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Abstract. As a natural example of a 1-random real, Chaitin proposed the
halting probability Ω of a universal prefix-free machine. We can relativize
this example by considering a universal prefix-free oracle machine U . Let
ΩA

U be the halting probability of UA; this gives a natural uniform way of
producing an A-random real for every A ∈ 2ω. It is this operator which is
our primary object of study. We can draw an analogy between the jump op-
erator from computability theory and this Omega operator. But unlike the
jump, which is invariant (up to computable permutation) under the choice
of an effective enumeration of the partial computable functions, ΩA

U can be
vastly different for different choices of U . Even for a fixed U , there are ora-
cles A =∗ B such that ΩA

U and ΩB
U are 1-random relative to each other. We

prove this and many other interesting properties of Omega operators. We
investigate these operators from the perspective of analysis, computability
theory, and of course, algorithmic randomness.

1. Introduction

We begin with a brief review of algorithmic randomness, focusing on Chaitin’s
halting probability Ω. For a more complete introduction, see Li and Vitanyi
[16] or the upcoming monograph of Downey and Hirschfeldt [4].

A partial computable function M : 2<ω → 2<ω is called a prefix-free machine
if whenever σ, τ ∈ domain(M), then σ is not a proper prefix of τ . There is a
universal prefix-free machine, i.e., a prefix-free machine U such that for each
prefix-free machine M there is a string τ ∈ 2<ω for which (∀σ) U(τσ) = M(σ)
or both U(τσ) and M(σ) diverge. We say that U simulates M by the prefix
τ . The importance of prefix-free machines to algorithmic information theory
is well established, originating independently in the seminal work of Levin [15]
and Chaitin [2]. They modified Kolmogorov complexity to capture effective
randomness for real numbers (an earlier approach is described in Levin [14]).
For any prefix-free machine M , define KM (σ) = min{|τ | | M(τ) = σ}. If U is
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universal, then for each partial computable prefix-free M , there is a constant
c ∈ ω such that (∀σ) KU (σ) ≤ KM (σ) + c. We write K for KU and call
this prefix-free Kolmogorov complexity. Note that, up to an additive constant,
K is independent of the choice of U . We say that A ∈ 2ω is 1-random iff
(∀n) K(A � n) > n−O(1). Schnorr observed that this definition of randomness
is equivalent to an earlier definition given by Martin-Löf [17] (see the next
section).

If M : 2<ω → 2<ω is a prefix-free machine, the halting probability of M is the
probability ΩM that M halts on (a prefix of) an infinite input string. Formally,
ΩM =

∑
M(σ)↓ 2−|σ|. Note that ΩM is the limit of a monotonically increasing

computable sequence of rationals; such reals are called c.e. (or left computable)
reals. Conversely, every c.e. real is the halting probability of some prefix-free
machine.

Chaitin [2] proposed the halting probability Ω = ΩU as a natural example
of a 1-random real, where U is any universal prefix-free machine. It is not
hard to prove that Ω is 1-random; a straightforward generalization is proved
in Proposition 3.1 below. Note that we call Ω the halting probability, even
though the definition is machine dependent. This is akin to the situation in
computability theory where the halting problem ∅′ also depends on the choice
of universal machine. In that case, the machine dependence of ∅′ is entirely
superficial; Myhill’s theorem [18] states that it is always the same up to a com-
putable permutation of the natural numbers. Here a similar situation occurs:
any two versions of Ω are Solovay equivalent [28].

For X,Y ∈ 2ω, which we can think of as reals in [0, 1], we write Y ≤S X (Y is
Solovay reducible to X) to mean that there is a c ∈ ω and a partial computable
ϕ : Q → Q such that if q < X, then ϕ(q)↓ < Y and Y − ϕ(q) < c(X − q).
The idea is that given any sequence of rationals approximating X from below,
we can generate a sequence of rationals approximating Y from below that, up
to a multiplicative constant, converges no slower. We say that a c.e. real X is
Solovay complete if Y ≤S X for every c.e. real Y . It is not difficult to prove
that ΩU is Solovay complete for every universal prefix-free machine U [28],
which implies that Ω is well-defined up to Solovay equivalence.1 Two further
theorems should be mentioned.

Theorem 1.1 (Calude, Hertling, Khoussainov, Wang [1]). If A ∈ 2ω is a
Solovay complete c.e. real, then A = ΩU for some universal prefix-free machine
U .

Theorem 1.2 (Kučera and Slaman [11]). Suppose that X ∈ 2ω is a 1-random
c.e. real. Then X is Solovay complete.

Together, these results imply that the 1-random c.e. reals, the Solovay com-
plete c.e. reals, and the possible values of Ω all coincide. We will relativize
these theorems in Section 4.

1Solovay reducibility implies Turing reducibility on the c.e. reals, so the Turing degree of
Ω is well-defined. Indeed, it is well known that Ω ≡T ∅′.
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Relativizing Ω. As we have already indicated, one can draw an analogy be-
tween the (measures of) domains of prefix-free machines in algorithmic random-
ness and the domains of partial computable functions in classical computability
theory. Let us consider this analogy in detail.

(i) The domains of partial computable functions are exactly the c.e. sets,
while the measures of the domains of prefix-free machines are exactly
the c.e. reals.

(ii) The canonical example of a non-computable set is the halting problem
∅′, i.e., the domain of a universal partial computable function. The
canonical example of a 1-random real is Ω, the halting probability of
a universal prefix-free machine.

(iii) ∅′ is well-defined up to computable permutation, while Ω is well-defined
up to Solovay equivalence.

How much further can this analogy be taken? Relativizing the definition of
∅′ gives the jump operator. If A ∈ 2ω, then A′ is the domain of a universal
A-computable machine. Myhill’s theorem relativizes, so A′ is well-defined up
to computable permutation. Furthermore, if A ≡T B, then A′ and B′ differ by
a computable permutation. A fortiori, the jump is well-defined on the Turing
degrees. The jump operator plays an important role in computability theory; it
gives a natural, uniform and degree invariant way to produce, for each A ∈ 2ω,
a set A′ with Turing degree strictly above A.

What happens, on the other hand, when the definition of Ω is relativized?
In some ways, the situation is as nice as one would expect. First, note that
for any oracle A ∈ 2ω there is an A-computable prefix-free machine which is
universal with respect to all such machines. We will find it convenient to use
a universal prefix-free oracle machine UA : 2<ω → 2<ω, which essentially gives
us a coherent choice of universal machines over all oracles (see Section 3). Let
ΩA
U =

∑
UA(σ)↓ 2−|σ| and KA(σ) = min{|τ | | UA(τ) = σ}. By relativizing

Chaitin’s theorem, ΩA
U is A-random; in other words, (∀n) KA(ΩA

U � n) >

n − O(1). This much is well known. It is also clear that ΩA
U is an A-c.e. real

and well-defined up to A-Solovay equivalence. Furthermore, Theorems 1.1 and
1.2 can both be relativized (the latter requires care in the context of prefix-free
oracle machines and is Theorem 4.3 below).

What goes wrong? One might hope for ΩA
U to be well-defined, not just up

to A-Solovay equivalence, but even up to Turing degree. Similarly, we might
hope for ΩU to be a degree invariant operator: in other words, if A ≡T B
then ΩA

U ≡T ΩB
U . Were this the case, ΩU would provide a counterexample to a

longstanding conjecture of Martin: it would induce an operator on the Turing
degrees which is neither increasing nor constant on any cone.2 But as we show
in Theorem 6.7, there are oracles A =∗ B (i.e., A and B agree except on a finite
set) such that ΩA

U and ΩB
U are vastly different. In particular, we can ensure that

2Martin’s conjecture is over ZF with dependent choice and the axiom of determinacy. See
Slaman and Steel [27] and Downey and Shore [7] for discusion of the conjecture and partial
results.
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ΩA
U is a c.e. real while making ΩB

U as random as we like. It follows easily that
the Turing degree of ΩA

U generally depends on the choice of U , and in fact, that
the degree of randomness of ΩA

U can vary drastically with this choice.
If U is a universal prefix-free oracle machine, then we call ΩU : 2ω → [0, 1]

an Omega operator. Basic properties of Omega operators are discussed in
Sections 3 and 4. In Section 5, it is proved that the range of an Omega operator
has positive measure and that every 2-random real is in the range of some
Omega operator. This is not true for every 1-random real. Section 6 turns to
the question of degree non-invariance. We prove that every Omega operator
maps a set of positive measure to a c.e. real. The preimage of any non-c.e. real
has measure zero, so even for relativized halting probability the c.e. reals play
a special role. We also prove that for any Z ∈ 2ω, every Omega operator maps
a set of positive measure to the Z-random reals. It is now a simple consequence
of Kolmogorov’s 0–1 law (see next section) that there are reals A =∗ B such
that ΩA

U is a c.e. real and ΩB
U is Z-random. Degree non-invariance is immediate.

