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Abstract. Goncharov and Peretyat’kin independently gave nec-
essary and sufficient conditions for when a set of types of a com-
plete theory T is the type spectrum of some homogeneous model of
T . Their result can be stated as a principle of second order arith-
metic, which we call the Homogeneous Model Theorem (HMT),
and analyzed from the points of view of computability theory and
reverse mathematics. Previous computability theoretic results by
Lange suggested a close connection between HMT and the Atomic
Model Theorem (AMT), which states that every complete atomic
theory has an atomic model. We show that HMT and AMT are
indeed equivalent in the sense of reverse mathematics, as well as
in a strong computability theoretic sense. We do the same for
an analogous result of Peretyat’kin giving necessary and sufficient
conditions for when a set of types is the type spectrum of some
model.

Along the way, we analyze a number of related principles. Some
of these turn out to fall into well-known reverse mathematical
classes, such as ACA0, IΣ0

2, and BΣ0
2. Others, however, exhibit

complex interactions with first order induction and bounding prin-
ciples. In particular, we isolate several principles that are prov-
able from IΣ0

2, are (more than) arithmetically conservative over
RCA0, and imply IΣ0

2 over BΣ0
2. In an attempt to capture the

combinatorics of this class of principles, we introduce the principle
Π0

1GA, as well as its generalization Π0
nGA, which is conservative

over RCA0 and equivalent to IΣ0
n+1 over BΣ0

n+1.
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1. Introduction

This paper began as an investigation into the difficulty (in terms
of the axioms needed) of proving certain theorems of classical model
theory about the existence of models of given theories with specific
properties (in particular homogeneity). We were also motivated by,
and interested in illuminating, the relations of these proof theoretic
analyses with ones of the computational complexity of constructing
these models. In analyzing these questions we were led into several
byways: proof theoretic, computational, and combinatorial. The paper
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has thus become a case study in reverse mathematics and its relations
to effective or computable mathematics.

We begin our introduction with a thematic explanation of the format
and goals of reverse mathematics as well as its connections in general to
computable mathematics. We then describe the nature of our results
and the places that they occupy within reverse mathematics on the
same thematic level. After discussing some previous related results
(both reverse mathematical and computability theoretic), we give a
more specific, even formal, description of the questions considered and
the results provided. Finally, we provide an outline of the full paper in
Section 1.3.

1.1. The thematic level. The general goal of reverse mathematics is
to calibrate the complexity of mathematical theorems by determining
precisely the systems of axioms needed to prove the given theorems.
More specifically, the subject deals with what might be called countable
mathematics in that usually it restricts its attention to theorems about
countable structures (algebraic, logical, or combinatorial) or ones in the
parts of analysis and topology (such as separable metric spaces) that
can be approximated by countable sets. (For some approaches to the
uncountable see [25] and [45].)

One direction of this calibration is standard. We know what it means
for a theorem to be provable from a set of axioms. The other direction
provides both the preciseness of the answers and the name of the sub-
ject. We reverse the usual situation by proving the axioms from the
theorem. Formally, this means starting with some common weak base
set of axioms B and an axiom system S extending B that proves the
theorem of interest, Φ. Then one establishes a reversal by showing that
B ∪{Φ} proves S. Thus, relative to the weak base theory B, the set of
axioms S proving Φ and Φ itself are logically equivalent. So the proof
theoretic, or better reverse mathematical, strength of Φ is determined
to be precisely that of S.

Given that our subjects of interest are countable, the usual and nat-
ural setting for reverse mathematics is second order arithmetic (rather
than say set theory). The language here is that of ordinary first order
arithmetic (+, ×, 6, 0, and 1) with first order logic (including the
usual variables x, y, z, . . . ranging over “the numbers”) supplemented
by a collection of distinct variables X, Y, Z . . . (and perhaps constant
symbols A,B, . . .) ranging over (or denoting specific) “sets of numbers”
along with a binary relation symbol x ∈ X representing membership of
numbers x in sets X. The axioms for a system of second order arith-
metic begin with the standard basic ones for arithmetic with +, ×, 6,
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0, and 1 and an induction principle saying that every set containing 0
and closed under successor contains all the numbers (or, equivalently,
that every nonempty set has a least element). It may then be aug-
mented by additional comprehension axioms asserting that sets with
some properties (e.g. definable by formulas in some given class) exist.
One may also add axioms asserting induction principles of the form
that if 0 has some property (e.g. as specified by a formula of some
class) and the numbers with this property are closed under successor
then every number has the specified property (or the corresponding
least number principle as above). We give more precise definitions and
examples in Section 2.1.

There is a close connection between reverse and effective mathemat-
ics and between the standard axiomatic systems of reverse mathematics
and the calibration schemes from computability theory for the complex-
ity of sets and functions. To make this correspondence clear (and for
many other purposes), we need to specify the semantics for axiom sys-
tems for second order arithmetic. A structure for this language is one
of the form M = 〈M,S,+,×,6, 0, 1,∈〉 where M is a set (the set of
the “numbers” of M) over which the first order quantifiers and vari-
ables of our language range; S ⊆ 2M is the collection of subsets of the
“numbers” in M over which the second order quantifiers and variables
of our language range; as usual, + and × are binary functions on M ;
and 6 is a binary relation on M while 0 and 1 are members of M . We
always interpret ∈ as the usual membership relation between elements
of M and elements of S.

The standard weak base system for reverse mathematics, RCA0,
contains, in addition to the usual basic axioms for arithmetic: IΣ0

1,
induction for Σ0

1 formulas (i.e., ones with one (or a block of) existen-
tial quantifier(s) followed by a quantifier free matrix); and ∆0

1-CA0,
comprehension for sets determined by equivalent Σ0

1 and Π0
1 formulas

(the latter being ones with one universal quantifier or block of univer-
sal quantifiers). This system corresponds to computable (or recursive)
mathematics in the sense that the models of this theory whose numbers
M are just the usual natural numbers N are precisely the ones whose
sets are closed under join (i.e., effective union) and Turing reducibility;
i.e., if A,B ∈ M then any set computable from the pair A⊕ B is also
in M . (The structures M with M = N are called ω-models.) Thus the
theorems of RCA0 are essentially theorems of computable mathematics
and the converse usually holds as well except at times when the classi-
cal computability theory style proofs rely on more than Σ0

1 induction.
In this paper we also can often follow proofs from computable model
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theory to derive their analogs in RCA0. More frequently, though, RCA0

does not suffice.
Reverse mathematics had its beginnings in the work of Harvey Fried-

man in the late ’60s and early ’70s ([11, 12, 13]). Its early development
is well chronicled in Simpson’s classic text [46], which is also the source
for many important ideas and results. It has four basic systems in
addition to RCA0, and the ω-models of each correspond in a similar
way to closure conditions on their sets familiar from computability the-
ory. The primary story of the first few decades of reverse mathematics
was that almost every standard theorem from the literature of classical
mathematics that was analyzed was equivalent over RCA0 (in the sense
of reverse mathematics described above) to one of these five systems.
They were thus dubbed the “big five”. Moreover, each of these systems
corresponds to a well known philosophical system for mathematics as
well as to a standard level of complexity in computability theory. (For
details, here and elsewhere, as well as a thorough general introduction
to reverse mathematics, we refer the reader to the second edition of the
standard text by Simpson [47]. For a shorter introduction focused on
combinatorial and model theoretic principles, see Hirschfeldt [20]. A
very brief introduction can be found in Shore [44].)

In addition to RCA0, the two next stronger of the big five are the
ones most relevant to this paper: ACA0 and WKL0. The first extends
RCA0 by adding on Σ0

n-CA0 for every n ∈ N, i.e., arithmetic compre-
hension: all sets defined by formulas of first order arithmetic (with set
parameters) exist. It corresponds to closure under the Turing jump
(i.e., the halting problem for machines with oracles in the structure).
(The Turing jump and its iterates provide the most common measure of
complexity in computability theory.) The second (and weaker) system
corresponds to structures in which the collection of sets forms what is
called a Scott set ; i.e., every infinite binary tree in the collection has
an infinite path in it as well. Each of these three systems has many
equivalents in most areas of mathematics. Following the classical story
of reverse mathematics we provide more equivalences in this paper.

On the other hand, a very interesting and, in our view, important
trend in reverse mathematics has emerged in the past decade or so.
Many theorems of standard mathematics have been found to lie outside
the scope of the big five systems. Some are stronger than all of them,
some are weaker even than WKL0, and some are incomparable with
WKL0 but still below ACA0. Starting with papers such as [5], [22], and
[23], combinatorics and model theory have been primary sources of such
examples. Earlier examples can be found in papers like [42], but these
more recent papers began a trend of exploring the reverse mathematics
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of large classes of related combinatorial and model theoretic principles
not in the scope of the big five. (Expositions and discussions of these
phenomena can be found in [44] and much more extensively in [20].) In
this paper we continue along this road with new examples from model
theory of theorems with comprehension strength lying outside the big
five.

A yet newer phenomenon in reverse mathematics is the appearance
of a large number of examples of principles escaping the standard sys-
tems because of issues that lie along the induction rather than (or in
addition to) the comprehension spectrum. One striking example at
the high end of the standard systems is provided by work of Mon-
talbán [32] and Neeman [38, 39]. In the last of these three papers,
Neeman showed that in the proof of an equivalence in the second pa-
per (sharpening results of the first paper), the use of IΣ1

1 (induction for
formulas with leading second order existential quantifiers followed by a
first order matrix) cannot be eliminated. Another example where high
levels of induction are required is in Montalbán and Shore [35]. They
prove a result in ATR0 (the system from the big five after ACA0) using
transfinite induction. In particular, they use induction on arbitrary
well orderings (instead of just of N) for classes defined by Π1

1 formulas
(so second order with one leading universal quantifier). However, the
theorem fails without the extra induction assumption.

In this paper, in addition to cases where extra comprehension axioms
are needed, we often run into issues at the lowest levels of the induction
spectrum. Indeed, this happens first at the stage of choosing the “right”
definitions. In our case, there is one important variation of homogeneity
that requires comprehension axioms (ACA0) to prove its equivalence
to the others (Proposition 4.2). This equivalence is thus better viewed
as a theorem and, indeed, is usually cited as such in the literature.
On the other hand, there are a number of variations on the standard
definitions that are used interchangeably and not distinguished in either
the classical or computability theoretic literature. These variations are
ones for which the usual proofs of equivalence use different levels of
induction-like axioms. Here, we show reversals, in that the equivalences
imply the axioms used to prove them over RCA0. (Examples include
Theorems 4.3 and 4.4.) Which definition is chosen can play a crucial
role in getting the “right” theorem characterizing the strength of our
model theoretic principles.

In addition, even with the “right” choice of definition, more induc-
tion than is available in RCA0 is used in the classical or computability
theoretic proofs at a number of crucial junctures (e.g. for Σ0

2 rather
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than Σ0
1 formulas). Here, three routes are followed for different the-

orems. One applies the method of Shore blocking from generalized
recursion theory ([43]) to carry out, in RCA0, arguments that seem
to need IΣ0

2. (Examples include Theorem 6.10 as well as Theorem 4.1
of [23].) The second provides reversals to show that the theorems of
interest are reverse mathematically equivalent to some induction-like
principle. (Examples are Theorem 4.3 for IΣ0

2 and Theorem 4.4 for
BΣ0

2, the bounding principle for Σ0
2 formulas, which will be defined in

Section 2.1 and has been shown by Slaman [48] to be equivalent to
∆0

2-induction.) The third, and most interesting, route is one that leads
to new axiomatic systems, theorems, and combinatorial principles of
strength intermediate among, or incomparable with, the standard hi-
erarchy of induction type axioms (which includes the usual bounding
axioms). The driving examples include entries labeled 3 or 4 in Fig-
ure 2 on page 67 that lead to the combinatorial principle Π0

1GA used
extensively in Section 6. This principle is generalized in Appendix A
to principles Π0

nGA that fit into all levels of the induction hierarchy
in a most unusual way. Each follows from the next level of induction:
RCA0+IΣ0

n+1 ` Π0
nGA. However, Π0

nGA is strictly weaker in two ways.
First, even BΣ0

2 does not follow from any Π0
nGA. Second, for every n,

we have RCA0 ` Π0
nGA + BΣ0

n+1 ↔ IΣ0
n+1.

A foundationally challenging phenomenon arising in this paper is
provided by theorems or constructions that have essentially two prov-
ably different proofs. In particular, we have theorems of model theory
that are provable from, for example, either WKL0 or IΣ0

2 and others
from WKL0 ∨ BΣ0

2 (as described, e.g., following Proposition 4.5) or
the disjunction of other pairs of comprehension and induction type ax-
ioms (see, e.g., the remarks preceding Question 8.5 and items labeled
3 or 4 in Figure 2). When such a principle is not provable in RCA0,
there may not be any canonical “best” proof or axiomatic system for
it. The only earlier example of this phenomenon of which we are aware
is the fact that the principle that iterations of continuous functions are
continuous is equivalent to WKL0 ∨ IΣ0

2 (Friedman, Simpson, and Yu
[14]). Many additional examples of this phenomenon and related ones
can be found in recent work of Belanger [3]. (Some of his equivalents
for WKL0 ∨ IΣ0

2 in terms of amalgamation of types are mentioned in
Theorem 5.12 below.) An interesting question then is what is the im-
pact of such results on the philosophical or foundational program of
reverse mathematics? (A different foundational question is posed by
other results by Belanger ([2, 3]) where model theoretic facts are shown
to be equivalent to ACA0 ∨ ¬WKL0.)
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1.2. The specifics. In order to describe the actual problems analyzed
in our results, we require specific formal definitions of the standard
axiomatic systems being used (and some variations on them) as well as
the model theoretic notions being analyzed in both the computability
theoretic and reverse mathematical settings. These are provided in
Section 2. Here we give a description for the reader who already has
a basic familiarity with reverse mathematics and elementary model
theory or who will refer to Section 2 as needed. For now we just
note that all languages (and so theories) and structures are assumed
to be countable. Additionally, we assume all theories to be complete
and consistent. So in the setting of computable model theory, for us,
the notions of computable and decidable coincide for theories. In the
setting of reverse mathematics, we include the full elementary diagram
in the presentation of a structure. (From the viewpoint of effective
model theory then, we study only decidable structures for which the full
elementary diagram is computable rather than computable structures
for which only the atomic diagram is assumed to be computable.)

The initial motivation for our study was the investigation by Hirsch-
feldt, Shore, and Slaman of the reverse mathematical complexity of
several classical model theoretic theorems in [23] and related work from
the viewpoint of computability theory that both preceded and followed
it, in particular the analysis of what in [23] is called AMT, the Atomic
Model Theorem: every atomic theory has an atomic model.

Harrington [19] and independently Goncharov and Nurtazin [16]
proved an important early result on atomic models: An atomic, (com-
plete) decidable theory T has a decidable atomic model if and only
if there exists a uniformly computable listing of all of the principal
types of T , i.e., all the types realized in the atomic model. From the
relativized version of the above characterization, it easily follows that
every atomic, decidable theory has a 0′-decidable atomic model, i.e.,
one whose full elementary diagram is computable in 0′. Csima [7]
greatly improved this result by showing that such a theory always has
an atomic model decidable in some low degree. Csima, Hirschfeldt,
Knight, and Soare [9] studied atomic bounding degrees, where a de-
gree d is atomic bounding if every atomic, decidable theory has a d-
decidable atomic model. They showed that the ∆0

2 atomic bounding
degrees x (i.e., x 6T 0′) are exactly the nonlow2 ones (i.e., x′′ >T 0′′).
(These computability theoretic papers used the word “prime” in place
of “atomic”. The two notions are classically equivalent (for countable
models) but differ in our context, as discussed extensively in [23] and
a bit in this paper.) The question of which degrees not below 0′ are
atomic bounding is more complicated (see Conidis [6]) but is connected
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in various ways to the reverse mathematical strength of AMT as ana-
lyzed in [23].

In [23], it is shown that AMT is not provable in RCA0, is incom-
parable with WKL0, and is quite a weak theory. Indeed, it is strictly
weaker than all the combinatorial principles considered by Hirschfeldt
and Shore [22] that are not Π1

1-conservative over RCA0. It is also
shown in [23] that AMT is more than Π1

1-conservative over RCA0 and
is Π1

1-conservative over (RCA0+)BΣ0
2. (A system of axioms S is Γ-

conservative over another system T (for Γ a class of formulas) if for
any Φ ∈ Γ, if S + T ` Φ then T ` Φ. So this is a way of saying
that S + T is not stronger than T at least as far as theorems in Γ are
concerned.)

Since classically every (countable) atomic model is homogeneous, it
is natural to study how degree theoretic and reverse mathematical re-
sults on homogeneous models compare with ones on atomic models.
Now there are two ways to view the possible generalization of AMT
from atomic to homogeneous models. The first views atomic models as
ones whose elements satisfy a particular property. (They each realize
some atom, i.e., a formula generating a principal type.) The second
characterizes the atomic models by their type spectra, the sets of types
they realize. (They realize precisely the principal types.) Since these
characterizations are classically equivalent, the notion of atomic bound-
ing degree captures the question of how hard it is to build an atomic
model of any decidable atomic theory and is equivalent to the question
of how hard it is to construct a model that realizes precisely the set of
principal types of such a theory. These questions then both reasonably
correspond to AMT in reverse mathematics.

For homogeneous models the two views are different. The first asks
the simpler question of how hard it is to build a homogeneous model
of any given decidable theory. Here the degree theoretic answer given
by Csima, Harizanov, Hirschfeldt, and Soare [8] is that it is exactly
the PA degrees (the ones of complete extensions of Peano arithmetic or
equivalently of Scott sets) that suffice for these constructions. As would
then be expected, the reverse mathematical analog is that the existence
of a homogeneous model for every theory is equivalent to WKL0 (Lange
[26]; see also Belanger [3]). This is also the computational and reverse
mathematical complexity of being able to produce a completion of any
(computable) consistent set S of sentences, and hence a model of S
(see [47, Theorem IV.3.3]).

In this paper, we are concerned with the more difficult question of
determining when is there a homogeneous model with a given type spec-
trum. (It is worth mentioning that classically a homogeneous model
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is determined up to isomorphism by its type spectrum; see Proposi-
tion 4.7 for a reverse mathematical analysis of this fact.) The first
question, even classically, is then which sets of types are type spectra
of homogeneous models. Consider the situation in computable model
theory. Clearly, for any decidable model, there is a computable enu-
meration of the types it realizes. Goncharov [15] and Peretyat’kin [41]
independently showed that there are additional conditions on a com-
putable listing of types X that are necessary and sufficient for there
to be a decidable homogeneous model A such that X is an enumer-
ation of the type spectrum of A. Classically, it is easy to see that
the set of types realized in a homogeneous model must satisfy certain
amalgamation properties for formulas and types. To get a decidable
homogeneous model, an additional effectiveness condition is needed on
the listing of types. It must have what we call a computable extension
function approximation that indicates (in terms of their indices) how
types and formulas can be amalgamated. (See Section 6.1 for a formal
definition.) The results of Goncharov and Peretyat’kin also answer the
question classically if one ignores the computability theoretic restric-
tions and simply requires that the set of types be closed under the
appropriate amalgamation procedures (see Theorem 5.1).

In [27] and [28], Lange studied the degree theoretic analog of the
second view of AMT for homogeneous models. She showed that for
any computable list of types X with the appropriate amalgamation
properties, there is a model A decidable in some low degree such that
X is an enumeration of the type spectrum of A. She also investigated
the question of which degrees d have the property that, given any X
as above, there is a d-decidable homogeneous model A such that X
is an enumeration of the type spectrum of A. These we might call
the homogeneous bounding degrees. (Lange and Soare [29] called them
the 0-bounding degrees. Note that the papers [8, 9, 29] use the term
“homogeneous bounding degrees” in the other sense mentioned above,
where the class of such degrees coincides with that of the PA degrees.)
Lange showed that, as for atomic models, the homogeneous bounding
degrees d 6 0′ are precisely the d with d′′ > 0′′. Comparing these
degree theoretic results (and others) with the aforementioned ones of
Csima [7] and Csima, Hirschfeldt, Knight, and Soare [9] for atomic
models suggested a deeper connection between model existence princi-
ples for atomic and homogeneous models. However, the proofs of these
results for homogeneous models and for atomic models seemed quite
different. In this kind of situation, where analogies between disparate
principles suggest but do not immediately provide a precise connec-
tion, reverse mathematical and computability theoretic analysis can
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often clarify the situation. In this paper, we show that the model ex-
istence principle studied by Lange and AMT are indeed connected in
a strong way, as seen from the viewpoints of reverse mathematics and
computability theory. In particular, our results explain the similar-
ity between Lange’s results for homogeneous models and the ones for
atomic models by showing that, in a precise sense, both sets of results
are dealing with the same principle, in two different guises.

First, we must provide an analog to the principle AMT. Recall that
the view of AMT that we are trying to emulate states that every atomic
theory T has a model whose type spectrum consists of the principal
types of T . In the homogeneous case, we want a principle, the Homo-
geneous Model Theorem (HMT), asserting that if a list of types could
be an enumeration of the type spectrum of a homogeneous model, then
there in fact exists a homogeneous model whose type spectrum is enu-
merated by this list. The characterization of such lists of types in the
computability theoretic setting in [15] and [41] mentioned above pro-
vides us with the obvious starting point. In Section 5.1, we present
several variations on the conditions given in these characterizations
that are classically equivalent but differ when viewed reverse mathe-
matically. In Section 4, we give several definitions of homogeneity that
are also classically equivalent, but differ in the setting of reverse math-
ematics. We obtain three versions of the HMT principle depending on
how we describe the closure conditions on the list of types and which
definition of homogeneity we use. In Section 7.2, we show that these
versions of HMT imply AMT and that AMT implies one of them over
RCA0 (and the other ones with sufficient additional induction assump-
tions). Thus the “right” versions supply us with the theorem on the
existence of homogeneous models with specified type spectra that is
reverse mathematically equivalent to the atomic model theorem.

Our proofs of these reverse mathematical results actually provide de-
gree theoretic information that greatly strengthens the computational
analogy between atomic and homogeneous models (from the second
viewpoint above). Indeed, we show (Corollary 7.12) that the atomic
bounding degrees are precisely what we have called the homogeneous
bounding degrees.

At this point, we also note that while we were originally motivated
by the idea of the analogy between existence principles for atomic and
homogeneous models, and the analogy proved precise for the second
view of AMT, there is also a close analogy between these principles
and existence principles for arbitrary models. As we mentioned above,
the pure model existence problem for sets of consistent sentences is
reverse mathematically (and degree theoretically) equivalent to WKL0
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(the PA degrees), as is the existence problem for homogeneous models
of theories (or consistent sets of sentences). If we move to the second
view of AMT, where we require the existence of a model with any given
“possible” type spectrum, and move from arbitrary consistent sets of
sentences to theories, our analysis shows that the existence of arbitrary
models, AMT, and HMT are both reverse mathematically (with the
“right” definitions or induction assumptions) and degree theoretically
equivalent. (Notice that specifying a set of types automatically specifies
a (complete) theory.)

Of course, one needs the appropriate necessary and sufficient condi-
tions for a set of types to be the type spectrum of an arbitrary model.
These are given in [41] for both the classical and computability theo-
retic settings. In Theorem 5.7 we present these conditions, and in the
following sections we carry out the analysis for arbitrary models along
with the one for homogeneous models. The outcome of this analysis is
that one of the variants (WMT) of the existence theorem for arbitrary
models is reverse mathematically equivalent to HMT (Theorem 7.6).
Moreover, the analogously defined class of model bounding degrees is
the same as the classes of atomic and homogeneous bounding degrees
(Corollary 7.12). As with HMT there are variants for arbitrary models
that are classically and computably equivalent but may differ depend-
ing on the types of induction-like axioms available. Before turning to
these questions, we note that not only are AMT, HMT, and WMT
equivalent over RCA0 but, if we work over IΣ0

2, they are also equiv-
alent to all the variants that we are about to discuss, as well as the
combinatorial principles Π0

1G and ATT that we consider below. Thus
AMT is a candidate for a system that, like each of the big five, is what
Montalbán ([33] and [34]) has called robust, a term that still lacks a pre-
cise definition but is informally defined in [34] as “equivalent to small
perturbations of itself”. Another example of a robust system outside
the big five is WWKL0 (see [47, Section X.1] for a definition of this
system).

As we mentioned above, issues connected to induction arise already
when we try to formalize the definition of homogeneous model in Sec-
tion 4. The usual classical definition requires that, given two sequences
of the same type and an extension of one of them, we can find a cor-
responding extension of the other such that the extended sequences
continue to have the same type. One can vary this idea by consid-
ering extensions of length 1 or of arbitrary finite length, and also by
requiring that extensions can be found for finitely many pairs of given
sequences as in Definition 4.1(i)–(iii). All these variants are classically
and computably equivalent since the proofs of equivalence require only
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simple induction arguments. These proofs are not quite simple enough,
however, to work in RCA0. There is one additional standard version
(Definition 4.1(iv)), which we call strong 1-homogeneity, that requires
the existence of an automorphism taking one of the two given sequences
with the same type to the other. This is “obviously” a much stronger
condition. The usual proof is not computable and seems to require the
jump of the model to carry it out. Not surprisingly, we can show that
this level of complexity is computationally and reverse mathematically
necessary. The equivalence of this characterization of homogeneity to
any of the others is itself reverse mathematically equivalent to ACA0

(Proposition 4.2). On the other hand, given this result, it is surprising
to note that the existence theorem that every theory has a homoge-
neous model in this strong sense remains at the level of WKL0 (Lange
[26] and Belanger [3]).

The analysis of the relations among the other variations on homo-
geneity (Section 4) are more interesting and unusual, as are the ones
(Section 5) of the variations on the amalgamation closure conditions in
the definition of the “possible” sets of types that could be type spectra
of homogeneous models. These two sets of variations are corresponding
ones, in that the closure conditions are the ones that obviously hold
for models satisfying the corresponding notion of homogeneity. (Thus
there is a match up for possible candidates for the “right theorem”.)
The analyses of each set of variations and the relations between them
provide reverse mathematical equivalents to induction type axioms:
IΣ0

2 (Theorems 4.3, 5.11, and 5.14 and the entries labeled 2 in Figure
2) and BΣ0

2 (Theorems 4.4, 5.15, and 5.16).
Now there are many logical, computability theoretic, and combinato-

rial equivalents of the standard versions of these induction type axioms
at all levels of their hierarchies (IΣ0

n and BΣ0
n). Some can be found,

for example, in the standard (and quite comprehensive) text on first
order arithmetic by Hájek and Pudlák [17, Section A.I.2]. Others in the
setting of second order arithmetic are scattered throughout the reverse
mathematical literature. Our results here, however, are about model
theoretic properties. Their proofs are often given by delicate and at
times complicated constructions of theories and specific models. The
models constructed are designed to satisfy one variant of homogene-
ity but such that, if they satisfied another, we could prove one of the
standard equivalents of IΣ0

2 or BΣ0
2.

Much more unusual and surprising are the roles that induction plays
in the analysis of the construction of some of the variations of homo-
geneous models. Here, we want to construct a model with a suitable
given type spectrum. Of course, we are assuming that the potential
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type spectrum satisfies some version of the conditions required for there
to be such a model in the computability theoretic setting. (As men-
tioned above, these conditions were given by both Goncharov [15] and
Peretyat’kin [41] independently.) Examples of such constructions in-
clude Theorems 5.1 and 6.4. In particular, we assume that there is an
“extension function approximation” (Definition 6.2) that approximates
the action (in terms of indices) on the given list of types that the amal-
gamation relations require. Here we refer the reader especially to the
entries marked 3 of Figure 2 on page 67.

The ones in the column labeled “pairwise full amalgamation” are
all construction principles for homogeneous or arbitrary models with
given type spectra of the appropriate kinds. (The pairwise full amalga-
mation closure conditions form one of our versions of the Goncharov-
Peretyat’kin conditions mentioned above.) Our original proofs for them
(and all the entries marked 3) showed that the constructions can be
carried out assuming either IΣ0

2 or the comprehension principle Π0
1G

from [23] which essentially asserts the existence of generics for (i.e.,
meeting each one of) any given uniformly Π0

1 collection of dense sets.
Moreover, each of them is equivalent to IΣ0

2 over BΣ0
2. This presented

us with a very unusual situation. Let us consider one of these examples.
P: For every type sequence X satisfying the (pairwise full) amalga-

mation closure conditions and having an extension function approxi-
mation, there is a (1-)homogeneous model realizing exactly the types
in X.

(1) P is essentially the formulation of the computable construction
principle for homogeneous models that appears in the literature
(see [15] and [41]).

(2) P makes no mention of recursiveness, Turing reducibility, arith-
metic, or formulas of any specified quantifier rank.

(3) The proof of P is nontrivial. (It requires a priority argument.)
(4) P is a consequence of IΣ0

2.
(5) P is Π1

1-conservative over IΣ0
1 and so does not imply even BΣ0

2,
let alone IΣ0

2.
(6) P + BΣ0

2 is equivalent to IΣ0
2.

Thus P is quite unusual reverse mathematically. It is a result in the
standard literature with a proof not primarily by induction. Indeed,
it makes no explicit mention of induction, recursiveness, or formulas
in the arithmetic hierarchy. Nonetheless, it occupies a place that is
within the usual hierarchy of induction axioms but is different from all
the standard ones. We then thought that perhaps we could capture the
combinatorial essence of these arguments in a way that would isolate
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the reverse mathematical issues involved. This attempt led us to an ap-
proximation version of Π0

1G that we call Π0
1GA. Basically, it asserts not

that there is a generic for uniformly Π0
1 classes of dense sets but rather

that there is a function approximating such a generic. (Here approx-
imation is in the sense of the Shoenfield limit lemma which provides
computable functions f(x, s) approximating any function g 6T 0′ such
that (∀n)(∃t)(∀s > t)(∀x 6 n)[f(x, s) = g(x)]. The formal definition
is given after the proof of Theorem 3.1.)

This principle, Π0
1GA, is indeed sufficient to prove all the entries

marked 3 in Figure 2 (as well as those marked 4) and has much the
same quite unusual reverse mathematical status. It is not provable in
RCA0. It is provable from both IΣ0

2 and Π0
1G, so it is strictly weaker

than each of them, and indeed (like Π0
1G), is highly conservative over

RCA0 and so, in particular, does not prove, for instance, BΣ0
2 or WKL0.

On the other hand, like the principle P above, it joins BΣ0
2 up to IΣ0

2 in
the sense that IΣ0

2 is strictly stronger than each of these principles and
is implied by their conjunction. We do not know of any principles other
than the ones considered in this paper (except for trivial ones such as
BΣ0

2 → IΣ0
2) with such properties. Our investigations also led to some

properties of trees and their isolated paths. One gives an equivalent
of BΣ0

2 (Proposition B.1). A new one (FATT) is strictly weaker even
than BΣ0

2 but nonetheless not provable in RCA0 (Theorem B.2).
In the other direction, we also move up the induction hierarchy in

Appendix A. There we present natural generalizations Π0
nGA of Π0

1GA
to all levels of the arithmetic hierarchy. Essentially they say that there
are approximations (in the sense of the iterated limit lemma) to generics
for all uniformly Π0

n sequences of dense sets. The primary reverse
mathematical properties of Π0

1GA are then replicated all the way up
the hierarchy:

(1) IΣ0
n+1 ` Π0

nGA (Theorem A.1).
(2) Π0

nGA 0 BΣ0
2. (The discussion before Theorem A.1 shows that

Π0
nGA is Π1

1 conservative (and more) over RCA0.)
(3) RCA0 ` Π0

nG + BΣ0
n ↔ IΣ0

n (Theorem A.2).

Thus our reverse mathematical investigations of one model theoretic
theorem have led us to a new hierarchy of combinatorial principles
that are interspersed among the standard induction hierarchy in a very
interesting and unusual way.

A number of questions about the model theoretic and combinatorial
principles that we have investigated, and especially their reverse math-
ematical strength, are still open. We collect the most natural ones in
Section 8. Perhaps the most interesting from a foundational rather
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than simply technical point of view are the ones asking for a precise
determination of the reverse mathematical strength of groups of prin-
ciples. In particular Question 8.6 asks whether all the entries marked
3 in Figure 2 are equivalent and, if so, whether they are all equivalent
to Π0

1GA. If, indeed, all of these principles are equivalent, this would
give some evidence for the robustness of Π0

1GA as discussed above.
Returning to the relationship between reverse and computable model

theory, we would like to point to a general theme brought out by our
investigations here as well as those in [23]. The motivating issue is
the phenomenon in computable model theory of what one might call
partial effectivization. One begins with a classical type of model such as
atomic (prime) or (strongly 1-) homogeneous and the question of how
hard it is to construct such a model. Typically, the effective version
assumes that the underlying theory is decidable and asks about the
the possible degrees of models of the desired kind and, in particular,
whether (or under what conditions) there is a decidable one.

Our investigations of these questions from the viewpoint of reverse
mathematics point out that the standard computability theoretic work
ignores the issue of the complexity of verifying that the model con-
structed is of the desired kind and just accepts the classical proof.
Often, there is no difference. When, however, the definition of the kind
of model is not first order but calls for the existence of morphisms,
for example, then additional effectiveness considerations can be raised
about the complexity of the morphism required to verify the construc-
tion. A reverse mathematical analysis automatically levels the playing
field for both the construction and verification. In the reverse math-
ematical setting, one can show that a model constructed is prime or
strongly 1-homogeneous only by showing that the morphisms required
can also be constructed in the same system. It makes sense to carry
over these questions to computable model theory and ask how com-
plicated (in terms of Turing degree) it is to show that the morphisms
exist.

As an illustration, we take the two aforementioned topics investi-
gated reverse mathematically in [23], [3], and this paper: the existence
of prime models for every atomic theory (PMT) and the existence of
strongly 1-homogeneous models for every theory.

As we have mentioned, [9] shows that given a decidable atomic the-
ory T , every d 6 0′ with d′′ > 0′′ computes a prime model M of T .
However, if we look at the verification that the M computable from
d is prime (rather than atomic), we are required to produce, for every
N � T , an elementary embedding f : N → M. Now even if N is
decidable there may be no such f computable even in d. From the
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viewpoint of reverse mathematics [23] shows that PMT is equivalent
to ACA0. Thus in terms of a closure operation one needs the jump
operator and the morphisms are arithmetic in the data. However, the
computable model theorist should look more carefully at the question.
What is then seen is that one can always construct the required f com-
putably in T ′⊕M⊕N (for any prime model M of T and any model N
of T ). The proof of the reverse mathematical equivalence then shows
that this level of complexity is necessary.

Turning to strongly 1-homogeneous models, [8] shows that given a de-
cidable T one can construct a 1-homogeneous model M computably in
any PA degree. To verify that the model M is strongly 1-homogeneous
one must construct, for every pair of tuples ā and b̄ from M with the
same type, an automorphism f of M taking ā to b̄. Now for an ar-
bitrary 1-homogeneous model, it takes the jump of M to construct
such an automorphism. This can be seen from the proof that reverse
mathematically this general implication is equivalent to ACA0 (Propo-
sition 4.2). The computable model theorist can easily verify that M′

is also sufficient. On the other hand, as we have noted, Lange [26] and
Belanger [3] have shown that the existence of strongly 1-homogeneous
models for every theory is equivalent to WKL0. Belanger’s proof ex-
plicitly shows that if one constructs M still computably in a PA degree
d but carefully, then one can also simultaneously construct all the re-
quired automorphisms computably in d.

