cannot extend it to C(4)(σ).

There is a vast body of research on Kolmogorov complexity and its applications.
We will discuss some of these applications below; much more on the topic can be
found in Li and Vitányi [18].

2. Goals

There are several ways to explore the ideas introduced above. First, there are
natural internal questions, such as: How do the various levels of algorithmic ran-
domness interrelate? How do calibrations of randomness relate to the hierarchies of
computability and complexity theory, and to relative computability? How should
we calibrate partial randomness? Can a source of partial (algorithmic) randomness
be amplified into a source that is fully random, or at least more random? The
books Downey and Hirschfeldt [9] and Nies [24] cover material along these lines up
to about 2010.

We can also consider applications. Mathematics has many theorems that in-
volve “almost everywhere” behavior. Natural examples come from ergodic theory,
analysis, geometric measure theory, and even combinatorics. Behavior that occurs
almost everywhere should occur at sufficiently random points. Using notions from
algorithmic randomness, we can explore exactly how much randomness is needed
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in a given case. For example, the set of reals at which an increasing function is
differentiable is null. How complicated is this null set, and hence, what level of
algorithmic randomness is necessary for a real to avoid it (assuming the function is
itself computable in some sense)? Is Martin-Löf randomness the right notion here?

We can also use the idea of assigning levels of randomness to individual objects
to prove new theorems or give simpler proofs of known ones. Early examples of
this method tended to use Kolmogorov complexity and what is called the “incom-
pressibility method”. For instance, Chaitin (1971) (see also [17]) famously used
Kolmogorov complexity to give a proof of a version of Gödel’s First Incompleteness
Theorem, by showing that for any sufficiently strong, computably axiomatizable,
consistent theory T , there is a number c such that T cannot prove that C(σ) > c for
any given string σ (which also follows by interpreting an earlier result of Barzdins;
see [18, Section 2.7]). More recently, Kritchman and Raz [17] used these methods
to give a proof of the Second Incompleteness Theorem as well.3 As we will see
below, a more recent line of research has used notions of effective dimension based
on partial randomness to give new proofs of classical theorems in ergodic theory
and obtain new results in geometric measure theory.

3. Some interactions with computability

3.1. Halting probabilities. A first question we might ask is how to generate
“natural” examples of algorithmically random reals. A classic example is Chaitin’s
halting probability. Let U be a universal prefix-free machine and let

Ω =
∑
U(σ)↓

2−|σ|.

This number is the measure of the set of sequences X such that U halts on some
initial segment of X, which we can interpret as the halting probability of U , and
was shown by Chaitin (1975) to be ML-random (where, as mentioned above, we
identify Ω with its binary expansion, thought of as an infinite binary sequence).

For any prefix-free machine M in place of U we can similarly define a halting
probability. In some ways, halting probabilities are the analogs of computably
enumerable sets in the theory of algorithmic randomness. Every halting probability
α is a left-c.e. real, meaning that there is a computable increasing sequence of
rationals converging to it. Calude, Hertling, Khoussainov, and Wang (1998) showed
that every left-c.e. real is the halting probability of some prefix-free machine.

We should perhaps write ΩU instead of Ω, to stress the dependence of its partic-
ular value on the choice of universal machine, but the fundamental properties of Ω
do not depend on this choice, much as those of the halting problem do not depend
on the specific choice of enumeration of Turing machines. In particular, Kučera
and Slaman (2001) showed that every left-c.e. real is reducible to every ΩU up to a
strong notion of reducibility known as Solovay reducibility, and hence all such ΩU ’s
are equivalent modulo this notion. (The situation is analogous to that of versions
of the halting problem, where the relevant notion is known as 1-reducibility.)

3Other recent work has explored the effect of adding axioms asserting the incompressibility
of certain strings in a probabilistic way. Bienvenu, Romashchenko, Shen, Taveneaux, and Ver-

meeren [4] have shown that this kind of procedure does not help to prove new interesting theorems,

but that the situation changes if we take into account the sizes of the proofs: randomly chosen
axioms (in a sense made precise in their paper) can help to make proofs much shorter under the

reasonable complexity-theoretic assumption that NP 6= PSPACE.
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Left-c.e. and right-c.e. reals (those of the form 1 − α for a left-c.e. α) occur
naturally in mathematics. Braverman and Yampolsky [7] showed that they arise in
connection with Julia sets, and there is a striking example in symbolic dynamics:
A d-dimensional subshift of finite type is a certain kind of collection of A-colorings
of Zd, where A is a finite set, defined by local rules (basically saying that certain
coloring patterns are illegal) invariant under the shift action

(Sgx)(h) = x(h+ g) for g, h ∈ Zd and x ∈ AZd

.