In Section 7, we prove that A ∈ 2ω is mapped to a c.e. real by some Omega
operator iff Ω is A-random. Such an A is called low for Ω. (This property does
not depend on the particular choice of Ω.) More interesting is the characteri-
zation in Section 8 of the reals A ∈ 2ω which are mapped to c.e. reals by every
Omega operator. These are proved to be the K-trivial reals: reals which have
minimum prefix-free initial segment complexity. This class has been studied
thoroughly in recent work [5, 20]. We prove that the K-trivial reals are the
only reals for which the Turing degree of ΩA

U does not depend on the choice of
U .

In the final section, we consider the analytic behavior of Omega operators.
We prove that Omega operators are lower semicontinuous but not continuous,
and moreover, that they are continuous exactly at the 1-generic reals. We
also produce an Omega operator which does not have a closed range. On the
other hand, we prove that every non-2-random in the closure of the range of an
Omega operator is actually in the range. As a consequence, there is an A ∈ 2ω

such that ΩA
U = sup(range ΩU ).

2. Preliminaries

We use “real” to denote a member of the Cantor space 2ω. When convenient,
we also think of reals as elements of [0, 1]. We take the standard product
topology on 2ω; the basic clopen sets of Cantor space are of the form [σ] =
{σA | A ∈ 2ω}, where σ ∈ 2<ω. Every open set is of the form [V ] =

⋃
x∈V [x],

for some V ⊆ 2<ω. Let µ denote the Lebesgue measure on 2ω; in particular,
µ[σ] = 2−|σ|. For σ, τ ∈ 2<ω, we write σ � τ to indicate that σ is a prefix of
τ and σ ≺ τ if it is a proper prefix. We write σ ≺ A to mean that σ ∈ 2<ω is
an initial segment of the real A ∈ 2ω. It is natural to associate a finite string
σ ∈ 2<ω with the dyadic rational having binary expansion σ0ω.
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Before prefix-free Kolmogorov complexity was used to characterize random-
ness, Martin-Löf [17] defined the random reals as those that pass all “effec-
tively presented statistical tests”. Each test is given as a presentation of
the measure zero set of reals that fail the test. Formally, a Martin-Löf test
is a computable sequence {Vi}i∈ω of computably enumerable subsets of 2<ω

such that µ([Vi]) ≤ 2−i. A real X ∈ 2ω passes the Martin-Löf test {Vi}i∈ω if
X /∈

⋂
i∈ω[Vi]. A real which passes all Martin Löf tests is called Martin-Löf

random, which Schnorr proved equivalent to being 1-random.
To capture stronger notions of randomness, take the sets Vi ⊆ 2<ω to be

uniformly c.e. relative to an oracle A ∈ 2ω. Then {Vi}i∈ω is called an A-Martin-
Löf test and, relativizing Schnorr’s result, the A-random reals are exactly the
reals which pass every such test. Of special interest are the ∅(n−1)-random
reals, which are called n-random.

Next we recall some of the results which are needed below. We repeatedly
use the following elegant theorem of van Lambalgen [29] (see [6] for a short
proof).

van Lambalgen’s theorem. For every A,B ∈ 2ω:
(i) A⊕B is 1-random iff A is 1-random and B is A-random.
(ii) If A is 1-random and B is A-random, then A is B-random.

We also require a few important theorems from classical measure theory.

The Lebesgue density theorem. If S ⊆ 2ω is measurable, then for almost
every A ∈ S,

lim
n→∞

2nµ([A � n] ∩ S) = 1.

A proof of Lebesgue density can be found in [23]. We do not need the full
strength of Lebesgue’s theorem. Instead, we use the following corollary which
says that if a class has positive measure then there is a neighborhood in which
the local measure is arbitrarily close to one.

Corollary 2.1. Let S ⊆ 2ω have positive measure. For every ε > 0, there is a
σ ∈ 2<ω such that 2|σ|µ([σ] ∩ S) ≥ 1− ε.

This corollary easily implies another result which we use below. Recall that
for X,Y ∈ 2ω, we write X =∗ Y if X and Y agree on a cofinite set.

Kolmogorov’s 0–1 law. If S ⊆ 2ω is a measurable class closed under =∗,
then µ(S) is either zero or one.

Proof. Assume that µS > 0. Take an ε > 0. By the Lebesgue density theorem,
there is a σ ∈ 2<ω such that µ([σ] ∩ S) ≥ 2−|σ|(1 − ε). But S is closed under
=∗. So, for each τ with |τ | = |σ| we have µ([τ ] ∩ S) = µ([σ] ∩ S). Therefore,
µS ≥ 1− ε. But ε > 0 was arbitrary, hence µS = 1. �

Additionally, in Section 5 we use the theorem of Lusin that analytic sets
(i.e., projections of Borel sets) are measurable. See Sacks [26] for details.3

3Sacks actually proves that Π1
1 classes are measurable. But every analytic subset of 2ω is

a Σ1
1 class relative to an appropriate oracle, so Lusin’s theorem follows by relativization.
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K-trivial reals. We finish this section by reviewing an important class of
reals: A ∈ 2ω is called K-trivial if

(∀n) K(A � n) ≤ K(n) +O(1).

The K-trivial reals are the central topic of Section 8 and are also useful else-
where. Nies [20] proved that A is K-trivial iff A is low for 1-randomness,
that is, each 1-random set is also 1-random relative to A. Another notion
which turns out to be equivalent is due to Kučera [10]: A is a base for 1-
randomness if A ≤T Z for some Z which is 1-random relative to A. By the
Kučera–Gács theorem [8, 13], each set that is low for 1-randomness is a base
for 1-randomness. Hirschfeldt, Nies and Stephan [9] showed that in fact each
base for 1-randomness is K-trivial.

3. Omega operators

In this section we introduce universal prefix-free oracle machines and the
primary objects of study in this paper: the Omega operators. These are a
natural class of functions from 2ω to [0, 1], each of which maps every oracle
A ∈ 2ω to an A-random A-c.e. real.

A partial computable oracle function MA : 2<ω → 2<ω is a prefix-free oracle
machine if MA is prefix-free for every A ∈ 2ω. A prefix-free oracle machine U
is universal if for every prefix-free oracle machine M there is a prefix ρM ∈ 2<ω

such that
(∀A ∈ 2ω)(∀σ ∈ 2<ω) UA(ρMσ) = MA(σ).

In other words, U can simulate any prefix-free oracle machine by prepending
an appropriate string to the input. Note that this condition is much stronger
than the requirement that UA is a universal A-computable prefix-free machine
for all A ∈ 2ω. The existence of universal prefix-free oracle machines can
be verified by a standard construction. It is not difficult to see that there is
an effective enumeration {Mi}i∈ω of prefix-free oracle machines. Given such
an enumeration, we can define a universal prefix-free oracle machine U by
UA(0i1σ) = MA

i (σ).
For a prefix-free oracle machine M , let ΩA

M be the halting probability of MA.
Formally, ΩA

M =
∑

MA(σ)↓ 2−|σ|. This defines an operator ΩM : 2ω → [0, 1]. If
U is universal, then we call ΩU an Omega operator. We will make frequent
use of stage notation. In particular, we write MA(σ)[s] ↓ to indicate that the
prefix-free oracle machine M with oracle A ∈ 2ω converges on σ ∈ 2<ω by stage
s ∈ ω. Similarly, ΩA

M [s] =
∑

MA(σ)[s]↓ 2−|σ|.
Now that we have defined Omega operators, we make a few simple but

important observations. Fix a universal prefix-free oracle machine U . The
following proposition is a straightforward relativization of the 1-randomness of
Ω.