Thus our reverse mathematical investigations suggest a general type
of problem for computable model theory. When one proves that there is
a decidable or d-decidable model M with some property that requires
(in its definition) the existence of more than the elementary diagram
of M, then one should ask how hard it is to compute the other objects
(e.g. morphisms) required to verify that the definition holds of M.
Other natural examples for investigation include issues dealing with
categoricity for theories (as is common in model theory, rather than
for structures as is common in computable model theory), universality,
and saturation. Some of these questions have recently been investigated
reverse mathematically by Belanger in [2] and [3].

Another general connection between reverse and computable mathe-
matics (as well as degree classes more broadly) is suggested by the var-
ious notions of bounding degrees and their analyses as discussed above.
Given any principle expressed by a sentence of the form ∀X∃Y Φ(X, Y )
we can form a bounding operator BΦ : D → P(D) (where D is the
set of Turing degrees) defined by BΦ(x) = {y | (∀Z 6T x)(∃W 6T

y)Φ(Z,W )}. Examples considered in this paper include the ones gen-
erated by relativizing the atomic, homogeneous, and model bounding
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degrees to an arbitrary x. Indeed, most principles studied in reverse
mathematics are of this form with Φ arithmetic, or at times Π1

1. Note
that the images of these operators are always upward closed subsets
of D. More generally, we can consider almost jump operators J that
take degrees x to upward closed subsets J (x) of D (typically con-
tained in the cone above x). Examples include ones generated from
all the usual (definable) jump operators J , from the Turing jump to
sharps, by taking the image of x to be the cone above J(x). The
natural partial order 6 (and so the resulting equivalence relation ≡)
on both of these classes of operators is given by reverse inclusion, i.e.,
J 6 K ⇔ (∀x)[K(x) ⊆ J (x)]. Our results on the model theoretic
questions studied in this paper say that the operators corresponding to
AMT, HMT, and WMT are all equivalent.

The methods of comparing the strength of principles using bounding
operators and computable entailment are closely connected to the com-
putability theoretic reduction procedures between Π1

2 principles studied
in papers such as [21]. Many other results in reverse and computable
mathematics can be seen as saying interesting things about the nat-
ural ordering on bounding operators in general, or about specific in-
stances of it. One that does both not only shows the existence of
a minimal operator (above the one induced by the identity map on
degrees) but also identifies it with a model theoretic construction prin-
ciple. The obvious degree theoretic definition of this operator is given
by Φ(X, Y ) ≡ X <T Y . That it corresponds to a model theoretic as-
sertion (AST) about the existence of an atomic model of a theory with
a “nice” enumeration of its types is the content of Theorem 6.3 of [23].
Another correspondence between reverse mathematical principles and
standard degree classes studied in computability theory (other than
the obvious ones given by the PA degrees and the Turing jump) from
[23] is a type omitting theorem (OPT) shown there to be equivalent to
the existence of hyperimmune sets (relative to any given set). There
are many other examples that shed light on the structure of the order-
ing of bounding and almost jump operators. So, too, are there many
questions that can be raised in this setting and approached from both
the computability theoretic and reverse mathematical viewpoints.

1.3. An outline of the paper. In Section 2, we define several notions
used throughout the paper.

In Section 3, we establish some basic facts about AMT and related
principles. In particular, we introduce the principle Π0

1GA and prove
that it has the properties mentioned above. As the versions of Π0

1GA
for higher levels of the arithmetic hierarchy do not form a part of our
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main narrative, we leave their discussion to Appendix A. The principle
FATT mentioned above, which is also related to AMT, is discussed in
Appendix B.

In Section 4, we compare several classically equivalent definitions of
homogeneity from the reverse mathematical point of view. We also an-
alyze the strength of theorems relating homogeneous models to atomic,
prime, and saturated models. One tangential result on saturated mod-
els is left to Appendix C.

In Section 5, we introduce the characterizations by Goncharov and
Peretyat’kin of possible type spectra of (homogeneous) models. We
give several classically equivalent versions of the conditions in these re-
sults, and compare them reverse mathematically. We also analyze the
strength of the easier direction of these results (that the type spectrum
of a (homogeneous) model must satisfy these conditions). Finally, in
Section 5.5, we introduce HMT and its variants, including ones such as
WMT concerning the existence of general models (rather than homo-
geneous ones).

In Section 6.1, we discuss the effective versions of the above char-
acterizations (also due to Goncharov and Peretyat’kin). In particular,
we introduce the notions of extension function and extension function
approximation central to these effective versions, and compare them re-
verse mathematically. In Section 6.2, we study the reverse mathematics
of several versions of the computability theoretic results of Goncharov
and Peretyat’kin, summarizing our results in Figures 2 and 3 (see also
Figures 3 and 4). As mentioned above, along with versions provable
in RCA0 and ones equivalent to IΣ0

2, we obtain several that exhibit
behavior similar to that of Π0

1GA.
In Section 7, we study principles asserting the existence of exten-

sion function approximations under various versions of the conditions
of Goncharov and Peretyat’kin, and use our results to compare ver-
sions of AMT and HMT reverse mathematically and computability
theoretically. We show in particular that AMT, HMT, and WMT are
equivalent, both over RCA0 and in the sense of uniform computability
theoretic reducibility.

Finally, in Section 8, we gather several open questions arising from
our work.

2. Definitions

A few definitions given in this section have already been mentioned in
the introduction, but we include them here as well for ease of reference.
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2.1. Reverse mathematics. We assume familiarity with the basics of
reverse mathematics, but briefly describe some of its commonly studied
axiom systems. For a complete introduction to the field, see Simpson
[47]. For a shorter introduction focused on combinatorial and model
theoretic principles, see Hirschfeldt [20]. We work in the language of
second order arithmetic, with lower case letters representing number
variables and uppercase letters representing set variables. In particular,
every set we consider is assumed to be countable. We think of first order
objects, such as finite strings, as encoded by natural numbers, and of
second order objects, such as trees or models, as encoded by sets of
natural numbers (see [47] for more details).

Let P consist of axioms stating that the natural numbers form a
discrete ordered commutative semiring, together with set induction:

(0 ∈ X ∧ (∀n)[n ∈ X → n+ 1 ∈ X]) → (∀n)n ∈ X.

Let IΣ0
n be the following induction principle, expressed as an axiom

scheme.

(ϕ(0) ∧ (∀n)[ϕ(n) → ϕ(n+ 1)]) → (∀n)ϕ(n)

for all Σ0
n formulas ϕ.

Our base axiom system is RCA0, which consists of P together with
IΣ0

1 and the following set existence axiom scheme, which is just strong
enough to prove the existence of computable sets.

(∀n)[ϕ(n) ↔ ψ(n)] → (∃X)(∀n)[n ∈ X ↔ ϕ(n)]

for all Σ0
1 formulas ϕ and Π0

1 formulas ψ in which X does not occur
free.

A useful principle provable in RCA0 is bounded Σ0
1-comprehension

(see [47]), which for our purposes we state as follows. For any finite
sequence s of natural numbers and any Σ0

1 property P , there is a sub-
sequence of s consisting of those elements of s that satisfy P . Of
course, by taking complements, bounded Π0

1-comprehension also holds
in RCA0.

Another useful fact is that IΣ0
2 is equivalent over RCA0 to the finite

Π0
1-recursion principle (see [22]), which states that if ϕ is a Π0

1 formula
defining a total function, then for each z and n, there is a sequence
x0, . . . , xn such that x0 = z and ϕ(xi, xi+1) holds for all i < n.

Another collection of axioms schemes, related to IΣ0
n, is that of re-

stricted bounding principles. The bounding principle BΣ0
n is given by

the axiom scheme

(∀m)[(∀i < m)(∃u)ϕ(i, u) → (∃v)(∀i < m)(∃u < v)ϕ(i, u)]
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for all Σ0
n formulas ϕ in which v does not occur free. Over RCA0,

IΣ0
n implies BΣ0

n, and BΣ0
n implies IΣ0

n−1; these implications are strict
(Paris and Kirby [40]; see also Hájek and Pudlák [17]).

The principle BΠ0
n is defined in the analogous way. We use the fact

that BΣ0
2 and BΠ0

1 are equivalent over RCA0 (see [17]). Another useful
principle equivalent to BΣ0

2 over RCA0 is the finite axiom of choice
for Π0

1 properties (see [17]): for any sequence n0, . . . , nk and any Π0
1

property P , if for each i 6 k there is an m with P (ni,m), then there
is a sequence m0, . . . ,mk such that P (ni,mi) for each i 6 k.

WKL0 is the axiom system that includes RCA0 and the principle
known as Weak König’s Lemma, which states that every infinite subtree
of 2<N has an infinite path. (Here a tree is a set of strings closed
under initial segments.) This system is strongly related to degrees of
completions of Peano arithmetic.

The last major system we consider here is ACA0, which consists of
RCA0 together with arithmetic comprehension:

(∃X)(∀n)[n ∈ X ↔ ϕ(n)]

for every arithmetic formula ϕ in which X does not occur free, where
a formula is arithmetic if it has no set quantifiers. Computability the-
oretically, ACA0 corresponds to the existence of the Turing jump.

The system ACA0 is strictly stronger than WKL0, which is in turn
strictly stronger than RCA0 (see Simpson [47]). We use the fact that
ACA0 is equivalent over RCA0 to the statement that for every function
f : N → N, the range of f exists, i.e., there is a set R such that n ∈ R
if and only if (∃m)f(m) = n (see [47]).

For a system S, a principle R, and a collection of sentences of
second-order arithmetic Γ, we say that R is conservative for Γ, or Γ-
conservative, over S if every sentence in Γ provable in S+R is provable
in S. For example, a classic result of Harrington (see [47]) is that Weak
König’s Lemma is Π1

1-conservative over RCA0.
A model in the language of second order arithmetic consists of a

first order part M , which is a structure in the usual language of first
order arithmetic, a subset S of the power set of the domain of M , and
the membership relation ∈ between elements of M and elements of
S. If M is the standard natural numbers, we say that this model is
an ω-model. We denote the natural numbers by N. Of course, when
interpreting a statement in a model (M,S) as above, N is interpreted as
M . An object is finite if it is coded by a natural number. For example,
when we refer to a finite sequence n0, . . . , nk of natural numbers, we
mean that 〈n0, . . . , nk〉 ∈ N, where 〈·, . . . , ·〉 is any standard encoding
of tuples of natural numbers as single natural numbers. A set is infinite
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if it is unbounded. Thus, when we say that there are infinitely many
natural numbers x such that some property P (x) holds, we mean that
for each n ∈ N there is an x > n such that P (x) holds. Note that, for a
model (M,S) in the language of second order arithmetic, there may be
A ⊂ M that are neither finite nor infinite in the above sense, though
if (M,S) � RCA0, then such an A cannot be in S.

2.2. Model theoretic notions. In this section, we introduce some
notation and discuss a few concepts and results of basic model theory.
See [4] or [30] for an introduction to model theory. For an overview of
computable model theory, see [1] or [18]. We assume that all theories
are consistent and complete, and that all languages include equality
(although our results for the most part do not depend on the latter
assumption; see Remark 5.2 for the one exception, which is easily han-
dled). As noted above, we think of second order model theoretic objects
such as theories and models as encoded by sets of natural numbers. In
particular, we assume that all languages and models are countable. We
use calligraphic letters such as A for models, and use the correspond-
ing roman letters such as A for their domains. Whenever we mention
a tuple of variables, we assume the variables in the tuple are distinct.
(When we mention a tuple of elements of a model, on the other hand,
we do not make this assumption.)

Definition 2.1. Let T be a theory and A a model of T .

(i) A formula θ(x̄) is consistent with T if T ∪ {(∃x̄)θ(x̄)} is con-
sistent, or equivalently, because of the completeness of T , if
(∃x̄)θ(x̄) ∈ T .

(ii) An n-type p(x̄) of T in the n-tuple of variables x̄ is a maximal
set of formulas in variables taken from x̄ consistent with T .

(iii) For a k-subtuple ȳ of an n-tuple x̄, and an n-type p(x̄), let p � ȳ
be the k-type consisting of all the formulas in p whose variables
are all in ȳ. We call such a type a subtype of p.

(iv) Let Sn(T ) be the set of all n-types of T (in all n-tuples of
variables), and let S(T ) =

⋃
n∈N Sn(T ).

(v) We say p ∈ Sn(T ) is a principal type if there exists a formula
ψ ∈ p such that T ` ψ → θ for all θ ∈ p. We call such a ψ a
generator of p and say ψ generates or isolates p.

(vi) A formula ϕ(x̄) is an atom of T if for every formula ψ(x̄), either
T ` ϕ→ ψ or T ` ϕ→ ¬ψ, but not both.

(vii) The theory T is atomic if for every formula ψ consistent with T ,
there is an atom ϕ of T such that T ` ϕ→ ψ. (In other words,
T is atomic if every formula consistent with T is an element of
some principal type of T .)
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(viii) An n-tuple ā ∈ A realizes an n-type p(x̄) ∈ Sn(T ) if A � θ(ā)
for all θ(x̄) ∈ p(x̄). In this case we also say that A realizes p.
The type of ā in the variables x̄ (where |x̄| = |ā|) is the type
p(x̄) that ā realizes.

(ix) The type spectrum of A is

T(A) = {p ∈ S(T ) : A realizes p}.

(x) The model A is atomic if every tuple of elements of A satisfies
an atom of T . (In other words, A is atomic if T(A) consists of
principal types.)

(xi) The model A is prime if it is elementarily embeddable in each
model of T .

(xii) The model A is saturated if for all ā ⊆ A and p ∈ Sn(Th(A, ā)),
the type p is realized in A, where (A, ā) is the expanded struc-
ture obtained by adding to A constants for the elements of ā,
and Th(A, ā) is the theory of this structure.

(xiii) A partial type of T in the variables x̄ is a (not necessarily max-
imal) set of formulas in variables taken from x̄ consistent with
T . The model A is strongly saturated if for all ā ⊆ A, each par-
tial type of Th(A, ā) is realized in A. (This notion is of course
classically equivalent to being saturated, but this equivalence is
not provable in RCA0, and is in fact equivalent to WKL0; see
Appendix C.)

Since we are interested in statements about the existence of homo-
geneous models realizing particular sets of types, we need a way to
encode lists (i.e., enumerations) of types.

Definition 2.2. Let T be a theory and let {θi}i∈N be an effective listing
of the formulas in the language of T . We identify p ∈ S(T ) with the
function fp ∈ 2N such that fp(i) = 1 if θi ∈ p and fp(i) = 0 otherwise.
Let p � s = p ∩ {θi}i<s. We identify p � s with the function fp � s.

Let X = {pi}i∈N ⊂ S(T ). We encode X as a function f(i, j) such
that for each i, the first value f(i, 0) encodes the set of free variables
of pi, and f(i, k + 1) = fpi

(k).

Note that, in both the computability theoretic and the reverse math-
ematical settings, we have to deal with enumerations of potential type
spectra, because even if {pi}i∈N and {qi}i∈N are equal as sets of types,
there may be no effective way to go from an index i to an index j such
that qj = pi. We say that a list of types {pi}i∈N is computable if the
function f in Definition 2.2 is computable.
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In computable model theory, a model A can be associated with its
atomic diagram or with its elementary diagram. Let LA be the expan-
sion of the language of A obtained by adding a constant symbol for
each element of A. The elementary diagram De(A) of A is the set of all
sentences of LA that are true in A (under the obvious interpretation of
the new constant symbols). The atomic diagram Da(A) of A is the set
of all atomic sentences of LA that are true in A. Alternatively, we can
associate these diagrams with satisfaction predicates. A predicate S is
an elementary (atomic) satisfaction predicate for A if for any (atomic)
formula θ(c̄) with constants from A, the predicate S holds of θ(c̄) if
and only if θ(c̄) is true in A. In computable model theory, we measure
the complexity of a model by the degree theoretic complexity of these
diagrams. We say that A is computable if Da(A) is computable and
that A is decidable if De(A) is computable, and we similarly define the
notions of d-computable and d-decidable for any degree d. (Note that
for a theory T , saying that T is decidable is just another way of saying
that T is computable.)

When investigating the strength of theorems of model theory such
as AMT and HMT, decidable models and their relativizations are the
more relevant notions. Accordingly, in reverse mathematics, a model A
includes a function interpreting the terms of the language in the model,
as well as the full satisfaction predicate for A. For a formal definition
of a model in this setting, see Simpson [47, Definition II.8.3].

In several places below, we specify a theory by giving a set A of
axioms that generates it. In each case, the language of A does not
include any function symbols, so all terms are either variables or con-
stant symbols. To show that such a set A does in fact specify a theory
T , we use quantifier elimination. Recall that to show that A admits
effective quantifier elimination, it is enough to give a procedure to find
a quantifier-free formula ψ(x̄) that is A-equivalent to a given existential
formula (∃y)ϕ(x̄y), where ϕ(x̄y) is a conjunction of literals, i.e., atomic
formulas and negations of atomic formulas. (We always assume that we
have propositional constants T and F for true and false, respectively.)
It then follows that the deductive closure T of A is ∆0

1-definable from
A and complete, assuming that the set of quantifier-free sentences con-
sistent with A is itself ∆0

1 definable from A. (It is easy to see that this
assumption holds if the set of literal sentences (i.e., literals with no free
variables) consistent with A is ∆0

1, and hence that it always holds when
the language of A does not include constant symbols, as then the only
literal sentences are T and F.) It also follows that every type of T is
determined by the literals it contains, so we can identify the types of
T with atomic types, i.e., sets of literals p(x̄) such that for each atomic
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formula ψ with variables among the elements of x̄, either ψ ∈ p(x̄) or
¬ψ ∈ p(x̄).

Remark 2.3. Let L be the language of T , and let L′ be any finite
sublanguage of L that includes all symbols occurring in ϕ. Say that a
formula ψ(ū) is an L′-atomic diagram if it is a conjunction of literals
in L′; for every atomic θ in L′ with variables among those in ū, exactly
one of θ and ¬θ occurs in ψ; and ψ is consistent with the usual rules
for equality. It is easy to see that there is a procedure that, given
any conjunction δ of literals in L′, finds a disjunction of L′-atomic
diagrams that is equivalent to δ (or returns F if δ contains both θ
and ¬θ for some θ, or is not consistent with the rules for equality).
Since existential quantifiers distribute over disjunctions, in performing
an effective quantifier elimination procedure as above, we may assume
that ϕ is itself an L′-atomic diagram.

If u = y occurs in ϕ, where u ∈ x̄ or u is a constant symbol, then we
may replace all occurrences of y in ϕ by u and drop the (∃y) quantifier
to obtain a quantifier-free formula equivalent to (∃y)ϕ(x̄y). Similarly,
if u = v occurs in ϕ, where u ∈ x̄ or u is a constant symbol, and v ∈ x̄
is distinct from u, then we may replace all occurrences of v in ϕ by u
and move u = v outside the existential quantifier. If we now have both
θ and ¬θ occurring in ϕ, then ` (∃y)ϕ(x̄y) ↔ F. Thus we may assume
that ϕ is an L′-atomic diagram that includes ¬u = v for all u such that
u ∈ x̄ or u is a constant symbol, and all v ∈ x̄y distinct from u.

Suppose there is a binary relation symbol E in L′ such that A asserts
that E is an equivalence relation. Then there clearly is a procedure
that, given a L′-atomic diagram ψ, decides whether ψ is consistent
with the assertion that E is an equivalence relation (that is, whether ψ
includes E(u, v) whenever it includes u = v, includes E(u, v) whenever
it includes E(v, u), and includes E(u,w) whenever it contains E(u, v)
and E(v, w), where in each case, each of u, v, and w is a variable or
a constant symbol). If this is not the case, then A ` (∃y)ψ(x̄y) ↔ F,
so we may assume that our L′-atomic diagram ϕ is consistent with the
assertion that E is an equivalence relation for any such E.

2.3. Other notions. We define a few basic notions about trees that
appear in our proofs below. We discuss the connection between trees
and theories in Section 3; for more on this topic, see Lange and Soare
[29].

Definition 2.4. (i) A (binary) tree T is a subset of 2<N closed
under initial segments, i.e., if σ ∈ T and τ ≺ σ then τ ∈ T .
(As this is the only kind of tree considered below, we omit the
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word “binary”.) The set of (infinite) paths of T is

[T ] = {f ∈ 2N : (∀n)f � n ∈ T }.
(ii) A tree T is extendible if for every σ ∈ T , at least one of σ0 and

σ1 is in T . (In other words, T is extendible if every σ ∈ T can
be extended to an infinite path of T .)

(iii) Suppose T is extendible. A node τ ∈ T is an atom of T if for
each n > |τ |, there is exactly one σ ∈ T of length n extending
τ . In other words, τ ∈ T is an atom of T if there is only one
f ∈ [T ] extending τ . We say that this f is isolated, that τ is a
generator of f , and that τ isolates or generates f .

(iv) An extendible tree T is atomic if for every σ ∈ T there is an
atom τ ∈ T extending σ. It is strongly atomic if for every finite
collection σ0, . . . , σn ∈ T there is a finite collection τ0, . . . , τn
of atoms of T such that each τi extends σi. (Of course, every
atomic tree is strongly atomic, but this fact cannot be proved
in RCA0; see Appendix B.)

3. The Atomic Model Theorem and related principles

In this section, we discuss a few principles that play a significant
role below. As mentioned in the introduction, Hirschfeldt, Shore, and
Slaman [23] studied the reverse mathematical strength of the following
basic model theoretic fact.

AMT (Atomic Model Theorem): Every atomic theory has an
atomic model.

They showed that AMT is a fairly weak principle, but is nevertheless
not provable in WKL0. (See [23] for details.)

AMT is also closely related to the following genericity principle.
(When we say that D is a Π0

1 set of strings, we mean that D is a
Π0

1 predicate on 2<N, and write σ ∈ D to mean that D holds of σ. This
notation does not imply that D exists as a set.)

Π0
1G: For any uniformly Π0

1 collection of sets Di, each of which is dense
in 2<N, there is a G such that (∀i)(∃m)[G � m ∈ Di].

Conidis [6] showed that AMT and Π0
1G are computability theoretic

equivalent. In the context of reverse mathematics, his result shows that
RCA0+AMT and RCA0+Π0

1G have the same ω-models. Subsequently,
Hirschfeldt, Shore, and Slaman [23] showed that Π0

1G implies AMT over
RCA0, while AMT implies Π0

1G over RCA0 + IΣ0
2, but not over RCA0.

They also established the following conservativity results.

Theorem 3.1 (Hirschfeldt, Shore, and Slaman [23]).
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(1) AMT and Π0
1G are restricted Π1

2-conservative over RCA0, i.e.,
conservative over RCA0 for sentences of the form

(∀A)[Θ(A) → (∃B)Φ(A,B)]

where Θ is arithmetic and Φ is Σ0
3. In particular, AMT and Π0

1G
are Π1

1-conservative over RCA0.
(2) AMT is Π1

1-conservative over RCA0 + BΣ0
2.

On the other hand, they showed that Π0
1G implies IΣ0

2 over RCA0 +
BΣ0

2. In Section 6.2, we discuss several model theoretic principles prov-
able from RCA0+Π0

1G that likewise imply IΣ0
2 over RCA0+BΣ0

2. Unlike
Π0

1G, however, these principles are true in every ω-model of RCA0, and
indeed are provable in RCA0 +IΣ0

2. It thus becomes interesting to find
a combinatorial principle, along the lines of Π0

1G, living in that same
part of the reverse mathematical universe. We obtain such a principle
by replacing the statement that Π0

1-generics exist by the statement that
they can be approximated:

Π0
1GA: For any uniformly Π0

1 collection of sets of strings D0, D1, . . .,
each of which is dense in 2<N, there is a sequence g0, g1, . . . ∈ 2N such
that

(∀i)(∃m)(∃t)(∀u > t)[gu � m = gt � m ∈ Di].

Note that this principle is equivalent to the version where we add the
requirement that (∀n)(∃t)(∀u > t)[gu � n = gt � n], since we can add
to the list D0, D1, . . . all sets of the form {σ : |σ| > n}, and if m > n,
then gu � m = gt � m implies gu � n = gt � n.

Of course, Π0
1G implies Π0

1GA, so conservativity results for the former
remain true of the latter. In particular, Π0

1GA does not imply BΣ0
2

over RCA0. The following two theorems show that Π0
1GA is in fact

equivalent to IΣ0
2 over BΣ0

2.

Theorem 3.2. RCA0 + IΣ0
2 ` Π0

1GA.

Proof. We argue in RCA0 + IΣ0
2. Let D0, D1, . . . be a uniformly Π0

1

collection of sets of strings, each of which is dense in 2<N. Let Di[s]
be the stage s approximation to Di. For each s, define σs,i for i 6 s
by recursion as follows. Let σs,0 be the length-lexicographically least
string in D0[s]. Given σs,i−1, let σs,i be the length-lexicographically
least extension of σs,i−1 in Di[s]. Each Di[s] contains Di, and hence is
dense, so the σs,i are all well-defined. Let gs = σs,s0

N.
Consider the statement

(∃t > i)(∀u > t)[σu,i = σt,i].
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This statement clearly holds of i = 0, since there are a string σ
and a t such that σ ∈ D0 and τ /∈ D0[t] for all τ that are length-
lexicographically less than σ. By a similar argument, if the statement
holds of i, then it holds of i + 1. Thus, by IΣ0

2, the statement holds
of all i. Fix i and let t be as in the above statement. Then σt,i ∈ Di,
since σt,i = σu,i ∈ Di[u] for all u > t. Furthermore, gu extends σt,i for
all u > t, so (∃m)(∃t)(∀u > t)[gu � m = gt � m ∈ Di]. �

The following proof is similar to that of the corresponding result for
Π0

1G in Hirschfeldt, Shore, and Slaman [23].

Theorem 3.3. RCA0 +BΣ0
2 +Π0

1GA ` IΣ0
2, and hence RCA0 +BΣ0

2 `
Π0

1GA ↔ IΣ0
2.

Proof. Fix a model of RCA0 + BΣ0
2 + Π0

1GA with first order part M
and second order part S. Suppose for the sake of a contradiction that
IΣ0

2 fails in this model. Then there is a Σ0
2 cut I in M ; i.e., x ∈

I ⇔ (∃y)(∀z)ϕ(x, y, z) for some ∆0
0 formula ϕ and I is a proper initial

segment of M closed under successor. Let Di be the set of all σ ∈ 2<N

such that, thinking of σ as a finite set, the last two elements of σ, in
order, are w and 〈i, x, y〉, and

(∃y′ < y)(∀z)[ϕ(x, y′, z) ∧ (∀y′ 6 w)(∃z′ < y)¬ϕ(x, y′, z′)].

Clearly the Di are uniformly Π0
1. As I is a cut and so not a member

of S, there is no bound on the least witnesses y such that (∀z)ϕ(x, y, z)
for x ∈ I, while by IΣ0

1 every x ∈ I has such a least witness y, and
by BΣ0

2 there is a bound on the z′ needed to show that y is in fact the
least witness for x. Thus each Di is dense, for if we consider any τ with
last element w there is an x ∈ I whose least witness y is larger than
w and a z > y such that counterexamples for all y′ 6 w can be found
below z. So if we let σ extend τ by adding on as its only new element
〈i, x, z〉 we have our extension of τ in Di as required.

Let g0, g1, . . . be as in Π0
1GA and let a be any number above all those

in I. Let Ei = {〈m, t〉 : (∀u > t)[gu � m = gt � m ∈ Di[u]]}. Note
that the Ei are uniformly Π0

1. We have (∀i < a)(∃〈m, t〉)〈m, t〉 ∈ Ei,
so by the finite axiom of choice for Π0

1 properties, there is a function
f with domain a that is M -finite (i.e., coded in M by a number) and
such that for each i < a there is an 〈m, t〉 ∈ Ei with the last element of
gt � m of the form 〈i, f(i), y〉. Since 〈m, t〉 ∈ Ei ⇒ gt � m ∈ Di, every
f(i) is in I.

We claim that f is one-to-one. Since I is a proper subset of a, this
fact gives us a contradiction, as we can show in RCA0 that no such
function exists. So assume for a contradiction that f(i) = f(j) = x
for i 6= j. Then there are 〈m, t〉 ∈ Ei and 〈m′, t′〉 ∈ Ej, and there are
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v, w, yi, yj, such that the next to last and last elements of gt � m are
v and 〈i, x, yi〉, and the next to last and last elements of gt′ � m′ are
w and 〈j, x, yj〉. Let u = max(t, t′). By the definitions of Ei and Ej,
we have gu � m = gt � m and gu � m′ = gt′ � m′. Thus we cannot
have m = m′, since gt � m and gt′ � m′ have different last elements.
So, without loss of generality, we may assume that m < m′ and so
v < 〈i, x, yi〉 6 w < 〈j, x, yj〉. We now have a contradiction, as the
definitions of Di and Dj then say that (∃y′ < yi)(∀z)ϕ(x, y′, z) and
(∀y′ 6 w)(∃z′ < y)¬ϕ(x, y′, z′), respectively, but yi 6 w. �

Corollary 3.4. AMT does not imply Π0
1GA over RCA0.

One can think of Π0
1GA as an attempt to capture the first order

difference between AMT and Π0
1G, but we do not know whether AMT+

Π0
1GA implies Π0

1G over RCA0.
There are principles analogous to Π0

1GA for higher levels of the arith-
metic hierarchy, and results corresponding to the above two theorems
hold for these principles. Since these results, while of independent
interest, are not needed in the rest of this paper, we leave them to
Appendix A.

Let T be an atomic theory. From an atomic model of T , we can
easily obtain a listing of the principal types of T . By applying Shore
blocking to a priority argument of Goncharov and Nurtazin [16] and
Harrington [19], Hirschfeldt, Shore, and Slaman [23] showed that it is
also provable in RCA0 that if there is a listing of the principal types of
T , then T has an atomic model. Thus AMT can be restated as “If T
is an atomic theory, then there is a listing of the principal types of T .”

There is a fairly straightforward translation between theories and
extendible trees. In one direction, given a theory T , we can consider
the tree T of types of T . More precisely, we define T as follows. For
each n, let ϕn

0 (x0, . . . , xn−1), ϕ
n
1 (x0, . . . , xn−1), . . . list the formulas with

free variables among x0, . . . , xn−1 in the language of T . For σ ∈ 2<N,
let

ϕn
σ ≡

∧
i:σ(i)=1

ϕn
i ∧

∧
i:σ(i)=0

¬ϕn
i .

Let T consist of all strings of the form 0n and all strings of the form
0n1σ such that ϕn

σ is consistent with T . It is easy to show in RCA0 that
T is an extendible tree, that if T is atomic then T is strongly atomic,
and that if there is a listing of the isolated paths of T , then there is a
listing of the principal types of T .

In the other direction, we have the following construction.
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Definition 3.5. Let L be the language {Pi}i∈N, where each Pi is
a unary relation symbol. For σ ∈ 2<N, let P σ(y) be the formula∧|σ|−1

n=0 P
σ(n)
n (y), where P 1

n(y) denotes the formula Pn(y) and P 0
n(y) de-

notes the formula ¬Pn(y). For a k-tuple s = (σ0, . . . , σk−1) of elements
of 2<N, let P s(y0, . . . yk−1) be the formula

∧
i<k P

σi(yi).
Given an extendible tree T ⊆ 2<N, let T (T ) be the deductive closure

in L of the following set R(T ) of axioms.

(1) (∃>mx)P σ(x) for all σ ∈ T and m ∈ N.
(2) ¬(∃x)P σ(x) for all σ 6∈ T .

We can clearly prove the existence of R(T ) in RCA0. The following
lemma shows that we can do more, and establishes the correspondence
between isolated paths of T and principal types of T (T ).

Proposition 3.6. The following hold in RCA0 for an extendible tree
T .

(1) T (T ) exists and is a theory, i.e., complete and consistent.
(2) If T is strongly atomic, then T (T ) is an atomic theory.
(3) From an enumeration of the principal types of T (T ), we can build

an enumeration of the isolated paths of T .

Proof. We argue in RCA0.
(1) We first show that R(T ) admits effective quantifier elimination,

as discussed at the end of Section 2.2. Fix an existential formula
(∃y)ϕ(x̄y), where ϕ(x̄y) is a conjunction of literals. Let m be such
that no Pi with i > m occurs in ϕ, and let L′ be the language consist-
ing of all Pi with i 6 m. As discussed in Remark 2.3, we may assume
that ϕ is an L′-atomic diagram, and that it includes ¬x = y for all
x ∈ x̄. Let σ be such that P σ(y) equals the conjunction of literals in
ϕ of the form Pi(y), and let ψ be the conjunction of literals in ϕ not
involving y (which is just T if there are no such literals). It is easy
to see that if σ ∈ T then R(T ) ` (∃y)ϕ(x̄y) ↔ ψ, and otherwise,
R(T ) ` (∃y)ϕ(x̄y) ↔ F. Thus R(T ) admits effective quantifier elimi-
nation, and so its deductive closure exists and is complete if consistent,
and hence a theory as required.

To show that T (T ) is consistent, we provide a model A of T (T ).
Since T is extendible, there is a function f : 2<N × N → 2 such that
for each σ ∈ T , if we think of f(σ, ·) as an element α of 2N, then α is
the leftmost path of T extending σ. Let the domain of A be N. Since
R(T ) admits effective quantifier elimination and there are only unary
relation symbols, we need to specify only what unary relations hold of
each n ∈ N. Let {τi}i∈N be an enumeration of T . For each i, j, k, let
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P
f(τi,k)
k (〈i, j〉) hold in A. (We assume our pairing function is bijective.)

Clearly A is a model of T (T ), and hence T (T ) is consistent.
(2) Suppose that T is strongly atomic, and fix a formula θ(x0, . . . , xn)

consistent with T (T ). By quantifier elimination, we may assume that
θ is quantifier-free, and hence that it is a disjunction of conjunctions of
literals. Since any disjunction is implied by each of its disjuncts, and θ
has at least one disjunct that is consistent with T (T ), we may in fact
assume that θ is a conjunction of literals. Since we are working in a
language with only unary relation symbols, we can split θ into formulas
θ0(x0), . . . , θn(xn) consistent with T (T ), and it suffices to show that
each θi is implied over T (T ) by an atom of T (T ). Since each θi(xi) is a
conjunction of literals consistent with T (T ), there are σ0, . . . , σn ∈ T
such that each P σi(xi) logically implies θi(xi). Since T is strongly
atomic, there are atoms τ0, . . . , τn of T such that τi extends σi. It is
easy to check that each P τi(xi) is an atom of T (T ) and implies θi(xi)
over T (T ).

(3) From an enumeration of the principal types of T (T ), we can build
an enumeration p0(x), p1(x), . . . of the principal 1-types of T (T ) in the
variable x. Let fi(k) = 1 if Pk(x) ∈ pi, and let fi(k) = 0 otherwise.
Then it is easy to see that f0, f1, . . . is an enumeration of the isolated
paths of T . �

Thus we can further restate AMT as “If T is a strongly atomic
extendible tree, then there is a listing of the isolated paths of T .” If we
weaken the hypothesis of this statement, we get a different principle:

ATT (Atomic Tree Theorem): If T is an atomic extendible tree,
then there is a listing of the isolated paths of T .

ATT implies AMT by definition. The finite axiom of choice for Π0
1

properties, and hence BΣ0
2, implies that every atomic tree is strongly

atomic. (We show in Appendix B that this statement is in fact equiv-
alent to BΣ0

2.) Thus ATT is provable in RCA0 + BΣ0
2 + AMT. It is

easy to see that ATT is also provable in RCA0 + Π0
1G. These two

facts together imply that ATT is restricted Π1
2-conservative over RCA0

and Π1
1-conservative over RCA0 + BΣ0

2. They also imply that ATT is
strictly weaker than both Π0

1G and AMT + BΣ0
2.