Its (topological) entropy is an important invariant measuring the asymptotic growth
in the number of legal colorings of finite regions. It has been known for some time
that entropies of subshifts of finite type for dimensions d > 2 are in general not
computable, but the following result gives a precise characterization.

Theorem 3.1 (Hochman and Meyerovitch [15]). The values of entropies of sub-
shifts of finite type over Zd for d > 2 are exactly the nonnegative right-c.e. reals.

3.2. Algorithmic randomness and relative computability. Solovay reducibil-
ity is stronger than Turing reducibility, so Ω can compute the halting problem ∅′.
Indeed Ω and ∅′ are Turing equivalent, and in fact Ω can be seen as a “highly
compressed” version of ∅′. Other computability-theoretically powerful ML-random
sequences can be obtained from the following remarkable result.

Theorem 3.2 (Gács (1986), Kučera (1985)). For every X there is an ML-random
Y such that X 6T Y .

This theorem and the Turing equivalence of Ω with ∅′ do not seem to accord
with our intuition that random sets should have low “useful information”. This
phenomenon can be explained by results showing that, for certain purposes, the
benchmark set by ML-randomness is too low. A set A has PA degree if it can
compute a {0, 1}-valued function f with f(n) 6= Φn(n) for all n. (The reason for
the name is that this property is equivalent to being able to compute a completion
of Peano Arithmetic.) Such a function can be seen as a weak version of the halting
problem, but while ∅′ has PA degree, there are sets of PA degree that are low, in
the sense of Section 1.2, and hence are far less powerful than ∅′.
Theorem 3.3 (Stephan (2006)). If an ML-random sequence has PA degree then it
computes ∅′.

Thus there are two kinds of ML-random sequences. Ones that are complicated
enough to somehow “simulate” randomness, and “truly random” ones that are much
weaker. It is known that the class of sequences that can compute ∅′ has measure 0,
so almost all ML-random sequences are in the second class. One way to ensure that
a sequence is in that class is to increase the complexity of our tests by relativizing
them to noncomputable oracles. It turns out that iterates of the Turing jump are
particularly natural oracles to use. Let ∅(0) = ∅ and ∅(n+1) = (∅(n))′. We say that
X is n-random if it passes all Martin-Löf tests relativized to to ∅(n−1). Thus the
1-random sequences are just the ML-random ones, while the 2-random ones are the
ones that are ML-random relative to the halting problem. These sequences have
low computational power in several ways. For instance, they cannot compute any
noncomputable c.e. set, and in fact the following holds.

Theorem 3.4 (Kurtz (1981)). If X is 2-random and Y is computable relative both
to ∅′ and to X, then Y is computable.
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A precise relationship between tests and the dichotomy mentioned above was
established by Franklin and Ng [11].

In general, among ML-random sequences, computational power (or “useful in-
formation”) is inversely proportional to level of randomness. The following is one
of many results attesting to this heuristic.

Theorem 3.5 (Miller and Yu (2008)). Let X 6T Y . If X is ML-random and Y
is n-random, then X is also n-random.

There are many other interesting levels of algorithmic randomness. Schnorr
(1971) argued that his martingale characterization of ML-randomness shows that
this is an intrinsically computably enumerable rather than computable notion, and
defined a notion now called Schnorr randomness, which is like the notion of com-
putable randomness mentioned below Definition 1.3 but with an extra effectiveness
condition on the rate of success of martingales. He also showed that X is Schnorr
random iff it passes all Martin-Löf tests T0, T1, . . . such that the measures λ(Tn) are
uniformly computable (i.e., the function n 7→ λ(Tn) is computable in the sense of
Section 4.4 below). It follows immediately from their definitions in terms of martin-
gales that ML-randomness implies computable randomness, which in turn implies
Schnorr randomness. It is more difficult to prove that none of these implications
can be reversed. In fact, these levels of randomness are close enough that they
agree for sets that are somewhat close to computable, as shown by the following
result, where highness is as defined in Section 1.2.