Proposition 3.1. There is a constant b ∈ ω (which depends on U) such
that, for each A ∈ 2ω, ΩA

U is A-random with constant b, in other words,
(∀n) KA(ΩA

U � n) ≥ n− b.
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Proof. We define a prefix-free oracle machine M as follows. For any A ∈ 2ω

and σ ∈ 2<ω, first calculate τ = UA(σ). Then wait for a stage s such that
ΩA
U [s] ≥ τ − 2−|τ |. If such an s is found, then let MA(σ) converge to a string

longer than any in domain(UA[s]). Note that the convergence of MA(σ) cannot
already be taken into account in the calculation of ΩA

U [s]. Now assume that U
simulates M by the prefix ρ ∈ 2<ω. So, either ΩA

U < τ − 2−|τ | or ΩA
U ≥ ΩA

U [s] +
2−|ρσ| ≥ τ − 2−|τ | + 2−|ρσ|. Assume, for a contradiction, that there is an n ∈ ω
such that KA(ΩA

U � n) < n−|ρ|−1. Letting σ be a minimal program for ΩA
U � n,

so that τ = ΩA
U � n, we have proved that either ΩA

U − (ΩA
U � n) < −2−n, which

is absurd, or ΩA
U − (ΩA

U � n) ≥ −2−n + 2−|ρσ| > −2−n + 2−n+1 = 2−n, which is
also impossible. This is a contradiction, so (∀n) KA(ΩA

U � n) ≥ n− |ρ| − 1. �

It is clear that (∀A ∈ 2ω)(∀σ ∈ 2<ω) K(σ) ≥ KA(σ)− c, for some c ∈ ω not
depending on A. This proves that all reals in the range of ΩU are 1-random
with constant b+ c. In other words, the range of ΩU is contained in the closed
set {X | (∀n) K(X � n) ≥ n− b− c}. In particular, every real in (range ΩU )c,
the closure of the range of ΩU , is 1-random. We will discuss the range of ΩU

and its closure in more depth in Section 9.
Next we consider the complexity of ΩA

U . Call A ∈ 2ω an A-c.e. real if it is
the limit of an increasing, A-computable sequence of rationals. The following
observation is immediate.

Proposition 3.2. ΩA
U is an A-c.e. real.

Every A-c.e. real is computable from A′, hence ΩA
U ≤T A′. Note that it

is not usually the case that ΩA
U ≡T A′. To see this, let A be 1-random. By

van Lambalgen’s theorem, A is ΩA
U -random. Hence A �T ΩA

U . Therefore,
ΩA
U ≡T A′ only on a set of measure zero. (We strengthen this in Theorem 8.3

below: ΩA
U ≡T A′ iff A is K-trivial, thus only for countably many choices of

A ∈ 2ω.) On the other hand, the fact that Ω ≡T ∅′ has a natural relativization
in the following simple result.

Proposition 3.3. ΩA
U ⊕A ≡T A′, for every A ∈ 2ω.

Proof. It is clear that ΩA
U ⊕ A ≤T A′. For the other direction, define a prefix-

free oracle machine M such that MA(0n1) ↓ iff n ∈ A′, for all A ∈ 2ω and
n ∈ ω. Assume that U simulates M by the prefix τ ∈ 2<ω. To determine if
n ∈ A′, search for a stage s such that ΩA

U − ΩA
U [s] < 2−(|τ |+n+1). This can be

done computably in ΩA
U ⊕ A. Note that UA cannot converge on a string of

length |τ |+ n+ 1 after stage s, so

n ∈ A′ ⇐⇒ MA(0n1)↓ ⇐⇒ UA(τ0n1)↓ ⇐⇒ UA(τ0n1)[s]↓ .
Therefore, A′ ≤T ΩA

U ⊕A. �

Recall that B ∈ 2ω is called generalized low (GL1) if B′ ≤T B ⊕ ∅′.

Theorem 3.4 (Nies and Stephan). If a ∆0
2 set A ∈ 2ω is B-random, then B

is GL1.
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Proof. Let f(n) = (µs)[(∀t ≥ s) At � n = As � n], so that f ≤T ∅′. Let
R̂e be the basic clopen set [As � e + 1] when ΦB

e (e) converges at s, where
Φe is the eth Turing functional. Clearly, if Ri =

⋃
e≥i R̂e, then {Ri}i∈ω is a

Martin-Löf test relative to B. Since A /∈
⋂
iRi, A is only in finitely many R̂e’s.

So, for almost all e such that ΦB
e (e) converges, f(e) ≥ (µs) ΦB

e (e)[s] ↓. Hence
B′ ≤T B ⊕ ∅′. �

Nies, Stephan and Terwijn [21, Definition 3.1] introduced the following no-
tion: B ∈ 2ω is low for Ω if Ω is B-random. It is shown that this property
does not depend on the particular version of Ω used. We will see in Section 7
that the low for Ω reals are exactly those which can be mapped to a c.e. real
by some Omega operator.

Applying Theorem 3.4 with A = Ω, one obtains the following corollary.

Corollary 3.5 (Nies, Stephan, Terwijn [21]). If B ∈ 2ω is low for Ω, then B
is generalized low.

Finally, Theorem 3.4 implies that the class of low 1-random reals is closed
under the action of every Omega operator.

Corollary 3.6. If A ∈ 2ω is ∆0
2 and 1-random, then ΩA

U is generalized low. If
A ∈ 2ω is a low 1-random, then ΩA

U is low.

Proof. Let B = ΩA
U . Clearly B is A-random, so by van Lambalgen’s theorem,

A is B-random and Theorem 3.4 applies. If in addition A is low, then ΩA
U is

∆0
2, hence low. �

4. On A-random A-c.e. reals

We can relativize Solovay reducibility as follows. For A,X, Y ∈ 2ω, we write
Y ≤AS X to mean that there is a c ∈ ω and a partial A-computable ϕ : Q→ Q

such that if q < X, then ϕ(q) ↓< Y and Y − ϕ(q) < c(X − q). We say that
X ∈ 2ω is A-Solovay complete if Y ≤AS X for every A-c.e. real Y ∈ 2ω.

Some basic facts about Solovay reducibility relativize easily. For example:

Proposition 4.1. A-randomness is closed upward under ≤AS . In other words,
if Y is A-random and Y ≤AS X, then X is also A-random.

The proof is a straightforward relativization of results in Solovay [28]. Simi-
larly, Kučera and Slaman’s [11] proof of Theorem 1.2 relativizes without alter-
ation.

Theorem 4.2. If X is an A-random A-c.e. real, then X is A-Solovay complete.

On the other hand, a satisfactory relativization of Theorem 1.1 presents
some difficulty. The direct relativization states that if X ∈ 2ω is an A-c.e. real
and A-Solovay complete, then there is an oracle machine M such that MA is
universal for A-computable prefix-free machines and X = ΩA

M . It is not hard
to add the requirement that M be prefix-free for all oracles, but there is no
reason that M should be universal for oracles other than A, let alone be a



RELATIVIZING CHAITIN’S HALTING PROBABILITY 9

universal prefix-free oracle machine. However, with extra work we can satisfy
this stronger requirement.

Theorem 4.3. Suppose that X is an A-c.e. real and A-Solovay complete. Then
there is a universal prefix-free oracle machine U such that X = ΩA

U .

Proof. Let V be a universal prefix-free oracle machine. Because ΩA
V is an A-

c.e. real, we have ΩA
V ≤AS X. Choose n ∈ ω and a partial oracle-computable

function ϕB : Q → Q such that 2n and ϕA witness this Solovay reduction. In
other words, if q < X is a rational, then ϕA(q)↓< ΩA

V and

(1) ΩA
V − ϕA(q) < 2n(X − q).

We also require n to be large enough that 2−n ≤ X ≤ 1 − 2−n (clearly, no
computable real can be A-Solovay complete, so X 6= 0, 1).

We now define another universal prefix-free oracle machine U . To make
U universal, let UB(0nσ) = V B(σ), for all σ ∈ 2<ω and oracles B ∈ 2ω.
For convenience, we preserve the stage of convergence; i.e., UB(0nσ)[t] ↓ iff
V B(σ)[t] ↓. The other strings in the domain of U are used to ensure that
ΩA
U = X. Let ψB : ω → Q be a partial oracle-computable function such that
{ψA(s)}s∈ω is a nondecreasing sequence with limit X. Fix an oracle B. We
add strings not extending 0n to the domain of U in stages. For each s,

(i) Compute qs = ψB(s).
(ii) Compute rs = ϕB(qs).
(iii) Search for a ts such that ΩB

V [ts] ≥ rs.
(iv) If qs ≤ 1 − 2−n, add strings not extending 0n to the domain of U at

stage ts to make ΩB
U [ts] = qs.

Note that (if B 6= A) this procedure may get stuck in any of the first three steps.
In this case, UB will converge on only finitely many strings not extending 0n.
This completes the construction of U , which is clearly a universal prefix-free
oracle machine.

It remains to verify that ΩA
U = X. By the definition of ψ, we have qs =

ψA(s)↓< X, for each s. Therefore, rs = ϕA(qs)↓< ΩA
V . So, there is a stage ts

such that ΩA
V [ts] ≥ rs. Because qs < X ≤ 1 − 2−n, there are enough strings

available in step (iv) to ensure that ΩA
U [ts] ≥ qs. But lims qs = X, so ΩA

U ≥ X.
Now assume, for a contradiction, that ΩA

U > X. Because the strings extending
0n add at most 2−n ≤ X to ΩA

U , there must be some s that causes too many
strings to be added to the domain of U in step (iv). In other words, there is
an s such that ΩA

U [ts] = qs and

ΩA
U [ts] + 2−n(ΩA

V − ΩA
V [ts]) > X.