We do not know whether AMT (or even AMT + Π0
1GA) implies

ATT over RCA0. Assuming AMT does not imply ATT, ATT is strictly
intermediate in strength between AMT and AMT+BΣ0

2, which suggests
the idea of “miniaturizing” ATT, as we did to Π0

1G to obtain Π0
1GA,

yielding a principle strictly weaker than BΣ0
2 but not provable in RCA0.

We show in Appendix B that this idea can indeed be implemented.
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4. Defining homogeneity

In this section, we compare several classically equivalent definitions
of homogeneity.

Definition 4.1. Let M be a model. By an M-tuple we mean a tuple
of elements of M . For M -tuples ā and b̄, we write ā ≡ b̄ to mean that
ā and b̄ have the same type. (If the language of M does not include
equality, then the definition of ≡ should also include the requirement
that (a0, . . . , an) ≡ (b0, . . . , bn) implies that ai = aj if and only if bi =
bj.)

(i) A model M is 1-point homogeneous if for each pair of M -tuples
ā ≡ b̄ and each c ∈M , there is a d ∈M such that āc ≡ b̄d.

(ii) A model M is 1-homogeneous if for each pair of M -tuples ā ≡ b̄
and each M -tuple c̄, there is an M -tuple d̄ such that āc̄ ≡ b̄d̄.

(iii) A model M is homogeneous if for each finite sequence of pairs
of M -tuples ā0 ≡ b̄0, . . . , ān ≡ b̄n and each finite sequence of M -
tuples c̄0, . . . , c̄n, there are M -tuples d̄0, . . . , d̄n such that āic̄i ≡
b̄id̄i for all i 6 n.

(iv) A model M is strongly 1-homogeneous if for each pair of M -
tuples ā ≡ b̄, there is an automorphism of M taking ā to b̄.

These definitions are easily seen to be classically equivalent by back
and forth constructions. ACA0 is clearly powerful enough to carry out
these constructions, so all of our definitions are equivalent in ACA0.
However, as we show in this section, in RCA0 the situation is different.
Of course, in RCA0 we do have (iii) ⇒ (ii) ⇒ (i), as well as (iv) ⇒ (ii).
We now consider the remaining implications. Figure 1 summarizes our
results. The entry in row R and column C describes the strength of
the principle stating that every model with property R has property
C, in terms of a principle equivalent to it over RCA0.

1-pt. hom 1-hom. hom. strongly 1-hom.
1-pt. hom IΣ0

2 IΣ0
2 ACA0

1-hom. RCA0 BΣ0
2 ACA0

hom. RCA0 RCA0 ACA0

strongly 1-hom. RCA0 RCA0 BΣ0
2

Figure 1. Versions of homogeneity

Definition (i) is the standard one, but (iii) is better behaved than
either (i) or (ii) from the reverse mathematical point of view. In par-
ticular, it is the one that yields a version of HMT equivalent to AMT,
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as shown in Theorem 7.6. By Theorem 4.3 below, the implication from
(i) to (ii) is equivalent to IΣ0

2, and by Theorem 4.4, the implications
from (ii) to (iii) and from (iv) to (iii) are both equivalent to BΣ0

2. Since
(i)–(iii) assert the existence of first order objects, while (iv) asserts the
existence of a second order object (namely, an automorphism of M),
it is not surprising that the implications from (i)–(iii) to (iv) are at
the level of ACA0. We have already noted that they all follow from
ACA0. We now show that the weakest of them implies ACA0, using
an example built by Hirschfeldt, Shore, and Slaman [23, Theorem 2.3]
to show that the statement that any two atomic models of the same
theory are isomorphic implies ACA0 over RCA0.

Proposition 4.2. The statement that every homogeneous model is
strongly 1-homogeneous, i.e., (iii) ⇒ (iv) in Definition 4.1, implies
ACA0 over RCA0.

Proof. The example in [23] consists of two models, A and B, in a lan-
guage with unary relation symbols Ri and Ri,j for i, j ∈ N, defined
as follows. The domains of both A and B are N and in each the in-
terpretation of Ri is {〈i, n〉 | n ∈ N}. Let ∅′s be the set of elements
entering the halting set ∅′ by stage s of its enumeration. (The basic
constructions of computability theory, including that of the sequence
∅′0, ∅′1, . . ., can be carried out in RCA0; see for instance [20] or [47].)
If i /∈ ∅′s then both interpretations of Ri,s are empty. Suppose that i
enters ∅′ at stage t. In A we put {i} × [0, t] into Ri,s for each s > t,
split the rest of {i} × N into two computable infinite pieces, put one
into Ri,s for each s > t, and keep the other out of all the Ri,s. In B
we keep {i}× [0, t] out of all the Ri,s, split the rest of {i}×N into two
computable infinite pieces, put one into Ri,s for each s > t, and keep
the other out of all the Ri,s.

We modify this example by adding a binary relation symbol E to
the language, and letting M be the model obtained by letting the
interpretation of E be an equivalence relation splitting the domain
into two computable infinite equivalence classes, one of which is a copy
of A and the other a copy of B. To be precise, let M = N and let
EM(x, y) hold if and only if x and y are both even or both odd. Let
Ri(2n) hold in M if and only if Ri(n) holds in A, let Ri(2n + 1) hold
in M if and only if Ri(n) holds in B, and act similarly for Ri,s.

A simple modification of the argument in the proof of Theorem 2.3
of [23] shows that M provably exists in RCA0. (All we need to add
to the proof of quantifier elimination for the theory of M is a check of
the consistency restrictions imposed by the axioms for the equivalence
relation E, as discussed in Remark 2.3.) It is also easy to show in
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RCA0 that there are a, b ∈ M such that a ≡ b and ¬EM(a, b), so if
M is strongly 1-homogeneous, then A ∼= B, which implies ACA0, as
shown in the proof of Theorem 2.3 of [23]. Thus it suffices to argue in
RCA0 that M is homogeneous.

It is not difficult to see that, working in RCA0, we can define a
function f such that for each a, x, and i < 2, we have f(a, x, i) > x
and f(a, x, i) ≡ a (i.e., the elements f(a, x, i) and a of M have the
same 1-type), and EM(a, f(a, x, i)) if and only if i = 1.

Let ā0 ≡ b̄0, . . . , ān ≡ b̄n and c̄0, . . . , c̄n beM -tuples. For eachm 6 n,
proceed as follows. Let ām = (am,0, . . . , am,k), let b̄m = (bm,0, . . . , bm,k),
and let c̄m = (cm,0, . . . , cm,l). For each j 6 l, proceed as follows. If
cm,j = am,j′ for some j′, then let dm,j = bm,j′ . Otherwise, let x > bm,p

for all p 6 k. If EM(am,0, bm,0) then let dm,j = f(cm,j, x, 1); otherwise,
let dm,j = f(cm,j, x, 0).

Let d̄m = (dm,0, . . . , dm,l). It is easy to check that āmc̄m ≡ b̄md̄m for
all m 6 n. Thus M is homogeneous. �

The remaining implications between our definitions of homogeneity
are more subtle, involving induction and bounding principles.

Theorem 4.3. The statement that every 1-point homogeneous model
is 1-homogeneous, i.e., (i) ⇒ (ii) in Definition 4.1, is equivalent to IΣ0

2

over RCA0.

Proof. Let M be 1-point homogeneous. Let ā ≡ b̄ and c̄ = (c0, . . . , cn)
be M -tuples. For each i 6 n, the existence of a sequence d0, . . . , di−1

such that (ā, c0, . . . , ci−1) ≡ (b̄, d0, . . . , di−1) is a Σ0
2 property of i, so

Σ0
2-induction suffices to show that such sequences exist for all i, in

particular i = n, which implies that M is 1-homogeneous.
We now argue in RCA0 to obtain the reversal. We use the equivalence

between IΣ0
2 and finite Π0

1-recursion mentioned in Section 2.1. Let ϕ
be a Π0

1 formula defining a total function, and fix z and n. We build a
1-point homogeneous model M such that if M is 1-homogeneous then
there is a sequence x0, . . . , xn with x0 = z and ϕ(xi, xi+1) for all i < n.

We work in the language with unary relation symbols Pi for i ∈
N and a binary relation symbol E. Let A be the following set of
axioms, which we write informally, as formalizing them in our language
is straightforward.

(1) Pi+1(x) → Pi(x) for all i ∈ N.

(2) E is an equivalence relation with two classes.
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(3) Within each E-equivalence class, for each i ∈ N there are infin-
itely many x such that Pi(x)∧¬Pi+1(x), and there are infinitely
many x such that ¬P0(x).

It is easy to show that A admits effective quantifier elimination,
as discussed at the end of Section 2.2: Fix an existential formula
(∃y)ϕ(x̄y), where ϕ(x̄y) is a conjunction of literals. Let m be such
that no Pi with i > m occurs in ϕ, and let L′ be the language con-
sisting of E and all Pi with i 6 m. As mentioned in Remark 2.3, we
may assume that ϕ is an L′-atomic diagram that includes ¬x = y for
all x ∈ x̄ and is consistent with the assertion that E is an equivalence
relation. Let ∼ be the equivalence relation on the variables in x̄y de-
fined by letting u ∼ v hold if and only if ϕ contains E(u, v). If ∼ has
more than two equivalence classes, or ϕ contains both Pj(y) and ¬Pi(y)
for i < j, then A ` (∃y)ϕ(x̄y) ↔ F. Otherwise, let ψ be the result
of removing from ϕ all literals involving y (and hence is just T if all
literals in ψ involve y). Then it is easy to see that A ` (∃y)ϕ(x̄y) ↔ ψ.

We now specify a 1-point homogeneous model M of A. By effec-
tive quantifier elimination, it suffices to specify the atomic diagram
of M. Let s0, s1, . . . list all nonempty finite sequences of natural
numbers with first element z. Let θ(k) hold if and only if, writing
sk = (z = m0, . . . ,ml−1), we have ϕ(mi,mi+1) for all i < l − 1. Note
that θ is Π0

1, so there is a sequence of sets R0 ⊇ R1 ⊇ · · · such that
θ(k) if and only if k ∈ Ri for all i. We may assume that for each i,
there are infinitely many k such that i is the least number for which
k /∈ Ri. Note also that if θ(k) and θ(k′) both hold for k 6= k′, then sk

and sk′ must have different lengths, since ϕ defines a function.
Let the domain M of M be all numbers of the form 〈i, j, k〉 with

i, j ∈ {0, 1} and k ∈ N. Let EM hold of two such numbers if and only
if they have the same first coordinate. Let PM

m (〈i, 0, k〉) hold if and
only if k = 〈l, x〉 for some l > m and x ∈ N. Let PM

m (〈0, 1, k〉) hold for
all k ∈ N. Let PM

m (〈1, 1, k〉) hold if and only if k ∈ Rm. Clearly, M is
a model of A.

To see that M is 1-point homogeneous, let ā = (a0, . . . , am−1) ≡ b̄ =
(b0, . . . , bm−1) be M -tuples and let c ∈ M . If c = ai for some i < m
then we can let d = bi and have āc ≡ b̄d, so we may assume that is not
the case. Say that ā and b̄ are on opposite sides if there is an i < m
such that ai and bi have different first coordinates (in which case, the
same must hold of all pairs ai, bi). Otherwise, say that ā and b̄ are on
the same side. Let l be large enough so that every number of the form
〈i, j, x〉 for x > l is bigger than all the bi. We have several cases.
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(1) If ā and b̄ are on the same side and c is of the form 〈i, 0, 〈k, x〉〉,
then let d = 〈i, 0, 〈k, x′〉〉 for some x′ such that 〈k, x′〉 > l.

(2) If ā and b̄ are on the same side and c is of the form 〈0, 1, j〉, then
let d = 〈0, 1, j′〉 for some j′ > l.

(3) If ā and b̄ are on the same side, c is of the form 〈1, 1, j〉, and
θ(j) does not hold, then let k be least such that j /∈ Rk and let
d = 〈1, 0, 〈k, x〉〉 for some x such that 〈k, x〉 > l.

(4) If ā and b̄ are on opposite sides and c is of the form 〈i, 0, 〈k, x〉〉,
then let d = 〈1− i, 0, 〈k, x′〉〉 for some x′ such that 〈k, x′〉 > l.

(5) If ā and b̄ are on opposite sides, c is of the form 〈1, 1, j〉, and θ(j)
holds, then let d = 〈0, 1, j′〉 for some j′ > l.

(6) Finally, if ā and b̄ are on opposite sides and c is of the form
〈0, 1, j〉, or ā and b̄ are on the same side, c is of the form 〈1, 1, j〉,
and θ(j) holds, then proceed as follows. Let s be the longest
string such that s = sj′ for some j′ such that θ(j′) and bi =
〈1, 1, j′〉 for some i < m, if there is such a string, and let s be the
empty string otherwise. (Note that we can pick out the set of j′

such that θ(j′) and bi = 〈1, 1, j′〉 for some i < m by bounded Π0
1-

comprehension.) Then, by the hypothesis on ϕ, there is a string
sj′′ of length |s|+ 1 such that θ(j′′) holds. Let d = 〈1, 1, j′′〉, and
note that d 6= bi for all i < m.

In any case, it is easy to check that āc ≡ b̄d.
Now suppose that M is 1-homogeneous. Since clearly 〈0, 0, 0〉 ≡

〈1, 0, 0〉, there exist d0, . . . , dn−1 such that

(〈0, 0, 0〉, 〈0, 1, 0〉, . . . , 〈0, 1, n− 1〉) ≡ (〈1, 0, 0〉, d0, . . . , dn−1).

We must have di = 〈1, 1, ki〉 for each i < n. The numbers ki are
all distinct and all satisfy θ, so at least one ski

has length at least
n. This string witnesses the fact that the instance of Π0

1-recursion
corresponding to ϕ, n, and z holds. �

Theorem 4.4. The following are equivalent over RCA0.

(1) BΣ0
2

(2) Every 1-homogeneous model is homogeneous, i.e., (ii) ⇒ (iii) in
Definition 4.1.

(3) Every strongly 1-homogeneous model is homogeneous, i.e., (iv)
⇒ (iii) in Definition 4.1.

Proof. We first argue in RCA0 + BΣ0
2 to prove (2), and hence (3). Let

M be 1-homogeneous, let ā0 ≡ b̄0, . . . , ān ≡ b̄n be pairs of M -tuples,
and let c̄0, . . . , c̄n be M -tuples. By 1-homogeneity, for each i 6 n, there
is an M -tuple d̄ such that āic̄i ≡ b̄id̄. The condition that two given M -
tuples have the same type is Π0

1, so by the version of the finite axiom
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of choice mentioned in Section 2.1, there is a sequence of M -tuples
d̄0, . . . , d̄n such that āic̄i ≡ b̄id̄i for each i 6 n.

We now argue in RCA0 to show that (3) implies BΣ0
2, and hence

so does (2). Assume that every strongly 1-homogeneous model is ho-
mogeneous. We show that BΠ0

1 holds. (Recall that BΠ0
1 and BΣ0

2

are equivalent over RCA0.) Let Ψ be a Π0
1 formula and n a number

such that (∀i < n)(∃u)Ψ(i, u). We build a strongly 1-homogeneous
model M such that if M is homogeneous then there is a v for which
(∀i < n)(∃u < v)Ψ(i, u). Let Φ be a quantifier-free formula such that
Ψ(i, u) ≡ (∀z)Φ(i, u, z).

A first approach. Since our model is somewhat complicated, we begin
by sketching a simpler version that does not prove the theorem but
helps motivate our full construction. We work in the language with
unary relation symbols Ui for i < n and Ri for i ∈ N, and a binary

relation symbol E. Let Â be the following set of axioms.

(1) The Ui partition the universe into pairwise disjoint sets.

(2) E is an equivalence relation. If E(x, y) holds then Ui(x) and
Ui(y) both hold for some i < n, and E splits each Ui into two
infinite classes.

(3) Rk+1(x) → Rk(x) for all i ∈ N.

(4) For each i < n and each m ∈ N there are infinitely many x in
each E-equivalence class of Ui such that Rk(x) holds if and only
if k < m.

It is easy to show that Â admits effective quantifier elimination. Let

N be the model of Â defined as follows. The universe N of N consists
of all numbers of the form 〈i, j,m〉 with i < n, j ∈ {0, 1}, and m ∈ N.
Let UN

i (x) hold if and only if the first coordinate of x is i. Let EN (x, y)
hold if and only if x and y have the same first and second coordinates.
For j ∈ {0, 1}, let RN

k (〈i, j, 2m〉) hold if and only if k < m. Let
RN

k (〈i, 0, 2m+1〉) hold for all k. Let RN
k (〈i, 1, 2〈m, c〉+1〉) hold if and

only if (∃u < m)(∀z < k)Φ(i, u, z).
Note that (∀k)(∃u < m)(∀z < k)Φ(i, u, z) ↔ (∃u < m)Ψ(i, u). (The

right-to-left-direction is obvious. For the other direction, suppose that
(∀u < m)¬Ψ(i, u). Then for each u < m there is a zu such that
¬Φ(i, u, zu). These zu can be found effectively, so their maximum k
exists. Then (∀u < m)(∃z < k + 1)¬Φ(i, u, z).)
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Suppose N is homogeneous. Let ai = 〈i, 0, 0〉, let bi = 〈i, 1, 0〉, and
let ci = 〈i, 0, 1〉. Then ai ≡ bi for all i < n, so there are d0, . . . , dn−1

such that aici ≡ bidi for all i < n. It follows from the definition of
N and the remark in the previous paragraph that each di is of the
form 〈i, 1, 2〈mi, c〉 + 1〉 for some mi such that (∃u < mi)Ψ(i, u). Let
m = maxi<nmi. Then (∀i < n)(∃u < m)Ψ(i, u).

However, we cannot show that N is strongly 1-homogeneous, or even
1-homogeneous. Indeed, if we assume that N is 1-homogeneous, then
we can argue as above to obtainm0, . . . ,mn−1, because (a0, . . . , an−1) ≡
(b0, . . . , bn−1), so there are d0, . . . , dn−1 such that

(a0, . . . , an−1, c0, . . . , cn−1) ≡ (b0, . . . , bn−1, d0, . . . , dn−1).

To get around this problem, we introduce new binary relations be-
tween elements of different Ui’s. The goal is to ensure that if elements
(a0, . . . , an−1) ≡ (b0, . . . , bn−1) of a model M can be used to produce
m0, . . . ,mn−1 using 1-homogeneity as above, then these sequences al-
ready contain enough information to obtain m0, . . . ,mn−1 without ap-
pealing to 1-homogeneity. More generally, we want to ensure that if
(a0, . . . , ak−1) ≡ (b0, . . . , bk−1) then these sequences contain enough in-
formation to obtain an automorphism of M taking each ai to bi.

Axioms. We work in the language with unary relation symbols Ui for
i < n and Ri for i ∈ N, and binary relation symbols E and Qi for i ∈ N.
Let A be the following set of axioms, some of which we write informally,
as formalizing them in our language is straightforward. The first three
families of axioms are the same as above. The fourth ensures that the
Qi hold only between elements of different Uj’s. The fifth expresses
the fact that any existential statement with parameters that is not
forbidden by the other axioms holds. This last axiom is necessary to
ensure that A admits effective quantifier elimination.

(1) The Ui partition the universe into pairwise disjoint sets.

(2) E is an equivalence relation. If E(x, y) holds then Ui(x) and
Ui(y) both hold for some i < n, and E splits each Ui into two
infinite classes.

(3) Ri+1(x) → Ri(x) for all i ∈ N.

(4) If Qi(x, y) holds then Uj(x) and Uj′(y) hold for some j 6= j′.
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(5) Let x0, . . . , xk−1 be distinct elements and let i0, . . . , ik−1 be such
that Uij(xj) holds for all j < k. Let

F0, . . . , Fk−1, F̂0, . . . , F̂k−1, G0, . . . , Gk−1, Ĝ0, . . . , Ĝk−1

be finite sets such that Fj ∩ F̂j = Gj ∩ Ĝj = ∅ for all j < k. Then
for each i < n and each m ∈ N, there are infinitely many y in
each E-equivalence class of Ui such that

(a) ¬Rm(y) and, if m > 0, also Rm−1(y);
(b) for each j < k such that ij 6= i, we have Qd(xj, y) for all

d ∈ Fj and ¬Qd(xj, y) for all d ∈ F̂j; and
(c) for each j < k such that ij 6= i, we have Qd(y, xj) for all

d ∈ Gj and ¬Qd(y, xj) for all d ∈ Ĝj.

Quantifier elimination. To show thatA admits effective quantifier elim-
ination, as discussed at the end of Section 2.2, fix a formula (∃y)ϕ(x̄y),
where ϕ(x̄y) is a conjunction of literals. Let m be such that no Ri or
Qi with i > m occurs in ϕ, and let L′ be the language consisting of
E, all Ui with i < n, and all Ri and Qi with i 6 m. As mentioned
in Remark 2.3, we may assume that ϕ is an L′-atomic diagram that
is consistent with the assertion that E is an equivalence relation, and
includes ¬u = v for all distinct u, v ∈ x̄y.

If both Ui(u) and Uj(u) for j 6= i occur in ϕ, or ¬Ui(u) occurs in ϕ
for all i < n, then A ` (∃y)ϕ(x̄y) ↔ F. So we may assume that we can
partition x̄y into classes C0, . . . , Cn−1 such that if u ∈ Ci then Ui(u)
occurs in ϕ and ¬Uj(u) occurs in ϕ for all j 6= i with j < n. Suppose
that at least one of the following conditions holds.

(1) Both Ri(u) and ¬Rj(u) for j < i occur in ϕ.
(2) E(u, v) occurs in ϕ, and u ∈ Ci and u ∈ Cj for i 6= j.
(3) Qi(u, v) occurs in ϕ, and u, v ∈ Cj for some j < n.
(4) Let ∼ be the equivalence relation on the variables in x̄y defined

by letting u ∼ v hold if and only if ϕ contains E(u, v). Then
there is an i < n such that the restriction of ∼ to Ci has more
than two equivalence classes.

Then A ` (∃y)ϕ(x̄y) ↔ F. Otherwise, application of the fifth axiom
family of A shows that A ` (∃y)ϕ(x̄y) ↔ θ(x̄), where θ is the result
of removing from ϕ all literals involving y (and hence is just T if all
literals in ϕ involve y).

Thus the deductive closure T of A exists. We build a model M of A
below, thus showing T is a theory. First we describe and name some
of the types of T .
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Types. By effective quantifier elimination, the types of T can be iden-
tified with atomic types.

The 1-types of T in a given variable x are then of two kinds. We have
the principal type ri,j(x) for i < n and j ∈ N, which is determined by
Ui(x) and ¬Rj(x), and, if j > 0, also Rj−1(x). We also have the type
ri,∞(x), determined by Ui(x) and Rj(x) for all j ∈ N. Let ri,∞/m(x) be
the type determined by Ui(x) and Rj(x) if and only if (∃u < m)(∀z <
j)Φ(i, u, z). Note that ri,∞/m = ri,∞ if (∃u < m)Ψ(i, u) holds, and
otherwise ri,∞/m = ri,k for some k ∈ N. We use this type in the same
way as in our simplified model N above.

There are uncountably many 2-types of T , but we are interested in
only countably many of them. The 2-types p(x, y) that include both
Ui(x) and Ui(y) are all realized in the model M defined below, but we
do not need to refer to them directly. To describe the other 2-types in
given variables x and y realized in M, we first define the partial 2-type
si,j,S(x, y) for i < n and j ∈ N ∪ {∞}, and a finite or cofinite set S.
This type states that x has type ri,j and Qm(x, y) holds if and only if
m ∈ S. If S is finite then we say that a 2-type extending this partial
type is i-finitary. If S is cofinite then we say that a 2-type extending
this partial type is i-infinitary. Now let si0,i1,j0,j1,S0,S1(x0, x1) for i0 6= i1
be the 2-type determined by si0,j0,S0(x0, x1) ∪ si1,j1,S1(x1, x0).

We get around the deficiency of our simplified model N above by
ensuring that in M, if x0, x1 are not large enough to encode an m such
that Ψ(i, u) holds for some u < m, and we have Ui(x0), Ui(x1), and
¬E(x0, x1), then for some l ∈ {0, 1}, whenever Uj(y) holds for j 6= i, the
2-type of (xl, y) is i-finitary, while the 2-type of (x1−l, y) is i-infinitary.
To implement this strategy, we use the following definitions.

Let si,j,S/finc
d
(x, y) be the partial 2-type stating that x has type ri,j

and Qk(x, y) holds if and only if k ∈ S and either k < c or (∃u <
d)(∀z < k)Φ(i, u, z). Then si,j,S/finc

d
= si,j,S if Ψ(i, u) holds for some

u < d, and otherwise si,j,S/finc
d

= si,j,S′ for some finite set S ′. (Of course,
if S is finite, we could have S ′ = S.)

Let si,j,S/infcd
(x, y) be the partial 2-type stating that x has type ri,j

and Qk(x, y) holds if and only if k ∈ S or both k > c and (∀u <
d)(∃z < k)¬Φ(i, u, z). Then si,j,S/infcd

= si,j,S if Ψ(i, u) holds for some
u < d, and otherwise si,j,S/infcd

= si,j,S′ for some cofinite set S ′. (Of
course, if S is cofinite, we could have S ′ = S.)

Using these, we define 2-types such as si0,i1,j0,j1,S0/fin
c0
d0

,S1/inf
c1
d1

(x0, x1)

in the obvious way.
For each of the 2-types we have defined, if j, j0, or j1 is ∞, we also

consider the corresponding type with ∞ replaced by ∞/m as in the
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definition of ri,∞/m. For instance, the type si0,i1,∞/m,j1,S0,S1(x0, x1) is
defined in the same way as the type si0,i1,∞,j1,S0,S1(x0, x1), except that
x0 now has type ri0,∞/m instead of ri0,∞.

Each type of T can be specified by listing its 2-subtypes. Note in
particular that, by quantifier elimination, for tuples (a0, . . . , am) and
(b0, . . . , bm) of elements of the model M built below, if aiaj ≡ bibj for
all i, j 6 m, then (a0, . . . , am) ≡ (b0, . . . , bm).

The model M. We now specify a strongly 1-homogeneous model M of
A. By effective quantifier elimination, it suffices to specify the atomic
diagram of M.

The domain M of M consists of all numbers of the form 〈i, j, l,m〉
with i < n, j ∈ {0, 1}, and l,m ∈ N. For a ∈ M and k ∈ {1, 2, 3, 4},
let πk(a) be the kth coordinate of a.

Let UM
i (a) hold if and only if π1(a) = i. Let EM(a, b) hold if and

only if π1(a) = π1(b) and π2(a) = π2(b). Let RM
k (〈i, j, l, 2〈m, c〉〉) hold

if and only if k < m. Let RM
k (〈i, 0, l, 2m + 1〉) hold for all k. Let

RM
k (〈i, 1, l, 2〈m, c〉+1〉) hold if and only if (∃u < m)(∀z < k)Φ(i, u, z).

(We assume our pairing function is onto.)
In other words, we give 〈i, j, l, 2〈m, c〉〉 type ri,m, give 〈i, 0, l, 2m+1〉

type ri,∞, and give 〈i, 1, l, 2〈m, c〉 + 1〉 type ri,∞/m. This definition
ensures that for each i, there is an mi such that all elements of the form
〈i, 1, l, 2〈mi, c〉 + 1〉 have type ri,∞, but any sequence m0, . . . ,mn−1 of
such elements can be used to satisfy our instance of BΠ0

1.
In defining the interpretations of the Qk, the idea is to use elements

with third coordinate l to provide witnesses for the satisfaction of par-
ticular 1-types over elements with third coordinates less than l. In
particular, we provide witnesses to the satisfaction of the fifth axiom
group of A, though we have to do more than that, since we have to
realize i-infinitary types while preserving strong 1-homogeneity. To im-
plement the strategy described above for repairing the problem with
our previous model N , we also wish to ensure that the following prop-
erty holds. Let x, y have different first coordinates. Let i = π1(x) and
m = π4(x). Suppose that ¬Ψ(i, u) for all u < m. If π2(x) = 0 then the
type of (x, y) is i-finitary, and otherwise this type is i-infinitary.

We first define theQk on pairs of elements with the same third coordi-
nate. For each k, l ∈ N, let QM

k (〈i, j, l,m〉, 〈i′, j′, l,m′〉) hold if and only
if i′ 6= i and j = 1. That is, we give each pair (〈i, 0, l,m〉, 〈i′, j′, l,m′〉)
with i′ 6= i a type extending a partial type of the form si,d,∅ (which
is i-finitary), and each pair (〈i, 1, l,m〉, 〈i′, j′, l,m′〉) with i′ 6= i a type
extending a partial type of the form si,d,∞ (which is i-infinitary).
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Now let l > 0. Partition the elements of M of the form 〈i, 0, l, 2m+1〉
into infinite sets Bi,0,0, Bi,0,1, . . . . Let m ∈ N. Partition the elements of
M of the form 〈i, 0, l, 2〈m, c〉〉 into infinite sets Bi,3m+1,0, Bi,3m+1,1, . . . .
Partition the elements of M of the form 〈i, 1, l, 2〈m, c〉〉 into infinite
sets Bi,3m+2,0, Bi,3m+2,1, . . . . Partition the elements of M of the form
〈i, 1, l, 2〈m, c〉 + 1〉 into infinite sets Bi,3m+3,0, Bi,3m+3,1, . . . . Assign to
each x ∈ N

(1) a tuple (a0, . . . , ak−1) of elements of M with third coordinates
less than l,

(2) a tuple of numbers

(d0, . . . , dk−1, d
′
0, . . . , d

′
k−1, c0, . . . , ck−1, c

′
0, . . . , c

′
k−1),

and
(3) a tuple of finite or cofinite sets (S0, . . . , Sk−1, S

′
0, . . . , S

′
k−1) (by

which we mean that some of these sets might be finite while
others might be cofinite).

We call this 3-tuple, consisting of a tuple of elements, a tuple of num-
bers, and a tuple of sets, the parameters associated with x. Perform
this assignment in such a way that each set of parameters is associated
with some x.

Fix x ∈ N and the parameters associated with x as above. Fix
i < n. Let ak ∈

⋃
j∈NBi,j,x. Let ij = π1(aj), let ej = π2(aj), and let

mj = π4(aj). For j < k, let tj be such that aj has been given type
rij ,tj . Thus tj could be a natural number, ∞, or ∞/q for some q ∈ N.

For j < k, if ej = 0 then let modj denote fin
cj

min(dj ,mj)
, and otherwise let

modj denote inf
cj

min(dj ,mj)
. If ek = 0 then let modk denote fin

c′j
min(d′j ,mk),

and otherwise let modk denote inf
c′j
min(d′j ,mk).

For each j < k such that ij 6= ik, define the QM
c on (aj, ak) and

(ak, aj) so that (aj, ak) has type sij ,ik,tj ,tk,Sj/modj ,S′j/modk
. We say that

ak is a witness for the tuple (a0, . . . , ak−1), as well as for the whole set
of parameters associated with x.

For any a ∈ M with π3(a) < l that is not among a0, . . . , ak−1,
let QM

c (a, ak) hold if and only if π1(a) 6= ik and π2(a) = 1, and let
QM

c (ak, a) hold if and only if π1(a) 6= ik and ek = 1.
We have completed the definition of M. It is clear that M sat-

isfies the first four axiom groups of A. It also satisfies the fifth ax-
iom group because for all elements a0, . . . , ak−1 of M and all finite

sets F0, . . . , Fk−1, F̂0, . . . , F̂k−1, G0, . . . , Gk−1, Ĝ0, . . . , Ĝk−1, we eventu-
ally assign elements ak as in the previous paragraph. The mod oper-
ation in the definition of the type of (aj, ak) is not a problem if the
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cj are sufficiently large (i.e., larger than all numbers mentioned in the
particular instance of the fifth axiom group we are considering).

Type translation. To show that M is strongly 1-homogeneous, we first
need to discuss the process of translating types between the equiva-
lence classes of a given UM

i , which will help us define the required
automorphism of M. Consider the type s = si0,i1,t0,t1,S0/fin

c0
d0

,S1/inf
c1
d1

. If

(∃u < d0)Ψ(i0, u) then s = si0,i1,t0,t1,S0,S1/inf
c1
d1

. In this case, let Ŝ0 = S0.

Otherwise, there is a finite set Ŝ0 such that s = si0,i1,t0,t1,bS0,S1/inf
c1
d1

, and

this set can be found by searching for a k such that (∀u < d0)(∃z <
k)¬Φ(i0, u, z). In either case, if u is least such that Ψ(i0, u) holds, then
s = si0,i1,t0,t1,bS0/inf

c0
u+1,S1/inf

c1
d1

. We call this latter type the i0-translate

of s. We call (u+ 1, d1, Ŝ0, S1, inf, inf) the conditions of this translate.

To find this translate, we need to be able to determine Ŝ0 and u. The
former can be obtained effectively from u, though, so in fact, all we
need is u.

Similarly, if we know the least v such that Ψ(i1, v), then we can find
the i1-translate of s, that is, a type si0,i1,t0,t1,S0/fin

c0
d0

,bS1/fin
c1
v+1

equal to

s. The conditions of this translate are (d0, v + 1, S0, Ŝ1, fin, fin). If we
know both u and v, then we can also find the i0, i1-translate of s, that
is, a type si0,i1,t0,t1,bS0/inf

c0
u+1,bS1/fin

c1
v+1

equal to s. The conditions of this

translate are (u+ 1, v + 1, Ŝ0, Ŝ1, inf, fin). The same process applies to
any type si0,i1,t0,t1,S0/mod0

c0
d0

,S1/mod1
c1
d1

, where mod0 and mod1 are each

either fin or inf.
For I ⊆ n, the I-translate of a type s as above is s if i0, i1 /∈ I, the

il-translate of s if il ∈ I and i1−l /∈ I, and the i0, i1-translate of s if
i0, i1 ∈ I.

Strong 1-homogeneity. We now show that M is strongly 1-homoge-
neous. Let (a0, . . . , am−1) ≡ (b0, . . . , bm−1). We need to build an auto-
morphism f of M permuting these M -tuples.

Let I be the set of all i for which there is a j < m such that π1(aj) = i
(and hence π1(bj) = i) and π2(aj) 6= π2(bj). (Note that then every
aj′ , bj′ with first coordinate in I have different second coordinates.)
It obviously has to be the case that if f(a) = b and π1(a) ∈ I, then
π2(a) 6= π2(b). We build f so that it is also the case that if f(a) = b and
π1(a) /∈ I, then π2(a) = π2(b). Say that (a0, . . . , ar−1) ≡ (b0, . . . , br−1)
is an I-pair if I is the set of all i for which there is a j < r such that
π1(aj) = i and π2(aj) 6= π2(bj). Thus our starting M -tuples form an
I-pair.
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We in fact show the following: Let (a0, . . . , ar−1) ≡ (b0, . . . , br−1) be
an I-pair, and let ar ∈ M . Then we can effectively find br ∈ M such
that (a0, . . . , ar) ≡ (b0, . . . , br) is an I-pair. (In other words, we can
define a function taking each I-pair (a0, . . . , ar−1) ≡ (b0, . . . , br−1) and
ar ∈M to an appropriate br.)

