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Abstract. We show that the existence of a nontrivial proper sub-
space of a vector space of dimension greater than one (over an infi-
nite field) is equivalent to WKL0 over RCA0, and that the existence
of a finite-dimensional nontrivial proper subspace of such a vector
space is equivalent to ACA0 over RCA0.

1. Introduction

This paper is a continuation of [3], which is a paper by three of the
authors of the present paper. In [3], the effective content of the theory
of ideals in commutative rings was studied; in particular, the following
computability-theoretic results were established:

Theorem 1.1. (1) There exists a computable integral domain R
that is not a field such that deg(I)� 0 for all nontrivial proper
ideals I of R.

(2) There exists a computable integral domain R that is not a field
such that deg(I) = 0′ for all finitely generated nontrivial proper
ideals I of R.

These results immediately gave the following proof-theoretic corol-
laries:

Corollary 1.2. (1) Over RCA0, WKL0 is equivalent to the state-
ment “Every (infinite) commutative ring with identity that is
not a field has a nontrivial proper ideal.”
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(2) Over RCA0, ACA0 is equivalent to the statement “Every (infi-
nite) commutative ring with identity that is not a field has a
finitely generated nontrivial proper ideal.”

In the present paper, we complement these results with related re-
sults from linear algebra. (We refer to [3] for background, motivation,
and definitions.)

We start with the following

Definition 1.3. (1) A computable field is a computable subset F ⊆
N equipped with two computable binary operations + and · on F ,
together with two elements 0, 1 ∈ F such that (F, 0, 1,+, ·) is a
field.

(2) A computable vector space (over a computable field F ) is a
computable subset V ⊆ N equipped with two computable opera-
tions + : V 2 → V and · : F×V → V , together with an element
0 ∈ V such that (V, 0,+, ·) is a vector space over F .

This notion was first studied by Dekker [2], then more systematically
by Metakides and Nerode [5] and many others.

As in [3] for nontrivial proper ideals in rings, one motivation in the
results below is to understand the complexity of nontrivial proper sub-
spaces of a vector space of dimension greater than one, and the proof-
theoretic axioms needed to establish their existence. For example, con-
sider the following elementary characterization of when a vector space
has dimension greater than one.

Proposition 1.4. A vector space V has dimension greater than one if
and only if it has a nontrivial proper subspace.

As in the case of ideals in [3], we will be able to show that this
equivalence is not effective, and to pin down the exact proof-theoretic
strength of the statement in two versions, for the existence of a non-
trivial proper subspace and of a finite-dimensional nontrivial proper
subspace:

Theorem 1.5. (1) There exists a computable vector space V of di-
mension greater than one (over an infinite computable field)
such that deg(W ) � 0 for all nontrivial proper subspaces W
of V .

(2) There exists a computable vector space V of dimension greater
than one (over an infinite computable field) such that deg(W ) ≥
0′ for all finite-dimensional nontrivial proper subspaces W of V .

Again, after a brief analysis of the induction needed to establish
Theorem 1.5, we obtain the following proof-theoretic corollaries:
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Corollary 1.6. (1) Over RCA0, WKL0 is equivalent to the state-
ment “Every vector space of dimension greater than one (over
an infinite field) has a nontrivial proper subspace.”

(2) Over RCA0, ACA0 is equivalent to the statement “Every vector
space of dimension greater than one (over an infinite field) has
a finite-dimensional nontrivial proper subspace.”

2. The proof of Theorem 1.5

For the proof of part (1) of Theorem 1.5, we begin with a few easy
lemmas:

Lemma 2.1. Suppose that V is a vector space, that {v, w} is a linearly
independent set of vectors in V , and that u 6= 0 is a vector in V . Then
there exists at most one scalar λ such that u ∈ 〈v − λw〉.

Proof. Suppose that u ∈ 〈v − λ1w〉 and that u ∈ 〈v − λ2w〉. Fix µ1, µ2

such that u = µ1(v−λ1w) and u = µ2(v−λ2w). Notice that µ1, µ2 6= 0
because u 6= 0. We now have

µ1v − µ1λ1w = u = µ2v − µ2λ2w,

and hence

(µ1 − µ2)v + (µ2λ2 − µ1λ1)w = 0.

Since {v, w} is linearly independent, it follows that µ1 − µ2 = 0 and
µ2λ2 − µ1λ1 = 0, hence µ1 = µ2 and µ1λ1 = µ2λ2. Since µ1 = µ2 6= 0,
it follows from the second equation that λ1 = λ2. �

Lemma 2.2. Suppose that V is a vector space with basis B, which is
linearly ordered by ≺. Suppose that

(1) v ∈ V .
(2) e ∈ B.
(3) λ is a scalar.
(4) e � max(supp(v)) (where supp(v) = suppB(v), the support

of v, is the finite set of basis vectors in B needed to write v as
a linear combination in this basis).