So, ΩA
V −ΩA

V [ts] > 2n(X − qs). But in step (iii), we ensured that ΩA
V [ts] ≥ rs =

ϕA(qs). Therefore, ΩA
V − ϕA(qs) > 2n(X − qs), contradicting (1). This proves

that ΩA
U = X, which completes the theorem. �

Combining Propositions 3.1 and 3.2 with Theorems 4.2 and 4.3, we get the
following corollary.
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Corollary 4.4. For A,X ∈ 2ω, the following are equivalent:
(i) X is an A-c.e. real and A-random.
(ii) X is an A-c.e. real and A-Solovay complete.

(iii) X = ΩA
U for some universal prefix-free oracle machine U .

5. Reals in the range of some Omega operator

We proved in the last section that X ∈ 2ω is in the range of some Omega
operator iff there is an A ∈ 2ω such that X is both A-random and an A-c.e.
real. What restriction does this place on X? In this section, we show that
every 2-random real is an A-random A-c.e. real for some A ∈ 2ω, but that not
every 1-random real has this property. Furthermore, we prove that the range
of every Omega operator has positive measure.

Theorem 5.1. If X ∈ 2ω is 2-random, then X is an A-random A-c.e. real for
some A ∈ 2ω.

Proof. Let A = (1 − X + Ω)/2. Then X = 1 − 2A + Ω is an A-c.e. real.
In particular, take a nondecreasing computable sequence {Ωs}s∈ω of rationals
limiting to Ω. Then X is the limit of {1− 2(A � s) + Ωs}s∈ω, a nondecreasing
A-computable sequence of rationals. It remains to prove that X is A-random.
Because X is 2-random it is Ω-random. Hence, by van Lambalgen’s theorem,
Ω is X-random. But then A = (1 − X + Ω)/2 is X-random (because clearly,
Ω ≡XS (1−X + Ω)/2). Therefore, applying van Lambalgen’s theorem again, X
is A-random. �

As was mentioned above, the previous theorem cannot be proved if X is only
assumed to be 1-random.

Example 5.2. X = 1− Ω is not in the range of any Omega operator.

Proof. The 1-random real X = 1 − Ω is a co-c.e. real, i.e., the limit of a
decreasing computable sequence of rationals. Assume that X is an A-c.e. real
for some A ∈ 2ω. Then A computes sequences limiting to X from both sides;
henceX ≤T A. Therefore, X is not anA-randomA-c.e. real for any A ∈ 2ω. �

It would not be difficult to prove that 1−Ω cannot even be in the closure of
the range of an Omega operator. In fact, a direct proof is unnecessary because
this follows from Theorem 9.4 below.

There is more to be said about which reals can be in the range of an Omega
operator. For example:

Question 1. If X ≥T ∅′ is an A-random A-c.e. real for some A ∈ 2ω, then is X
necessarily a c.e. real?

Note that Theorem 5.1 cannot help provide a counterexample because no
2-random real computes ∅′.

Next we consider a specific Omega operator. Let U be an arbitrary universal
prefix-free oracle machine. Recall that analytic sets are measurable and that
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the image of an analytic set under any Borel operator—for example, ΩU—is
also analytic.

Theorem 5.3. The range of ΩU has positive measure. In fact, if S ⊆ 2ω is
any analytic set whose downward closure under ≤T is 2ω, then µ(ΩU [S]) > 0.

Proof. Let R = ΩU [S]. Note that R is an analytic subset of 2ω. Hence µ(R)
is defined. Assume, for a contradiction, that µ(R) = 0. In particular, the
outer measure of R is zero. This means that there is a nested sequence U0 ⊇
U1 ⊇ U2 ⊇ · · · of open subsets of 2ω such that R ⊆ Un and µ(Un) ≤ 2−n, for
each n ∈ ω. Take a set B ∈ S which codes {Un}n∈ω in some effective way.
Then {Un}n∈ω is a B-Martin-Löf test, which implies that ΩB

U /∈
⋂
n Un. But

R ⊆
⋂
n Un, so ΩB

U /∈ R = ΩU [S]. This is a contradiction, so µ(R) > 0. �

The theorem implies that many null classes have ΩU -images with positive
measure, for example S = {A | (∀n) 2n /∈ A}.

We finish with a simple consequence of Theorem 5.3.

Corollary 5.4. For almost every X ∈ 2ω, there is an A ∈ 2ω such that X =∗

ΩA
U .

Proof. Let S = {X | (∃A ∈ 2ω) X =∗ ΩA
U}. Then S is Σ1

1—hence measurable
by Lusin’s theorem—and closed under =∗. But µ(S) ≥ µ(range ΩU ) > 0. It
follows from Kolmogorov’s 0–1 law that µ(S) = 1. �

6. When ΩA
is a c.e. real

In this key section, we consider reals A ∈ 2ω for which ΩA
U is a c.e. real. Far

from being a rare property, we will show that µ{A | ΩA
U is a c.e. real} > 0 for

any fixed universal prefix-free oracle machine U . On the other hand, only a
c.e. real can have an ΩU -preimage with positive measure. So c.e. reals clearly
play an important role in understanding ΩU . Their main application here is in
our proof that no Omega operator is degree invariant. Recall that we want to
obtain reals A =∗ B such that ΩA

U is a c.e. real while ΩB
U is random relative to

a given (arbitrarily complex) Z. In Proposition 6.4, we show that the class of
oracles for which ΩA

U is a c.e. real has positive measure. The same is proved
in Proposition 6.5 of the class of oracles for which ΩB

U is random relative to a
given Z. Although the latter result has no obvious connection to the c.e. reals,
Proposition 6.4—applied to a modification of the universal machine U—is used
to prove it.

Theorem 6.1. Let M be a prefix-free oracle machine. If P ⊆ 2ω is a nonempty
Π0

1 class, then there is a ∅′-c.e. real A ∈ P such that ΩA
M = inf{ΩC

M | C ∈ P},
which is a c.e. real.

Proof. Let P ⊆ 2ω be a nonempty Π0
1 class and let X = inf{ΩC

M | C ∈ P}. Note
that X is a c.e. real because it is the limit of the nondecreasing computable
sequence Xs = inf{ΩC

M [s] | C ∈ Ps}. We will prove that there is an A ∈ P
such that ΩA

M = X. Choose a sequence {Bn}n∈ω such that Bn ∈ P and
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ΩBn
M − X ≤ 2−n for each n ∈ ω. By compactness, {Bn}n∈ω has a convergent

subsequence {An}n∈ω. Note that ΩAn
M − X ≤ 2−n. Let A = limAn. Because

P is closed, A ∈ P. Therefore, ΩA
M ≥ X. Assume, for a contradiction, that

ΩA
M is strictly greater than X. Take m ∈ ω such that ΩA

M −X > 2−m. Then
ΩA
M [s]−X > 2−m for some s ∈ ω. Let k be the use of ΩA

M [s] (under the usual
assumptions on the use of computations, we can take k = s). In particular,
if B � k = A � k, then ΩA

M [s] = ΩB
M [s]. Now take n > m large enough that

An � k = A � k. Then

2−n ≥ ΩAn
M −X ≥ ΩAn

M [s]−X = ΩA
M [s]−X > 2−m ≥ 2−n.

This is a contradiction, proving that ΩA
M = X.

Finally, we must prove that A can be a ∅′-c.e. real. Let S = {C ∈ P | ΩC
M =

X}. Note that S = {C ∈ 2ω | (∀s) (C ∈ Ps and ΩC
M [s] ≤ X)}. The fact

that X ≤T ∅′ makes S a Π0
1[∅′] class. We proved above that S is nonempty, so

A = min(S) is a ∅′-c.e. real satisfying the theorem. �

We now consider reals X ∈ 2ω such that Ω−1
U [X] has positive measure.

Lemma 6.2. Let M be a prefix-free oracle machine. If X ∈ 2ω is such that
µ{A | ΩA

M = X} > 0, then X is a c.e. real.

Proof. By the Lebesgue density theorem, there is an σ ∈ 2<ω such that µ{A �
σ | ΩA

M = X} > 2−|σ|−1. In other words, ΩM maps more than half of the
extensions of σ to X. So, X is the limit of the nondecreasing computable
sequence {Xs}s∈ω, where for each s ∈ ω, we let Xs be the largest rational such
that µ{A � σ | ΩA

M [s] ≥ Xs} > 2−|σ|−1. �

For X ∈ 2ω, let mU (X) = µ{A | ΩA
U = X}. Define the spectrum of ΩU to

be Spec(ΩU ) = {X | mU (X) > 0}. By the lemma, the spectrum is a set of
1-random c.e. reals. We prove that it is nonempty.