Theorem 3.6 (Nies, Stephan, and Terwijn (2005)). Every high Turing degree con-
tains a set that is computably random but not ML-random and a set that is Schnorr
random but not computably random. This fact is tight, however, because every
nonhigh Schnorr random set is ML-random.

As we will discuss, various notions of algorithmic randomness arise naturally in
applications.

3.3. Randomness-theoretic weakness. As mentioned above, X is ML-random
iff K(X � n) > n−O(1), i.e., X’s initial segments have very high complexity. There
are similar characterizations of other notions of algorithmic randomness, as well as
of notions arising in other parts of computability theory, in terms of high initial
segment complexity. For instance, Downey and Griffiths (2004) showed that X is
Schnorr random iff CM (X � n) > n − O(1) for every prefix-free machine M with
computable halting probability, while Kjos-Hanssen, Merkle, and Stephan (2006)
showed that X can compute a diagonally noncomputable function, that is, a func-
tion h with h(e) 6= Φe(e) for all e, iff there is an X-computable function f such
that C(X � f(n)) > n for all n. But what if the initial segments of a sequence
have low complexity? Such sequences have played an important role in the the-
ory of algorithmic randomness, beginning with the following information-theoretic
characterization of computability.

Theorem 3.7 (Chaitin (1976)). C(X � n) 6 C(n) +O(1) iff X is computable.

It is also true that if X is computable then K(X � n) 6 K(n) + O(1). Chaitin
(1977) considered sequences with this property, which are now called K-trivial. He
showed that every K-trivial sequence is ∅′-computable, and asked whether they are
all in fact computable. Solovay (1975) answered this question by constructing a
noncomputable K-trivial sequence.
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The class of K-trivials has several remarkable properties. It is a naturally de-
finable countable class, contained in the class of low sets (as defined in Section 1.2,
where we identify a set with its characteristic function, thought of as a sequence),
but with stronger closure properties. (In technical terms, it is what is known as
a Turing ideal.) Post’s problem asked whether there are computably enumerable
sets that are neither computable nor Turing equivalent to the halting problem. Its
solution in the 1950’s by Friedberg and Muchnik introduced the somewhat complex
priority method, which has played a central technical role in computability theory
since then. Downey, Hirschfeldt, Nies, and Stephan (2003) showed that K-triviality
can be used to give a simple priority-free solution to Post’s problem.

Most significantly, there are many natural notions of randomness-theoretic weak-
ness that turn out to be equivalent to K-triviality.

Theorem 3.8 (Nies (2005), Nies and Hirschfeldt for (1)→ (3)). The following are
equivalent.

(1) A is K-trivial.
(2) A is computable relative to some c.e. K-trivial set.
(3) A is low for K, meaning that A has no compression power as an oracle.

i.e., that KA(σ) > K(σ)−O(1), where KA is the relativization of prefix-free
Kolmogorov complexity to A.

(4) A is low for ML-randomness, meaning that A does not have any derandom-
ization power as an oracle, i.e., any ML-random set remains ML-random
when this notion is relativized to A.

There are now over a dozen other characterizations of K-triviality. Some appear
in [9, 24], and several others have emerged more recently. These have been used
to solve several problems in algorithmic randomness and related areas. Lowness
classes have also been found for other randomness notions. For Schnorr randomness,
for instance, lowness can be characterized using notions of traceability related to
concepts in set theory, as first explored by Terwijn and Zambella (2001).

4. Some applications

4.1. Incompressibility and information content. This article focuses on al-
gorithmic randomness for infinite objects, but we should mention that there have
been many applications of Kolmogorov complexity under the collective title of the
incompressibility method, based on the observation that algorithmically random
strings should exhibit typical behavior for computable processes. For example, this
method can be used to give average running times for sorting, by showing that if the
outcome is not what we would expect then we can compress a random input. See Li
and Vitányi [18, Chapter 6] for applications of this technique to areas as diverse as
combinatorics, formal languages, compact routing, and circuit complexity, among
others. Many results originally proved using Shannon entropy or related methods
also have proofs using Kolmogorov complexity. For example, Messner and Thier-
auf [22] gave a constructive proof of the Lovász Local Lemma using Kolmogorov
complexity.