This fact suffices to build f by the usual back and forth argument:
Let f(ai) = bi for i < m. Then let am be the least element of M not
among the ai for i < m, find bm such that (a0, . . . , am) ≡ (b0, . . . , bm)
is an I-pair, and let f(am) = bm. Then let bm+1 be the least element of
M not among the bi for i 6 m, find am+1 such that (a0, . . . , am+1) ≡
(b0, . . . , bm+1) is an I-pair (which we can do because the notion of I-pair
is a symmetric relation on tuples), and let f(am+1) = bm+1. Continue
in this way to build an automorphism f of M.

So fix an I-pair (a0, . . . , ar−1) ≡ (b0, . . . , br−1) and ar ∈ M . We
show how to obtain a br as above. As pointed out above, to show that
(a0, . . . , ar) ≡ (b0, . . . , br), it is enough to show that aiar ≡ bibr for all
i < r. If ar = aj for some j < r, then we can let br = bj, so we suppose
this is not the case.

We begin with the following observation. Suppose a, b ∈ M have
different first coordinates, and let i be the first coordinate of a. Suppose
further that the fourth coordinate of a is a number m such that (∀u <
m)¬Ψ(i, u). It is easy to check that the construction of M ensures
that if the second coordinate of a is 0 then the 2-type of (a, b) is i-
finitary, while if the second coordinate of a is 1 then the 2-type of (a, b)
is i-infinitary. Now suppose that ab ≡ cd are pairs of elements of M
such that a and b have different first coordinates, and a and c have
different second coordinates. Let i be the first coordinate of a (and
hence of c) and let m be the maximum of the fourth coordinates of a
and c. Then there is a u < m such that Ψ(i, u), as otherwise one of the
2-types of (a, b) and (c, d) would be i-finitary, while the other would be
i-infinitary.

We now claim there is a sequence (ui)i∈I such that ui is the least num-
ber for which Ψ(i, ui) holds. If all the aj with j < r have the same first
coordinate, then |I| 6 1, so the claim is true by hypothesis (together
with bounded Π0

1-comprehension). Otherwise, fix i ∈ I, let j be such
that π1(aj) = i and π2(aj) 6= π2(bj), and let j′ be such that π1(aj′) 6= i.
Since ajaj′ ≡ bjbj′ , the observation of the previous paragraph implies
that, letting mi be the maximum of the fourth coordinates of aj and
bj, there is a u < mi such that Ψ(i, u). By bounded Π0

1-comprehension
(with the bound being maxi∈I mi), we can find (ui)i∈I . As discussed
above, this fact means that we can determine the I-translate of any
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type of the form si0,i1,t0,t1,S0/mod0
c0
d0

,S1/mod1
c1
d1

, where mod0 and mod1 are

each either fin or inf.
We begin the process of determining br by ensuring that it has the

same 1-type as ar. To do so, we define a set D from which br is
drawn. We ensure that every element of D has the same 1-type as ar,
and has the same second coordinate as ar if and only if π1(ar) /∈ I. We
also ensure that D contains witnesses for every set of parameters in the
definition ofM. (Recall the definition of witnessing a set of parameters
from the section of this proof in which we defined the model M.)

Let i = π1(ar), let j = π2(ar), and let k = π4(ar). Let D be the set
of all elements of M of the form 〈i, j′, l, k′〉 where l ∈ N and j′, k′ are
as follows. If i /∈ I then j′ = j; otherwise j′ = 1− j. If k is of the form
2〈m, c〉, then k′ is of the form 2〈m, d〉. If i /∈ I, j = 0, and k is odd,
then k′ is odd. If i /∈ I, j = 1, and k is of the form 2〈m, c〉+ 1, then k′

is of the form 2〈m, d〉+1. If i ∈ I, j = 0, and k is odd, then k′ is of the
form 2〈ui + 1, d〉 + 1. If i ∈ I, j = 1, and k is of the form 2〈m, c〉 + 1
with m 6 ui, then k′ is of the form 2〈q, d〉 where q is least such that
(∀u < m)(∃z < q)¬Φ(i, u, z) (which must exist by the definition of ui).
If i ∈ I, j = 1, and k is of the form 2〈m, c〉+ 1 with m > ui, then k′ is
odd.

It is easy to check that D has the properties mentioned above. The
fact that we choose br from D is enough to ensure that ajar ≡ bjbr if
π1(aj) = π1(ar), and that if (a0, . . . , ar) ≡ (b0, . . . , br) then these tuples
form an I-pair.

Let V be the set of j < r such that π1(aj) 6= π1(ar), and let W be
set of j ∈ V such that either ar is a witness for a tuple that includes
aj or aj is a witness for a tuple that includes ar. Let P be the set of
all expressions that are either in N, equal to ∞, or equal to ∞/m for
some m ∈ N (i.e., all expressions t such that ri,t is one of our named
1-types).

If j ∈ W then from the construction ofM we can determine t, t′ ∈ P ,
finite or cofinite sets S and S ′, numbers d, d′, c, c′, and expressions mod0
and mod1, each equal to either fin or inf, such that (aj, ar) has type

sπ1(aj),π1(ar),t,t′,S/mod0c
d,S′/mod1c′

d′
. Let (dj, d

′
j, Ŝj, Ŝ

′
j,mod0j,mod1j) be the

conditions of the I-translate of this type. Let cj = c and c′j = c′.
If j ∈ V \ W then from the construction of M we can determine

t, t′ ∈ P and sets S and S ′, each equal to either ∅ or N, such that
(aj, ar) has type s = sπ1(aj),π1(ar),t,t′,S,S′ . If S = ∅ then let mod0 be
fin, and otherwise let mod0 be inf. If S ′ = ∅ then let mod1 be fin,
and otherwise let mod1 be inf. Then s = sπ1(aj),π1(ar),t,t′,S/mod00

0,S′/mod10
0
.
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Let (dj, d
′
j, Ŝj, Ŝ

′
j,mod0j,mod1j) be the conditions of the I-translate

of this type. Let cj = c′j = 0.
Now consider the tuples (bj)j∈V , (dj)j∈V (d′j)j∈V (cj)j∈V (c′j)j∈V , and

(Sj)j∈V (S ′j)j∈V . At some point in the construction of M, witnesses
for this set of parameters are provided. It is easy to check that there
is such a witness br that is taken from D. By the definition of the
I-translate, we have ajar ≡ bjbr for all j ∈ V . As mentioned above, we
also have ajar ≡ bjbr for all j < r that are not in V . Thus (a0, . . . , ar) ≡
(b0, . . . , br), which, as mentioned above, implies that these tuples form
an I-pair.

Using homogeneity. Finally, suppose thatM is homogeneous. Let ai =
〈i, 0, 0, 0〉, let bi = 〈i, 1, 0, 0〉, and let ci = 〈i, 0, 0, 1〉. Then ai ≡ bi for
all i < n, so there are d0, . . . , dn−1 such that aici ≡ bidi for all i < n.
Since the type of ci is ri,∞, each di is of the form 〈i, 1, li, 2〈mi, ki〉+ 1〉
for some mi such that (∃u < mi)Ψ(i, u). Then maxi<nmi witnesses
the satisfaction of our instance of BΠ0

1. �

One of the important facts about homogeneity is that atomic, prime,
and saturated models are homogeneous. The standard proof of this fact
carries through in ACA0 for any of our definitions of homogeneity. In
RCA0, we have the following version. (Recall the definition of strong
saturation from Definition 2.1.)

Proposition 4.5. The following are provable in RCA0.

(1) Every atomic model is homogeneous.
(2) Every prime model is homogeneous.
(3) Every saturated model is 1-homogeneous.
(4) Every strongly saturated model is homogeneous.

Proof. (1) Let M be atomic, and let ā0 ≡ b̄0, . . . , ān ≡ b̄n and c̄0, . . . , c̄n
be M -tuples. There is a formula ψ(x̄0ȳ0 . . . x̄nȳn) isolating the type of
ā0c̄0 . . . ānc̄n. Then for each i 6 n, the formula

ϕi(x̄iȳi) ≡ (∃x̄0ȳ0 . . . x̄i−1ȳi−1x̄i+1ȳi+1 . . . x̄nȳn)ψ(x̄0ȳ0 . . . x̄nȳn)

isolates the type of āic̄i. For each i 6 n, we have M � (∃ȳ)ϕi(āiȳ),
so M � (∃ȳ)ϕi(b̄iȳ), and thus there are M -tuples d̄0, . . . , d̄n such that
M � ϕi(b̄i, d̄i) for each i 6 n. Then āic̄i ≡ b̄id̄i for each i 6 n.

(2) Hirschfeldt, Shore, and Slaman [23] noted that the proof that
every prime model is atomic carries through in RCA0.

(3) Let M be saturated, and let ā ≡ b̄ and c̄ be M -tuples. Let
Γ = {ψ(b̄ȳ) : M � ψ(āc̄)}. Then Γ is a type of the theory of (M, b̄),
so it is realized by some M -tuple d̄. Then āc̄ ≡ b̄d̄.
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(4) Let M be strongly saturated, and let ā0 ≡ b̄0, . . . , ān ≡ b̄n and
c̄0, . . . , c̄n be M -tuples. Let Γ = {ψ(b̄iȳi) : i 6 n∧M � ψ(āic̄i)}. Then
Γ(ȳ0 . . . ȳn) is a partial type of the theory of (M, b̄), so it is realized by
some M -tuple d̄0 . . . d̄n. Then āic̄i ≡ b̄id̄i for each i 6 n. �

Proposition 4.5, combined with Theorem 4.4, implies that BΣ0
2 suf-

fices to show that every saturated model is homogeneous. Theorem C.1
below shows that WKL0 also suffices to prove this statement, which im-
plies that the statement is Π1

1-conservative over RCA0, and hence in
particular does not imply BΣ0

2. We do not, however, know the exact
strength of this statement.

It is straightforward to argue as in [23] to show that the model M
defined in the proof of Proposition 4.2 is atomic. Thus we have the
following fact.

Proposition 4.6. The statement that every atomic model is strongly
1-homogeneous is equivalent to ACA0 over RCA0.

We do not know the exact strengths of the statements that every
prime model is strongly 1-homogeneous, and that every (strongly) sat-
urated model is strongly 1-homogeneous

Another important property of homogeneous models is that they
are completely determined by their type spectra. That is, two ho-
mogeneous models with the same type spectra are isomorphic. The
following result shows that, for any of our definitions of homogeneity,
this principle is equivalent to ACA0.

Proposition 4.7. The following are equivalent over RCA0.

(1) ACA0

(2) If M and N are 1-point homogeneous and realize the same types,
then M∼= N .

(3) If M and N are homogeneous and realize the same types, then
M∼= N .

(4) If M and N are strongly 1-homogeneous and realize the same
types, then M∼= N .

Proof. ACA0 is powerful enough to carry out the classical back and
forth construction needed to prove the statements above, and (2) clearly
implies (3) and (4), so we are left with showing that (3) and (4) imply
ACA0.

Let A and B be the models from [23] described in the proof of Propo-
sition 4.2. As shown in [23], A and B are both atomic models of the
same theory, and hence realize the same types. By Proposition 4.5, A
and B are homogeneous. Let (a0, . . . , an) ≡ (b0, . . . , bn) ∈ A. Let f
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be the function defined by f(ai) = bi, f(bi) = ai, and f(x) = x for
all other x. Then f is an automorphism of A, since the language of
A is unary. Thus A is also strongly 1-homogeneous. Similarly, B is
also strongly 1-homogeneous. As shown in [23], the existence of an
isomorphism between A and B implies ACA0. �

5. Closure conditions and model existence

In this section, we consider various closure conditions on sets of types.
Recall that, in the reverse mathematical setting, an infinite set of types
is coded as a list by a single second order object (see Definition 2.2).
Suppose we have defined such a listing of types X = {pi}i∈N. When
we refer to a finite sequence q0, . . . , qn of types in X, we always think
of this set as encoded by a finite sequence i0, . . . , in of natural numbers
such that qk = pik for all k 6 n, and similarly for finite sets of types in
X.

5.1. Type spectra of homogeneous models. As mentioned above,
Goncharov [15] and Peretyat’kin [41] characterized the sets of types
that are type spectra of homogeneous models. We say that types
p0, . . . , pn are basically consistent if whenever pi and pj share a tuple
of variables x̄, we have pi � x̄ = pj � x̄. A formula ϕ(x̄ȳ) is consistent
with a type p(x̄) if (∃ȳ)ϕ ∈ p.

Theorem 5.1 (Goncharov [15] and Peretyat’kin [41]). Let T be a the-
ory, and let X ⊂ S(T ) be countable. Then X is the type spectrum of a
homogeneous model if and only if it satisfies the following conditions.

(1) T ∈ X.
(2) X is closed under variable substitutions, i.e., if p(x̄) ∈ X and

|ȳ| = |x̄| then p(ȳ) ∈ X.
(3) X is closed under taking subtypes.
(4) Extension: If p(x̄) ∈ X and ϕ(x̄ȳ) is consistent with p, then

there is a q(x̄ȳ) ∈ X such that p ∪ {ϕ} ⊆ q.
(5) Pairwise Full Type Amalgamation: For each basically con-

sistent p1, p2 ∈ X, there is a q ∈ X such that p1 ∪ p2 ⊆ q.

Remark 5.2. Suppose that X satisfies conditions (1)–(4) above, and
let p(x0, . . . , xm−1) ∈ X. Let f : n → m be a function, and let
q(x0, . . . , xm−1, y0, . . . , yn−1) be the unique type of T containing p and
yi = xf(i) for all i < n. Then a simple application of extension shows
that q ∈ X. However, this application requires our assumption that
the language of T includes equality. If we did not make this assump-
tion, we would want to extend the definition of closure under variable
substitutions slightly to say that if p ∈ X and q are as above, then
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q ∈ X. The only place below where this issue matters is in the proof
of Lemma 6.9, which is used in the proof of Theorem 6.10.

We name the above set of closure conditions.

Definition 5.3. An X ⊂ S(T ) satisfies the pairwise full amalgamation
closure conditions if X satisfies all the conditions in Theorem 5.1.

We study effective versions of the extension condition (4) below, but
first we define various other versions of type amalgamation and study
their relationships. We begin with the notion of finite full type amal-
gamation, which is classically equivalent to pairwise full type amalga-
mation. Basic consistency, in general, is not enough to guarantee that
finite sets of types can be amalgamated in general. We can have types
p(x, y), q(x, z), r(y, z) such that p � x = q � x, p � y = r � y, and
q � z = r � z, yet p, q, r cannot be amalgamated at all (i.e., there is no
type of the given theory that amalgamates them). For example, con-
sider a graph with four elements a, b, c, d, with edges from a to c and b
to d, and no other edges. Let p(x, y) be the type of a, b; let q(x, z) be
the type of a, c, which is the same as the type of b, d; and let r(y, z) be
the same as q(x, z) with x substituted by y.

We say that types q0(ȳ0), . . . , qn(ȳn) are consistent if they are basi-
cally consistent and there is an i 6 n such that all the shared variables
are in ȳi. (That is, we cannot have z ∈ ȳj ∩ ȳk for j 6= k unless
z ∈ ȳi.) This condition ensures that this finite set of types can be
amalgamated in the classical setting. We modify condition 5, pairwise
full type amalgamation, as follows.

Finite Full Type Amalgamation: For each consistent set of types
q0, . . . , qn ∈ X, there is a q ∈ X such that q0 ∪ · · · ∪ qn ⊆ q.

Note that, as mentioned at the beginning of this section, we think
of finite subsets of X as coded by indices, so the above is in fact a
first order statement, as are other similar statements considered below.
(That is, the universal quantification over sets of types q0, . . . , qn ∈ X
is really over finite sets of indices of elements of X = {pi}i∈N, and the
existential quantification over q ∈ X is really over indices of elements
of X.)

As with 1-homogeneity and homogeneity, the reason that pairwise
amalgamation does not immediately yield finite amalgamation when
working in RCA0 is that the property of being an amalgamator of a
set of types is Π0

1.
Suppose that X = {pi}i∈N satisfies finite full type amalgamation.

Let i0, . . . , in ∈ N. For each k 6 n, let qk be a (not necessarily proper)
subtype of a type obtained from pik by variable substitution. Suppose
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that q0, . . . , qn form a consistent set of types. It is in the spirit of the
notion of finite type amalgamation that there should be a type in X
amalgamating q0, . . . , qn. However, even in the presence of the first four
conditions in Theorem 5.1, it might not be provable in RCA0 that this
is indeed the case, because there might not be a sequence j0, . . . , jn ∈ N
such that pjk

= qk for all k 6 n. Again, the issue here is that having
pjk

= qk is a Π0
1 property. To avoid this problem, we introduce the

following condition: X = {pi}i∈N is closed under sequences of variable
substitutions if for every sequence i0, . . . , in ∈ N and every sequence of
types q0, . . . , qn such that qk is a (not necessarily proper) subtype of
a type obtained from pik by variable substitution, there is a sequence
j0, . . . , jn ∈ N such that pjk

= qk for all k 6 n.

Remark 5.4. If X satisfies the first four conditions in Theorem 5.1,
then it is provable in RCA0 + BΣ0

2 that X is closed under sequences of
variable substitutions. (The proof is a straightforward application of
the finite axiom of choice for Π0

1 properties.)

Definition 5.5. An X ⊂ S(T ) satisfies the finite full amalgamation
closure conditions if X satisfies the conditions in Theorem 5.1 with
pairwise full type amalgamation replaced by finite full type amalgama-
tion, and is also closed under sequences of variable substitutions.

Pairwise full type amalgamation is to 1-homogeneity as finite full
type amalgamation is to homogeneity, an analogy that is made more
precise below. We also consider a weaker version of pairwise full type
amalgamation, which corresponds to 1-point homogeneity.

1-Point Full Type Amalgamation: For each basically consistent
p1(x̄y), p2(x̄z) ∈ X, there is a q ∈ X such that p1 ∪ p2 ⊆ q.

Definition 5.6. An X ⊂ S(T ) satisfies the 1-point full amalgamation
closure conditions if X satisfies the conditions in Theorem 5.1 with
pairwise full type amalgamation replaced by 1-point full type amalga-
mation.

5.2. Type spectra of general models. Theorem 5.1 characterizes
the sets of types that are type spectra of homogeneous models. As
noted by Peretyat’kin [41], it can easily be modified to characterize the
sets of types that are type spectra of models in general.

Theorem 5.7 (Peretyat’kin [41]). Let T be a theory, and let X ⊂ S(T )
be countable. Then X is the type spectrum of a model if and only if it
satisfies the following conditions (the first four of which are the same
as in Theorem 5.1).
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(1) T ∈ X.
(2) X is closed under variable substitutions.
(3) X is closed under taking subtypes.
(4) Extension: If p(x̄) ∈ X and ϕ(x̄ȳ) is consistent with p, then

there is a q(x̄ȳ) ∈ X such that p ∪ {ϕ} ⊆ q.
(5) Pairwise Free Type Amalgamation: For each p1, p2 ∈ X

whose variables do not overlap, there is a q ∈ X such that p1 ∪
p2 ⊆ q.

As in the full amalgamation case, we have the following notion, clas-
sically equivalent to pairwise free type amalgamation.

Finite Free Type Amalgamation: For each finite set of types
p0, . . . , pn ∈ X whose variables do not overlap, there is a q ∈ X such
that p0 ∪ · · · ∪ pn ⊆ q.

Definition 5.8. An X ⊂ S(T ) satisfies the pairwise free amalgama-
tion closure conditions if it satisfies all the conditions in Theorem 5.7;
and it satisfies the finite free amalgamation closure conditions if it sat-
isfies these conditions with pairwise free type amalgamation replaced
by finite free type amalgamation, and is also closed under sequences of
variable substitutions.

Remark 5.9. Suppose that X satisfies the finite free amalgamation
closure conditions. Then X satisfies a “finite sequence” version of the
extension condition (condition (4) in Theorems 5.1 and 5.7), in the
following sense. We first describe a notation that is also useful below.
When we write ϕ(x̄) for a formula ϕ, to express the fact that free
variables of ϕ are among the ones in the tuple x̄, we subsequently
write ϕ[ȳ], where ȳ = (y0, . . . , yn) is a tuple of variables of the same
length as x̄, for the formula obtained by replacing each free occurrence
of xi by yi. We also adopt the analogous notation for types. Let
p0(x̄0), . . . , pn(x̄n) ∈ X and let ϕ0(x̄0ȳ0), . . . , ϕn(x̄nȳn) be formulas such
that each ϕk is consistent with pk. Let z̄0, . . . , z̄n and w̄0, . . . , w̄n be
pairwise disjoint tuples of variables such that each z̄i has the same arity
as x̄i, and each w̄i has the same arity as ȳi. Then we can argue in RCA0

as follows. The sequence p0[z̄0], . . . , pn[z̄n], which exists as a sequence
of elements of X by closure under sequences of variable substitutions,
is amalgamated by some q ∈ X. The formula ϕ =

∧
k6n ϕk[z̄kw̄k] is

consistent with q, so there is an r ⊇ q ∪ {ϕ} in X. Thus there are
r0, . . . , rn ∈ X such that pk[z̄k]∪{ϕk[z̄kw̄k]} ⊆ rk for each k 6 n, which
implies that there are s0, . . . , sn ∈ X such that pk(x̄k)∪{ϕk(x̄kȳk)} ⊆ sk

for each k 6 n. (The existence of the sequence r0, . . . , rn and that of the
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sequence s0, . . . , sn both follow by closure under sequences of variable
substitutions.)

5.3. Comparing closure conditions. We study the reverse mathe-
matics of Theorems 5.1 and 5.7 below, but first we discuss the relation-
ships between the closure conditions introduced in this section. Note
that if X satisfies the pairwise full amalgamation closure conditions,
then X satisfies the pairwise free amalgamation conditions, and sim-
ilarly for the finite versions. We also highlight the following obvious
fact for future reference. (Note that, in the reverse mathematical set-
ting, a set of types is encoded as a list of types, as in Definition 2.2.
Two lists of types {pi}i∈N and {qi}i∈N can be equal as sets of types,
meaning that for each i there is a j such that qj = pi and for each i
there is a j such that pj = qi, but have different closure properties. It
is worth keeping in mind, for instance, that when working in a model
of second order arithmetic with nonstandard first order part, the fact
that {pi}i∈N and {qi}i∈N are equal as sets of types does not necessarily
imply that for every sequence i0, . . . , in there is a sequence j0, . . . , jn
such that qjk

= pik for all k 6 n.)

Proposition 5.10. The following is provable in RCA0. If the lists of
types X and Y are equal as sets of types and X satisfies the pairwise
(free or full) type amalgamation condition, then so does Y , and simi-
larly for 1-point full amalgamation, and each of the first four conditions
in Theorem 5.1.

We show in Theorem 5.16 that this proposition does not hold for
finite amalgamation.

The difference between the 1-point, pairwise, and finite versions of
our closure conditions turns out to be IΣ0

2. We record the full result
here, although its proof depends on two results proved in the next
section.

Theorem 5.11. The following are equivalent over RCA0.

(1) IΣ0
2

(2) If a list of types satisfies the 1-point full amalgamation closure
conditions then it satisfies the pairwise full amalgamation closure
conditions.

(3) If a list of types satisfies the pairwise full amalgamation closure
conditions then it satisfies the finite full amalgamation closure
conditions.

(4) If a list of types satisfies the pairwise free amalgamation closure
conditions then it satisfies the finite free amalgamation closure
conditions.
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(5) If a list of types satisfies the pairwise full amalgamation closure
conditions then it satisfies the finite free amalgamation closure
conditions.

Proof. To show that (1) implies (2), let X be a list of types satisfying
the 1-point full amalgamation closure conditions. Let p(x̄, y0, . . . , ym)
and q(x̄, z0, . . . , zn) be basically consistent elements of X. By assump-
tion, there is a type r0(x̄, y0, z0) amalgamating p � x̄y0 and q � x̄z0.
Then there are types r′0(x̄, y0, z0, y1) amalgamating p � x̄y0y1 and r0,
and r′′0(x̄, y0, z0, z1) amalgamating q � x̄z0z1 and r0. Hence there is a
type r1(x̄, y0, z0, y1, z1) amalgamating r′0 and r′′0 . By finite Π0

1-recursion
(which, as mentioned in Section 2.1, is provable from IΣ0

2), we can con-
tinue in this fashion to eventually obtain a type amalgamating p and
q.

To show that (1) implies (3), and hence that (1) implies (5), let
X be a list of types satisfying the pairwise full amalgamation closure
conditions, and let q0, . . . , qn ∈ X be a consistent sequence of types.
By the definition of consistency, we may assume that all free variables
shared by two or more of the qi are among the free variables of q0.
Let P be the property that holds of i 6 n if and only if there is a
q ∈ X such that q0 ∪ · · · ∪ qi ⊆ q. It is easy to check that P is Σ0

2.
Furthermore, P (0) holds, and if P (i) holds for i < n, then, letting q
be the witness to this fact, q, qi+1 are consistent, so there is an r ∈ X
such that q0 ∪ · · · ∪ qi ⊆ q ∪ qi+1 ⊆ r; that is, P (i + 1) holds. Thus,
by IΣ0

2, we have P (n). (Note that closure under sequences of variable
substitutions also holds, by Remark 5.4.) The proof that (1) implies
(4) is similar.

That (2), (3), (4), and (5) all imply (1) follows from Theorems 6.11
and 6.12 below (using condition (a) in item (3) of Theorem 6.11), to-
gether with the equivalence between IΣ0

2 and the finite Π0
1-recursion

principle. �

Belanger [3] has shown that, for listings of all types of a theory with
countably many types, the situation is different

Theorem 5.12 (Belanger [3]). The following statements are equivalent
over RCA0.

(1) The disjunction WKL0 ∨ IΣ0
2.

(2) If a list of all the types of a theory satisfies the pairwise full
amalgamation closure conditions then it satisfies the finite full
amalgamation closure conditions.
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(3) If a list of all the types of a theory satisfies the pairwise free
amalgamation closure conditions then it satisfies the finite free
amalgamation closure conditions.

(4) If a list of all the types of a theory satisfies the pairwise full
amalgamation closure conditions then it satisfies the finite free
amalgamation closure conditions.

5.4. Spectrum enumeration existence theorems. Theorems 5.1
and 5.7 are “if and only if” statements. The “if” directions are the
main focus of this paper. In this subsection, we analyze the reverse
mathematics of the “only if” directions. These are easily seen to hold
in RCA0, though in the case of Theorem 5.1, we have to choose the
appropriate notion of homogeneity.

Proposition 5.13. The following is provable in RCA0. Let A be a
model. Then T(A) has an enumeration X satisfying the finite free
amalgamation closure conditions. If A is 1-point homogeneous then
X can be chosen to satisfy the 1-point full amalgamation closure con-
ditions. If A is 1-homogeneous then X can be chosen to satisfy the
pairwise full amalgamation closure conditions. If A is homogeneous
then X can be chosen to satisfy the finite full amalgamation closure
conditions.

Proof. Let A be a model, let c̄0, c̄1, . . . be an enumeration of the A-
tuples, and for each i, let x̄i,0, x̄i,1, . . . be an enumeration of the tuples
of variables of the same length as c̄i (chosen so that if |c̄i| = |c̄i′| then
x̄i,j = x̄i′,j for all j). Let X = {qi(x̄i,j)}i,j∈N, where qi is the type of
c̄i in the variables x̄i,j. Then X is an enumeration of T(A). It is easy
to see that X satisfies conditions (1)–(4) in Theorem 5.1 and is closed
under sequences of variable substitutions.

Let qi0(x̄i0,j0), . . . , qin(x̄in,jn) be elements of X whose free variables do
not overlap. Let i be such that c̄i is the tuple c̄i0 . . . c̄in , and let j be such
that x̄i,j is the tuple x̄i0,j0 . . . x̄in,jn . Then qi0(x̄i0,j0), . . . , qin(x̄in,jn) ⊆
qi(x̄i,j). Thus X satisfies the finite free type amalgamation condition.

Now suppose that A is homogeneous and let qi0(x̄i0,j0), . . . , qin(x̄in,jn)
be a consistent sequence of elements of X. By the definition of consis-
tency, we may assume that all the free variables shared by two or more
of these types are in x̄i0,j0 , so we can write each qik(x̄ik,jk

) as qik(ȳik z̄ik),
where ȳik ⊆ x̄i0,j0 and the z̄ik are disjoint from x̄i0,j0 and pairwise dis-
joint. The types qik(ȳik z̄ik) � ȳik are all compatible, so homogeneity im-
plies that for each k 6 n, there is an i′k such that qi′k(x̄i′k,jk

) = qik(x̄ik,jk
)

and if the pth element of x̄i0,j0 equals the qth element of x̄i′k,jk
, then

the pth element of c̄i0 equals the qth element of c̄i′k . For each k 6 n,
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let d̄k be the elements of c̄ik corresponding to the variables in z̄ik . Let
i be such that c̄i is the tuple c̄i0 d̄i1 . . . d̄in . Let j be such that x̄i,j is
the tuple x̄i0,j0 z̄i1,j1 . . . z̄in,jn . Then qi0(x̄i0,j0), . . . , qin(x̄in,jn) ⊆ qi(x̄i,j).
Thus X satisfies the finite full type amalgamation condition.

A similar argument shows that if A is 1-point homogeneous then
X satisfies the 1-point full type amalgamation condition, while if A is
1-homogeneous then X satisfies the pairwise full type amalgamation
condition. �

The proof of Theorem 4.3 can easily be modified to obtain the fol-
lowing result.

Theorem 5.14. The following are equivalent over RCA0.

(1) IΣ0
2

(2) For every 1-point homogeneous model A, there is an enumera-
tion of T(A) satisfying the pairwise full amalgamation closure
conditions.

(3) For every 1-point homogeneous model A, there is an enumera-
tion of T(A) satisfying the finite full amalgamation closure con-
ditions.

Proof. That (1) implies (2) and (3) follows from Theorem 5.11 and
Proposition 5.13. Clearly (3) implies (2). To see that (2) implies (1),
let ϕ, n, z, θ, andM be as in the proof of Theorem 4.3 and suppose that
T(M) has an enumeration X satisfying the pairwise full amalgamation
closure conditions. Let p(x, y, z0, . . . , zn−1) be the type of

(〈0, 0, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉, . . . , 〈0, 1, n− 1〉)
in M, and let q(y, w0, . . . , wn−1) be the type of

(〈0, 0, 0〉, 〈0, 1, 0〉, . . . , 〈0, 1, n− 1〉)
in M. Then p � y = q � y, so there is a type

r(x, y, z0, . . . , zn−1, w0, . . . , wn−1)

inX amalgamating these two types. Let (a, b, c0, . . . , cn−1, d0, . . . , dn−1)
realize this type in M. Then either each ci is of the form 〈1, 1, k〉 where
θ(k) holds, or each di is of this form. In either case, as in the proof of
Theorem 4.3, the instance of Π0

1-recursion corresponding to ϕ, n, and
z holds. �

Similarly, the proof of Theorem 4.4 yields the following result.

Theorem 5.15. The following are equivalent over RCA0.

(1) BΣ0
2
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(2) For every 1-homogeneous model A, there is an enumeration of
T(A) satisfying the finite full amalgamation closure conditions.

(3) For every strongly 1-homogeneous model A, there is an enumer-
ation of T(A) satisfying the finite full amalgamation closure con-
ditions.

Proof. That (1) implies (2), and hence (3), follows from Theorem 4.4
and Proposition 5.13. To see that (3) implies (1), and hence so does (2),
let Ψ, n, and M be as in the proof of Theorem 4.4, and suppose that
T(M) has an enumeration X satisfying the finite full amalgamation
closure conditions. Let p(x0, . . . , xn−1, y0, . . . , yn−1) be the type of

(〈0, 0, 0, 0〉, . . . , 〈n− 1, 0, 0, 0〉, 〈0, 1, 0, 0〉, . . . , 〈n− 1, 1, 0, 0〉)

in M. For i < n, let qi(xi, zi) be the type of (〈i, 0, 0, 0〉, 〈i, 0, 0, 1〉) in
M. The sequence q0, . . . , qn−1 exists as a sequence of elements of X by
closure under sequences of variable substitutions, since X contains the
type of

(〈0, 0, 0, 0〉, 〈0, 0, 0, 1〉, . . . , 〈n− 1, 0, 0, 0〉, 〈n− 1, 0, 0, 1〉).

For the same reason, X contains the sequence of types qi[yi, wi] (using
the notation introduced in Remark 5.9), where the wi are pairwise
distinct from the zi. Then there is a type

r(x0, . . . , xn−1, y0, . . . , yn−1, z0, . . . , zn−1, w0, . . . , wn−1)

in X that amalgamates p(x0, . . . , xn−1, y0, . . . , yn−1) with qi(xi, zi) and
qi[yi, wi] for all i < n. This type must be realized in M by some tuple

(a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, d0, . . . , dn−1).

For each i < n, exactly one of ci or di is of the form 〈i, 1, l, 2〈mi, ki〉+1〉,
in which case we have (∃u < mi)Ψ(i, u). Thus we obtain a sequence
m0, . . . ,mn−1 whose maximum witnesses the satisfaction of the instance
of BΠ0

1 in the proof of Theorem 4.4. �

We finish this subsection with the following result, mentioned above
following Proposition 5.10.

Theorem 5.16. The following are equivalent over RCA0.

(1) BΣ0
2

(2) If the lists of types X and Y are equal as sets of types and X sat-
isfies the finite (free or full) type amalgamation condition, then
so does Y .

(3) Every enumeration of the type spectrum of a model satisfies the
finite free type amalgamation condition.
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(4) Every enumeration of the type spectrum of a homogeneous model
satisfies the finite full type amalgamation condition.

Proof. By Proposition 5.13, (3) and (4) follow from (2) over RCA0.
We show that (2) holds in RCA0 + BΣ0

2. We do the argument for full
amalgamation, as the argument for free amalgamation is essentially
the same. Let X and Y be lists of types that are equal as sets, and
suppose that X satisfies the finite full type amalgamation condition.
Let q0, . . . , qk ∈ Y be a consistent sequence of types. The property of
an element of X being equal to an element of Y is Π0

1, and for each
i 6 k there is an element of X equal to qi, so by the finite axiom of
choice for Π0

1 properties, there is a sequence p0, . . . , pk ∈ X such that
pi = qi for all i 6 k. Then there is a p ∈ X amalgamating p0, . . . , pk.
There is a q ∈ Y such that q = p, and this q amalgamates q0, . . . , qk.