Kurtz [12] defined Z ∈ 2ω to be weakly n-random if it is not contained in
a Π0

n class which has measure zero. He proved that this randomness notion
lies strictly between n-randomness and (n − 1)-randomness. In particular, an
n-random real cannot be contained in a null Π0

n class. We use this fact below.

Lemma 6.3. Let X ∈ 2ω be a c.e. real. Then mU (X) > 0 iff there is a
1-random A ∈ 2ω such that ΩA

U = X.

Proof. If mU (X) > 0, then there is clearly a 1-random A ∈ 2ω such that
ΩA
U = X, as the 1-random reals form a class of measure one. For the other

direction, assume that A ∈ 2ω is a 1-random real such that ΩA
U = X. By van

Lambalgen’s theorem, the fact that X is A-random implies that A is X-random.
But X ≡T ∅′, because X is a 1-random c.e. real, so A is 2-random. Note that
{B | ΩB

U = X} is a Π0
2 class containing this 2-random. Hence mU (X) > 0. �

Proposition 6.4. Spec(ΩU ) 6= ∅.
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Proof. Apply Theorem 6.1 to a nonempty Π0
1 class containing only 1-random

reals. This gives a 1-random A ∈ 2ω such that X = ΩA
U is a c.e. real. Hence by

Lemma 6.3, X ∈ Spec(ΩU ). �

We have proved that ΩU maps a set of positive measure to the c.e. reals.
One might speculate that almost every real is mapped to a c.e. real. We now
prove that this is not the case. (However, in the next section we will see that
almost every real can be mapped to a c.e. real by some Omega operator.)

Proposition 6.5. There is an ε > 0 such that

(∀Z ∈ 2ω) µ{B | ΩB
U is Z-random} ≥ ε.

Proof. Let M be a prefix-free oracle machine such that ΩB
M = B for every

B ∈ ω. Define a universal prefix-free oracle machine V by V B(0σ) = UB(σ)
and V B(1σ) = MB(σ), for all σ ∈ 2<ω. Then ΩB

V = (ΩB
U + B)/2. Apply

Proposition 6.4 to V to get a c.e. real X ∈ 2ω such that S = {B | ΩB
V = X}

has positive measure. Let ε = µS.
Now take Z ∈ 2ω. We can assume, without loss of generality, that Z ≥T ∅′.

Let B ∈ S be Z-random. Then ΩB
U = 2ΩB

V − B = 2X − B must also be
Z-random, because X ≤T Z. Therefore,

µ{B ∈ S | ΩB
U is Z-random} ≥ µ{B ∈ S | B is Z-random} = µS = ε,

since the Z-random reals have measure 1.4 �

These results tell us that the Σ0
3 class of reals A such that ΩA

U is c.e. has
intermediate measure.

Corollary 6.6. 0 < µ{A | ΩA
U is a c.e. real} < 1.

The most important consequence of the work in this section is the following
resoundingly negative answer to the question of whether ΩU is degree invariant.

Theorem 6.7.
(i) For all Z ∈ 2ω, there are A,B ∈ 2ω such that A =∗ B, ΩA

U is a c.e.
real and ΩB

U is Z-random.
(ii) There are A,B ∈ 2ω such that A =∗ B and ΩA

U |T ΩB
U (and in fact,

ΩA
U and ΩB

U are 1-random relative to each other).

Proof. (i) Let S = {A | ΩA
U is a c.e. real} and R = {B | ΩB

U is Z-random}. By
Propositions 6.4 and 6.5, respectively, both classes have positive measure. Let
R̂ = {A | (∃B ∈ R) A =∗ B}. By Kolmogorov’s 0–1 law, µR̂ = 1. Hence,
there is an A ∈ S ∩ R̂, completing the proof.

(ii) By part (i), there are A,B ∈ 2ω such that A =∗ B, ΩA
U is a c.e. real and

ΩB
U is 2-random. Hence ΩB

U is ΩA
U -random and, by van Lambalgen’s theorem,

ΩA
U is ΩB

U -random. This implies that ΩA
U |T ΩB

U . �

4This simple construction shows more. Because ΩB
U = 2X − B for B ∈ S, we know that

µ{ΩB
U | B ∈ S} = µ{2X − B | B ∈ S} = µS > 0. Therefore, the range of ΩU has a subset

with positive measure. While this follows from the most basic case of Theorem 5.3, the new
proof does not resort to Lusin’s theorem on the measurability of analytic sets.
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We close the section with two further observations on the spectrum.

Proposition 6.8. sup(range ΩU ) = sup{ΩA
U | A is 1-random} = sup Spec(ΩU ).

Proof. Let X = sup(range ΩU ). Given a rational q < X, choose σ such that
Ωσ
U ≥ q. By the same proof as Proposition 6.4, there is a 1-random A � σ such

that ΩA
U is a c.e. real. �

Proposition 6.9. If p < q are rationals and C = {A ∈ 2ω | ΩA
U ∈ [p, q]} has

positive measure, then Spec(ΩU ) ∩ [p, q] 6= ∅.

Proof. Note that C is the countable union of [σ] ∩ C for every σ ∈ 2<ω such
that Ωσ ≥ p. Because µC > 0, for some such σ we have µ([σ] ∩ C) > 0.
But [σ] ∩ C = {A � σ | ΩA ≤ q} is a Π0

1 class. Let R ⊂ 2ω be a Π0
1 class

containing only 1-randoms with µR > 1 − µ([σ] ∩ C). Then R ∩ [σ] ∩ C is a
nonempty Π0

1 class containing only 1-randoms. Applying Theorem 6.1 to this
class, there is a 1-random real A ∈ C such that X = ΩA

U is a c.e. real. Then
X ∈ Spec(ΩU ) ∩ [p, q], by Lemma 6.3 and the definition of C. �

7. On the low for Ω reals

We turn the question of the last section around: for which oracles A ∈ 2ω is
there a universal prefix-free oracle machine U such that ΩA

U is a c.e. real? We
show that this is true for almost every A. Recall from Section 3 that if Ω is
A-random for some—or equivalently any—version of Ω, then A ∈ 2ω is said to
be low for Ω.

Proposition 7.1. A ∈ 2ω is low for Ω iff there is a universal prefix-free oracle
machine U such that ΩA

U is a c.e. real.

Proof. First assume that there is a universal prefix-free oracle machine U such
that X = ΩA

U is a c.e. real. Then X ≤S Ω, which means that X ≤AS Ω. Both
X and Ω are c.e. reals, hence they are A-c.e. reals. Applying Proposition 4.1,
because X is A-random, Ω is also A-random. Therefore, A is low for Ω.

For the other direction, assume that A ∈ 2ω is low for Ω. Then Ω is A-random
and an A-c.e. real. By Corollary 4.4, Ω = ΩA

U for some universal prefix-free
oracle machine U . �

It follows from the proof and Proposition 3.3 that if A is low for Ω, then
Ω⊕ A ≡T A′. Therefore A′ ≡T ∅′ ⊕ A, giving a second proof of Corollary 3.5:
low for Ω reals are GL1.

Almost every real is low for Ω; in particular, every 2-random real is.

Proposition 7.2 (Nies, Stephan, Terwijn [21]). A 1-random real A ∈ 2ω is
low for Ω iff A is 2-random.

Proof. Assume that A ∈ 2ω is 1-random. Recall that Ω ≡T ∅′. So A is 2-
random iff A is Ω-random iff Ω is A-random, where the last equivalence follows
from van Lambalgen’s theorem. �
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More evidence for the ubiquity of low for Ω reals is the following basis theo-
rem. It is an immediate corollary of Theorem 6.1 and Proposition 7.1.

Corollary 7.3 (The low for Ω basis theorem). Every nonempty Π0
1 class con-

tains a ∅′-c.e. real that is low for Ω.

Every K-trivial real is low for 1-randomness, hence low for Ω. To see that
there is a low for Ω real that is neither 2-random nor K-trivial, apply the previ-
ous result to the Π0

1 class of completions of Peano arithmetic. The completions
of Peano arithmetic form a null Π0

1 class, so none are 1-random by Kurtz [12].
Every completion of Peano arithmetic computes a 1-random real, but the class
of K-trivial reals is closed downward under Turing reduction [20], hence no
completion of Peano arithmetic is K-trivial.

Although it is a digression from our primary topic, we finish this section with
a generalization of Corollary 7.3. The following result is a “low for X” basis
theorem for every 1-random real X ∈ 2ω; it reduces to the corollary when we
take X = Ω. This result was found independently by Reimann and Slaman
[25], for whom it is not a digression but a useful lemma.

Proposition 7.4. For every 1-random X ∈ 2ω and every nonempty Π0
1 class

P ⊆ 2ω, there is an X-c.e. real A ∈ P such that X is A-random.