Other applications come from the observation that in some sense Kolmogorov
complexity provides an “absolute” measure of the intrinsic complexity of a string.
We can define a notion of conditional Kolmogorov complexity C(σ | τ) of a string
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σ given another string τ . Then, for example, C(σ | σ) = O(1), and σ is “indepen-
dent of τ” if C(σ | τ) = C(σ) − O(1). Researchers comparing two sequences σ, τ
representing, say, two DNA sequences, or two phylogenetic trees, or two languages,
or two pieces of music, have invented many distance metrics, such as the maximum
parsimony distance on phylogenetic trees, but it is also natural to use a content-
neutral measure of “information distance” like max{C(σ | τ), C(τ | σ)}. There have
been some attempts to make this work in practice for solving classification prob-
lems, though results have so far been mixed. Of course, C is not computable, but
it can be replaced in applications by measures derived from practical compression
algorithms. See [18, Sections 8.3 and 8.4].

4.2. Effective dimensions. If X = x0x1 . . . is random, then we might expect a
sequence such as x000x100x200 . . . to be “ 1

3 -random”. Making precise sense of the
idea of partial algorithmic randomness has led to significant applications. Hausdorff
used work of Carathéodory on s-dimensional measures to generalize the notion of
dimension to possibly nonintegral values, leading to concepts such as Hausdorff
dimension and packing dimension. Much like algorithmic randomness can make
sense of the idea of individual reals being random, notions of partial algorithmic
randomness can be used to assign dimensions to individual reals.

The measure-theoretic approach, in which we for instance replace the uniform
measure λ on 2ω by a generalized notion assigning the value 2−s|σ| to [σ] (where
0 < s 6 1), was translated by Lutz (2000, 2003) into a notion of s-gale, where
the fairness condition of a martingale is replaced by f(σ) = 2−s(f(σ0) + f(σ1)).
We can view s-gales as modeling betting in a hostile environment (an idea due to
Lutz), where “inflation” is acting so that not winning means that we automatically
lose money. Roughly speaking, the effective fractal dimension of a sequence is then
determined by the most hostile environment in which we can still make money
betting on this sequence.

Mayordomo (2002) and Athreya, Hitchcock, Lutz, and Mayordomo (2007) found
equivalent formulations in terms of Kolmogorov complexity, which we take as def-
initions. (Here it does not matter whether we use plain or prefix-free Kolmogorov
complexity.)

Definition 4.1. Let X ∈ 2ω. The effective Hausdorff dimension of X is

dim(X) = lim inf
n→∞

K(X � n)

n
.

The effective packing dimension of X is

Dim(X) = lim sup
n→∞

K(X � n)

n
.

It is not hard to extend these definitions to elements of Rn, yielding effective
dimensions between 0 and n. They can also be relativized to any oracle A to
obtain the effective Hausdorff and packing dimensions dimA(X) and DimA(X) of
X relative to A.

It is of course not immediately obvious why these notions are effectivizations
of Hausdorff and packing dimension, but crucial evidence of their correctness is
provided by point to set principles, which allow us to express the dimensions of sets
of reals in terms of the effective dimensions of their elements. The most recent and
powerful of these is the following, where we denote the classical Hausdorff dimension
of E ⊆ Rn by dimH(E), and its classical packing dimension by dimp(E).
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Theorem 4.2 (Lutz and Lutz [19]).

dimH(E) = min
A⊆N

sup
X∈E

dimA(X).

dimp(E) = min
A⊆N

sup
X∈E

DimA(X).

For certain well-behaved sets E, relativization is actually not needed, and the
classical dimension of E is the supremum of the effective dimensions of its points. In
the general case, it is of course not immediately clear that the minima mentioned
in Theorem 4.2 should exist, but they do. Thus, for example, to prove a lower
bound of α for dimH(E) it suffices to prove that, for each ε > 0 and each A, the

set E contains a point X with dimA(X) > α − ε. In several applications, this
argument turns out to be easier than ones directly involving classical dimension.
This fact is somewhat surprising given the need to relativize to arbitrary oracles,
but in practice this issue has so far turned out not to be an obstacle.

For example, Lutz and Stull [21] obtained a new lower bound on the Hausdorff
dimension of generalized sets of Furstenberg type; Lutz [20] showed that a funda-
mental intersection formula, due in the Borel case to Kahane and Mattila, is true for
arbitrary sets; and Lutz and Lutz [19] gave a new proof of the two-dimensional case
(originally proved by Davies) of the well-known Kakeya conjecture, which states
that, for all n > 2, if a subset of Rn has lines of length 1 in all directions, then it
has Hausdorff dimension n.