For the other direction, we assume that at least one of (2), (3), or
(4) holds and argue in RCA0. Let Q be a Π0

1 property and m be such
that (∀i < m)(∃u)Q(i, u). Let R be a ∆0

1 property such that Q(x, y)
if and only if (∀z)R(x, y, z). Let T = 2<N and let T = T (T ) be as
in Definition 3.5. We define a structure M in the language of T with
domain N. For n ∈ N and α ∈ 2N, we write M � Pα(n) to mean
that M � Pk(n) if and only if α(k) = 1. Let Aσ for σ ∈ 2<N and Bi,j

for i < m and j ∈ N be pairwise disjoint infinite sets whose union is
N. For each σ ∈ 2<N, let M � P σ0N

(n) for all n ∈ Aσ. For i < m
and j ∈ N, let αi,j(k) be 1 if (∀z < k)R(i, j, z) and 0 otherwise. Let

M � P 0i1αi,j(n) for all n ∈ Bi,j.
It is easy to check thatM is a homogeneous model of T , so by Propo-

sition 5.13, T(M) has an enumeration {pi}i∈N satisfying the finite full
amalgamation closure conditions. By effective quantifier elimination,
to define a 1-type p(x) of T , it is enough to specify which Pk(x) are in
p. For i < m, let qi(xi) be the 1-type containing Pk(xi) iff k > i (i.e.,

the type corresponding to P 0i1N
(xi)), where the xi are pairwise distinct

variables. For k ∈ N, let qm+k = pk. It is easy to check that Y = {qi}i∈N
is also an enumeration of T(M). Since we are assuming that at least
one of (2), (3), or (4) holds, Y satisfies the finite free amalgamation clo-
sure conditions. Then there is a type in Y amalgamating q0, . . . , qm−1.
This type is realized in M, so there is a sequence n0, . . . , nm−1 ∈ N
such that M � P 0i1N

(ni) for all i < m. Then ni ∈ Bi,ji
for some ji such

that (∀z)R(i, ji, z), and we can form the sequence j0, . . . , jm−1. Letting
b be greater than all the ji, we have (∀i < m)(∃u < b)Q(i, u). �

Note that BΣ0
2 is also enough to show that closure under sequences

of variable substitutions is enumeration-independent (by an argument
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similar to that in the first part of the above proof), so the above the-
orem remains true if we replace “satisfies the finite (free or full) type
amalgamation condition” by “satisfies the finite (free or full) amalga-
mation closure conditions”.

5.5. Model existence theorems. As discussed in the introduction,
the degree-theoretic results on atomic and homogeneous models ob-
tained by Csima [7] and Csima, Hirschfeldt, Knight, and Soare [8],
on the one hand, and Lange [27, 28], on the other, are almost identi-
cal. Thus it is natural to compare AMT with analogous statements for
homogeneous models. The following are three reasonable candidates,
which match our sets of full amalgamation closure conditions with the
corresponding notions of homogeneity. Of course, when formalizing the
statements below, a set of types X is given as a list of types {pi}i∈N,
and T(A) = X means that X is an enumeration of the type spectrum
of A (i.e., a type is realized in A iff it is equal to pi for some i).

HMT (Homogeneous Model Theorem): Let T be a theory and
let X ⊆ S(T ) satisfy the finite full amalgamation closure conditions.
Then there exists a homogeneous model A of T with T(A) = X.

1-HMT (1-Homogeneous Model Theorem): Let T be a the-
ory and let X ⊆ S(T ) satisfy the pairwise full amalgamation closure
conditions. Then there exists a 1-homogeneous model A of T with
T(A) = X.

1-PHMT (1-Point Homogeneous Model Theorem): Let T be a
theory and let X ⊆ S(T ) satisfy the 1-point full amalgamation closure
conditions. Then there exists a 1-point homogeneous model A of T
with T(A) = X.

We also name the following model existence theorems.

SMT (Strong Model Existence Theorem): Let T be a theory and
letX ⊆ S(T ) satisfy the pairwise free amalgamation closure conditions.
Then there exists a model A of T with T(A) = X.

WMT (Weak Model Existence Theorem): Let T be a theory and
let X ⊆ S(T ) satisfy the finite free amalgamation closure conditions.
Then there exists a model A of T with T(A) = X.

To discuss the reverse mathematical strength of these theorems, we
first need to examine the effective versions of Theorems 5.1 and 5.7,
which requires introducing some strengthenings of the extension con-
dition in these theorems.
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6. Extension functions and model existence

6.1. Extension functions. Theorem 5.1 gives closure conditions that
a set of types must satisfy to be the type spectrum of a homogeneous
model. However, these conditions do not tell us how to build such
a model effectively from a listing of such a set. The following result
answered a question of Morley [36].

Theorem 6.1 (Goncharov [15], Peretyat’kin [41], and Millar [31]).
There is a computable list of types X satisfying all the conditions in
Theorem 5.1 such that X is not an enumeration of the type spectrum
of any decidable homogeneous model.

Goncharov [15] and Peretyat’kin [41] realized that in order to build
a decidable homogeneous model M such that X is an enumeration of
T(M), we need to effectivize one or more of the conditions in Theorem
5.1, to obtain some computable information about how the types in the
computable list X extend one another. Of particular interest are the
extension condition and the (pairwise full) type amalgamation condi-
tion. Since we naturally seek the weakest possible hypothesis guaran-
teeing the existence of a decidable homogeneous model M such that
X is an enumeration of the type spectrum of M, a reasonable way to
proceed is to begin by considering a decidable homogeneous model M
and the natural listing X = {qi(x̄i,j)}i,j∈N of its type spectrum given in
the proof of Theorem 5.13, and determining which of these conditions
hold effectively of X.

Let us recall the definition of X for convenience: Let c̄0, c̄1, . . . be
an enumeration of the M -tuples, and for each i, let x̄i,0, x̄i,1, . . . be an
enumeration of the tuples of variables of the same length as c̄i. Let
X = {qi(x̄i,j)}i,j∈N, where qi is the type of c̄i in the variables x̄i,j.

Let p〈i,j〉 = qi(x̄i,j). The effective version of pairwise full type amal-
gamation says that there is a computable function f such that, if pm

and pn are basically consistent, then pm ∪ pn ⊆ pf(m,n). We claim this
effective closure condition does not necessarily hold. To see that this
is the case, let M be as in the proof of Proposition 4.2. We adopt the
notation of that proof.

Let a, b ∈ M be such that a ≡ b and ¬EM(a, b). Now assume for
a contradiction that there is a computable function f as above. We
show how to compute ∅′ using f . Given i, let c, d ∈ M be such that
M � Ri(c)∧Ri(d)∧E(a, c)∧E(b, d). Let y0, y1, y2 be variables, let m
be such that pm is the type of ac in y0, y1, and let n be such that pn

is the type of bd in y0, y2. Then pm and pn are basically consistent, so
pm ∪ pn ⊆ pf(m,n). Let i and j be such that f(m,n) = 〈i, j〉, and let
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e0, e1, e2 ∈ M be the elements of c̄i corresponding to the positions of
y0, y1, y2 in x̄i,j, respectively. Then e1 ≡ c and e2 ≡ d. Furthermore,
EM holds of (e0, e1) and of (e0, e2), and hence of (e1, e2), so either
¬EM(e1, c) or ¬EM(e2, d). We assume that ¬EM(e1, c), as the other
case is essentially the same. We also assume that e1 is even, and hence
on the A side of M, and c is odd, and hence on the B side of M.
Again, the other case is essentially the same.

If i ∈ ∅′max(e1,c) then of course i ∈ ∅′. Otherwise, we claim that i /∈ ∅′.
Suppose this is not the case. Then i enters ∅′ at a stage t > max(e1, c).
By our construction of M, we have M � Ri,t(e1) and M � ¬Ri,t(c),
which contradicts the fact that e1 ≡ c.

Thus M provides us an example of a decidable homogeneous model
such that the natural listing of T(M) does not satisfy the effective
version of the pairwise full type amalgamation condition. For the ex-
tension condition, however, the situation is different. Let us return
to general case of a decidable homogeneous model M and the listing
X = {qi(x̄i,j)}i,j∈N of T(M). Again let p〈i,j〉 = qi(x̄i,j), and let θ0, θ1, . . .
list the formulas in our language. The effective version of extension says
that there is a computable function f such that if θn(ȳz̄) is consistent
with pm(ȳ), then pf(m,n) extends both pm and θn. This condition does
in fact hold of X: Given such m and n, we simply let i and j be such
that m = 〈i, j〉 and search for c̄k extending c̄i such that M � θn(c̄k).
We then let l be such that x̄k,l = ȳz̄, and let f(m,n) = 〈k, l〉. Note that
this argument does not use the assumption that M is homogeneous.

Goncharov [15] and Peretyat’kin [41] showed that the existence of
such a computable extension function is in fact a sufficient condition
on a computable list of types X satisfying the pairwise full amalgama-
tion closure conditions to ensure that there is a decidable homogeneous
model M such that X is an enumeration of the type spectrum of M.
Indeed, they went even further, by showing that we do not need to be
able to compute an extension function, but merely computably approx-
imate one. As we will see in Theorem 6.4, this weaker condition is not
only sufficient, but also necessary. The following definitions make the
above notions precise. For a detailed look at the following definitions
and their uses in the context of atomic and homogeneous models, see
Lange and Soare [29].

Definition 6.2. Let X = {pi}i∈N be a list of types of a theory T and
let θ0, θ1, . . . be an effective enumeration of the formulas in the language
of T .

(i) A function f(i, j) is an extension function for X if for every
n-type pi(x̄) and (n + k)-ary θj(x̄ȳ) consistent with pi(x̄), the
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(n+ k)-type pf(i,j) extends both pi(x̄) and θj(x̄ȳ), i.e.,

pi(x̄) ∪ {θj(x̄ȳ)} ⊆ pf(i,j)(x̄ȳ).

(ii) A function g(i, j, s) is an extension function approximation if
for every n-type pi(x̄) and (n + k)-ary θj(x̄ȳ) consistent with
pi(x̄),

a. lims g(i, j, s) exists,
b. pi(x̄) ∪ {θj(x̄ȳ)} ⊆ plims g(i,j,s)(x̄ȳ), and
c. pg(i,j,s) � s = pg(i,j,s+1) � s for all s.

Thus, an extension function is one that, given an index for an n-
type and an (n+ k)-ary formula consistent with that type, returns an
index for a type amalgamating the type and the formula. An extension
function approximation, given the same data, approximates the index
of such an amalgamating type, in such a way that the stage s guess at
a true amalgamator agrees with the true amalgamator on the first s
many formulas. (The last condition has led to this notion being called
“monotone extension function approximation”, but since this is the
only kind of extension function approximation we consider, we omit
the word “monotone”.)

Theorem 6.3 (Goncharov [15] (for homogeneous models) and Pere-
tyat’kin [41] (for both cases)). Let X be a computable list of types of a
decidable theory T such that X satisfies the pairwise free amalgamation
closure conditions and has a computable extension function approxima-
tion. Then there is a decidable model A such that X is an enumeration
of T(A). If X also satisfies the pairwise full amalgamation closure con-
ditions, then A can be chosen to be homogeneous.

The basic idea of the proof of this result is to perform a Henkin
construction of a model A of T while ensuring that two families of
requirements are met: ones stating that each type in X is realized by
some A-tuple, and ones stating that each A-tuple realizes a type in
X. To satisfy the first family of requirements, we assign types in X
to A-tuples. These assignments might change in the course of the con-
struction, but to satisfy the second family of requirements, we ensure
that for each A-tuple ā, there is a type p ∈ X such that we eventually
permanently assign p to ā. Since we do not have effective type amalga-
mation, our type assignments may turn out to be in conflict. To deal
with this issue, we use a priority construction: We might assign types
p, q ∈ X to the tuples āb̄ and āc̄, respectively, and find out at some
later point in the construction that p � ā 6= q � ā. In this case, we
maintain whichever assignment has been made by the stronger priority
requirement, say the assignment of p to āb̄, and reassign q to some new
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tuple of elements. We now have the problem of assigning some new
type to āc̄. We do so by using our computable extension function ap-
proximation to guess at a type r in X extending both p and the formula
representing the information we have already added to the elementary
diagram of A about the tuple āb̄c̄, and assigning r � āc̄ to āc̄. Of course,
our extension function approximation can change its mind on what r
is, but only finitely often. Thus we have a finite injury construction.

The existence of a computable extension function is enumeration-
dependent, in the sense that the type spectrum of a model A can have
computable enumerations X and Y such that X has a computable
extension function but Y does not. Extension function approxima-
tions are more robust: if some computable enumeration of T(A) has a
computable extension function approximation, then every computable
enumeration of T(A) has one. (See Lange and Soare [29, Section 4].)
We give the reverse mathematical version of the latter fact in part (2)
of Proposition 6.6.

The following result shows how extension functions can be used to
characterize the computable lists of types that are enumerations of
type spectra of decidable (homogeneous) models. It also shows that
Theorem 6.3 is tight, in the sense that having a computable extension
function approximation is in fact a necessary condition for a list of types
be an enumeration of the type spectrum of some decidable model.

Theorem 6.4 (Goncharov [15] (for homogeneous models) and Pere-
tyat’kin [41] (for both cases)). Let T be a decidable theory and A a
(homogeneous) model of T such that T(A) has a computable enumera-
tion. Then the following are equivalent.

(1) A has a decidable copy.
(2) Every computable enumeration of T(A) has a computable exten-

sion function approximation.
(3) Some computable enumeration of T(A) has a computable exten-

sion function approximation.
(4) Some computable enumeration of T(A) has a computable exten-

sion function.

In computable model theory, it is common to weaken the hypotheses
of this definition by considering only the case k = 1, i.e., only formu-
las of the form θj(x̄y). Let us call the concepts defined in this way
weak extension function and weak extension function approximation.
Computability theoretically, there is no real difference: it is not diffi-
cult to show that if X has a computable weak extension function then
it has a computable extension function, and if it has a computable
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weak extension function approximation, then it has a computable ex-
tension function approximation. In RCA0, it is still easy show that
the existence of a weak extension function implies that of an extension
function, but the situation is less clear in the case of extension function
approximations. The issue is the usual one that we cannot always show
in RCA0 that the composition of finitely many functions with limits
has a limit.

The only place below where the difference between weak extension
function approximations and extension function approximations mat-
ters is in the proof of Theorem 6.10. In all other cases, when we use
the existence of an extension function approximation, we actually use
only the existence of a weak extension function approximation.

The principle that if X has a weak extension function approximation
then it has an extension function approximation is easily provable from
RCA0 +IΣ0

2, and part (2) of Theorem 7.1 below implies that it also fol-
lows from ATT (assuming X in fact satisfies the extension condition),
but we do not what else can be said about its strength.

Classically, the definition of extension function approximation looks
a bit awkward, and it would seem better to define it as an approxima-
tion to an extension function with the additional property (c). How-
ever, in the reverse mathematical setting, the existence of an extension
function approximation g does not guarantee the existence of the ex-
tension function f(i, j) = lims g(i, j, s). Indeed, while every extension
function can easily be transformed into an extension function approx-
imation of itself, there are examples of computable lists of types that
have computable extension function approximations but no computable
extension functions. In fact, we have the following equivalence.

Proposition 6.5. The statement that every list of types of a theory
with an extension function approximation has an extension function
is equivalent to ACA0 over RCA0. This fact remains true if we re-
strict attention to lists of types satisfying any one of the sets of closure
conditions discussed above.

Proof. ACA0 is clearly enough to show that the limit of an extension
function approximation exists and is an extension function. For the
reversal, fix a function f . We argue in RCA0 and build a list of types
X of a theory T such that X satisfies the finite full amalgamation
closure conditions and has an extension function approximation, so
that if X has an extension function then the range of f exists as a set.

We work in the language with unary relation symbols Pi for i ∈ N.
Let A be the following set of axioms.
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(1) Pi+1(x) → Pi(x) for all i ∈ N.

(2) (∃>kx)[Pi(x) ∧ ¬Pi+1(x)] for all i, k ∈ N.

(3) (∃>kx)¬P0(x) for all k ∈ N.

These axioms are the same as in the proof of Theorem 4.3, except
that here we do not need the symbol E, so we can show that A admits
effective quantifier elimination and that its deductive closure T is a
theory using a simpler version of the argument in the proof of that
theorem.

By effective quantifier elimination, the types of T can be identified
with atomic types. Thus the 1-types of T in a given variable x are
the principal types ri(x) generated by Pi−1(x)∧¬Pi(x) (where the first
conjunct is omitted if i = 0), and the nonprincipal type r∞(x), which
has Pi(x) for all i ∈ N.

We now give names for all the types of T . Let E be an equivalence
relation on some n ∈ N, let σ = (k0, . . . , kn−1) be such that ki ∈
N ∪ {∞} for i < n and ki = kj whenever E(i, j) holds (note that E
determines n uniquely), and let (y0, . . . , yn−1) be a tuple of variables.
Let sE,σ(y0, . . . , yn−1) be the n-type that includes yi = yj if E(i, j)
holds and yi 6= yj if ¬E(i, j) holds, and states that each yi has type rki

.
Note that these conditions completely specify an n-type, since we have
only unary relation symbols. Furthermore, every type of T is equal to
sE,σ(ȳ) for some equivalence relation E, some compatible σ, and some
tuple of variables ȳ.

Let x0, x1, . . . be the variables in our language. Clearly, we can enu-
merate all the types sE,σ(xi0 , . . . , xin−1), where E and σ are as above
and i0, . . . , in−1 are distinct numbers, as a list q0, q1, . . . with an exten-
sion function h (relative to a fixed listing θ0, θ1, . . . of the formulas in
our language) such that if qi is a type in the variables x̄ and the free
variables of θj are ȳ then qh(i,j) is a type in the variables x̄ ∪ ȳ. We
may further assume that h is defined so that, for i and j as above, if
xk ∈ ȳ \ x̄ then qh(i,j) � xk = rl(xk) for some l ∈ N. We also assume our
types are listed so that for any type p and any m ∈ N, the restriction
p � m includes no formulas involving Pm.

We now define X = {pi}i∈N, which in fact includes all types of
T . Fix k, c ∈ N. In defining p〈k,c〉, there are two cases. If qk =
sE,(∞,l1,...,ln+1)(x0, . . . , xn+1), where ¬E(0, 1) and l1 ∈ N is such that
(∀m < c)¬f(m) = l1, then let p〈k,c〉(x0, . . . , xn+1) be the type deter-
mined by stating that x0 6= x1, that xj has type rlj for j ∈ [1, n + 1],
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and that Pi(x0) holds if and only if (∀m < i)¬f(m) = l1. Otherwise,
let p〈k,c〉 = qk.

In the first case, p〈k,c〉 = qk if and only if l1 is not in the range of
f . If l1 is in the range of f , however, then the first case applies for
only finitely many c, so if c is sufficiently large then p〈k,c〉 = qk. Thus
every type of T appears in X. Furthermore, if we know whether l1 is
in the range of f , then we can determine which type p〈k,c〉 is, for any
given c ∈ N. By bounded Σ0

1-comprehension, it follows that for any
sequence i0, . . . , im, there is a sequence j0, . . . , jm such that pid = qjd

for all d 6 m. It is now easy to see that X satisfies the finite full
amalgamation closure conditions.

We define an extension function approximation g for X as follows.
Fix pi(x̄) and θj(x̄ȳ) consistent with pi(x̄). By effective quantifier elimi-
nation and the fact that a disjunction is implied by each of its disjuncts,
we may assume that θj is a conjunction of literals. Let k, c be such that
i = 〈k, c〉. There are several cases.

(1) pi is the 0-type. Then we can find an m such that qm contains
θj and is of the form sE,(l0,...,ln−1), where n = |ȳ| and each lj is in
N, and let g(i, j, s) = 〈m, 0〉 for all s ∈ N.

(2) pi is an m-type for m > 2 that is defined to be qk. Then we also
have p〈h(k,j),c〉 = qh(k,j), so let g(i, j, s) = 〈h(k, j), c〉 for all s ∈ N.

(3) pi is an m-type for m > 2, but case 2 does not hold. Let j′ be
such that θj′ implies θj and the free variables of θj′ are x0, . . . , xm

for some m (for instance, θj′ can be obtained by adding conjuncts
of the form xl = xl to θj). Then it follows from the definition of
X that p〈h(i,j′),c〉 is obtained from qh(i,j′) by the same process as
pi is obtained from qk, which implies that pi ∪ {θj} ⊂ p〈h(k,j′),c〉,
so let g(i, j, s) = 〈h(k, j′), c〉 for all s ∈ N.

(4) pi is a 1-type and p〈h(k,j),c〉 is defined to be qh(k,j). Then pi = qk,
so let g(i, j, s) = 〈h(k, j), c〉 for all s ∈ N.

(5) None of the above cases hold. Then pi = qk is a 1-type and
qh(k,j) is of the form sE,(∞,l1,...,ln+1)(x0, . . . , xn+1), where ¬E(0, 1).
By our assumptions on h, it follows that pi is r∞(x0), and that
θj(x0, . . . , xn+1) does not include x0 = x1. Let l be a number
larger than all d such that θj includes Pd(x1) and less than or
equal to all d such that θj includes ¬Pd(x1). Such an l exists
because θj is consistent with T . Let j′ be such that θj′ is θj ∧
¬Pl(x1)∧Pl−1(x1), where the last conjunct is omitted if l = 0. If
(∀m < s)¬f(m) = l, then let g(i, j, s) = 〈h(k, j′), 0〉. Otherwise,
let g(i, j, s) = 〈h(k, j′), s〉.
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In any case, it follows from the definition of X that lims g(i, j, s) exists,
that pg(i,j,s) � s = pg(i,j,s+1) � s for all s ∈ N, and that pi ∪ {θj} ⊂
plims g(i,j,s).

Now suppose that X has an extension function G. For each n, let i, j
be such that pi = r∞(x0) and θj = Pn−1(x1)∧¬Pn(x1) (or just ¬P0(x1)
if n = 0). Then G(i, j) must have the form 〈k, c〉 for some c such that
either (∃m < c)f(m) = n, or n is not in the range of f . Thus from G
we obtain the range of f as a set. �

6.2. The reverse mathematics of extension functions. From the
reverse mathematical point of view, there are several versions of The-
orem 6.4 that can be considered. We begin with the following simple
facts.

Proposition 6.6. The following are provable in RCA0.

(1) For every model A, there is an enumeration of T(A) with an ex-
tension function and the same properties as in Proposition 5.13.

(2) If two lists of types are equal as sets of types and one has an
extension function approximation, then so does the other.

(3) If two lists of types are equal as sets of types and one has an
extension function, then the other has an extension function ap-
proximation.

(4) For every model A, every enumeration of T(A) has an extension
function approximation.

Proof. (1) The enumeration described in the proof of Proposition 5.13
clearly has an extension function.

(2) Suppose that Y = {qi}i∈N has an extension function approxima-
tion g and that X = {pi}i∈N is equal to Y as a set of types. Given i
and an index j for an (n+ c)-ary formula θ consistent with the n-type
pi, proceed as follows. Let f(i, j, 0) = 0, let k0 = 0, and let ϕ0 = θ.
Given f(i, j, s), let ks+1 be the least k such that qk is an n-type with
qk � s = pi � s. If ks+1 = ks then let ϕs+1 = ϕs. Otherwise, let
ϕs+1 be the conjunction of the formulas in pf(i,j,s) � s and θ. Let m
be the index of ϕs+1, and let f(i, j, s + 1) be the least l such that
pl � s + 1 = qg(k,m,s+1) � s + 1. It is straightforward to check that f
is an extension function approximation for X, using the fact that for
each k there is a least l such that pk = ql (and vice-versa). This fact
follows from IΠ0

1, which is provable in RCA0.
(3) follows from (2), while (4) follows from (1) and (3). �

We summarize what we know about other versions of Theorem 6.4
in Figure 2. The column heading describes which closure conditions
we assume the list of types X = {pi}i∈N satisfies. When a row heading
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asserts the existence of a model A, we mean that X is an enumeration
of T(A). When a row heading asserts the existence of a listing, we
mean that there is a list of types Y = {qi}i∈N with the stated property
such that X and Y are equal as sets of types. For a given column
C and row R, let C ⇒ R be the principle stating that if X has the
closure conditions given by the heading of C and has an extension
function approximation, then the statement in the heading of R holds.
(When the heading of R mentions amalgamation, we take it in the same
sense (free or full) as in the heading of C. Note that, by Proposition
5.10, we do not need a separate “there exists a listing with pairwise
amalgamation” row, as such a row would be the same as the first row
in our chart.)

p’wise finite 1-pt. p’wise finite
free free full full full

amalg. amalg. amalg. amalg. amalg.
X has pairwise amalg.

√ √
2

√ √

X has finite amalg. 2
√

2 2
√

∃ listing w/ finite amalg. 3
√

2 2
√

∃ model 3 1 2 3 1
∃ 1-pt. homogeneous model X X 2 3 1
∃ 1-homogeneous model X X 2 3 1
∃ homogeneous model X X 2 2 1

∃ listing w/ EF 4 1 5 4 1
∃ listing w/ EF + p’wise am. 4 1 2 4 1
∃ listing w/ EF + fin. am. 3 1 2 2 1

Figure 2. Versions of Theorem 6.4

The entry in row R and column C in Figure 2 describes the strength
of the principle C ⇒ R. A

√
means that the principle is true by

definition, and an X means that it is false. The meanings of the number
codes are as follows.

• A 1 means that the principle is true in RCA0.
• A 2 means that the principle is equivalent to IΣ0

2 over RCA0.
• A 3 means that the principle is provable from Π0

1GA over RCA0

and is equivalent to IΣ0
2 over RCA0 +BΣ0

2 (and hence not prov-
able in RCA0, or even RCA0 + BΣ0

2).
• A 4 means that the principle is provable from Π0

1GA over RCA0,
but its strength is otherwise unknown.

• A 5 means that the principle is provable from IΣ0
2 over RCA0,

but its strength is otherwise unknown.
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The proof that entries marked 1 are true in RCA0 is done simultane-
ously with the proof that entries marked 3 or 4 are provable from Π0

1GA,
and employs Shore blocking. We use versions of a single example to
obtain IΣ0

2 from the entries marked 2 and from the entries marked 3
together with BΣ0

2. We give two charts (Figures 3 and 4) summarizing
the justifications of the correctness of Figure 2 in the proof of Theorem
6.13 below.

We can also think of this chart with C ⇒ R reinterpreted to mean
that if X has the closure conditions given by the heading of C and has
an extension function (rather than an extension function approxima-
tion), then the statement in the heading of R holds. In this case, the
chart remains exactly the same, except for the third to last row, which
is now all

√
’s; the next to last row, where the 1’s and 4’s are now

√
’s;

and the last row, where the 1’s are now
√

’s. We show these changed
lines in Figure 3. The justifications of correctness in this case are also
given by the charts in the proof of Theorem 6.13.

p’wise finite 1-pt. p’wise finite
free free full full full

amalg. amalg. amalg. amalg. amalg.
∃ listing w/ EF

√ √ √ √ √

∃ listing w/ EF + p’wise am.
√ √

2
√ √

∃ listing w/ EF + fin. am. 3
√

2 2
√

Figure 3. Changes to Figure 2 in the extension function case

As noted in Section 3, the definition of Π0
1GA is intended to capture

the reverse mathematical behavior of the principles marked with a 3
in a more combinatorial way. However, we do not know whether these
principles are in fact equivalent to Π0

1GA.
In the remainder of this section, we prove theorems that, together

with results in preceding sections, are used in Theorem 6.13 below to
verify the correctness of both versions of our chart. We begin by defin-
ing an auxiliary notion of type amalgamation that is implied by full
amalgamation and, in the presence of Π0

1GA, also by pairwise amalga-
mation. We later give a proof establishing the provability in RCA0 of
the entries labeled 1 in our chart, the provability from IΣ0

2 of the entries
labeled 2 or 5, and the provability from Π0

1GA of the entries labeled 3
or 4. In this proof, instead of working with finite or pairwise amalga-
mation directly, we work with this auxiliary notion, which is designed
to fit a finite injury priority construction (with Shore blocking). Here
and below, we use the bracket notation introduced in Remark 5.9.
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Definition 6.7. Let X = {pi(z̄i)}i∈N be a list of types of a theory
T . Let ai = |z̄i|. Let R be the set of all (i, n) with n 6 ai. Let xi

and yi,n,j for i, n, j ∈ N be pairwise distinct variables. For (i, n) ∈ R,
let qi,n = pi[x0, . . . , xn−1, yi,n,0, . . . , yi,n,ai−n−1]. (So if (i, n) and (i′, n′)
are distinct elements of R, then the first min(n, n′) many variables in
qi,n and qi′,n′ are the same, but the other variables in qi,n are pairwise
distinct from the other variables in qi′,n′ .) For F ⊆ R, let qF = {qi,n :
(i, n) ∈ F}. Recall that our definition of consistency of a finite set of
types requires that there be a single type in the set containing all the
variables shared by any two types in the set. If F ⊂ R is finite, then
this is the case for qF , so it makes sense to speak of the consistency of
qF .

(1) X satisfies the eventual full type amalgamation condition if there
are finite F0, F1, . . . ⊂ R such that the following hold.

(a) For each (i, n) ∈ R, we have (i, n) ∈ Fs for all sufficiently
large s.

(b) There are infinitely many s such that, for each S ⊆ Fs for
which qS is consistent, there is a pj amalgamating all the
types in qS.

(2) X satisfies the eventual free type amalgamation condition if the
above holds for {(i, 0) : i ∈ N} in place of R.

(3) X satisfies the eventual full amalgamation closure conditions
(resp. eventual free amalgamation closure conditions) if it satis-
fies the conditions in Theorem 5.1 with pairwise full type amalga-
mation replaced by eventual full type amalgamation (resp. even-
tual free type amalgamation).

Clearly, if a list of types of a theory satisfies the finite full (resp. free)
amalgamation closure conditions then it satisfies the eventual full (resp.
free) amalgamation closure conditions. For pairwise amalgamation, we
have the following fact.

Lemma 6.8. The following is provable in RCA0 + Π0
1GA. If a list of

types of a theory satisfies the pairwise full (resp. free) amalgamation
closure conditions then it satisfies the eventual full (resp. free) amalga-
mation closure conditions.

Proof. We prove the lemma for full amalgamation, as the free case is
similar but simpler. We argue in RCA0+Π0

1GA. We adopt the notation
of Definition 6.7. Let X = {pi(z̄i)}i∈N be a list of types of a theory T
satisfying the pairwise full amalgamation closure conditions. Let wi,j

for i, j ∈ N be pairwise distinct variables that are also distinct from
each xi and each yi,n,j. For (i, n) ∈ R, let ri,n = qi,n � x0, . . . , xn−1,
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and let ls(i, n) be the least l such that rl,n � s = ri,n � s. Let E ⊂ R
be finite. We say that a pair (d, s) provides amalgamators for E if for
each (i, n) ∈ E, the type pd contains

pi[wls(i,1),0, . . . , wls(i,n),n−1, yi,n,0, . . . , yi,n,ai−n−1].

This property is Π0
1, so there is a ∆0

0 predicate P such that (d, s) pro-
vides amalgamators for E if and only if (∀x)P (d, s, E, x).

Suppose (d, s) provides amalgamators for E, and let S ⊆ E be such
that qS is consistent. If (i, n), (i′, n′) ∈ S, then for all k 6 min(n, n′), we
have ri,k = ri′,k, and hence ls(i, k) = ls(i

′, k). So if we choose (i, n) ∈ S
with the largest n and let pj be the type obtained from pd by first
passing to a subtype that does not include the variables x0, . . . , xn−1

and then replacing the variables wls(i,1),0, . . . , wls(i,n),n−1 by x0, . . . , xn−1,
then pj amalgamates the types in qS. So the idea is to use Π0

1GA to
find such (d, s) for larger and larger sets E.

Let (E0, d0), (E1, d1), . . . list all pairs consisting of a finite subset of
R and a natural number, such that each such pair is listed infinitely
often. For σ ∈ 2<N, proceed as follows to define a tuple (Eσ, dσ, sσ, tσ).
Let sσ be the largest s such that σ(3s) = 1, or 0 if there is no such
s. Let tσ be the largest t such that σ(3t + 1) = 1, or 0 if there is no
such t. Let k0 < · · · < km−1 be the numbers such that σ(3ki + 2) = 1.
Let (E0, d0) = (∅, 0). Given (Ei, di), proceed as follows. If Eki

⊇ Ei

and (∀x < tσ)P (dki
, sσ, Eki

, x), then let (Ei+1, di+1) = (Eki
, dki

), and
otherwise let (Ei+1, di+1) = (Ei, di). Finally, let (Eσ, dσ) = (Em, dm).
Note that (∀x < tσ)P (dσ, sσ, Eσ, x).

We now define some uniformly Π0
1 dense sets. (As in the definition

of Π0
1G and Π0

1GA in Section 3, we refer to these Π0
1 properties as sets

and use set notation for convenience, but we are not asserting their
existence as sets in RCA0.) We begin with the sets Dc of all τ such
that |τ | > c and (dτ , sτ ) provides amalgamators for Eτ . These sets
are uniformly Π0

1; we claim each Dc is also dense. To see that this
is the case, fix c and σ, and let k0 < · · · < km−1 be as above. It is
provable in RCA0 that there is a t > |σ| such that, for each i < m, if
(∃x)¬P (dki

, sσ, Eki
, x) then (∃x < t)¬P (dki

, sσ, Eki
, x). Let τ � σ be

such that |τ | > c and τ(j) = 1 if and only if σ(j) = 1 or j = 3t + 1.
Then tτ = t and sτ = sσ, while (Eτ , dτ ) = (Eki

, dki
) for some i < m (or

(Eτ , dτ ) = (∅, 0)). Thus the fact that (∀x < tτ )P (dτ , sτ , Eτ , x) implies
that (∀x)P (dτ , sτ , Eτ , x), and hence (dτ , sτ ) provides amalgamators for
Eτ .

Now let C(i,n) for (i, n) ∈ R consist of all τ such that (i, n) ∈ Eρ

for all ρ < τ . The C(i,n) are uniformly Π0
1; we claim that each C(i,n) is

also dense. To see that this is the case, fix (i, n) ∈ R and σ, and let
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k0 < · · · < km−1 be as above. Let E =
⋃

j<mEkj
∪ {(i, n)}. For each

(j, k) ∈ E, the value of ls(j, k) changes at most j many times, so it is
provable in RCA0 that there is an s > |σ| such that lu(j, k) = ls(j, k)
for all u > s and all (j, k) ∈ E. Write l(j, k) for ls(j, k). As above,
there is a t > |σ| such that, for each i < m, if (∃x)¬P (dki

, s, Eki
, x)

then (∃x < t)¬P (dki
, s, Eki

, x). Let ν � σ be such that ν(j) = 1 if and
only if σ(j) = 1 or j = 3s or j = 3t+ 1. Then for each (j, k) ∈ Eν , the
type pdν contains

pj[wl(j,1),0, . . . , wl(j,k),k−1, yj,k,0, . . . , yj,k,aj−k−1].

By passing to a subtype if necessary, we may assume that pdν does not
contain the variable wl(i,c+1),c for c < n unless there is a (j, k) ∈ Eν

such that c < k and l(j, c+1) = l(i, c+1), in which case rj,c+1 = ri,c+1.
Thus pdν is consistent with

pi[wl(i,1),0, . . . , wl(i,n),n−1, yi,n,0, . . . , yi,n,ai−n−1],

and hence there is a type pd amalgamating these two types. Let k > |ν|
be such that (Ek, dk) = (Eν ∪ {(i, n)}, d), and let τ � ν be such that
τ(j) = 1 if and only if ν(j) = 1 or j = 3k + 2. Then it is easy to
check that Eτ = Eν ∪ {(i, n)}, and that if ρ < τ , then the definition of
Eρ proceeds in the same way as the definition of Eτ for its first m+ 1
many steps, whence (i, n) ∈ Eτ ⊆ Eρ.

Now let g0, g1, . . . be as in Π0
1GA for the uniformly Π0

1 dense sets Dm

for m ∈ N and C(i,n) for (i, n) ∈ R. Let σ0, σ1, . . . be a listing without
repetitions of all σ such that there is a t with σ ≺ gt. Let Fu = Eσu .
Let (i, n) ∈ R. Then there are k and s such that for all t > s, we have
gt � k = gs � k ∈ C(i,n), and hence (i, n) ∈ Fu for almost all u. For each
m, there are k and s such that gs � k ∈ Dm, so there are infinitely many
Fu such that some (d, v) provides amalgamators for Fu. As discussed
above, for any such u and any S ⊆ Fu such that qS is consistent, there
is a pj amalgamating all the types in qS. Thus X satisfies the eventual
full type amalgamation condition. �

The next lemma gives us a convenient way to build a model with
a specified type spectrum by computably approximating the types of
initial segments of the domain of the model.