Proof. Let P ⊆ 2ω be a nonempty Π0
1 class. Our goal is to construct a Martin-

Löf test {Vi}i∈ω such that if X ∈ 2ω is not A-random for any A ∈ P, then
X ∈

⋂
i∈ω Vi. Fix a universal prefix-free oracle machine U . Whenever an s ∈ ω

and σ ∈ 2<ω are found such that

(∀A ∈ Ps)(∃τ � σ) KA
U (τ) ≤ |τ | − i,

then put [σ] into Vi. Clearly, each Vi is a Σ0
1 class. Fix an A ∈ P and note

that Vi ⊆ {X | (∃n) KA
U (X � n) ≤ n − i}. Therefore µ(Vi) ≤ 2−i, so {Vi}i∈ω

is a Martin-Löf test. Finally, assume that X ∈ 2ω is not A-random for every
A ∈ P. By compactness, for every i ∈ ω, there is a σ ≺ X such that [σ] ⊆ Vi.
Hence, X ∈

⋂
i∈ω Vi.

This proves that if X ∈ 2ω is 1-random, then there is an A ∈ P such that
X is A-random. We must still prove that A can be taken to be an X-c.e. real.
For every i ∈ ω, let Si = {A ∈ P | (∀n) KA

U (X � n) > n− i}. Note that each Si
is a Π0

1[X] class. We proved above that Si is nonempty, for large enough i ∈ ω.
So A = min(Si) is an X-c.e. real satisfying the theorem. �

8. ΩA
for K-trivial A

In the previous section, we considered the reals that can be mapped to c.e.
reals by some Omega operator. Now we look at A ∈ 2ω such that ΩA

U is a c.e.
real for every universal prefix-free oracle machine U . We will see that these are
exactly the K-trivial reals.

The lemma below is a spinoff of the golden run construction from [20, The-
orem 6.2]. It actually holds for any prefix free oracle machine M in place of U .
That is, we do not use universality to prove the lemma.
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Lemma 8.1. Let U be a universal prefix-free oracle machine, and let A ∈ 2ω

be K-trivial. Then there is a computable sequence of stages q(0) < q(1) < · · ·
such that

(2) Ŝ =
∑
{ĉ(x, r) | x is minimal s.t. Aq(r+1)(x) 6= Aq(r+2)(x)} <∞,

where

ĉ(x, r) =
∑{

2−|σ|
∣∣∣∣ UA(σ)[q(r + 1)]↓ ∧
x < use(UA(σ)[q(r + 1)]) ≤ q(r)

}
.

Informally, ĉ(x, r) is the maximum amount that ΩA
U [q(r + 1)] can decrease

by because of an A(x) change after stage q(r + 1), provided we only count the
UA(σ) computations with use ≤ q(r).

Proof. We refer to the proof of [20, Theorem 6.2] and use its notation. (For
more details, see [19].) By [20, Lemma 6.6], choose a golden run Pi(p, α).

Claim 8.2. For each stage s, there is a stage t > s such that, for all σ < s,
if UA(σ)[t] = y with use w ≤ s, then a run Qi−1,σ,y,w has returned by t and is
not released yet, that is, Pi waits at (P2σ).

To see this, let r ≥ s be the least stage by which Ar � s has settled. A run
Qi−1,σ,y,w such that w ≤ r is never canceled after stage r, therefore it returns
by the definiton of golden runs in [20, Lemma 6.6]. This proves the claim.

The least t > s as in the claim can be determined effectively. Let q(0) = 0.
If s = q(r) has been defined, let q(r + 1) be the least t such that the condition
of the claim holds. Let g ∈ N be the number such that p/α = 2g. We show
that Ŝ < 2g. Suppose x is minimal such that Aq(r+1)(x) 6= Aq(r+2)(x). Then
As−1(x) 6= As(x) for some stage s with q(r+1) < s ≤ q(r+2). No later than s,
the runs of procedures Qi−1,σ,y,y+1 with x ≤ y < q(r) which are still waiting at
(P2σ) are released. This adds a weight of at least ĉU (x, r) to Ci. Thus Ŝ < 2g,
since otherwise the run of Pi reaches its goal. �

The following proof uses an alternative characterization of 1-randomness due
to Solovay [28]. A Solovay test is a computable sequence {Ir}r∈ω of intervals
with (dyadic) rational endpoints such that

∑
r∈ω |Ir| is finite. A real passes a

Solovay test if it is in only finitely many of the intervals. It is not difficult to
see that X ∈ 2ω is 1-random iff it passes every Solovay test.

Theorem 8.3. Let U be a universal prefix-free oracle machine. The following
are equivalent for A ∈ 2ω:

(i) A is K-trivial.
(ii) A is ∆0

2 and ΩA
U is a c.e. real.

(iii) A ≤T ΩA
U .

(iv) A′ ≡T ΩA
U .

Proof. (ii) =⇒ (iii) follows from the fact that each 1-random c.e. real is Turing
complete. (iii) =⇒ (i) because A is a base for 1-randomness; see the end of
Section 2. (iii) is equivalent to (iv) by Proposition 3.3.
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(i) =⇒ (ii). Assume that A is K-trivial. As shown by Chaitin [3], A is ∆0
2.

We show that there is an r0 ∈ ω and an effective sequence {µr}r∈ω of rationals
such that ΩA

U = supr≥r0 µr, and hence ΩA
U is a c.e. real. Applying Lemma 8.1

to U , we obtain a computable sequence of stages q(0) < q(1) < · · · such that
(2) holds. The desired sequence of rationals is

µr =
∑
{2−|σ| | UA(σ)[q(r + 1)]↓ ∧ use(UA(σ)[q(r + 1)]) ≤ q(r)}.

Thus µr measures the computations existing at stage q(r + 1) whose use is
at most q(r). We define r0 below; first we verify that ΩA

U ≤ supr≥r0 µr for
any r0 ∈ ω. Given σ1, . . . , σm ∈ domain(UA), choose r1 ∈ ω so that each
computation UA(σ) has settled by stage q(r1), with use ≤ q(r1). If r ≥ r1,
then µr ≥

∑
1≤i≤m 2−|σi|. Therefore, ΩA

U ≤ lim supr∈ω µr ≤ supr≥r0 µr.
Now define a Solovay test {Ir}r∈ω as follows: if x is minimal such that

Aq(r+1)(x) 6= Aq(r+2)(x), then let

Ir = [µr − ĉ(x, r), µr].
Then

∑
r∈ω |Ir| is finite by (2), so {Ir}r∈ω is indeed a Solovay test. Also note

that, by the comment after the lemma, min Ir ≤ max Ir+1 for each r ∈ ω.
Since ΩA

U is 1-random, there is an r0 ∈ ω such that ΩA
U /∈ Ir for all r ≥ r0.

We show that µr ≤ ΩA
U for each r ≥ r0. Fix r ≥ r0. Let t ≥ r be the first

non-deficiency stage for the enumeration t 7→ Aq(t+1). That is, if x is minimal
such that Aq(t+1)(x) 6= Aq(t+2)(x), then

(∀t′ ≥ t)(∀y < x) Aq(t′+1)(y) = Aq(t+1)(y).

The quantity µt − ĉ(x, t) measures the computations UA(σ)[q(t+ 1)] with use
≤ x. These are stable from q(t+1) on, so ΩA

U ≥ min It, and hence ΩA
U > max It.

Now ΩA
U /∈ Iu for u ≥ r0 and min Iu ≤ max Iu+1 for any u ∈ ω. Applying

this to u = t − 1, . . . , u = r, we obtain that ΩA
U ≥ max Ir = µr. Therefore,

ΩA
U ≥ supr≥r0 µr. �

One consequence of this theorem is the fact that Omega operators are degree
invariant at least on the K-trivial reals. The next example shows that they
need not be degree invariant anywhere else.

Example 8.4. There is an Omega operator that is degree invariant only on
K-trivial reals.

Proof. Let M be a prefix-free oracle machine such that

ΩA
M =

{
A if A(0) = 0
0 if A(0) = 1.

For any A ∈ 2ω, define a real Â by Â(n) = A(n) iff n 6= 0. Let U be a universal
prefix-free oracle machine. Define a universal prefix-free oracle machine V by
V A(00σ) = UA(σ), V A(01σ) = U Â(σ) and V A(1σ) = MA(σ), for all σ ∈ 2<ω.
Then |ΩA

V − ΩÂ
V | = A/2, for all A ∈ 2ω. Assume that ΩÂ

V ≤T ΩA
V for some
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A ∈ 2ω. Then A ≤T ΩA
V , so A is a base for 1-randomness and hence K-trivial

by [9]. If ΩA
V ≤T ΩÂ

V , then again A is K-trivial. Therefore, if A ∈ 2ω is not
K-trivial, then ΩA

V |T ΩÂ
V . �

The following corollary summarizes Theorem 8.3 and Example 8.4.