There had been earlier applications of effective dimension, for instance in sym-
bolic dynamics, whose iterative processes are naturally algorithmic. For example,
Simpson [25] generalized a result of Furstenberg as follows. Let A be finite and G
be either Nd or Zd. A closed set X ⊆ AG is a subshift if it is closed under the shift
action of G on AG (see Section 3.1).

Theorem 4.3 (Simpson [25]). Let A be finite and G be either Nd or Zd. If X ⊆
AG is a subshift then the topological entropy of X is equal both to its classical
Hausdorff dimension and to the supremum of the effective Hausdorff dimensions of
its elements.

In currently unpublished work, Day has used effective methods to give a new
proof of the Kolmogorov-Sinai theorem on entropies of Bernoulli shifts.

There are other applications of sequences of high effective dimension, for in-
stance ones involving the interesting class of shift complex sequences. While ini-
tial segments of ML-random sequences have high Kolmogorov complexity, not all
segments of such sequences do. Random sequences must contain arbitrarily long
strings of consecutive 0’s, for example. However, for any ε > 0 there are ε-shift
complex sequences Y such that for any string σ of consecutive bits of Y , we have
K(σ) > (1 − ε)|σ| − O(1). These sequences can be used to create tilings with
properties such as certain kinds of pattern-avoidance, and have found uses in sym-
bolic dynamics. See for instance Durand, Levin, and Shen (2008) and Durand,
Romashchenko, and Shen [10].

4.3. Randomness amplification. Many practical algorithms use random seeds.
For example, the important Polynomial Identity Testing (PIT ) problem takes as
input a polynomial P (x1, . . . , xn) with coefficients from a large finite field and
determines whether it is identically 0. Many practical problems can be solved
using a reduction to this problem. There is a natural fast algorithm to solve it
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randomly: Take a random sequence of values for the variables. If the polynomial is
not 0 on these values, “no” is the correct answer. Otherwise, the probability that
the answer is “yes” is very high. It is conjectured that PIT has a polynomial-time
deterministic algorithm,4 but no such algorithm is known.

Thus it is important to have good sources of randomness. Some (including
Turing) have believed that randomness can be obtained from physical sources, and
there are now commercial devices claiming to do so. At a more theoretical level,
we might ask question such as:

(1) Can a weak source of randomness always be amplified into a better one?
(2) Can we in fact always recover full randomness from partial randomness?
(3) Are random sources truly useful as computational resources?

In our context, we can consider precise versions of such questions by taking ran-
domness to mean algorithmic randomness, and taking all reduction processes to be
computable ones. One way to interpret the first two questions then is to think of
partial randomness as having nonzero effective dimension. For example, for packing
dimension, we have the following negative results.

Theorem 4.4 (Downey and Greenberg (2008)). There is an X such that Dim(X) =
1 and X computes no ML-random sequence. (This X can be built to be of minimal
degree, which means that every X-computable set is either computable or has the
same Turing degree as X. It is known that such an X cannot compute an ML-
random sequence.)

Theorem 4.5 (Conidis [8])). There is an X such that Dim(X) > 0 and X computes
no Y with Dim(Y ) = 1.

On the other hand, we also have the following strong positive result.

Theorem 4.6 (Fortnow, Hitchcock, Pavan, Vinochandran, and Wang (2006)). If
ε > 0 and Dim(X) > 0 then there is an X-computable Y such that Dim(Y ) > 1−ε.
(In fact, Y can be taken to be equivalent to X via polynomial-time reductions.)

For effective Hausdorff dimension, the situation is quite different. Typically, the
way we obtain an X with dim(X) = 1

2 , say, is to start with an ML-random sequence
and somehow “mess it up”, for example by making every other bit a 0. This kind
of process is reversible, in the sense that it easy to obtain an X-computable ML-
random. However, Miller [23] showed that it is possible to obtain sequences of
fractional effective Hausdorff dimension that permit no randomness amplification
at all.

Theorem 4.7 (Miller [23]). There is an X such that dim(X) = 1
2 and if Y 6T X

then dim(Y ) 6 1
2 .