Lemma 6.9. The following is provable in RCA0. Let X = {pi}i∈N be
a list of types of a theory T . Let qi,n be as in Definition 6.7. Suppose
that X satisfies the first four conditions in Theorem 5.1, and there is a
binary partial function f with the following properties for all n, s, and
k.
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(i) pf(n,s) is an n-type in the variables x0, . . . , xn−1 whenever de-
fined.

(ii) pf(n,s) � s = pf(n,s+k) � s whenever these are defined.

(iii) pf(n,s) � s ⊆ pf(n+1,s) � s whenever these are defined.

(iv) f(n, s) is defined for all sufficiently large s ∈ N and lims f(n, s)
exists. We denote this limit by f(n). (Note that this notation
is purely an abbreviation for the limit notation; we cannot in
general prove that the function taking n to f(n) exists.)

(v) For each (i, n) ∈ R, if pf(n) ⊆ qi,n then there exist m ∈ N and
distinct j0, . . . , jai−n−1 ∈ [n,m− 1] such that

pi[x0, . . . , xn−1, xj0 , . . . , xjai−n−1 ] ⊆ pf(m).

Then the following hold.

(1) If X satisfies the finite full type amalgamation condition, then
there is a homogeneous model M such that X is an enumeration
of the type spectrum of M.

(2) If X satisfies the pairwise full type amalgamation condition, then
there is a 1-homogeneous model M such that X is an enumera-
tion of the type spectrum of M.

(3) Suppose that we weaken condition (v) by requiring it to hold only
for n = 0. Then there is a model M such that X is an enumer-
ation of the type spectrum of M.

Proof. (1) We obtain a homogeneous model M such that X is an enu-
meration of T(M) as follows. First, define an equivalence relation E
on N. For each i, j ∈ N, let n = max(i, j) + 1. Then there is an s ∈ N
such that either xi = xj ∈ pf(n,s) or xi 6= xj ∈ pf(n,s). Let E(i, j) hold
if and only if the first case obtains. Let the domain M of M consist of
all i ∈ N such that (∀j < i)¬E(i, j). To specify the satisfaction predi-
cate of M, it is enough to say whether or not ϕM(m0, . . . ,mk−1) holds
for each formula ϕ(y0, . . . , yk−1) in the language of T and each tuple
(m0, . . . ,mk−1) of distinct elements of M , and then verify that our def-
inition has the properties of a satisfaction predicate. Given such a ϕ
and m0, . . . ,mk−1, let n = maxi<k mi + 1. Then there is an s ∈ N such
that either ϕ(xm0 , . . . , xmk−1

) ∈ pf(n,s) or ¬ϕ(xm0 , . . . , xmk−1
) ∈ pf(n,s).

Let ϕM(m0, . . . ,mk−1) hold if and only if the first case obtains.
Then ϕM holds for all ϕ ∈ T , since every type in X contains T . It is

also easy to check that the predicate defined in this way is deductively
closed and consistent, and hence is a satisfaction predicate, so M is a
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model of T . By the properties of f , the fact that X is closed under
subtypes, and Remark 5.2, every M -tuple realizes a type in X. For
each pi ∈ X, we have pf(0) ⊆ pi, so by the fifth property of f , the type
pi is realized in M.

It is easy to see that in the definition of homogeneity of a model (Def-
inition 4.1(iii)), restricting attention to M -tuples of distinct elements
yields an equivalent definition of homogeneity. Thus, to show that M
is homogeneous, let ā0 ≡ b̄0, . . . , ān ≡ b̄n and c̄0, . . . , c̄n be M -tuples of
distinct elements (by which we mean that each āi, b̄i, and c̄i is a tuple
of distinct elements, though some of these tuples could have elements
in common). Let m be larger than all of the elements of these tuples.
Let ki = |b̄i| and li = |c̄i|. Write b̄i = (bi,0 . . . , bi,ki−1). Let zi,j for i 6 n
and j < li be pairwise distinct variables that are also pairwise distinct
from the xi. Let ri(xbi,0

, . . . , xbi,ki−1
, zi,0, . . . , zi,li−1) be the type of āic̄i.

The sequence of types consisting of pf(m) and ri for i 6 n is basically
consistent, so there is a type

pj(x0, . . . , xm−1, z0,0, . . . , z0,l0−1, . . . , zn,0, . . . , zn,ln−1)

amalgamating these types.
Let b̄ be the result of removing from b̄0 . . . b̄n any bi,j for which there

are an i′ < i and a j′ such that bi′,j′ = bi,j. Let x̄ be the result
of removing from the list xb0,0 . . . xb0,k0−1

. . . xbn,0 . . . xbn,kn−1
any xi,j for

which there are an i′ < i and a j′ such that xi′,j′ is the same variable
as xi,j. It now follows from the fifth property of f that there are
d̄0, . . . , d̄n ∈M such that b̄d̄0 . . . d̄n realizes

pj � x̄z0,0 . . . z0,l0−1 . . . zn,0 . . . z0,ln−1.

Then āic̄i ≡ b̄id̄i for all i 6 n.
(2) The above argument works in this case as well, except that in

the last two paragraphs, we take n = 0, which makes the amalga-
mation performed in that paragraph an instance of pairwise full type
amalgamation.

(3) The same argument again works in this case, ignoring the last
two paragraphs. �

We are now ready to establish a theorem that gives us the provability
in RCA0 of the entries labeled 1 in our chart, the provability from IΣ0

2

of the entries labeled 2 or 5, and the provability from Π0
1GA of the

entries labeled 3 or 4.

Theorem 6.10. The following are provable in RCA0. Let X = {pi}i∈N
be a list of types of a theory T , such that X has an extension function
approximation.



INDUCTION, BOUNDING, WEAK COMBINATORIAL PRINCIPLES & HMT 74

(1) If X satisfies the finite full amalgamation closure conditions then
there is a homogeneous model M such that X is an enumeration
of the type spectrum of M.

(2) If X satisfies the finite free amalgamation closure conditions then
there is a model M such that X is an enumeration of the type
spectrum of M.

(3) If Π0
1GA holds and X satisfies the pairwise full amalgamation

closure conditions then there is a 1-homogeneous model M such
that X is an enumeration of the type spectrum of M.

(4) If Π0
1GA holds and X satisfies the pairwise free amalgamation

closure conditions then there is a model M such that X is an
enumeration of the type spectrum of M.

Proof. We do the full amalgamation case, as the free amalgamation case
is similar. By Lemma 6.8 and the comment preceding that lemma, we
may assume that X satisfies the eventual full amalgamation closure
conditions. From now on, this is the assumption we use, so we prove
(1) and (3) simultaneously. It is enough to work in RCA0 and build a
function f as in Lemma 6.9. Let R and F0, F1, . . . be as in Definition
6.7.

Suppose that we build a list of types Y as follows. For each pi in turn,
add all of its subtypes (including pi itself), and all types obtained from
these subtypes by changes of variables, to Y , in an effective way. Let I
be the set of all j such that the jth type added to Y is one of the original
pi’s. Then X and Y contain the same types, and, by Proposition 6.6,
Y also has an extension function approximation. Thus, by replacing X
with Y , we may assume that X is closed under sequences of variable
substitutions, and indeed that there is an effective procedure that, for
each pi and each sequence s of types obtained from subtypes of pi by
a given change of variables, determines a sequence of elements of X
equal to s. We may also redefine R to contain only those (i, n) such
that i ∈ I. Having property (v) of f hold for such (i, n) suffices for the
proof of Lemma 6.9 to go through, and we still have sets F0, F1, . . . as
in Definition 6.7.

Let g be an extension function approximation for X, relative to a
listing ϕ0, ϕ1, . . . of the formulas in the language of T . We may assume
that g is defined so that pg(i,j,s) always contains ϕj. Furthermore, if for
each i and j such that ϕj(w̄z̄) is consistent with pi(w̄), we replace each
g(i, j, s) by the least k such that pk � s = (pg(i,j,s) � w̄z̄) � s, then it is
easy to check that we still have an extension function approximation.
Thus we may assume that for such j and i, each pg(i,j,s) is a |w̄z̄|-type
in the variables w̄z̄.
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We ensure properties (i)–(iii) of f as we go along the stage-by-stage
construction. We think of the remaining two properties as split into
requirements. For (iv), there is a requirement Qn for each n ∈ N,
and for (v) a requirement Ri,n for each i, n ∈ R. We satisfy these
requirements by a finite injury priority construction. Not all finite
injury constructions carry through in RCA0, however. The typical
issue is the following. There is no problem in verifying that a given
requirement eventually stops acting, given that there is a stage s at
which all stronger priority requirements have stopped acting. However,
concluding that this fact implies that, for each requirement, such a
stage s exists might require more induction than is available in RCA0.
(The issue of how much induction is needed for various computability
theoretic constructions has been extensively analyzed by the research
program known as reverse recursion theory; see e.g. Mytilinaios [37].)
To avoid this issue, we use Shore blocking. The use of blocking in
the reverse mathematics of model theory is quite natural, since a finite
list of requirements, each involving a particular type, can often be
combined into a single requirement involving an amalgamation of the
original types. For other examples of this technique, see [23].

In our case, the Q-requirements block naturally, but the R-require-
ments need some care. Satisfying a single R-requirement in the absence
of injuries from stronger priority requirements is no problem, if we
have at least pairwise full type amalgamation. However, satisfying an
arbitrary block of finitely many R-requirements at once requires finite
full type amalgamation. So instead of satisfying our R-requirements
directly, we make use of the sets F0, F1, . . . from Definition 6.7 and
satisfy requirements Ss saying that there is a t > s such that Ri,n is
satisfied for every (i, n) ∈ Ft with n 6 s. Satisfying the Ss is clearly
enough to satisfy all Ri,n, but the S-requirements have the advantage
that satisfying Ss is enough to satisfy Su for all u 6 s.

For each c, s ∈ N, we define a number bc,s. At stage s, the S-
requirements we attempt to satisfy are Sb0,s , Sb1,s , . . . . For each Sbc,s , we
need numbers from which to draw the witnesses required to satisfy the
appropriate R-requirements (i.e., the numbers ji mentioned in property
(v) of f). So we define bc+1,s so that bc+1,s − bc,s is at least as large as
the total number of witnesses we might need, and draw our witnesses
for Sbc,s from [bc,s, bc+1,s). (We define b0,s = 0 for all s.)

At stage s of our construction, the cth block of requirements con-
sists of Sbc,s and the Qn such that n ∈ (bc,s, bc+1,s]. We try to satisfy all
requirements in this block simultaneously, by defining f(bc+1,s, s) to at-
tempt to satisfy Sbc,s , defining f(n, s) for n ∈ (bc,s, bc+1,s) so that pf(n,s)
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is the appropriate subtype of pf(bc+1,s,s) (which we can do because of the
effective closure under sequences of variable substitutions discussed in
the second paragraph of this proof), and then attempting to preserve
these definitions. Of course, we also attempt to ensure that pf(bc,s,s) is
a subtype of pf(bc+1,s,s).

When we say that we define f(bc+1,s, s) to attempt to satisfy Sbc,s , we
mean the following. Say that Ri,n is relevant at stage s if n 6 bc,s and
the hypothesis of Ri,n appears to hold at stage s. Item (1)(b) in Defi-
nition 6.7 implies that there is some Ft with t > bc,s such that we can
simultaneously satisfy all permanently relevant Ri,n with (i, n) ∈ Ft.
We guess at such an Ft, and choose potential witnesses from [bc,s, bc+1,s)
for all relevant Ri,n such that (i, n) ∈ Ft. We then define f(bc+1,s, s) to
attempt to ensure that these witnesses have the correct type to satisfy
these requirements. Even absent interference from other blocks, such
an attempt might fail, as defining f(bc+1,s, s) correctly requires first
having an appropriate t, then having a type amalgamating pf(bc+1,s,s)

with the various types involved in all the relevant Ri,n, both of which
can be found only by trial and error. (Though once the block stops
growing, these will eventually be found.) When such an attempt fails,
we need to redefine bc+1,s to create enough room for the next attempt
(i.e., we choose it so that there are enough elements below bc+1,s on
which f has not yet been defined to provide witnesses for all the R-
requirements that might be considered in the next attempt at satisfying
Sbc,s). Another issue we need to confront in defining f(bc+1,s, s) is that
f(k, s−1) might have been defined for some k ∈ (bc,s, bc+1,s]. If so, then
we need to use our extension function approximation g to determine
f(bc+1,s, s), as pf(bc+1,s,s) has to contain pf(k,s−1) � s− 1 for each such k.

In addition, definitions made for two blocks, say the cth and dth
for c < d, might turn out to be in conflict (i.e., pf(bc+1,s,s) might turn
out not to be a subtype of pf(bd+1,s,s)). Then we injure the dth block,
changing the values of f it has defined. When we do so, we increase
be,s for all e > d. As we show below, this action ensures that the
correctness of our construction can be verified in RCA0.

To each block c, we attach parameters ic and jc, which might change
or be undefined during the construction. These are chosen so that pic

is a type in variables among x0, . . . , xbc+1,s−1 and ϕjc(x0, . . . , xbc+1,s−1)
is consistent with pic . We ensure that whenever ic and jc are defined,
then so are id and jd for d < c. At the end of each stage s > 0, we
define f(bc+1,s, s) = g(ic, jc, s) if these parameters are defined. Thus
ic represents a type through which we are attempting to satisfy Sbc,s ,
and jc represents a formula that we need to amalgamate with this type
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to preserve properties (i)–(iii) of f . We also assign tuples of witnesses
to R-requirements corresponding to Sbc,s , which again might change
during the construction. We ensure that if Sbc,s has witnesses assigned
to it, then ic and jc are defined.

Construction of f . At stage 0, act as follows. Let bj,0 = j for all j ∈ N.
Let e be such that pe is the 0-type and let f(0, s) = e for all s ∈ N. For
notational convenience, we also let g(i−1, j−1, s) denote e for all s ∈ N.

At stage s > 0, act as follows. Recall that ai is the arity of pi.
For each c such that ic and jc are defined, say that (i, n) ∈ R is c-
active if qi,n � s is consistent with plimu g(ic−1,jc−1,u) (which we can check
effectively because of the monotonicity of g). Say that c is satisfied if
ic and jc are defined, s > bc,s−1, and there is a t ∈ [bc,s−1, s] such that
each c-active (i, n) ∈ Ft with n < bc,s−1 has witnesses j0, . . . , jai−n−1

assigned to it for which

pi[x0, . . . , xn−1, xj0 , . . . , xjai−n−1 ] � s ⊂ pg(ic,jc,s).

Say that c requires attention if ic and jc are defined, s > bc,s−1, and c
is not satisfied. If ic and jc are defined, then say they are untenable if
pg(ic,jc,s) � s is inconsistent with plimu g(ic−1,jc−1,u).

Let c be least such that ic and jc are undefined or untenable, or c
requires attention. (Such a c must exist because we define id and jd for
only finitely many d at each stage.) We say that c is active at stage s.
Let bd,s = bd,s−1 for all d 6 c. Let ks be the number of stages u < s at
which c has been active and bc,u = bc,s, and let t = bc,s + n, where n
is such that ks = 〈n, l〉 for some l. Let bc+1,s be large enough so that
[bc,s, bc+1,s) contains at least

∑
(i,n)∈Ft

ai many fresh elements (i.e., ones

on which f has never been defined). Let bc+1+m,s = bc+1,s + m for all
m > 0. For d > c, undefine id, jd, and all witnesses associated with the
dth block.

Say that Ri,n is relevant if it is c-active, n < bc,s, and (i, n) ∈ Ft.
Let Rl0,n0 , . . . , Rlr−1,nr−1 be the relevant requirements. For each i < r,
let mi = ali − ni and choose fresh distinct elements w0, . . . , wmi−1 ∈
[bc,s, bc+1,s), which we call witnesses for Rli,ni

, so that the tuples of
elements chosen for different i are pairwise disjoint. Let ψ be the
conjunction of all formulas in pli [x0, . . . , xn−1, xw0 , . . . , xwmi−1 ] � s for
i < r and in pg(ic−1,jc−1,s) � s. (If r = 0 then ψ is just the propositional
constant T.) Let θ be the conjunction of all formulas appearing in
pf(n,u) � u for n and u < s such that f(n, u) is defined.

All free variables shared by ψ and θ are among x0, . . . , xbc,s−1, and
plimu g(ic−1,jc−1,u) is a type in the variables x0, . . . , xbc,s−1, so to show that
ψ∧θ is consistent, it is enough to show that each of ψ and θ is consistent
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with plimu g(ic−1,jc−1,u). That ψ is consistent with plimu g(ic−1,jc−1,u) follows
from the definition of a requirement being c-active. We show in the
verification section below that θ is also consistent with plimu g(ic−1,jc−1,u),
so we assume that this is the case for now. Let ic be least such that pic

is a type in the variables appearing in ψ, contains ψ, and is consistent
with θ. Let jc be such that ϕjc is the conjunction of θ with xn = xn

for all n < bc+1,s. (These tautologies are there to ensure that ϕjc has
the correct arity.)

For each c ∈ N such that ic and jc are defined, let f(bc+1,s, s) =
g(ic, jc, s). For n ∈ (bc,s, bc+1,s), if f(bc+1,s, s) 6= f(bc+1,s, s− 1), then let
f(n, s) be such that pf(n,s) = pf(bc+1,s,s) � x0, . . . , xn−1. For all n < bc+1,s

such that f(n, s) has not yet been defined, let f(n, s) = f(n, s − 1).
For all n > bc+1,s, let f(n, s) be undefined.

Verification. Having completed the construction of f , we verify its cor-
rectness. We first need to show that the formula θ above is in fact
consistent with plimu g(ic−1,jc−1,u). By (∆0

0-)induction, we may assume
that this property holds for all stages prior to s. Let v < s be the
stage at which ic−1 and jc−1 were last defined prior to stage s. Let
θ′ be the conjunction of all formulas appearing in pf(n,w) � w for n
and w 6 v such that f(n,w) is defined. Then ϕjc−1 is equivalent to
θ′, so θ′ ∈ plimu g(ic−1,jc−1,u). At each stage r ∈ (v, s), we maintain
the consistency of each pf(n,r) � r such that f(n, r) is defined with
plimu g(ic−1,jc−1,u), by the definition of untenability and the definition of
f . Thus θ is consistent with plimu g(ic−1,jc−1,u).

We now verify that the five properties of f hold. Property (i) is
clearly satisfied by the construction. Suppose f(n, s) and f(n, s+k) are
both defined and n ∈ [bc,s+k, bc+1,s+k). Then either f(n, s+k) = f(n, s+
k−1) or ic and jc get defined at stage s+k, in which case pf(bc+1,s+k,s+k)

is defined so as to contain pf(n,s) � s, and pf(n,s+k) = pf(bc+1,s+k,s+k) �
x0, . . . , xn−1. Thus property (ii) holds by (∆0

0-)induction on k.
Now suppose f(n, s) and f(n+ 1, s) are both defined. If there is a c

such that n, n + 1 ∈ (bc,s, bc+1,s] then pf(n,s) = pf(n+1,s) � x0, . . . , xn−1.
Otherwise, there is a c such that n = bc,s. If ic and jc do not get
redefined at stage s then c is not untenable at stage s, so pf(bc+1,s,s) �
s = pg(ic,jc,s) � s is consistent with limu g(ic−1, jc−1, u). Since pf(n,s) �
s = plimu g(ic−1,jc−1,u) � s and pf(n+1,s) = pf(bc+1,s,s) � x0, . . . , xn, we have
pf(n,s) � s ⊆ pf(n+1,s) � s. If ic and jc do get redefined at stage s, then
pf(bc+1,s,s) contains pf(n,s) � s = pg(ic−1,jc−1,s) � s, so again pf(n,s) � s ⊆
pf(n+1,s) � s. In any case, property (iii) holds.

Thus we are left with verifying that all our requirements are satisfied,
so that properties (iv) and (v) hold. Let bc = lims bc,s, which might be
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infinite. Suppose that bc is finite. Every time id and jd are redefined for
some d < c, the value of bc,s increases, so there is a stage s0 by which all
these id and jd have permanent values. In particular, ic−1 and jc−1 have
permanent values (if c > 0). Then there is a stage s1 > s0 such that
g(ic−1, jc−1, s) = g(ic−1, jc−1, s1) for all s > s1. Let h = g(ic−1, jc−1, s1).

Let t > bc be such that for each S ⊆ Ft for which qS is consistent,
there is a pj amalgamating all the types in qS. Let B be the set of
requirements Ri,n such that (i, n) ∈ Ft and n < bc. Any requirement
in B that ceases to be c-active after stage s1 is never again c-active,
so Σ0

1-induction suffices to show that there is an s2 > s1 such that
the collection Rl0,n0 , . . . , Rlm−1,nm−1 of c-active requirements in B has
stabilized by stage s2. By the definition of c-active requirement, the
types pli [x0, . . . , xn−1, yi,0, . . . , yi,ali

−ni−1] for i < m form a consistent set
of types, so by the choice of t, there is a pj amalgamating them. Again
by the definition of c-active requirement, pj and ph are consistent, so by
pairwise full type amalgamation (which clearly follows from eventual
full type amalgamation), there is a type in X amalgamating them. By
Π0

1-induction, there is a least n such that pn is a type amalgamating
ph and all of the types pli [x0, . . . , xn−1, yi,0, . . . , yi,ali

−ni−1] for i < m.
Then it is easy to check from the definition of ic that there is a stage
s3 > s2 such that if ic is defined at a stage s > s3 at which ks is of the
form 〈t− bc, l〉, then ic = n.

Say that a stage s is c-final if c never requires attention after stage
s, and ic and jc are never undefined or untenable after stage s. It is
easy to check that if ic and jc are defined at a stage s > s3 at which ks

is of the form 〈t − bc, l〉, then s is c-final. It is also easy to check that
such a definition occurs unless ks never reaches such a value for s > s3.
In this case, there must be a c-final stage, as ks increases each time c
is active. In either case, there is a c-final stage s. Then bc+1 = bc+1,s

is finite, and Sbc is permanently satisfied by stage s. Furthermore, ic
and jc have final values at stage s, and there is a stage u > s such that
g(ic, jc, v) = g(ic, jc, u) for all v > u. Then f(n, v) = f(n, u) for all
n ∈ (bc, bc+1), so every Qn in the cth block is satisfied.

Now, given n ∈ N, let d be least such that bd+1,s > n for some s ∈ N,
which exists by Σ0

1-induction. Then bd is finite, so there is a final dth
block of requirements, and Qn is in that block, and hence is satisfied.
Furthermore, bd+1 is also finite, so Sbd+1

is satisfied, and hence so is Sn,
since n 6 bd+1. �

We now establish two theorems that give us the reversals to IΣ0
2 of

the entries labeled 2 or 3 on our chart.
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Theorem 6.11. The following is provable in RCA0. Let ϕ be a Π0
1

formula defining a total function. For each n and z, there is a theory
T and a list X of types of T such that the following hold.

(1) X satisfies the pairwise full amalgamation closure conditions.
(2) X has an extension function.
(3) Suppose one of the following conditions holds.

(a) X satisfies the finite free amalgamation closure conditions.
(b) There is a listing of the types of X satisfying the finite full

amalgamation closure conditions.
(c) There is a a listing of the types of X satisfying the finite

free amalgamation closure conditions, and BΣ0
2 holds.

Then there is a sequence (m0,m1, . . . ,mn−1) such that m0 = z
and ϕ(mi,mi+1) holds for all i < n− 1.

Proof. We argue in RCA0. Fix n and z. We begin by defining a theory
T and a list of types X to handle 3(a) and 3(c); we then slightly modify
them to handle 3(b).

We work in the language with unary relation symbols Pi for i ∈ N,
a binary relation symbol E, and constant symbols c0, . . . , c2n−1. We
begin by defining a set A of axioms. We write some of these informally;
formalizing them in our language is straightforward.

A1. Pi+1(x) → Pi(x) for all i ∈ N.

A2. ¬P0(ci) for all i < 2n.

A3. E is an equivalence relation with exactly 2n many classes, each
containing exactly one ci.

A4. Within each equivalence class, for each i ∈ N there are infinitely
many x such that Pi(x)∧¬Pi+1(x), and there are infinitely many
x such that ¬P0(x).

It is not difficult to show that A is consistent and admits effective
quantifier elimination, so that its deductive closure T exists and is a
theory. (To conclude that T exists, we also need to know that the
set of literal sentences consistent with A exists, as mentioned in the
discussion of quantifier elimination at the end of Section 2.2. This is
clearly the case, as this set consists exactly of the sentences ¬Pk(ci) for
i < 2n and k ∈ N, the sentences E(ci, ci) for i < 2n, and the sentences
¬E(ci, cj) for i, j < 2n such that i 6= j.)

We begin by showing that A admits effective quantifier elimination,
as discussed at the end of Section 2.2. Fix an existential formula
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(∃y)ϕ(x̄y), where ϕ(x̄y) is a conjunction of literals. Let m be such
that no Pi with i > m occurs in ϕ, and let L′ be the language con-
sisting of E, c0, . . . , c2n−1, and all Pi with i 6 m. As mentioned in
Remark 2.3, we may assume that ϕ is an L′-atomic diagram that is
consistent with the assertion that E is an equivalence relation, and in-
cludes ¬u = v for all u such that u ∈ x̄ or u is a constant symbol, and
all v ∈ x̄y distinct from u.

Suppose that at least one of the following conditions holds.

(1) Both Pi(u) and ¬Pj(u) for j < i occur in ϕ, where u is a variable
or constant symbol.

(2) P0(ci) occurs in ϕ for some i < 2n.
(3) E(ci, cj) for i 6= j occurs in ϕ.
(4) There is a u ∈ x̄y such that ¬E(u, ci) occurs in ϕ for all i < 2n.

Then A ` (∃y)ψ(x̄y) ↔ F. Otherwise, the fourth axiom family of A
implies that A ` (∃y)ϕ(x̄y) ↔ θ(x̄), where θ is the result of removing
from ϕ all literals involving y (and hence is just T if all literals in ϕ
involve y).

To show that T is consistent, we provide a model M of A. By
effective quantifier elimination, it suffices to specify the atomic diagram
of M. Let the domain of M consist of all numbers of the form 〈i, j, k〉,
where i < 2n. Let cMi = 〈i, 0, 0〉. Let EM(x, y) hold if and only if x
and y have the same first coordinate, and let PM

m (x) hold if and only
if x = 〈i, j, k〉 and m < j. It is easy to check that M is a model of A.

We now define our list X of types of T , which satisfies the pairwise
full amalgamation closure conditions and has an extension function.
By effective quantifier elimination, we can identify types of T with
atomic types. Notice that the 0-type T corresponds to the set of literal
sentences consistent with A discussed above, which we refer to as the
0-type. From now on, we refer to an atomic type as simply a type.

We begin by naming the types of T . Each 1-type in a given variable
x includes the 0-type, as well as x = x and E(x, x). Thus, the 1-types
of T in the variable x can be listed as follows.

(1) si(x) for i < 2n, which includes x = ci, ci = x, E(x, ci), and
E(ci, x), as well as ¬x = cj, ¬cj = x, ¬E(x, cj), and ¬E(cj, x)
for j 6= i, and ¬Pm(x) for all m ∈ N.

(2) qi,k(x) for i < 2n and k ∈ N, which includes ¬x = ci, ¬ci = x,
E(x, ci), and E(ci, x), as well as ¬x = cj, ¬cj = x, ¬E(x, cj),
and ¬E(cj, x) for j 6= i, and also Pm(x) for m < k and ¬Pm(x)
for m > k.
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(3) qi,∞(x) for i < 2n, which includes ¬x = ci, ¬ci = x, E(x, ci), and
E(ci, x), as well as ¬x = cj, ¬cj = x, ¬E(x, cj), and ¬E(cj, x)
for j 6= i, and also Pm(x) for all m ∈ N.

Now each k-type of T in a tuple of variables (x0, . . . , xk−1) can be
specified by two items: a list of 1-types t = (t0, . . . , tk−1) (i.e., each tj
is of the form si, qi,l, or qi,∞) and an equivalence relation D on [0, k)
such that if D(i, j) then ti = tj, and if ti = tj = sl for some l, then
D(i, j). (We say that D is compatible with t.) This type, which we
denote by rt,D(x0, . . . , xk−1), is specified as follows.

(1) rt,D includes the 0-type, and for each i < k, it includes ti(xi).
(2) If ti and tj are both among sm, qm,l, and qm,∞ for the same m,

then rt,D includes E(xi, xj). Otherwise it includes ¬E(xi, xj).
(3) If D(i, j) then rt,D includes xi = xj. Otherwise it includes ¬xi =

xj.

Let s = (m0, . . . ,ml−1) be a sequence of natural numbers. If we
have ϕ(mi,mi+1) for all i < l − 1 (where ϕ is as in the statement of
the theorem), then let Ns = ∞. Otherwise, let Ns be the least stage
greater than l at which we find that this condition does not hold. Let
rs
t,D be type obtained from rt,D by replacing each ti of the form qj,l′ such

that l′ > Ns or l′ = ∞ by qj,Ns . Note that rs
t,D is obtained effectively

from rt,D and s. (Note also that we are not claiming that the function
s 7→ Ns exists.)

For a type rt,D of T with t = (t0, . . . , tk−1), let bt,D be the number
of i < k such that ti is of the form ql,∞ for some l and ¬D(i, j) for all
j < i. Let X be an effective listing of all types rs

t,D(x̄), where

(1) t ranges over all lists of 1-types,
(2) D ranges over all equivalence relations compatible with t,
(3) s ranges over all sequences with first element z such that |s| >

log2 bt,D, and
(4) x̄ ranges over all tuples of variables of length |t|.

(The use of the logarithm here might seem mysterious, but is important
in showing thatX is closed under pairwise full type amalgamation.) We
verify thatX satisfies the pairwise full amalgamation closure conditions
and has an extension function.

The 0-type is in X, and X is clearly closed under variable substitu-
tions. Closure under taking subtypes is straightforward to verify. We
now verify that X satisfies the extension condition, and in fact has an
extension function.

Fix rs
t,D(x0, . . . , x|t|−1) ∈ X and a ψ(x0, . . . , x|t|−1, x|t|, . . . , xk−1) con-

sistent with this type. By effective quantifier elimination (and the fact
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that if a type includes a formula, then it includes any disjunction in-
volving that formula), we may assume that ψ is a conjunction of literals.
We may also assume that if ψ contains u = v, then it contains v = u,
and similarly with other literals involving equality and E.

We first extend D to i with |t| 6 i < k as follows. If ψ includes
xi = xj, or both xi = cm and xj = cm, then let D(i, j) hold. If ψ
includes xi = cm and tj = sm for some j < |t|, then let D(i, j) hold.
Then close D to make it an equivalence relation.

Now let d be least such that no Pi appears in ψ for i > d. We
can check effectively whether Ns > d. If so, then proceed as follows.
First define a sequence t′ = (t′0, . . . , t

′
k−1). For i < |t|, let t′i = ti. Now

proceed by recursion starting with i = |t|. If ψ includes xi = xj for j < i
then let t′i = t′j, and if ψ includes xi = cm then let t′i = sm. Otherwise,
let m be such that ψ includes E(xi, cm), if there is such an m, and
otherwise let m be least such that ψ does not include ¬E(xi, cm). Let
l be the largest number such that ψ includes Pl(xi), or −1 if there is
no such number. Let t′i = qm,l+1. Now it is easy to check that rs

t′,D

amalgamates rs
t,D and ψ.

Now suppose that Ns 6 d. Then we can effectively find a u such
that ru,D = rs

t,D. Define t′ as in the previous paragraph, but using u in
place of t. Let s′ be a sequence of natural numbers starting with z with
length greater than d. Then it is easy to check that rs′

t′,D amalgamates
rs
t,D and ψ.
Thus X satisfies the extension condition. Since the above procedure

for obtaining extensions is effective, X in fact has an extension function.
Finally, we verify that X satisfies the pairwise full type amalgama-

tion condition. Let rs
t,D(x̄ȳ), rs′

t′,D′(x̄z̄) ∈ X be basically consistent,
where ȳ and z̄ are disjoint. If Ns ∈ N then rs

t,D is a principal type,

so the existence of a type amalgamating rs
t,D and rs′

t′,D′ follows from
the fact that X satisfies the extension condition. The same is true if
Ns′ ∈ N, so we may assume that Ns = Ns′ = ∞. Without loss of
generality, assume that |s| > |s′|. By the hypothesis on ϕ, we can
extend s by one element to obtain a sequence ŝ of length |s| + 1 such
that Nbs = ∞. Since D and D′ must be equal on the variables in x̄,

there is a minimal equivalence relation D̂ on the variables x̄ȳz̄ extend-
ing D ∪D′. Since t and t′ agree on the variables in x̄, there is a t̂ that
agrees with t on the variables in x̄ȳ and with t′ on the variables in x̄z̄.
Then bbt, bD 6 bt,D + bt′,D′ , and hence

|ŝ| = |s|+1 > max(log2 bt,d, log2 bt′,d′)+1 > log2(bt,D+bt′,D′) > log2 bbt, bD,
so rbsbt, bD(x̄ȳz̄) is in X and amalgamates rs

t,D(x̄ȳ) and rs′

t′,D′(x̄z̄).
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We are now ready to prove the theorem in cases 3(a) and 3(c).
For 3(a), suppose that X satisfies the finite free amalgamation clo-

sure conditions, and let (x0, . . . , x2n−1) be a tuple of variables. The se-
quence of types q0,∞(x0), . . . , q2n−1,∞(x2n−1) is in X, so there is a type
rs
t,D(x0, . . . , x2n−1) in X amalgamating these types. Since log2 bt,D =
n, the sequence s = (z = m0, . . . ,ml−1) has length at least n, and
ϕ(mi,mi+1) for all i < l − 1.

For 3(c), suppose there is a listing Y = {hi}i∈N of the types of X
satisfying the finite free amalgamation closure conditions, and BΣ0

2

holds. Let (x0, . . . , x2n−1) be a tuple of variables. Each qi,∞(xi) is in
Y , and the property P (i, j) that holds if and only if hj = qi,∞(xi)
is Π0

1, so by the finite axiom of choice for Π0
1 properties, the whole

sequence of types q0,∞(x0), . . . , q2n−1,∞(x2n−1) is in Y . So Y has a type
amalgamating these types, and hence so does X. Now the argument is
as in the previous paragraph.

For 3(b), we modify our example by removing the constants. That
is, our language now has only the Pi and E, and our axioms consist of
A1, the first part of A3, and A4. Effective quantifier elimination and
consistency follow by arguments much like the ones above. Our theory
T now has only two kinds of 1-types, qk(x), which includes Pm(x) for
m < k and ¬Pm(x) for m > k; and q∞(x), which includes Pm(x) for
all m ∈ N.

Our k-types are now of the form rt,D,F , where t and D are as before
and F is an equivalence relation on [0, |t|) such that if D(i, j) then
F (i, j). The type rt,D,F (x0, . . . , xk−1) is specified as follows.

(1) rt,D,F includes the 0-type, and for each i < |t|, it includes ti(xi).
(2) If F (i, j) then rt,D,F includes E(xi, xj). Otherwise it includes

¬E(xi, xj).
(3) If D(i, j) then rt,D,F includes xi = xj. Otherwise it includes

¬xi = xj.

The types rs
t,D,F and the list of types X are defined much as before.