Corollary 8.5. The following are equivalent for A ∈ 2ω:
(i) A is K-trivial.

(ii) Every Omega operator takes A to a c.e. real.
(iii) Every Omega operator is degree invariant on degT (A).

We have seen in Theorem 6.7 that no Omega operator is degree invariant. We
have also seen that if A ∈ 2ω is not K-trivial, then there are Omega operators
that are not invariant on degT (A). Can these two results be combined?

Question 2. For a universal prefix-free oracle machine U and a real A ∈ 2ω

that is not K-trivial, is there a B ≡T A such that ΩB
U 6≡T ΩA

U?

Finally, a simple but interesting consequence of Example 8.4 is the following.

Corollary 8.6. Every K-trivial is a d.c.e. real (i.e., the difference of two c.e.
reals).

Proof. Let V be the machine from Example 8.4. Assume that A ∈ 2ω is K-
trivial. Then ΩA

V and ΩÂ
V are both c.e. reals by Theorem 8.3. Therefore,

A = 2 |ΩA
V − ΩÂ

V | is a d.c.e. real. �

It is known that the d.c.e. reals form a real closed field [22, 24]. The corollary
gives us a nontrivial real closed subfield: the K-trivial reals. To see this, note
that the K-trivial reals form an ideal in the Turing degrees ([5] for closure under
⊕ and [20] for downward closure). Because a zero of an odd degree polynomial
can be computed relative to the coefficients, the K-trivial reals are also a real
closed field.

9. Analytic behavior of Omega operators

In this section, we examine Omega operators from the perspective of analysis.
Given a universal prefix-free oracle machine U : 2<ω → 2<ω, we consider two
questions:

(i) To what extent is ΩU continuous?
(ii) How complex is the range of ΩU?

To answer the first question, we observe that ΩU is lower semicontinuous but
not continuous. Furthermore, we prove that it is continuous exactly at 1-
generic reals. Together with the semicontinuity, this implies that ΩU can only
achieve its supremum at a 1-generic. But must ΩU actually achieve its supre-
mum? This relates to the second question. Theorem 9.4 states that any real
in (range ΩU )c

r range(ΩU ) must be 2-random. Because X = sup(range ΩU ) is
a c.e. real—hence not 2-random, there is an A ∈ 2ω such that ΩA

U = X.
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It is natural to ask whether range(ΩU ) is closed. In other words, is Theo-
rem 9.4 vacuous? Example 9.6 demonstrates that for some choice of U , the
range of ΩU is not closed, and indeed, that µ(range ΩU ) < µ((range ΩU )c).
Whether this is the case for all universal prefix-free oracle machines is left
open. Furthermore, we know of no nontrivial upper-bound on the complexity
of range(ΩU ), but we do observe that (range ΩU )c is a Π0

3 class.
Recall that a function f : X→ R is lower semicontinuous if {x ∈ X | f(x) >

a} is an open set for every a ∈ R. Here X is an arbitrary topological space.
We claim that for any prefix-free oracle machine M , the function ΩM is lower
semicontinuous. Note that for any A ∈ 2ω,

(3) (∀δ > 0)(∃m) ΩA
M − ΩA�m

M ≤ δ

and hence (∀X � A � m) ΩA
M − ΩX

M ≤ δ.

Proposition 9.1. ΩM is lower semicontinuous for every prefix-free oracle ma-
chine M .

Proof. Take a ∈ R and assume that ΩA
M > a. Choose a real δ > 0 such that

ΩA
M −δ > a. By the observation above, there is an m ∈ ω such that X � A � m

implies that ΩA
M − ΩX

M ≤ δ. Therefore, ΩX
M ≥ ΩA

M − δ > a. So [A � m] is an
open neighborhood of A contained in {X | ΩX

M > a}. But A was an arbitrary
element of {X | ΩX

M > a}, proving that this set is open. �

Next we prove that Omega operators are not continuous and characterize
their points of continuity. Recall that an open set S ⊆ 2ω is dense along
A ∈ 2ω if each initial segment of A has an extension in S. We say that A is
1-generic if A is in every Σ0

1 class S that is dense along A. We prove that
ΩU is continuous exactly on the 1-generics, for any universal prefix-free oracle
machine U .

Theorem 9.2. The following are equivalent for a set A ∈ 2ω:

(i) A is 1-generic.
(ii) If M is a prefix-free oracle machine, then ΩM is continuous at A.
(iii) There is a universal prefix-free oracle machine U such that ΩU is con-

tinuous at A.

Proof. (i) =⇒ (ii). Let M be any prefix-free oracle machine. By (3), it suffices
to show that

(∀ε)(∃n)(∀X � A � n) ΩX
M ≤ ΩA

M + ε.

Suppose this fails for a rational ε. Take a rational r < ΩA
M such that ΩA

M−r < ε.
The following Σ0

1 class is dense along A:

S = {B | (∃n) ΩB
M [n] ≥ r + ε}.

Thus A ∈ S. But this implies that ΩA
M ≥ r+ε > ΩA

M , which is a contradiction.
(ii) =⇒ (iii) is trivial.
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(iii) =⇒ (i). Fix a universal prefix-free oracle machine U . We assume that
A is not 1-generic and show that there is an ε > 0 such that

(4) (∀n)(∃B � A � n) ΩB
U ≥ ΩA

U + ε.

Take a Σ0
1 class S that is dense along A but A /∈ S. Define a prefix-free oracle

machine LX as follows. When (some initial segment of) X ∈ 2ω enters S, then
LX converges on the empty string. Thus LA is nowhere defined. Let c ∈ ω be
the length of the coding prefix for L in U . We prove that ε = 2−(c+1) satisfies
(4).

Choose m as in (3) for the given universal machine, where δ = 2−(c+1). For
each n ≥ m, choose B � A � n such that B ∈ S. Since LB converges on the
empty string, ΩB

U ≥ ΩA
U − 2−(c+1) + 2−c = ΩA

U + ε. �

Let U be a universal prefix-free oracle machine.

Corollary 9.3. If ΩA
U = sup(range ΩU ), then A is 1-generic.

Proof. By the previous theorem, it suffices to prove that ΩU is continuous at
A. But note that the lower semicontinuity of ΩU implies that

{X | |ΩA
U − ΩX

U | < ε} = {X | ΩX
U > ΩA

U − ε}

is open, for every ε > 0. Thus, A is 1-generic. �

The corollary above does not guarantee that the supremum is achieved. Sur-
prisingly, it is. In fact, we can prove quite a bit more. One way to view the
proof of the following theorem is that we are trying to prevent any real which
is not 2-random from being in the closure of the range of ΩU . If we fail for
some X ∈ 2ω, then it will turn out that X ∈ range(ΩU ). Note that this is a
consequence of universality; it is easy to construct a prefix-free oracle machine
M : 2<ω → 2<ω such that ΩM does not achieve its supremum.

Theorem 9.4. If X ∈ (range ΩU )c r range(ΩU ), then X is 2-random.

Proof. Assume that X ∈ (range ΩU )c is not 2-random and let RX = Ω−1
U [X] =

{A | ΩA
U = X}. For each rational p ∈ [0, 1], define Cp = {A | ΩA

U ≤ p}. Note
that every Cp is closed (in fact, a Π0

1 class). For every rational q ∈ [0, 1] such
that q < X, we will define a closed set Bq ⊆ 2ω such that

(5) RX =
⋂
q<X

Bq ∩
⋂
p>X

Cp,

where q and p range over the rationals. Furthermore, we will prove that every
finite intersection of sets from {Bq | q < X} and {Cp | p > X} is nonempty.
By compactness, this ensures that RX is nonempty, and therefore, that X ∈
range(ΩU ).

We would like to define Bq to be {A | ΩA
U ≥ q}, which would obviously satisfy

(5). The problem is that {A | ΩA
U ≥ q} is a Σ0

1 class; Bq must be closed if we
are to use compactness. The solution is to let Bq = {A | ΩA

U [k] ≥ q} for some
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k ∈ ω. Then Bq is closed (in fact, clopen) and, by choosing k appropriately, we
will guarantee that ΩA

U is bounded away from X for every A /∈ Bq.
For each rational q ∈ [0, 1], we build a prefix-free oracle machine Mq. For

A ∈ 2ω and σ ∈ 2<ω, define MA
q (σ) as follows.

(i) Wait for a stage s ∈ ω such that ΩA
U [s] ≥ q.

(ii) Compute τ = U∅
′
s(σ).

(iii) Wait for a stage t ≥ s such that ΩA
U [t] ≥ τ .