That is, effective Hausdorff dimension cannot in general be amplified. (In this
theorem, the specific value 1

2 is only an example.) Greenberg and Miller [13] also
showed that there is an X such that dim(X) = 1 and X does not compute any ML-
random sequences. Interestingly, Zimand (2010) showed that for two sequences X
and Y of nonzero effective Hausdorff dimension that are in a certain technical sense

4This conjecture comes from the fact that PIT belongs to a complexity class known as BPP,

which is widely believed to equal the complexity class P of polynomial-time solvable problems,

since Impagliazzo and Wigderson showed in the late 1990’s that if the well-known Satisfiability
problem is as hard as generally believed, then indeed BPP = P.
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sufficiently independent, X and Y together can compute a sequence of effective
Hausdorff dimension 1.

In some attractive recent work, it has been shown that there is a sense in which
the intuition that every sequence of effective Hausdorff dimension 1 is close to an
ML-random sequence is correct. The following is a simplified version of the full
statement, which quantifies how much randomness can be extracted at the cost of
altering a sequence on a set of density 0. Here A ⊆ N has (asymptotic) density 0 if

limn→∞
|A�n|
n = 0.

Theorem 4.8 (Greenberg, Miller, Shen, and Westrick [14]). If dim(X) = 1 then
there is an ML-random Y such that {n : X(n) 6= Y (n)} has density 0.

The third question above is whether sources of randomness can be useful oracles.
Here we are thinking in terms of complexity rather than just computability, so
results such as Theorem 3.2 are not directly relevant. Allender and others have
initiated a program to investigate the speedups that are possible when random
sources are queried efficiently. Let R be the set of all random finite binary strings
for either plain or prefix-free Kolmogorov complexity (e.g., R = {x : C(x) > |x|}).
For a complexity class C, let CR denote the relativization of this class to R. So, for
instance, for the class P of polynomial-time computable functions, PR is the class
of functions that can be computed in polynomial time with R as an oracle. (For
references to the articles in this and the following theorem, see [1].)

Theorem 4.9 (Buhrman, Fortnow, Koucký, and Loff (2010); Allender, Buhrman,
Koucký, van Melkebeek, and Ronneburger (2006); Allender, Buhrman, and Koucký
(2006)).

(1) PSPACE ⊆ PR.

(2) NEXP ⊆ NPR.

(3) BPP ⊆ PRtt (where the latter is the class of functions that are reducible to
R in polynomial time via truth-table reductions, a more restrictive notion
of reduction than Turing reduction).

The choice of universal machine does have some effect on efficient computations,
but we can quantify over all universal machines. In the result below, U ranges
over universal prefix-free machines, and RKU

is the set of random strings relative
to Kolmogorov complexity defined using U .

Theorem 4.10 (Allender, Friedman, and Gasarch (2013); Cai, Downey, Epstein,
Lempp, and Miller (2014)).

(1)
⋂
U P

RKU
tt ⊆ PSPACE.

(2)
⋂
U NPRKU ⊆ EXPSPACE.

We can also say that sufficiently random oracles will always accelerate some com-
putations in the following sense. Say that X is low for speed if for any computable
set A and any function t such that A can be computed in time t(n) using X as an
oracle, there is a polynomial p such that A can be computed (with no oracle) in time
bounded by p(t(n)). That is, X does not significantly accelerate any computation
of a computable set. Bayer and Slaman (see [3]) constructed noncomputable sets
that are low for speed, but these cannot be very random.
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Theorem 4.11 (Bienvenu and Downey [3]). If X is Schnorr random, then it is
not low for speed, and this fact is witnessed by an exponential-time computable set
A.

4.4. Analysis and Ergodic Theory. Computable analysis is an area that has
developed tools for thinking about computability of objects like real-valued func-
tions by taking advantage of separability. Say that a sequence of rationals q0, q1, . . .
converges fast to x if |x − qn| 6 2−n for all n. A function f : R → R is (Type 2)
computable if there is an algorithm Φ that, for every x ∈ R and every sequence
q0, q1, . . . that converges fast to x, if Φ is given q0, q1, . . . as an oracle, then it can
compute a sequence that converges fast to f(x). We can extend this definition to
similar separable spaces. We can also relativize it, and it is then not difficult to see
that a function is continuous iff it is computable relative to some oracle, basically
because to define a continuous function we need only to specify its action on a
countable collection of balls.

Mathematics is replete with results concerning almost everywhere behavior, and
algorithmic randomness allows us to to turn such results into “quantitative” ones
like the following.

Theorem 4.12 (Brattka, Miller, and Nies [5], also Demuth (1975, see [5]) for (2)).

(1) The reals at which every computable increasing function R → R is differ-
entiable are exactly the computably random ones.