The proof that X is closed under the pairwise full amalgamation clo-
sure conditions and has an extension function is also a straightforward
modification of the previous case.

Now suppose there is a listing of the types in X satisfying the finite
full amalgamation closure conditions. By Proposition 6.6, this listing
has an extension function approximation. By Theorem 6.10, there is a
homogeneous model A such that X is an enumeration of T(A). Let c
be an element of A satisfying q∞, which must exists since q∞ ∈ X, and
let a be an element of the same EA equivalence class as c such that
¬PA

0 (a). Let b0, . . . , b2n−1 be a sequence consisting of representatives
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of each of the EA equivalence classes, such that ¬PA
0 (bi) for all i < 2n.

Then a ≡ bi for each i < 2n, so, by homogeneity, there are d0, . . . , d2n−1

such that, for each i < 2n, we have ac ≡ bidi, which implies that
di is in the same EA equivalence class as bi and has type q∞. The
type of (d0, . . . , d2n−1) is in X, and is of the form rs

t,D,F (x̄). Then
s = (z = m0, . . . ,ml−1) has length at least n, and ϕ(mi,mi+1) holds
for all i < l − 1. �

Theorem 6.12. The following is provable in RCA0. Let ϕ be a Π0
1

formula defining a total function. For each n and z, there is a theory
T and a list X of types of T such that the following hold.

(1) X satisfies the 1-point full amalgamation closure conditions.
(2) X has an extension function.
(3) If X satisfies the pairwise free amalgamation closure conditions,

then there is a sequence (m0,m1, . . . ,mn−1) such that m0 = z
and ϕ(mi,mi+1) holds for all i < n− 1.

Proof. We argue in RCA0. Fix n and z. Assume without loss of gen-
erality that n is even. We use the same theory T as in the proof of
Theorem 6.11 (in its original version, with constants), except that we
now have n many equivalence classes, rather than 2n many. We also
adopt the notation of that proof for naming our types, except that rs

t,D

is now defined as the type obtained from rt,D by replacing each ti of
the form qj,l such that l > Ns or l = ∞ by qj,Ns , as long as there is no
j < n

2
for which D(i, j) holds. Thus, the difference between this defi-

nition and the old one is that we do not alter the 1-types of the first
n
2

many variables in rt,D (or any other variable that rt,D declares to be
equal to one of the first n

2
many variables). The effect of this change is

that our list X now includes all n
2
-types of T but not all n-types unless

a sequence m0, . . . ,mn−1 as above exists.
Let X be an effective listing of all types rs

t,D(x̄), where

(1) t ranges over all lists of 1-types,
(2) D ranges over all equivalence relations compatible with t,
(3) s ranges over all sequences with first element z such that |s| >

bt,D (where bt,D is as in the proof of Theorem 6.11), and
(4) x̄ ranges over all tuples of variables of length |t|.

As before, the 0-type is in X, and X is closed under variable substi-
tutions and taking subtypes. The proof that X satisfies the extension
condition, and in fact has an extension function, is also as before.

To verify that X satisfies the 1-point full type amalgamation condi-
tion, let rs

t,D(x̄y), rs′

t′,D′(x̄z) ∈ X be basically consistent, where y and z
are different variables. As before, we may assume that Ns = Ns′ = ∞,
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as otherwise the existence of an amalgamator for these types follows
from the fact that X satisfies the extension condition. Without loss
of generality, assume that |s| > |s′|. By the hypothesis on ϕ, we can
extend s by one element to obtain a sequence ŝ of length |s| + 1 such
that Nbs = ∞. Since D and D′ must be equal on the variables in x̄,

there is a minimal equivalence relation D̂ on the variables x̄yz extend-
ing D ∪D′. Since t and t′ agree on the variables in x̄, there is a t̂ that
agrees with t on the variables in x̄y and with t′ on the variables in x̄z.
Then bbt, bD 6 bt,D + 1, so rbsbt, bD(x̄yz) is in X and amalgamates rs

t,D(x̄y)

and rs′

t′,D′(x̄z).
Now suppose that X satisfies the pairwise free type amalgamation

condition, and let (x0, . . . , xn−1) be a tuple of variables. Let t =
(q0,∞, . . . , qn

2
−1,∞), let D = {(i, i) : i < n

2
}, let t′ = (qn

2
,∞, . . . , qn−1,∞),

and let D′ = {(i, i) : n
2

6 i < n}. Then rs
t,D = rt,D and rs

t′,D′ = rt′,D′

for all s, so rt,D(x0, . . . , xn
2
−1), rt′,D′(xn

2
, . . . , xn−1) ∈ X. Thus, there

is a type rsbt, bD(x0, . . . , xn−1) ∈ X amalgamating them. Then s = (z =

m0, . . . ,ml−1) has length at least n, and ϕ(mi,mi+1) for all i < l−1. �

We can now give our justifications of the correctness of Figure 2.

Theorem 6.13. The implications described in Figure 2 hold.

Proof. We begin by recalling Figure 1 and its key for convenience.

p’wise finite 1-pt. p’wise finite
free free full full full

amalg. amalg. amalg. amalg. amalg.
X has pairwise amalg.

√ √
2

√ √

X has finite amalg. 2
√

2 2
√

∃ listing w/ finite amalg. 3
√

2 2
√

∃ model 3 1 2 3 1
∃ 1-pt. homogeneous model X X 2 3 1
∃ 1-homogeneous model X X 2 3 1
∃ homogeneous model X X 2 2 1

∃ listing w/ EF 4 1 5 4 1
∃ listing w/ EF + p’wise am. 4 1 2 4 1
∃ listing w/ EF + fin. am. 3 1 2 2 1

Figure 1. Versions of Theorem 6.4

• A 1 means that the principle is true in RCA0.
• A 2 means that the principle is equivalent to IΣ0

2 over RCA0.
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• A 3 means that the principle is provable from Π0
1GA over RCA0

and is equivalent to IΣ0
2 over RCA0 +BΣ0

2 (and hence not prov-
able in RCA0, or even RCA0 + BΣ0

2).
• A 4 means that the principle is provable from Π0

1GA over RCA0,
but its strength is otherwise unknown.

• A 5 means that the principle is provable from IΣ0
2 over RCA0,

but its strength is otherwise unknown.

We now arrange our justifications into two charts on the next two
pages, the first showing in which systems our principles are provable,
and the second showing what they imply.



INDUCTION, BOUNDING, WEAK COMBINATORIAL PRINCIPLES & HMT 88

p’wise finite 1-pt. p’wise finite
free free full full full

amalg. amalg. amalg. amalg. amalg.
X has pairwise amalg.

√ √
2 E

√ √

X has finite amalg. 2 E
√

2 E 2 E
√

∃ listing w/ finite amalg. 3 K
√

2 E 2 E
√

∃ model 3 J 1 C 2 F 3 H 1 A
∃ 1-pt. homogeneous model X X 2 F 3 H 1 A
∃ 1-homogeneous model X X 2 F 3 H 1 A
∃ homogeneous model X X 2 F 2 F 1 A

∃ listing w/ EF 4 L 1 D 5 G 4 I 1 B
∃ listing w/ EF + p’wise am. 4 L 1 D 2 G 4 I 1 B
∃ listing w/ EF + fin. am. 3 L 1 D 2 G 2 G 1 B

Figure 3. Justifications of Figure 2: where provable

A: Provable in RCA0 by part (1) of Theorem 6.10.

B: Provable in RCA0 by part (1) of Theorem 6.10 and Proposition 6.6.

C: Provable in RCA0 by part (2) of Theorem 6.10.

D: Provable in RCA0 by part (2) of Theorem 6.10 and Proposition 6.6.

E: Provable in RCA0 + IΣ0
2 by Theorem 5.11.

F: Provable in RCA0 + IΣ0
2 by part (1) of Theorem 6.10 and Theorem

5.11. (We do not really need Theorem 6.10 here, since the finite injury
construction in the usual proof of Theorem 6.4 can be carried out in
RCA0 + IΣ0

2.)

G: Provable in RCA0 + IΣ0
2 by part (1) of Theorem 6.10, Proposition

6.6, and Theorem 5.11. (As above, we do not really need Theorem 6.10
here.)

H: Provable in RCA0 + Π0
1GA by part (3) of Theorem 6.10.

I: Provable in RCA0 + Π0
1GA by part (3) of Theorem 6.10 and Propo-

sition 6.6.

J: Provable in RCA0 + Π0
1GA by part (4) of Theorem 6.10.

K: Provable in RCA0 +Π0
1GA by part (4) of Theorem 6.10 and Propo-

sition 5.13.

L: Provable in RCA0 + Π0
1GA by part (4) of Theorem 6.10 and Propo-

sition 6.6.
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p’wise finite 1-pt. p’wise finite
free free full full full

amalg. amalg. amalg. amalg. amalg.
X has pairwise amalg.

√ √
2 P

√ √

X has finite amalg. 2 M
√

2 N 2 N
√

∃ listing w/ finite amalg. 3 S
√

2 N 2 N
√

∃ model 3 T 1 2 R 3 T 1
∃ 1-pt. homogeneous model X X 2 R 3 T 1
∃ 1-homogeneous model X X 2 R 3 T 1
∃ homogeneous model X X 2 R 2 O 1

∃ listing w/ EF 4 1 5 4 1
∃ listing w/ EF + p’wise am. 4 1 2 Q 4 1
∃ listing w/ EF + fin. am. 3 S 1 2 N 2 N 1

Figure 4. Justifications of Figure 2: implications

M: Implies IΣ0
2 over RCA0 by Theorem 6.11, applied with hypothesis

(3)(a).

N: Implies IΣ0
2 over RCA0 by Theorem 6.11, applied with hypothesis

(3)(b).

O: Implies IΣ0
2 over RCA0 by Theorem 6.11, applied with hypothesis

(3)(b), and Proposition 5.13.

P: Implies IΣ0
2 over RCA0 by Theorem 6.12.

Q: Implies IΣ0
2 over RCA0 by Theorem 6.12 and Proposition 5.10.

R: Implies IΣ0
2 over RCA0 by Theorem 6.12 and Propositions 5.10 and

5.13.

S: Implies IΣ0
2 over RCA0 + BΣ0

2 by Theorem 6.11, applied with hy-
pothesis (3)(c).

T: Implies IΣ0
2 over RCA0 + BΣ0

2 by Theorem 6.11, applied with hy-
pothesis (3)(c), and Proposition 5.13. �
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7. The reverse mathematics of model existence theorems

In this section, we compare the principles discussed in Sections 3
and 5.5. We can think of each of HMT, 1-HMT, 1-PHMT, WMT, and
SMT as the combination of a principle asserting the existence of the
desired model given the existence of an extension function approxima-
tion, and a principle asserting the existence of an extension function
approximation given the stated hypothesis. The first kind of principle
was analyzed in the previous section. We now examine the latter. For
a set C of closure conditions, define the following principle.

EFAEC (Extension Function Approximation Existence Under
the Closure Conditions C): Every list of types satisfying the closure
conditions C has an extension function approximation.

Of course, for this principle to hold, C must contain at least the exten-
sion condition, i.e., item (4) in Theorems 5.1 and 5.7.

The five sets of closure conditions considered above are the pairwise
free, finite free, 1-point full, pairwise full, and finite full amalgama-
tion closure conditions, which correspond to SMT, WMT, 1-PHMT,
1-HMT, and HMT, respectively.

We show in Theorem 7.5 that if C denotes the finite full or finite free
amalgamation closure conditions, then EFAEC is equivalent to AMT
over RCA0; while if C denotes the pairwise full, pairwise free, or 1-
point full amalgamation closure conditions, then EFAEC is somewhere
between AMT and ATT in strength.

Let P be one of SMT, WMT, 1-PHMT, 1-HMT, or HMT, and let
CP be the corresponding set of closure conditions. By Proposition 6.6,
P implies EFAECP over RCA0.

By the first two parts of Theorem 6.10, it is also provable in RCA0

that if a list of types X satisfies the finite free (finite full) amalgamation
closure conditions and has an extension function approximation, then
there is a (homogeneous) model A such that X is an enumeration of
the type spectrum of A. Thus WMT and HMT are each equivalent to
EFAECP for the corresponding set of closure conditions, and hence to
AMT.

By the last two parts of Theorem 6.10, it is provable in RCA0 +
Π0

1GA that if a list of types X satisfies the pairwise free (pairwise
full) amalgamation closure conditions and has an extension function
approximation, then there is a (1-homogeneous) model A such that X
is an enumeration of the type spectrum of A. Thus SMT and 1-HMT
follow from EFAECP for the corresponding set of closure conditions over
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RCA0 + Π0
1GA, and hence are somewhere between AMT and ATT +

Π0
1GA in strength.
We also show, in Theorem 7.7, that 1-PHMT is equivalent to AMT+

IΣ0
2.

7.1. Extension function approximations, AMT, and ATT. The
following theorems compare our EFAEC principles with AMT and ATT.

Theorem 7.1. (1) Let C denote the finite free amalgamation closure
conditions. Then AMT implies EFAEC over RCA0.

(2) Let C be any set of closure conditions containing the extension
condition. Then ATT implies EFAEC over RCA0.

Proof. The proofs of the two parts of the theorem are almost identical.
We first prove part 1, then indicate the changes necessary to prove part
2. As mentioned in Section 3, we can take AMT as stating that for
every strongly atomic extendible tree T , there is a listing of the paths
of T . Let T be a theory and X = {pi}i∈N a list of elements of S(T )
satisfying the finite free amalgamation closure conditions. Arguing
in RCA0, we define a family of trees Ti,j, and put them together to
form a strongly atomic extendible tree T so that any enumeration of
the isolated paths of T can be used to define an extension function
approximation for X.

Given an n-type pi, an (n+ l)-ary formula ψ consistent with pi, and
an s, we say that the (n+ l)-type pj amalgamates pi and ψ at stage s
if the conjunction of ψ and the formulas in pj � s is consistent with pi.
Such a pj always exists, since X satisfies the extension condition.

Let θ0, θ1, . . . be the formulas in the language of T . If pi and θj are
inconsistent, or not of the form pi(x̄) and θj(x̄ȳ), then let Ti,j = {1k :
k ∈ N}. Otherwise, let Ti,j =

⋃
s∈N T s

i,j, where T s
i,j is defined in stages

as follows.

Stage 0. Let ψ0 = θj. Let T 0
i,j = {1k : k ∈ N}. We associate with each

node τ = 1k in T 0
i,j a pair sτ = k and tτ = 0, and a formula ψτ = θj.

We label all the nodes τ in T 0
i,j as active.

Stage s + 1. We are given the tree T s
i,j, and for each τ ∈ T s

i,j, we have
defined

(1) sτ (the guide amalgamator being followed),
(2) tτ (the length of time sτ has been followed), and
(3) ψτ consistent with pi ∪ {θj} (the guide formula),

where psτ amalgamates pi and ψτ at stage tτ .
We obtain T s+1

i,j by adding nodes to T s
i,j. For every active τ ∈ T s

i,j,
check whether psτ amalgamates pi and ψτ at stage tτ +1. If so, add τ0
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to T s+1
i,j , let sτ0 = sτ , let tτ0 = tτ + 1, let ψτ0 = ψτ , deactivate τ , and

activate τ0.
If psτ does not amalgamate pi and ψτ at stage tτ + 1, add τ1k+1 to

T s+1
i,j for all k ∈ N. For each τ ′ = τ1k+1, let sτ ′ = k and tτ ′ = 0, and let
ψτ ′ be the conjunction of the formulas in psτ � tτ and ψτ . Deactivate
τ , and activate each such τ ′.

Let T = {0n : n ∈ N} ∪ {0〈i,j〉1σ : σ ∈ Ti,j}. It is easy to see that
the existence of T can be established in RCA0.

Lemma 7.2. The tree T is extendible and strongly atomic.

Proof. Extendibility is clear from the definition. Now let ρ0, . . . , ρn ∈
T . By extending ρk if necessary, we may assume that each ρk is of the
form 0〈ik,jk〉1τk for some τk ∈ Tik,jk

.
Let P be the property that holds of k 6 n if and only if pik and

θjk
are inconsistent or not of the form pi(x̄) and θj(x̄ȳ), and let Q be

the property that holds of k 6 n if and only if psτk
amalgamates pik

and ψτk
. These properties are ∆0

0 and Π0
1, respectively, so by bounded

Π0
1-comprehension, we can split our sequence of ρ’s into three subse-

quences, one consisting of the ρk’s such that P (k) holds, another of the
ρk’s such that Q(k) holds, and the last of all other ρk’s. It is enough to
find atoms extending the ρ’s in each of these sequences independently.

If P (k) holds then ρk is itself an atom of T . If Q(k) holds then it
follows easily by induction that the extensions of τk in Tik,jk

are exactly
those of the form τk0

l, so again ρk is an atom of T .
Thus we may assume that we have a sequence ρ0, . . . , ρn as above

such that for each k 6 n, the type psτk
does not amalgamate pik and

ψτk
. Let rk be the stage at which τk is declared active and let tk > rk

be least such that psτk
does not amalgamate pik and ψτk

at stage tk +1.

Then νk = τk0
tk−rk ∈ Tik,jk

, and we have sνk
= sτk

, tνk
= tk, and

ψνk
= ψτk

. Furthermore, for each l, we have σk,l = νk1
l+1 ∈ Tik,jk

.
All the formulas ψσk,l

are the same formula ϕk, which by induction is
consistent with pik . As noted in Remark 5.9, there are m0, . . . ,mn such
that pmk

amalgamates pik and ϕk. Then 0〈ik,jk〉1σk,mk
is an atom of T

extending ρk for each k 6 n. �

Lemma 7.3. An extension function approximation for X can be con-
structed from any enumeration of the isolated paths of T .

Proof. Let f0, f1, . . . be an enumeration of the isolated paths of T . Let
i and j be such that θj is consistent with pi. Since T is atomic, there
is a least n such that fn extends 0〈i,j〉1. Let f(k) = fn(k + 〈i, j〉 + 1).
Then f is an isolated path of Ti,j. By the construction of Ti,j, any
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τ ∈ T such that τ(|τ | − 1) = 1 has more than one extension in T , so
f = τ0N for some τ ∈ 2<N.

Let m be such that f extends 1m0. Let τ0 = 1m0 and let g(i, j, 0) =
m. Given g(i, j, s) and τs, proceed as follows. If f extends τs0 then let
τs+1 = τs0 and g(i, j, s + 1) = sτs = sτs+1 . Otherwise, let τs+1 be the
shortest string extended by f of the form ν01k0s+1, where k > 1 and
|ν| > |τs| − 2. It is easy to see that such a string must exist, and that
sτs+1 = k. Let g(i, j, s+ 1) = k = sτs+1 .

There are only finitely many s such that f extends τs1, and hence
lims g(i, j, s) exists. It follows from the construction of Ti,j that g is an
extension function approximation. �

This concludes the proof of part 1 of the theorem. The only place in
this proof where any property of C other than containing the extension
condition is used is at the end of the proof of Lemma 7.2, to justify the
existence of m0, . . . ,mn. Thus, if we restrict ourselves to the n = 0 case
of this lemma, all we need is for C to contain the extension condition.
This case is enough to conclude that T is atomic, which gives us part
2 of the theorem. �

Theorem 7.4. Let C denote the finite full amalgamation closure con-
ditions. Then EFAEC implies AMT over RCA0.

Proof. We argue in RCA0. Let T be a strongly atomic extendible tree.
We define a set of axiomsA whose deductive closure ∆ is a theory. Then
we define a list X of types of ∆ satisfying the finite full amalgamation
closure conditions, so that from an extension function approximation
for X, we can construct a listing of the isolated paths of T .

Axioms. We work in the language with unary relation symbols U , Ri

for i ∈ N, and Dσ for σ ∈ T ; and binary relation symbols P and E. We
first define the following set A of axioms and then discuss the intuition
behind them.

A1. P (x, y) → ¬U(x) ∧ U(y).

A2. ¬U(x) → (∃=1y)P (x, y).

A3. (∀y)[U(y) → (∃>kx)P (x, y)] for all k ∈ N.

A4. E(x0, x1) ↔ (∃y)[P (x0, y) ∧ P (x1, y)].

A5. Dσ(x) → ¬U(x) for all σ ∈ T .

A6. Dσ(x) → Dτ (x) for all τ ≺ σ ∈ T .
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A7. Dσ(x) → ¬Dτ (x) for all σ, τ ∈ T such that |σ| = |τ | and σ 6= τ .

A8. Ri(y) → U(y) for all i ∈ N.

A9. Ri(y) → Ri+1(y) for all i ∈ N.

A10. (∃>ky)R0(y) for all k ∈ N.

A11. (∃>ky)[Ri+1(y) ∧ ¬Ri(y)] for all i, k ∈ N.

A12. ¬Rn(y) → (∃>kx)[Dσ(x)∧P (x, y)] for all n, k ∈ N and all σ ∈ T
such that |σ| = n.

A13. [¬U(x) ∧
∧

σ∈Sn
¬Dσ(x)] ↔ (∃y)[Rn(y) ∧ P (x, y)] for all n ∈ N,

where Sn is the set of elements of T of length n.

Axiom groups A1, A2, and A3 tell us that we can divide our universe
into two disjoint parts, D = {x : ¬U(x)} and R = {x : U(x)}, and
that P determines a function with domain D and range R such that
the preimage of any y ∈ R is infinite. Axiom A4 tells us that E is the
equivalence relation on D wherein two elements are equivalent if they
have the same image under P . (Having a symbol for this relation is
needed in establishing effective quantifier elimination.)

Axiom groups A5, A6, and A7 tell us that the Dσ hold only of
elements of D, and that for each x ∈ D, the set of σ such that Dσ(x)
holds is either empty, of the form {σ : σ 4 τ} for some τ ∈ T , or of
the form {σ : σ ≺ f} for some f ∈ [T ].

Axiom groups A8, A9, A10, and A11 tell us that the Ri hold only of
elements of R; that for each y ∈ R, the set of i such that Ri(x) holds
is either empty or consists of all i > j for some j; and that for each j
there are infinitely many y such that this set is of the latter form.

Finally, axiom groups A12 and A13 connect the set of σ such that
Dσ(x) holds with the set of i such that Ri(y) holds, for x and y such
that P (x, y) holds. They say that if Rn(y) holds then there is no σ ∈ T
of length n and no x in the P -preimage of y such that Dσ(x) holds,
while if Rn(y) fails, then for every x in the P -preimage of y, some
Dσ(x) with σ of length n holds (because in this case, by A2, the right
hand side of A13 fails, and hence so does the left hand side), and for
every σ ∈ T of length n there are infinitely many x in the P -preimage
of y such that Dσ(x) holds.

We show that A is consistent and admits effective quantifier elim-
ination, so that its deductive closure ∆ exists and is a theory. We
then give a list of types X of ∆ satisfying the finite full amalgamation
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closure conditions, and use the existence of an extension function ap-
proximation for X to obtain a listing of the isolated paths of T . The
idea is to ensure the following two properties. Every 1-type in X con-
taining ¬U(x) contains Dσ(x) either for only finitely many σ or for all
σ ≺ f for an isolated path f of T ; and there is a 1-type p(y) in X
containing U(y) and ¬Rn(y) for all n. Then for any τ ∈ T , we can use
the given extension function approximation for X to obtain an amal-
gamator q(x, y) ∈ X for p(y) and the formula Dτ (x) ∧ P (x, y). By the
axioms and the properties of X, the set of σ such that Dσ(x) ∈ q(x, y)
must determine an isolated path of T extending τ .

Quantifier elimination. We begin by showing that A admits effective
quantifier elimination, as discussed at the end of Section 2.2. Fix an
existential formula (∃y)ϕ(x̄y), where ϕ(x̄y) is a conjunction of literals.
Let m be such that no Ri with i > m or Dσ with |σ| > m occurs in ϕ,
and let L′ be the language consisting of U , P , E, all Ri with i 6 m,
and all Dσ with σ ∈ T and |σ| 6 m. As mentioned in Remark 2.3, we
may assume that ϕ is an L′-atomic diagram that includes ¬u = v for
all distinct u, v ∈ x̄y. By a similar argument to the one mentioned at
the end of that section, we may also assume that ϕ is consistent with
the assertion that E is an equivalence relation on the set of u such that
¬U(u) holds.

Suppose that at least one of the following conditions holds.

(1) P (u, v) occurs in ϕ, and either U(u) or ¬U(v) occurs in ϕ.
(2) P (u, v) and P (u,w) both occur in ϕ, where v and w are distinct.
(3) P (u,w), P (v, w), and ¬E(u, v) all occur in ϕ.
(4) P (u,w), ¬P (v, w), and E(u, v) all occur in ϕ.
(5) E(u, v) and U(u) both occur in ϕ.
(6) ¬E(u, u) and ¬U(u) both occur in ϕ.
(7) Dσ(u) and U(u) both occur in ϕ.
(8) Dσ(u) and ¬Dτ (u) for τ ≺ σ both occur in ϕ.
(9) Dσ(u) and Dτ (u), where |σ| = |τ | and σ 6= τ , both occur in ϕ.

(10) Ri(u) and ¬U(u) both occur in ϕ.
(11) Ri(u) and ¬Rj(u) with i < j both occur in ϕ.
(12) Dσ(u), P (u, v), and R|σ|(v) all occur in ϕ.
(13) E(u, v), Dσ(u), and ¬Dτ (v) for all τ such that |τ | = |σ|, all occur

in ϕ.

Then A ` (∃y)ϕ(x̄y) ↔ F. (For (1)–(12), this fact is easy to see from
the axioms. For (13), assume that E(u, v) and Dσ(u) occurs in ϕ. We
may assume that ¬U(u) and ¬U(v) both occur in ϕ, as otherwise ϕ
satisfies (5). Then T ∪{ϕ} implies the negation of the left hand side of
A13 for x = u and n = |σ|, and hence the negation of the right hand
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side of A13 for x = u and n = |σ|. By A4, T ∪{ϕ} implies the negation
of the right hand side of A13 for x = v and n = |σ|, hence the negation
of the left hand side of A13 for x = v and n = |σ|, and hence Dτ (v) for
some τ such that |τ | = |σ|.)

Otherwise, let D be the set of variables u such that ¬U(u) occurs in
ϕ and let R be the set of variables v such that U(v) occurs in ϕ. For
each v ∈ R, let Dv be the set of variables u such that P (u, v) occurs
in ϕ. Note that the sets Dv are pairwise disjoint. Let D∅ be the set
of all elements of D that are not in any Dv. Let θ(x̄) be the result of
removing all literals mentioning y from ϕ.

If y ∈ R then the only positive literals in ϕ involving y and another
variable are the ones of the form P (x, y) for x ∈ Dy. If x, x′ ∈ Dy, then
E(x, x′) occurs in ϕ, and if x ∈ Dy, then Ri(y) occurs in ϕ if and only
if ¬Dσ(x) occurs in ϕ for all σ ∈ T of length i. Combining A2, A4,
and A13, we see that A ` (∃y)ϕ(x̄y) ↔ θ(x̄).

If y ∈ Dv, where v is either a variable or ∅, then the only positive
literals in ϕ involving y and another variable are ones of the form
E(x, y) or E(y, x) with x ∈ Dv, and P (y, v) if v is a variable. Let
x ∈ Dv and i 6 m. Then Dσ(x) occurs in ϕ for some σ of length i if
and only if Dτ (y) occurs in ϕ for some τ of length i. Thus, by A2, A3,
A4, A12, and A13, we again have A ` (∃y)ϕ(x̄y) ↔ θ(x̄).

We have completed the quantifier elimination process, and hence
conclude that the deductive closure ∆ of A exists and is a theory.

Consistency. We now establish the consistency of ∆ by providing a
model M. By effective quantifier elimination, to define M, it suffices
to specify the interpretations of the symbols of our language in M. Let
σ0, σ1, . . . be a listing of the elements of T .

(1) Let M = N.
(2) Let UM be the odd numbers.
(3) Let DM

τ = {2〈i, j,m〉 : τ 4 σi}.
(4) Let RM

n = {2〈k, j〉+ 1 : n > k}.
(5) Let PM = {(2〈i, j,m〉, 2〈k, j〉+ 1) : |σi| = k − 1}.
(6) Let EM = {(2〈i, j,m〉, 2〈i, j, n〉) : m,n ∈ N}.

It is easy to check that A1–A13 hold in this model. (Indeed, M is an
atomic model of the theory induced by these axioms, though this fact
is not needed in our proof.)

Defining the list of types X. We now proceed to define a list X of types
of ∆. By effective quantifier elimination, we can identify types of ∆
with atomic types. Notice that the 0-type ∆ corresponds to the empty
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atomic 0-type. From now on, we refer to an atomic type as simply a
type.

We define a few particular 1-types in a given variable x. Each 1-type
in x includes x = x and ¬P (x, x). If it includes ¬U(x), then it includes
E(x, x) and ¬Ri(x) for all i ∈ N. If it includes U(x), then it includes
¬E(x, x) and ¬Dσ(x) for all σ ∈ T .

Let i ∈ N. Let ri(x) be the principal type generated by ¬Ri−1(x) ∧
Ri(x), or just R0(x) if i = 0. Let s(x) be the nonprincipal type that
includes U(x) and ¬Rj(x) for all j ∈ N.

Let σ ∈ T . If σ is not the empty string λ, let σ− be σ � |σ| − 1. Let
dσ(x) be the principal type generated by Dσ−(x) ∧ ¬Dσ(x). Let dλ(x)
be the principal type generated by ¬U(x) ∧ ¬Dλ(x).

Let eσ(x) be the type defined as follows. First, eσ(x) includes ¬U(x),
Dτ (x) for every τ 4 σ, and ¬Dτ (x) for every τ ∈ T incompatible with
σ. Next, for each τ ∈ T extending σ, if τ is the only extension of σ of
length |τ | in T , then eσ(x) includes Dτ (x). Otherwise, eσ(x) includes
¬Dρ(x) for every extension ρ of σ of length |τ | in T , including τ itself.
Notice that if σ is not an atom, then eσ(x) is equal to dτ (x) for some τ .
Otherwise, the set of τ such that Dτ (x) ∈ eσ(x) determines an isolated
path of T .

Let B be the set of 1-types described above. These types (where x
ranges over all variables) are exactly the 1-types in X. Notice that they
include every principal 1-type of ∆, and every 1-type of ∆ extending
U(x). To describe the n-types in X for n > 1, we first define a few
operators. It is straightforward to check from the axioms that operators
with the stated properties exist.

Our first operator gives us a way to extend a formula to a type
in a safe way, i.e., without introducing any unwanted 1-types. For a
conjunction of literals θ consistent with ∆, let J (θ) be a type containing
the literals in θ such that for each variable x, there are at most finitely
many σ for which Dσ(x) ∈ J (θ). Notice that the 1-subtypes of J (θ)
must be of the form dσ, ri, or s.

Our second operator gives us a way to transform a possibly incon-
sistent complete set of literals into a type. Let q(x̄) be a set of literals
that, for every atomic formula ϕ with free variables in x̄, includes ei-
ther ϕ or ¬ϕ (and possibly both). Let ϕ0, ϕ1, . . . be the elements of
q (ordered according to a standard fixed ordering of literals). If there
is an n such that {ϕ0, . . . , ϕn} is not consistent with ∆, then for the
least such n, let P(q) = J (

∧
i<n ϕi). Otherwise, let P(q) = q. Note

that this operator is effective, since to know whether a given literal
ϕ is in P(q), we need only find an m such that ϕm is either ϕ or its
negation. If {ϕ0, . . . , ϕm} is consistent with ∆ then ϕ ∈ P(q) if and
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only in ϕm ≡ ϕ. Otherwise we check whether ϕ is in J (
∧

i<n ϕi) for
the least n such that {ϕ0, . . . , ϕn} is not consistent with ∆, which must
exist.

Our third operator performs amalgamation. Let q0(x̄0), . . . , qn(x̄n)
be types, let x̄ be a tuple such that x̄ = x̄0 ∪ · · · ∪ x̄n, and let q =
q0 ∪ · · · ∪ qn. Let θ(x̄) be a conjunction of literals such that for each
pair of distinct variables u, v ∈ x̄, either P (u, v) or ¬P (u, v) is in θ,
either E(u, v) or ¬E(u, v) is in θ, and either u = v or ¬u = v is
in θ. Let r be the union of q with the literals in θ. Note that if r is
consistent with ∆, then it is in fact a type, and amalgamates q0, . . . , qn.
Let A(q0, . . . , qn, θ) = P(r).

Our fourth operator extracts subtypes and performs variable sub-
stitutions. Let V be the set of variables in our language. By a finite
injective partial function on variables we mean a finite subset f of V 2

that satisfies the properties of an injective function. We use the usual
functional notation when discussing f , and in particular write f(x)↓
to mean that x is in the domain of f . Let q(x0, . . . , xn) be a type and
let f be an finite injective partial function on variables. Let S be the
set of xi with i 6 n such that f(xi)↓. If xi ∈ S then let g(xi) = f(xi).
Define g on all other xi with i 6 n so that g is a finite injective partial
function on variables. Let S(q, f) = q[g(x0), . . . , g(xn)] � S (using the
notation introduced in Remark 5.9).

We define X recursively. Even if we can ensure that we do not
introduce any unwanted 1-types at each step, we do not have sufficient
induction to conclude that no unwanted 1-types ever appear. Our final
operator allows us to ensure that this is indeed the case by transforming
an arbitrary type into one whose 1-subtypes are all of the desired form.
Let q(x0, . . . , xk−1) be a type and σ0, . . . , σk−1 ∈ T . Let ϕ0, ϕ1, . . . be
the elements of q (ordered according to a standard fixed ordering of
literals). If there are an n and a j < k such that ϕn ≡ Dτ (xj) and
either τ is incompatible with σj or there is more than one extension of
σj of length τ in T , then for the least such n, let N (q, σ0, . . . , σk−1) =
J (

∧
i<n ϕi). Otherwise, let N (q, σ0, . . . , σk−1) = q. Notice that, in

either case, the 1-subtypes of N (q, σ0, . . . , σk−1) are all in B.
We are now ready to define X = {pi}i∈N. Let p〈0,k〉 = ∅ for all

k ∈ N. Let t0, t1, . . . be a listing of B, let σ0, σ1, . . . be a listing of T , let
x0, x1, . . . be the variables in our language, and let p〈1,k〉 = N (ti(xj), σm)
where k = 〈i, j,m〉. (While we do not need to apply the N operator
here, it is helpful for uniformity of definition. Notice that for each ti,
there is a σ such that N (ti, σ) = ti.)
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Having defined the types p〈m,k〉 for m < n, we define the types of the
form p〈n,k〉 to consist of all possible amalgamations of previously defined
types, together with all types obtained from these amalgamations by
permuting variables or taking subtypes. We use the N operator to
ensure that we do not create any unwanted 1-types.

Let F be the set of 4-tuples consisting of a finite set G of numbers
of the form 〈m, k〉 with m < n, a conjunction of literals in the vari-
ables x̄ appearing in the union of the types pc for c ∈ G, a sequence
σ0, . . . , σ|x̄|−1 of elements of T , and a finite injective partial function on
variables. Fix a listing of F , and let G0, G1, . . . be the corresponding
finite sets, θ0, θ1, . . . the corresponding formulas, s0, s1, . . . the corre-
sponding sequences of strings, and f0, f1, . . . the corresponding partial
functions. For each i, let q0, . . . , ql be the types pc such that c ∈ Gi,
and let p〈n,i〉 = S(N (A(q0, . . . , ql, θi), si), fi).

Let X = {pi}i∈N. Then X is a list of types of ∆, and, because of our
application of the N operator, every 1-type in X is in B. We claim
that X satisfies the finite full amalgamation closure conditions.