The computation may get stuck in any one of the three steps, in which case
MA
q (σ) ↑. Otherwise, let MA

q (σ) converge to a string longer than any in
domain(UA[t]). The value to which MA

q (σ) converges is only relevant because
it ensures that a U -simulation of Mq cannot converge before stage t+ 1.

We are ready to define Bq ⊆ 2ω for a rational q ∈ [0, 1] such that q < X.
Assume that U simulates Mq by the prefix ρ ∈ 2<ω. Choose σ, τ ∈ 2<ω such
that U∅

′
(σ) = τ ≺ X and |τ | > |ρσ|. Such σ and τ exist because X is not

2-random. Choose kq ∈ ω large enough that U∅
′
s(σ) = τ for all s ≥ kq. Let

Bq = {A | ΩA
U [kq] ≥ q}.

We claim that the definition of Bq ensures that ΩA
U is bounded away from

X for any A /∈ Bq. Let lq = max{q, τ} and rq = τ + 2−|ρσ|. Clearly lq < X.
To see that rq > X, note that X − τ ≤ 2−|τ | < 2−|ρσ|. Now assume that
A /∈ Bq and that ΩA

U ≥ lq. Thus ΩA
U ≥ q but ΩA

U [kq] < q. This implies that
the s found in step (i) of the definition of Mq is greater than kq. Therefore,
U∅
′
s(σ) = τ . But ΩA

U ≥ τ , so step (iii) eventually produces a t ≥ s such
that ΩA

U [t] ≥ τ . This means that MA
q (σ) converges to a string longer than

any in domain(UA[t]), so UA(ρσ)↓ sometime after stage t, which implies that
ΩA
U ≥ ΩA

U [t] + 2−|ρσ| ≥ τ + 2−|ρσ| = rq. We have proved that

(6) ΩA
U ∈ [lq, rq) =⇒ A ∈ Bq.

Next we verify (5). Assume that A ∈ RX . We have just proved that A ∈ Bq
for all rationals q < X. Also, it is clear that A ∈ Cp for all rationals p > X.
Therefore, RX ⊆

⋂
q<X Bq ∩

⋂
p>X Cp. For the other direction, assume that

A ∈
⋂
q<X Bq ∩

⋂
p>X Cp. Thus if q < X, then ΩA

U ≥ ΩA
U [kq] ≥ q. Hence

ΩA
U ≥ X. On the other hand, if p > X, then ΩA

U ≤ p. This implies that
ΩA
U ≤ X, and so ΩA

U = X. Therefore A ∈ RX , which proves (5).
It remains to prove that RX is nonempty. Let Q be a finite set of rationals

less than X and P a finite set of rationals greater than X. Define l = max{lq |
q ∈ Q} and r = min(P ∪ {rq | q ∈ Q}). Note that X ∈ (l, r). Because
X ∈ (range ΩU )c, there is an A ∈ 2ω such that ΩA

U ∈ (l, r). From (6) it
follows that A ∈ Bq for all q ∈ Q. Clearly, A ∈ Cp for every p ∈ P . Hence⋂
q∈Q Bq ∩

⋂
p∈P Cp is nonempty. By compactness, RX is nonempty. �

If X ∈ range(ΩU ) is not 2-random, then an examination of the construction
gives an upper-bound on the complexity of Ω−1

U [X]. The Π0
1 classes Cp can be

computed uniformly. The Bq are also Π0
1 classes and can be found uniformly
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in X ⊕ ∅′. Therefore, Ω−1
U [X] =

⋂
q<X Bq ∩

⋂
p>X Cp is a nonempty Π0

1[X ⊕ ∅′]
class.

The following corollary gives an interesting special case of Theorem 9.4. It
is not hard to prove that there is an A ∈ 2ω such that ΩA

U = inf(range ΩU ) (see
Theorem 6.1). It is much less obvious that ΩU achieves its supremum.

Corollary 9.5. There is an A ∈ 2ω such that ΩA
U = sup(range ΩU ).

Proof. Note that sup(range ΩU ) is a c.e. real, hence not 2-random. So, the
corollary is immediate from Theorem 9.4. �

No 1-generic is 1-random, so µ{A | ΩA
U = sup(range ΩU )} = 0. Therefore,

sup(range ΩU ) is an example of a c.e. real in the range of ΩU which is not in
Spec(ΩU ).

One might ask whether Theorem 9.4 is vacuous. In other words, is the range
of ΩU actually closed? We can construct a specific universal prefix-free oracle
machine such that it is not. The construction is somewhat similar to the proof
of Theorem 5.3. In that case, we avoid a measure zero set by using an oracle
that codes a relativized Martin-Löf test covering that set. Now we will avoid a
measure zero closed set by using a natural number to code a finite open cover
with sufficiently small measure.

The following example makes use of the recursion theorem for prefix-free
oracle machines. Let V be a universal prefix-free oracle machine. Assume
that ψA : 2<ω × 2<ω → 2<ω is a partial computable oracle function such that
σ 7→ ψA(σ, τ) defines a prefix-free oracle machine, for all τ ∈ 2<ω. Then we
can compute a ρ ∈ 2<ω such that V A(ρσ) = ψA(σ, ρ), for all σ ∈ 2<ω and
A ∈ 2ω. Informally, this means that we can define a prefix-free oracle machine
N in terms of a prefix ρ by which V simulates N . The recursion theorem for
prefix-free oracle machines is a straightforward application of the relativized
recursion theorem. See Downey and Hirschfeldt [4] for a (relativizable) proof.

Example 9.6. There is a universal prefix-free oracle machine V such that

µ(range ΩV ) < µ((range ΩV )c).

Proof. Let U be a universal prefix-free oracle machine. Let M be a prefix-free
oracle machine such that

ΩA
M =

{
1 if |A| > 1
0 otherwise.

Define a universal prefix-free oracle machine V by V A(0σ) = UA(σ) and
V A(1σ) = MA(σ), for all σ ∈ 2<ω. This definition ensures that ΩA

V ≤ 1/2
iff |A| ≤ 1. Therefore µ(range(ΩV ) ∩ [0, 1/2]) = 0. We will prove that
µ((range ΩV )c ∩ [0, 1/2]) > 0.

Let {Oi}i∈ω be an effective enumeration of all finite unions of open intervals
with dyadic rational endpoints. We construct a prefix-free oracle machine N .
By the recursion theorem for prefix-free oracle machines, we may assume in
advance that we know the prefix ρ by which V simulates N . Given an oracle
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A ∈ 2ω, find the least n ∈ ω such that A(n) = 1. Intuitively, NA will try
to prevent ΩA

V from being in On. Whenever a stage s ∈ ω occurs such that
ΩA
V [s] ∈ On and (∀σ ∈ 2<ω) V A(ρσ)[s] = NA(σ)[s], then NA acts as follows.

Let ε be the least number such that ΩA
V [s]+ε /∈ On and note that ε is necessarily

a dyadic rational. If possible, NA converges on additional strings with total
measure 2|ρ|ε. This would ensure that ΩA

V ≥ ΩA
V [s] + ε. If µOn ≤ 2−|ρ|, then

NA cannot run out of room in its domain and we have ΩA
V /∈ On.

Assume, for the sake of contradiction, that µ((range ΩV )c ∩ [0, 1/2]) = 0.
Then there is an open cover of (range ΩV )c ∩ [0, 1/2] with measure less than
2−|ρ|. We may assume that all intervals in this cover have dyadic rational
endpoints. Because (range ΩV )c ∩ [0, 1/2] is compact, there is a finite subcover
On. But µOn < 2−|ρ| implies that Ω0n10ω

V /∈ On. This is a contradiction, so
µ((range ΩV )c ∩ [0, 1/2]) > 0. �

Note that the proof above shows that if U is a universal prefix-free oracle
machine and A = {Ω0n10ω

U }n∈ω, then Ac has positive measure and Ac
r A

contains only 2-randoms.
Having constructed a specific Omega operator whose range is not closed, it

is natural to ask if this is always the case.

Question 3. Is it true for every universal prefix-free oracle machine U that
range(ΩU ) is not closed?

In the other direction, we have no nontrivial upper-bound on the complexity
of the range of ΩU .

Question 4. If U is a universal prefix-free oracle machine, must range(ΩU ) be
an arithmetical class (or at least Borel)? Can it be?

Related to both questions, note that (range ΩU )c is an arithmetical class.

Proposition 9.7. (range ΩU )c is a Π0
3 class.

Proof. It is easy to verify that a ∈ (range ΩU )c iff

(∀ε > 0)(∃σ ∈ 2<ω)
[

Ωσ
U [|σ|] > a− ε ∧

(∀n ≥ |σ|)(∃τ � σ) |τ | = n ∧ Ωτ
U [n] < a+ ε

]
,

where ε ranges over rational numbers. This is a Π0
3 definition because the final

existential quantifier is bounded. �
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