(2) The reals at which every computable function R→ R of bounded variation
is differentiable are exactly the ML-random ones.

Ergodic theory is another area that has been studied from this point of view. A
measure-preserving transformation T on a probability space is ergodic if all mea-
surable subsets E such that T−1(E) = E have measure 1 or 0. Notice that this
is an “almost everywhere” definition. We can make this setting computable (and
many systems arising from physics will be computable). One way to proceed is
to work in Cantor space without loss of generality, since Hoyrup and Rojas [16]
showed that any computable metric space with a computable probability measure
is isomorphic to this space in an effective measure-theoretic sense. Then we can
specify a computable transformation T as a computable limit of computable partial
maps Tn : 2<ω → 2<ω with certain coherence conditions. We can also transfer def-
initions like that of ML-randomness to computable probability spaces other than
Cantor space.

The following is an illustrative result. A classic theorem of Poincaré is that if
T is measure-preserving, then for all E of positive measure and almost all x, we
have Tn(x) ∈ E for infinitely many n. For a class C of measurable subsets, x is
a Poincaré point for T with respect to C if for every E ∈ C of positive measure,
Tn(x) ∈ E for infinitely many n. An effectively closed set is one whose complement
can be specified as a computably enumerable union of basic open sets.

Theorem 4.13 (Bienvenu, Day, Mezhirov, and Shen [2]). Let T be a computable
ergodic transformation on a computable probability space. Every ML-random ele-
ment of this space is a Poincaré point for the class of effectively closed sets.

In general, the condition that the element be ML-random is not just sufficient
but necessary, even in a simple case like the shift operator on Cantor space.

The non-ergodic case has also been analyzed, by Franklin and Towsner [12],
who also studied the Birkhoff ergodic theorem. In these and several other cases,
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similar correspondences with various notions of algorithmic randomness have been
found. While many theorems of ergodic theory have been analyzed in this way,
including the Birkhoff, Poincaré, and von Neumann ergodic theorems, some, like
Furstenberg’s ergodic theorem, have yet to be understood from this point of view.

Regarding the physical interpretation of some of the work in this area, Braver-
man, Grigo, and Rojas [6] have obtained results that they argue show that, while
random noise makes predicting the short term behavior of a system difficult, it may
in fact allow prediction to be easier in the long term.

4.5. Normality revisited. Borel’s notion of normality, with which we began our
discussion, is a very weak kind of randomness. Polynomial-time randomness im-
plies absolute normality, and Schnorr and Stimm (1971/72) showed that a sequence
is normal to a given base iff it satisfies a martingale-based notion of randomness
defined using certain finite state automata, a much weaker model of computation
than Turing machines. Building examples of absolutely normal numbers is another
matter, as Borel already noted. While it is conjectured that e, π, and all irrational
algebraic numbers such as

√
2 are absolutely normal, none of these have been proved

to be normal to any base. In his unpublished manuscript “A note on normal num-
bers”, believed to have been written in 1938, Turing built a computable absolutely
normal real, which is in a sense the closest we have come so far to obtaining an
explicitly-described absolutely normal real. (His construction was not published
until his Collected Works in 1992, and there was uncertainty as to its correctness
until Becher, Figueira, and Picchi (2007) reconstructed and completed it, correcting
minor errors.5) There is a sense in which Turing anticipated Martin-Löf’s idea of
looking at a large collection of effective tests, in this case ones sufficiently strong to
ensure that a real is normal for all bases, but sufficiently weak to allow some com-
putable sequence to pass them all. He took advantage of the correlations between
blocks of digits in expansions of the same real in different bases.

This approach can also be thought of in terms of effective martingales, and its
point of view has brought about a great deal of progress in our understanding of
normality recently. For instance, Becher, Heiber, and Slaman (2013) showed that
absolutely normal numbers can be constructed in low-level polynomial time, and
Lutz and Mayordomo (arXiv:1611.05911) constructed them in “nearly linear”
time. Much of the work along these lines has been number-theoretic, connected to
various notions of well-approximability of irrational reals, such as that of a Liouville
number, which is an irrational α such that for every natural number n > 1, there are
p, q ∈ N for which |α− p

q | < q−n. For example, Becher, Heiber, and Slaman (2015)

have constructed computable absolutely normal Liouville numbers. This work has
also produced results in the classical theory of normal numbers, for instance by
Becher, Bugeaud, and Slaman (2016).
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