First, ∅ ∈ X. Closure under sequences of variable substitutions, and
hence closure under variable substitutions and under subtypes, follows
from the fact that each time a type is added to X, so are all the types
obtained from it by applications of the S operator, in an effective way.

It is also easy to see that for a finite set of elements q0, . . . , qn of
X, if there is a type of ∆ containing q0 ∪ · · · ∪ qn, then there is a
conjunction of literals θ such that A(q0, . . . , qn, θ) amalgamates these
types. Furthermore, since the 1-subtypes of q0 ∪ · · · ∪ qn are all in B,
the fact that T is strongly atomic means that there is a sequence t of
elements of T such that N (A(q0, . . . , qn, θ), t) = A(q0, . . . , qn, θ). Thus
finite full type amalgamation holds.

To verify that the extension condition is satisfied, it is enough to fix
a p(x̄) ∈ X and a conjunction of literals θ(x̄ȳ) consistent with p, and
show that there is a q(x̄ȳ) ∈ X containing both. We do so by defining
a type t(u) for each u ∈ ȳ, and then applying the A operator to p, the
types t(u), and θ.

By extending θ if needed, we may assume that p∪{θ} decides every
atomic formula in its free variables involving P , E, or U (i.e., it includes
either the formula or its negation). We may also assume that if it
includes Ri(u) then it decides Rj(u) for all j 6 i, and that if it includes
¬Dσ(u), then it decides Dτ (u) for all τ 4 σ. We may also assume that
u = v does not occur in p∪ {θ} for any distinct variables u and v, and
hence that ¬u = v occurs in p ∪ {θ} for all distinct u and v among its
free variables.
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For each u ∈ ȳ, let σu be the longest string such that Dσ(u) occurs in
θ, if one exists, and let σu = λ otherwise. Since T is strongly atomic,
for each u ∈ ȳ there is an atom ρu of T extending σu.

Let u ∈ ȳ. If Ri(u) occurs in θ for some i, then, for the least such
i, let t(u) = ri(u). If ¬Dτ (u) and ¬U(u) both occur in θ for some τ
compatible with ρu, then for the shortest such τ , let t(u) = dτ (u).

If P (v, u) occurs in θ for v ∈ x̄, and t(u) has not yet been defined,
then let t(u) be the 1-type that includes U(u) and includes Ri(u) if and
only if p includes ¬Dσ(v) for all σ ∈ T of length i. Notice that t(u)
either is rj(u) for some j or is s.

If P (u, v) occurs in θ for v ∈ x̄, and t(u) has not yet been defined,
then let t(u) be the 1-type defined as follows. The type t(u) includes
¬U(u). For each n such that ¬Rn(v) ∈ p, it includes Dτ (u) for the
unique τ ∈ T of length n that is compatible with ρu. If Rn(v) ∈ p,
then t(u) includes ¬Dτ (u) for all τ of length n. Notice that t(u) either
is dτ (u) for some τ < σu or is dρu(u).

If P (u, v) occurs in θ for some v ∈ ȳ for which we have defined t(v),
and t(u) has not yet been defined, then define t(u) as in the previous
paragraph, with t(v) in place of p.

If P (v, u) occurs in θ for some v ∈ ȳ for which we have defined
t(v), and t(u) has not yet been defined, then we must have defined
t(v) = ri(v) for some i. In this case, let t(u) be some dσ(u) such that
|σ| = i and dσ(u) is consistent with the literals of the form Dτ (u) and
¬Dτ (u) occurring in θ.

If we have not yet defined t(u) for u ∈ ȳ, then no Ri(u) or ¬Dτ (u)
for τ compatible with ρu occurs in θ. In this case, if U(u) occurs in θ
then let t(u) = s, and otherwise let t(u) = dρu(u).

It is straightforward to check that applying the A operator to p, the
types t(u) with u ∈ ȳ, and θ yields a type q containing both p and θ,
and that there is a sequence of strings t such that N (q, t) = q. Thus
q ∈ X.

Applying EFAEC. By EFAEC, we have an extension function approx-
imation g for X. Recall the type s defined above. Let i be such that
pi = s(x0). Given σ ∈ T , let j be such that θj = Dσ(x1) ∧ P (x1, x0).
Applying g to i and j, we obtain a 2-type q(x0, x1) of ∆ amalgamating
pi and θj. Note that this type is obtained effectively from i and j,
as q � s = pg(i,j,s) � s for all s. Since lims g(i, j, s) exists, q ∈ X, so
q � x1 ∈ X. The only 1-types in X are the ones of the form dρ, eρ,
ri, or s. Since ¬Rj(x0) ∈ q for all j, for each m there must be some
τ of length m such that Dτ (x1) ∈ q. Thus we must have q � x1 = eρ

for some atom ρ of ∆. Then fσ =
⋃

Dτ (x1)∈q τ is an isolated path of T .
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The function σ 7→ fσ exists. Let σ0, σ1, . . . be a listing of the elements
of T and let gi = fσi

. Then {gi}i∈N is a listing of the isolated paths of
T . �

Theorems 7.1 and 7.4 together give us the following results.

Theorem 7.5. (1) Let C denote the finite full or finite free amalga-
mation closure conditions. Then EFAEC is equivalent to AMT
over RCA0.

(2) Let C be any set of closure conditions that includes the exten-
sion condition, in particular the pairwise full, pairwise free, or
1-point full amalgamation closure conditions. Then EFAEC im-
plies AMT and is implied by ATT over RCA0.

Assuming AMT does not imply ATT, the second part of the above
theorem has a gap, which remains open.

7.2. Comparing model existence theorems. As mentioned above,
HMT and WMT are each equivalent to the corresponding EFAEC prin-
ciple over RCA0, so Theorem 7.5 gives us the following result.

Theorem 7.6. Both HMT and WMT are equivalent to AMT over
RCA0.

Now consider the statement that every list of types that satisfies
the 1-point full amalgamation closure conditions and has an extension
function approximation is an enumeration of the type spectrum of some
1-point homogeneous model. By Theorem 6.12, this statement implies
IΣ0

2 over RCA0. Since 1-PHMT implies this statement, it also implies
IΣ0

2 over RCA0. Since 1-PHMT also implies EFAEC, where C denotes
the 1-point full amalgamation closure conditions, it follows from The-
orem 7.5 that 1-PHMT also implies AMT over RCA0. On the other
hand, by Theorem 5.11, under RCA0 + IΣ0

2, satisfying the 1-point full
amalgamation closure conditions implies satisfying the finite full amal-
gamation closure conditions. Thus we have the following result.

Theorem 7.7. 1-PHMT is equivalent to AMT + IΣ0
2 over RCA0.

The situation for 1-HMT and SMT is not quite as clear. Since they
each imply the corresponding EFAEC principle over RCA0, Theorem
7.5 gives us the following result.

Theorem 7.8. Both 1-HMT and SMT imply AMT over RCA0.

By Theorems 6.10 and 7.5, we also have the following result.

Theorem 7.9. Both 1-HMT and SMT are provable in RCA0 +ATT+
Π0

1GA.
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Let P be one of 1-HMT or SMT, and let CP be the set of closure
conditions mentioned in the statement of P . Consider the statement
that if X is a list of types satisfying CP and X has an extension function
approximation, then there is a (1-homogeneous, if P is 1-HMT) model
A such that X enumerates the type spectrum of A. By Theorem
6.13 (in particular, item T in the charts justifying that theorem), this
statement implies IΣ0

2 over RCA0 + BΣ0
2. Since the statement clearly

follows from P over RCA0, we see that P implies IΣ0
2 over RCA0+BΣ0

2.
But ATT is Π1

1-conservative over RCA0 +BΣ0
2, as mentioned in Section

3, so we have the following result, which in particular implies that
Theorem 7.8 cannot be reversed, even over BΣ0

2.

Theorem 7.10. Neither 1-HMT nor SMT are provable in RCA0 +
ATT + BΣ0

2.

We do not know the exact strengths of 1-HMT and SMT.

7.3. Computability theoretic equivalences. Theorem 7.6 has a
strong computability theoretic analog. In the computability theoretic
setting, where we work over the standard model of first order arith-
metic, there is no difference between our versions of HMT. There is
also no difference between SMT and WMT, so in this subsection we
refer to this principle as MT. Similarly, in this setting we have only two
versions of EFAEC, one for full amalgamation, which we call EFAEfull,
and one for free amalgamation, which we call EFAEfree.

We may think of a principle of the form ∀X [Θ(X) → ∃Y Ψ(X, Y )],
where Θ and Ψ are arithmetic, as a problem. An instance of this
problem is an X such that Θ(X) holds and a solution to this instance
is a Y such that Ψ(X, Y ) holds. For example, an instance of HMT
consists of a theory T together with a list of types X of T satisfying
the full amalgamation closure conditions, and a solution to this instance
is the elementary diagram of a homogeneous model A of T such that
X is an enumeration of T(A).

Let P and Q be problems. We say that P is uniformly reducible to
Q, and write P 6u Q, if there are Turing functionals Φ and Ψ such

that, for every instance X of P , the set X̂ = ΦX is an instance of Q,

and for every solution Ŷ to X̂, the set Y = ΨX⊕bY is a solution to X.
We say that P and Q are uniformly equivalent, and write P ≡u Q, if
P 6u Q and Q 6u P . (As noted by Dorais, Dzhafarov, Hirst, Mileti,
and Shafer [10], uniform reducibility is equivalent to a special case
of the notion of Weihrauch reducibility that has been widely studied
in computable analysis. This notion and other related computability
theoretic reducibilities between problems, many with strong relations
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to reverse mathematics, are presented and analyzed in papers such as
[10] and Hirschfeldt and Jockusch [21].)

Theorem 7.11. HMT ≡u MT ≡u AMT.

Proof. It is easy to check that the translations between trees and theo-
ries in Section 3 are uniform, so AMT ≡u ATT. (In this setting, there
is no distinction between atomic and strongly atomic trees.)

The proof of Proposition 6.6 shows that EFAEfull 6u HMT and
EFAEfree 6u MT. The proofs of Lemma 6.9 and Theorem 6.10 are
also both uniform, so in fact HMT ≡u EFAEfull and MT ≡u EFAEfree.
(These facts can also be obtained from the original proofs of Theorem
6.4 by Goncharov [15] and Peretyat’kin [41].)

The construction of the tree T from the theory T and list of types
X in the proof of Theorem 7.1 is uniform, as is the construction of an
extension function approximation for X from an enumeration of the
isolated paths of T . Thus ATT 6u EFAEfree.

In the proof of Theorem 7.4, the construction of the theory ∆ and the
list of types X from the tree T is uniform. The construction of a listing
of the isolated paths of T from an extension function approximation
for X is also uniform, except for the choice of an i such that pi = s(x0).
We can find such an i if we know an atom σ of T , since then, given our
listings σ0, σ1, . . . of T and t0, t1, . . . of B (where B is as in the proof of
Theorem 7.4), we can fixm and i such that σm = σ and ti = s, and have

that p〈1,〈i,0,m〉〉 = sx0 . So if we let T̂ be the tree consisting of all strings
of the form 0n and all strings of the form 1τ for τ ∈ T , and apply our

construction to T̂ instead of T , we get a fully uniform construction.

From a listing of the isolated paths of T̂ , we can uniformly obtain one
of the isolated paths of T , so EFAEfull 6u ATT.

The above results, together with the obvious fact that EFAEfull 6u

EFAEfree, yield the theorem. �

For a problem P , a degree a is P -bounding if every computable
instance of P has an a-computable solution. (The AMT-bounding
degrees have been referred to in the literature as atomic bounding or
prime bounding.) More generally, a is P -bounding relative to b if every
b-computable instance of P has an a-computable solution.

Corollary 7.12. For any degree b, the HMT-bounding degrees relative
to b, the MT-bounding degrees relative to b, and the AMT-bounding
degrees relative to b all coincide.
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8. Open questions

In this section, we gather some open questions raised in previous
sections.

As mentioned in Section 3, Π0
1G implies AMT+Π0

1GA, but, although
Π0

1GA can be seen as an attempt to capture the first order difference
between AMT and Π0

1G, the reverse implication remains open.

Question 8.1. Does AMT + Π0
1GA imply Π0

1G over RCA0?

In connection with both this question and the following one, recall
from Corollary 3.4 that AMT does not imply Π0

1GA.
As noted following Proposition 3.6, AMT is equivalent to the state-

ment that if T is a strongly atomic extendible tree, then there is a
listing of the isolated paths of T . Weakening the hypothesis of T be-
ing strongly atomic to that of T being atomic yields ATT. ATT implies
AMT, and Π0

1G implies ATT. Furthermore, as noted following the def-
inition of ATT in Section 3, AMT implies ATT over BΣ0

2.

Question 8.2. Does AMT imply ATT over RCA0? Does AMT+Π0
1GA

imply ATT over RCA0? What if we replace ATT by the principle ATT+

defined at the end of Appendix B below?

Note that a positive answer to Question 8.1 implies a positive answer
to the second part of Question 8.2.

By Proposition 4.5, it is provable in RCA0 that every saturated
model is 1-homogeneous, and that every strongly saturated model is
homogeneous. As noted following that proposition, the statement that
every saturated model is homogeneous is provable in both BΣ0

2 and
WKL0 (and hence does not imply BΣ0

2).

Question 8.3. What is the exact strength of the statement that every
saturated model is homogeneous?

Proposition 4.6 says that the statement that every atomic model is
strongly 1-homogeneous is equivalent to ACA0. Combining Proposition
4.5 with the fact that ACA0 suffices to show that all of our definitions of
homogeneity are equivalent, we see that ACA0 proves that every prime
model is strongly 1-homogeneous, and so is every saturated model.

Question 8.4. What are the exact strengths of the statements that
every prime model is strongly 1-homogeneous, and that every (strongly)
saturated model is strongly 1-homogeneous?

As noted in Section 6.1, the statement that if X has a weak extension
function approximation then it has an extension function approxima-
tion follows from IΣ0

2, and Theorem 7.1 implies that it also follows from
ATT (assuming X in fact satisfies the extension condition).
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Question 8.5. What more can be said about the strength of the above
statement? What about the version of Theorem 6.10 where extension
function approximations are replaced by weak extension function ap-
proximations?

Recall that, in Figure 2, a 3 means that the principle is provable
from Π0

1GA over RCA0 and is equivalent to IΣ0
2 over RCA0 + BΣ0

2; a
4 means that the principle is provable from Π0

1GA over RCA0, but its
strength is otherwise unknown; and a 5 means that the principle is
provable from IΣ0

2 over RCA0, but its strength is otherwise unknown.

Question 8.6. Are the principles marked with a 3 in Figure 2 equiva-
lent to each other? Are they equivalent to Π0

1GA? What more can be
said about the items marked 4 or 5 in Figure 2? Are they equivalent
to Π0

1GA?

Theorem 7.5 shows that if C denotes the pairwise full, pairwise free,
or 1-point full amalgamation closure conditions, or indeed any set of
closure conditions containing the extension condition, then EFAEC im-
plies AMT and is implied by ATT.

Question 8.7. What is the exact strength of EFAEC in the above
cases?

Note that if the answer to the first part of Question 8.2 is positive
then Theorem 7.5 answers this question.

By Theorem 7.8, both 1-HMT and SMT imply AMT. By Theorems
7.9 and 7.10, both of these principles are implied by ATT+Π0

1GA, but
not by ATT + BΣ0

2.

Question 8.8. What are the exact strengths of 1-HMT and SMT?

In Appendix B below, we define the principle FATT, which follows
from BΣ0

2 and from ATT, but is not provable in RCA0.

Question 8.9. Does Π0
1GA imply FATT over RCA0?

Appendix A. Approximating generics

We can define analogs of Π0
1G for higher levels of the arithmetic

hierarchy. As in the Π0
1 case, when we say that D is a Π0

n set of strings,
we mean that D is a Π0

n predicate on 2<N, and write σ ∈ D to mean
that D holds of σ.

Π0
nG: For any uniformly Π0

n collection of sets of strings D0, D1, . . .,
each of which is dense in 2<N, there is a G ∈ 2N such that (∀i)(∃m)[G �
m ∈ Di].
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In Section 3, we introduced the Π0
1-generic approximation principle

Π0
1GA, and showed that it is equivalent to IΣ0

2 over BΣ0
2. In the spirit

of the strong form of the limit lemma, we have the following analogous
generic approximation principles. (We use (∀∞x) as an abbreviation of
(∃y)(∀x > y).)

Π0
nGA: For any uniformly Π0

n collection of sets of strings D0, D1, . . .,
each of which is dense in 2<N, there are gk0,...,kn−1 ∈ 2N for k0, . . . , kn−1 ∈
N such that

(∀i)(∃σ ∈ Di)(∀∞k0) · · · (∀∞kn−1)[gk0,...,kn−1 � σ].

Clearly, Π0
nGA follows from Π0

nG. Let M be a countable model of
RCA0. For a subset G of the domain of M, let M[G] be the structure
obtained by adding to the second order part of M all sets definable
over M by ∆0

1 formulas with G as an added set parameter. If G is
Cohen 1-generic, then adding G to M preserves IΣ0

1, which implies
that M[G] is a model of RCA0. (See [47]; for more on the general
structure of arguments establishing conservativity results of the kind we
are discussing, see [20, 22, 47].) It is easy to see that, if G is sufficiently
Cohen generic, then M[G] contains solutions to all instances of Π0

nG
in M. By iterating this construction, we obtain an extension N of M
that is a model of RCA0 +Π0

nG, which is enough to conclude that Π0
nG

is Π1
1-conservative over RCA0. In particular, Π0

nG (and hence Π0
nGA)

does not imply IΣ0
n+1, even over IΣ0

n. (In fact, the same argument as in
[23] for Π0

1G shows that Π0
nG is restricted Π1

2-conservative over RCA0.)
We have the following analogs to Theorems 3.2 and 3.3.

Theorem A.1. RCA0 + IΣ0
n+1 ` Π0

nGA.

Proof. Let D0, D1, . . . be uniformly Π0
n sets of strings, each of which is

dense in 2<N. Let Θ be a ∆0
0 predicate such that σ ∈ Di if and only

if (∀x0)(∃x1) · · · (Qxn−1)Θ(i, σ, x0, . . . , xn−1), where Q is either ∃ or ∀,
depending on the parity of n. Let

Di[k0, . . . , kn−1] = {σ : |σ| > kn−1 ∨
(∀x0 < k0)(∃x1 < k1) · · · (Qxn−1 < kn−1)Θ(i, σ, x0, . . . , xn−1)}.

Let 6ll be the length-lexicographic ordering on 2<N. For each tu-
ple (k0, . . . , kn−1), define σk0,...,kn−1,i for i 6 kn−1 by recursion as fol-
lows. Let σk0,...,kn−1,0 be the 6ll-least string in D0[k0, . . . , kn−1]. Given
σk0,...,kn−1,i−1, let σk0,...,kn−1,i be the 6ll-least extension of σk0,...,kn−1,i−1

in Di[k0, . . . , kn−1]. Let gk0,...,kn−1 = σk0,...,kn−1,kn−10
N.
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Let ϕ(i, σ, τ) be a Π0
n formula stating that τ < σ and τ ∈ Di.

Let ψ(i, σ, τ) be a formula stating that ϕ(i, σ, τ) and ¬ϕ(i, σ, ρ) for
all ρ <ll τ . Note that for each i and σ there is a τ such that ψ(i, σ, τ),
by Π0

n-induction. Consider the statement

(∃〈σ0, . . . , σi〉)[ψ(0, λ, σ0) ∧ (∀j < i)ψ(j + 1, σj, σj+1)].

This statement is Σ0
n+1, and if it holds of i, then it holds of i+1, so by

Σ0
n+1-induction, it holds of all i. Fix i and let σ0, . . . , σi be as in the

statement. We claim that

(∀∞k0) · · · (∀∞kn−1)[gk0,...,kn−1 � σi],

which is enough to establish the theorem, as σi ∈ Di.
For each j 6 i and each ρ <ll σj such that ρ < σj−1 (or j = 0), there

is an mρ,j such that

¬(∃x1) · · · (Qxn−1)Θ(j, ρ,mρ,j, x1, . . . , xn−1),

so by Π0
n−1-bounding, there is an m0 bounding such an mj,ρ for each

such j and ρ. Fix k0 > m0. It is enough to show that

(∀∞k1) · · · (∀∞kn−1)[gk0,...,kn−1 � σi].

For each j 6 i,

(∀x0 < k0)(∃x1)(∀x2) · · · (Qxn−1)Θ(j, σj, x0, x1, . . . , xn−1),

so by Π0
n−2-bounding, there is an m1 such that for all j 6 i,

(∀x0 < k0)(∃x1 < m1)(∀x2) · · · (Qxn−1)Θ(j, σj, x0, x1, . . . , xn−1).

Fix k1 > m1. It is enough to show that

(∀∞k2) · · · (∀∞kn−1)[gk0,...,kn−1 � σi].

For each j 6 i and each ρ <ll σj such that ρ < σj−1 (or j = 0),

¬(∃x1 < k1)(∀x2)(∃x3) · · · (Qxn−1)Θ(j, ρ,mj,ρ, x1, . . . , xn−1),

where mj,ρ is as above, so for each x1 < k1, there is an mj,ρ,x1 such that

¬(∀x2 < mj,ρ,x1)(∃x3) · · · (Qxn−1)Θ(j, ρ,mj,ρ, x1, . . . , xn−1).

Let m2 bound all such mj,ρ,x1 . Fix k2 > m2. It is enough to show that

(∀∞k3) · · · (∀∞kn−1)[gk0,...,kn−1 � σi].

We continue in this manner until we have defined k0, . . . , kn−1, and
established that it is enough to show that gk0,...,kn−1 � σi. (We make
sure to have kn−1 > i.) Our definition ensures that for each j 6 i, we
have σj ∈ Dj[k0, . . . , kn−1] and ρ /∈ Dj[k0, . . . , kn−1] for all ρ <ll σj such
that ρ < σj−1 (or j = 0), whence σk0,...,kn−1,j = σj. Thus gk0,...,kn−1 � σi,
as desired. �
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Theorem A.2. RCA0 + BΣ0
n+1 + Π0

nGA ` IΣ0
n+1, and hence RCA0 +

BΣ0
n+1 ` Π0

nGA ↔ IΣ0
n+1.

Proof. Fix a model of RCA0 + BΣ0
n+1 + Π0

nGA with first order part M
and second order part S. Suppose for the sake of a contradiction that
IΣ0

n+1 fails in this model. As in the proof of Theorem 3.3, there is a
Σ0

n+1 cut I in M . As in that proof, let Di be the set of all σ ∈ 2<N

such that, thinking of σ as a finite set, the last two elements of σ, in
order, are w and 〈i, x, y〉, and

(∃y′ < y)(∀z)[ϕ(x, y′, z) ∧ (∀y′ 6 w)(∃z′ < y)¬ϕ(x, y′, z′)].

The Di are uniformly Π0
n. There is no bound on the least witnesses

y such that (∀z)ϕ(x, y, z) for x ∈ I, as otherwise I would be a Π0
n

cut, which is not possible since IΠ0
n holds in our model. Now the same

argument as in the proof of Theorem 3.3 shows that each Di is dense.
Let gk0,...,kn−1 be as in Π0

nGA and let a be any number above all those
in I. Let

Ei = {〈σ,m〉 : σ ∈ Di ∧
(∀k0 > m)(∃∞k1)(∀∞k2) · · · (Q∞kn−1)gk0,...,kn−1 � σ},

where Q is either ∃ or ∀ depending on the parity of n. Note that the Ei

are uniformly Π0
n. For each i < a there is a 〈σ,m〉 ∈ Ei, so by the finite

axiom of choice for Π0
n properties, which follows from BΣ0

n+1, there is a
function f with domain a that is M -finite and such that for each i < a
there is a 〈σ,m〉 ∈ Ei with the last element of σ of the form 〈i, f(i), y〉.
Since 〈σ,m〉 ∈ Ei ⇒ σ ∈ Di, every f(i) is in I.

We claim that f is one-to-one, which gives us a contradiction as in
the proof of Theorem 3.3. So assume for a contradiction that f(i) =
f(j) = x for i 6= j. Then there are 〈σ,m〉 ∈ Ei and 〈σ′,m′〉 ∈ Ej, and
there are v, w, yi, yj, such that the next to last and last elements of σ
are v and 〈i, x, yi〉, and the next to last and last elements of σ′ are w
and 〈j, x, yj〉. Let l = max(|σ|, |σ′|), and let τ ∈ Dl be such that

(∀∞k0)(∀∞k1) · · · (∀∞kn−1)gk0,...,kn−1 � τ.

Note that |τ | > l. Let m0 be such that

(∀k0 > m0)(∀∞k1) · · · (∀∞kn−1)gk0,...,kn−1 � τ,

and let k0 > m,m0. Let m1 be such that

(∀k1 > m1)(∀∞k2) · · · (∀∞kn−1)gk0,...,kn−1 � τ,

and let k1 > m1 be such that

(∀∞k2)(∃∞k3) · · · (Q∞kn−1)gk0,...,kn−1 � σ.
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Let m2 be such that

(∀k2 > m2)(∀∞k3) · · · (∀∞kn−1)gk0,...,kn−1 � τ,

and let k2 > m2 be such that

(∃∞k3)(∀∞k3) · · · (Q∞kn−1)gk0,...,kn−1 � σ.

Keep defining ml and kl this way, to obtain k0, . . . , kn−1. Then
gk0,...,kn−1 � τ and gk0,...,kn−1 � σ, so σ ≺ τ . The same argument shows
that σ′ ≺ τ . Thus σ and σ′ are compatible. We cannot have σ = σ′,
since σ and σ′ have different last elements, so, without loss of general-
ity, we may assume that σ ≺ σ′ and so v < 〈i, x, yi〉 6 w < 〈j, x, yj〉.
We now have a contradiction, as the definitions of Di and Dj then
say that (∃y′ < yi)(∀z)ϕ(x, y′, z) and (∀y′ 6 w)(∃z′ < y)¬ϕ(x, y′, z′),
respectively, but yi 6 w. �

Appendix B. Atomic trees

In this appendix, we discuss a couple of results on atomic trees men-
tioned above. We begin with the following fact.

Proposition B.1. The statement that every atomic extendible tree is
strongly atomic is equivalent to BΣ0

2 over RCA0.

Proof. Since being an atom of a tree is a Π0
1 property, the statement

follows from the finite axiom of choice for Π0
1 properties. In the other di-

rection, we assume that every atomic extendible tree is strongly atomic
and argue in RCA0 as follows. Let P be a Π0

1 property and m be such
that (∀i < m)(∃u)P (i, u). Let R be a ∆0

1 property such that P (x, y)
if and only if (∀z)R(x, y, z), and for i < m, let w(i, s) be the least u
such that (∀z < s)R(i, u, s). We define a tree T in stages. At stage
0 put into T [0] all strings of the forms 0i and 0i1 for i < m. At
stage s + 1, for each i < m and each leaf σ of T [s] extending 0i1, if
w(i, s+ 1) = w(i, s) then put σ0 into T [s+ 1], and otherwise put both
σ0 and σ1 into T [s+ 1].

It is easy to check that T is a well-defined extendible tree. Let
τ ∈ T . By extending τ if needed, we may assume that τ extends 0i1
for some i < m. Since P (i, u) holds for some u, there is an s > |τ |
such that w(i, t) = w(i, s) for all t > s. Let σ � τ be a leaf of
T [s]. Then σ is an atom of T extending τ . Thus T is atomic, and
hence by hypothesis T is strongly atomic. Let τ0, . . . , τm−1 be atoms of
T extending 01, 001, . . . , 0m−11, respectively, and let s be greater than
the length of each τi. Then w(i, t) = w(i, s) for all t > s, so P (i, w(i, s))
holds for all i < m. Letting v be greater than all w(i, s) for i < m, we
have (∀i < m)(∃u < v)P (i, u). Thus BΠ0

1 holds. �
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Next, we define the “miniaturization” of ATT discussed at the end
of Section 3.

FATT (Finite Atomic Tree Theorem): For each atomic extendible
tree T and each finite set of nodes σ0, . . . , σk ∈ T , there is a set of
isolated paths P0, . . . , Pk such that Pi extends σi.

It is easy to see that FATT follows from BΣ0
2. It also follows from

ATT, and hence from Π0
1G, so it is strictly weaker than BΣ0

2. We do
not know whether FATT follows from Π0

1GA, but we can show it is not
provable in RCA0.

Theorem B.2. RCA0 0 FATT.

Proof. Define a k-path list to be a sequence L = (P0, . . . , Pk) ∈ (2N)k+1

such that Pi extends 0i1. We write L(i) for Pi. We assume that BΣ0
2

fails and argue in RCA0 to build a computable (i.e., ∆0
1-definable)

atomic extendible tree T such that, for some k, we have 0i1 ∈ T for
all i 6 k, but there is no computable k-path list L such that L(i) is an
isolated path of T for all i 6 k. The reason such a construction suffices
to establish the theorem is the following: Let N be a model of Σ0

1-
PA (i.e., Peano Arithmetic with induction restricted to Σ0

1 formulas) in
which BΣ0

2 fails. LetM be the structure in the language of second order
arithmetic with first order part N and second order part consisting of
the subsets of the domain of N that are ∆0

1-definable over N . Then
M is a model of RCA0 (see [47]), and our construction shows that M
is not a model of FATT.

As shown by Hirst [24], BΣ0
2 is equivalent over RCA0 to RT1

<∞, the
statement that for each k and each partition A0, . . . , Ak of N, some
Ai is infinite. Thus we may assume there is a k ∈ N and a partition
A0, . . . , Ak of N such that each Ak is bounded.

Let L0, L1, . . . list all partial computable k-path lists (i.e., partial
computable sets that could be extended to k-path lists). We construct
T to ensure that if Lj is total and j ∈ Ai, then Lj(i) is not isolated. Our
construction is a version of the one used by Goncharov and Nurtazin
[16] to build an atomic extendible tree for which there is no computable
listing of the isolated paths.

Begin by putting 0i1 in T for all i 6 k. Every other node in T
extends one of these nodes, so it suffices to describe how T is built
above a fixed 0i1 with i 6 k. We proceed in stages. At each stage,
certain strings will be declared to be active. The construction will
ensure that if σ is active at the end of stage s, then there is an n such
that the extensions of σ put into T by the end of stage s are exactly
those of the form σ0j for j 6 n.
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At stage 0, declare 0i1 to be active.
At stage s + 1, proceed as follows for each active σ. Let n be such

that the extensions of σ put into T so far are exactly those of the form
σ0j for j 6 n. If by this stage we have not yet found a j ∈ Ai such
that σ ≺ Lj(i), then put σ0j+1 into T . Otherwise, put both σ0j+1 and
σ0j1 into T , declare both these strings to be active, and declare σ to
no longer be active.

It is clear that T is an extendible tree. Now suppose that j ∈ Ai

and Lj(i) is an infinite path of T . Let S be the set of all σ ≺ Lj(i)
that are active at some point in the construction. If σ ∈ S then, at
some point in the construction, σ is declared to no longer be active,
and strings σ0j+1 and σ0j1 are declared to be active. These strings
are the only extensions of σ of length |σ| + j + 1 in T , so Lj(i) must
extend one of them. Thus we see that S is infinite, which implies that
Lj(i) is not isolated, since for every τ l ∈ S other than 0i1, we also have
τ(1− l) ∈ T . So we are left with showing that T is atomic.

Fix a ρ ∈ T . We may assume that ρ extends some 0i1. Let P be
any path of T extending ρ (say the leftmost one). If P is isolated then
we are done, so assume otherwise. Then P must go through infinitely
many nodes that are active at some point in the construction, and we
can find a sequence ρ ≺ σ0 ≺ σ1 ≺ · · · of such nodes. Each σl is of
the form τljl for some τl and jl 6 1. If τl(1− jl) is permanently active
then there is a unique path of T extending τl(1 − jl). Since τl(1 − jl)
extends ρ, in this case we are done. So assume that for all l, the node
τl(1 − jl) is not permanently active. Then there is an nl ∈ Ai such
that τl(1 − jl) ∈ Lnl

(i). But if l < l′ then τl(1 − jl) and τl′(1 − jl′)
are incompatible, so nl 6= nl′ . Thus we get a computable injective map
from N into the bounded set Ai, which is a contradiction. �

The statement of FATT suggests the idea of strengthening the hy-
pothesis of ATT by replacing it with the conclusion of FATT, yielding
a principle intermediate between ATT and AMT (see Question 8.2
above):

ATT+: Let T be an extendible tree with the property that for each
finite set of nodes σ0, . . . , σk ∈ T , there is a set of isolated paths
P0, . . . , Pk such that Pi extends σi. Then there is a listing of the isolated
paths of T .

Appendix C. Saturated models

Recall that A is saturated if for all ā ⊆ A, each complete type of
Th(A, ā) is realized in A; and strongly saturated if for all ā ⊆ A, each
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partial type of Th(A, ā) is realized in A. In this appendix, we prove
the following result, mentioned in Section 2.2.

Theorem C.1. The statement that every saturated model is strongly
saturated is equivalent to WKL0 over RCA0.

Proof. To show that the statement holds in WKL0, it is enough to
fix ā ⊆ A and show in WKL0 that every partial type of Th(A, ā) is
contained in a complete type of Th(A, ā). Let p(x̄) be a partial n-type
of Th(A, ā). Add an n-tuple of constant symbols c̄ to the language of
(A, ā), and let S = Th(A, ā) ∪ {ϕ(c̄) : ϕ(x̄) ∈ p}. It is well-known
that Lindenbaum’s Lemma, which implies that S has a completion T ,
is provable in WKL0 (see for instance [47]). Then {ϕ(x̄) : ϕ(c̄) ∈ T} is
a complete type containing p.

In the other direction, we argue in RCA0 as follows. Assume that
every saturated model is strongly saturated. Let f and g be functions
with disjoint ranges, and let T be a tree such that P is an infinite path
of T if and only if n ∈ rng f ⇒ P (n) = 1 and n ∈ rng g ⇒ P (n) = 0.
To show that WKL0 holds, it is enough to show that a tree of this
form has an infinite path (see [47]). Let S be the set of terminal nodes

of T , and let T̂ = T ∪ {σ0n : σ ∈ S, n ∈ N}. Let T = T (T̂ ) be
as in Definition 3.5, and let A be a model of T (which exists because
the Completeness Theorem for theories holds in RCA0). If T has an
infinite path then we are done, so assume otherwise. Let ā ⊂ A and
let p(x0, . . . , xn−1) be a complete n-type of Th(A, ā). For each i < n,

the induced 1-type on xi corresponds to an infinite path of T̂ , which
must be of the form σi0

N with σi ∈ S. Since S is a set, we can form the
tuple (σ0, . . . , σn−1), from which we can define a formula generating p.
So p is principal, and hence realized in A.

Thus A is saturated and hence, by hypothesis, strongly saturated.
Using the notation of Definition 3.5, let ϕn,s(x) ≡ Pn(x)∧Pn(x)∧· · ·∧
Pn(x), where Pn(x) is repeated s + 1 many times, and let ψn,s(x) ≡
¬Pn(x)∧¬Pn(x)∧ · · · ∧ ¬Pn(x), where ¬Pn(x) is repeated s+ 1 many
times. Let Γ = {ϕn,s : f(s) = n} ∪ {ψn,s : g(s) = n}. Then Γ is a
partial 1-type of T , and hence is realized by some a ∈ A. It follows
that {n : A � Pn(a)} is a path on T . �
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