Then B \ {e} is a basis for V over 〈e − λv〉, and, for all w ∈ V ,
max(suppB\{e}(w + 〈e− λv〉)) � max(suppB(w)).

Proof. Notice that e ∈ 〈(B \ {e}) ∪ {e− λv}〉 because e /∈ supp(v), so
(B \ {e})∪{e−λv} spans V . Suppose that e1, e2, . . . , en ∈ B \ {e} are
distinct and µ1, µ2, . . . , µn are scalars such that

µ1e1 + µ2e2 + · · ·+ µnen ∈ 〈e− λv〉.
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Fix µ such that

µ1e1 + µ2e2 + · · ·+ µnen = µ(e− λv)

and notice that we must have µ = 0 (by looking at the coefficient of e),
hence each µi = 0 because B is a basis. Therefore, B \ {e} is a basis
for V over 〈e− λv〉. By hypothesis (4), the last line of the lemma now
follows easily. �

Lemma 2.3. Suppose that V is a vector space with basis B, which is
linearly ordered by ≺. Suppose that

(1) v1, v2 ∈ V .
(2) e1, e2 ∈ B with e1 6= e2.
(3) λ is a scalar.
(4) e1 � max(supp(v1) ∪ supp(v2)).
(5) {v1, e1} is linearly independent.
(6) v1 /∈ 〈e2 − λv2〉.

Then {v1, e1} is linearly independent over 〈e2 − λv2〉.

Proof. Suppose that

µ1v1 + µ2e1 = µ3(e2 − λv2).
We need to show that µ1 = µ2 = 0.

Case 1: e1 ≺ e2. In this case, we must have µ3 = 0 (by looking at
the coefficient of e2). Thus, µ1v1 + µ2e1 = 0, and hence µ1 = µ2 = 0
since {v1, e1} is linearly independent.

Case 2: e1 � e2. In this case, we must have µ2 = 0 (by looking at
the coefficient of e1). Thus, µ1v1 = µ3(e2−λv2). Since v1 /∈ 〈e2−λv2〉,
this implies that µ1 = 0. �

By applying the above three lemmas in the corresponding quotient,
we obtain the following results.

Lemma 2.4. Suppose that V is a vector space, that X ⊆ V , that {v, w}
is linearly independent over 〈X〉, and that u /∈ 〈X〉. Then there exists
at most one λ such that u ∈ 〈X ∪ {v − λw}〉. �

Lemma 2.5. Suppose that V is a vector space, that X ⊆ V , and that
B is a basis for V over 〈X〉 that is linearly ordered by ≺. Suppose that

(1) v ∈ V .
(2) e ∈ B.
(3) λ is a scalar.
(4) e � max(supp(v)).

Then B \ {e} is a basis for V over 〈X ∪ {e− λv}〉 and, for all w ∈ V ,
max(suppB\{e}(w + 〈X ∪ {e− λv}〉)) � max(suppB(w)). �
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Lemma 2.6. Suppose that V is a vector space, that X ⊆ V , and that
B is a basis for V over 〈X〉 that is linearly ordered by ≺. Suppose that

(1) v1, v2 ∈ V .
(2) e1, e2 ∈ B with e1 6= e2.
(3) λ is a scalar.
(4) e1 � max(supp(v1) ∪ supp(v2)).
(5) {v1, e1} is linearly independent over 〈X〉.
(6) v1 /∈ 〈X ∪ {e2 − λv2}〉.

Then {v1, e1} is linearly independent over 〈X ∪ {e2 − λv2}〉. �

Proof of Theorem 1.5. Fix two disjoint c.e. sets A and B such that
deg(S) � 0 for any set S satisfying A ⊆ S and B ∩ S = ∅. Let
V ∞ be the vector space over the infinite computable field F on the
basis e0, e1, e2, . . . (ordered by ≺ as listed) and list V ∞ as v0, v1, v2, . . .
(viewed as being coded effectively by natural numbers). We may as-
sume that v0 is the zero vector of V ∞. Fix a computable injective
function g : N3 → N such that eg(i,j,n) � max(supp(vi) ∪ supp(vj)) for
all i, j, n ∈ N. We build a computable subspace U of V ∞ with the plan
of taking the quotient V = V ∞/U .

We have the following requirements for all vi, vj /∈ U :

Ri,j,n : n /∈ A ∪B ⇒ each of {vi, eg(i,j,n)} and {vj, eg(i,j,n)}
are linearly independent over U,

n ∈ A⇒ eg(i,j,n) − λvi ∈ U for some nonzero λ ∈ F , and

n ∈ B ⇒ eg(i,j,n) − λvj ∈ U for some nonzero λ ∈ F .

We now effectively build a sequence U2, U3, U4, . . . of finite subsets
of V ∞ such that U2 ⊆ U3 ⊆ U4 ⊆ . . . , and we set U =

⋃
n≥2 Un.

We also define a function h : N4 → {0, 1} for which h(i, j, n, s) = 1 if
and only if we have acted for requirement Ri,j,n at some stage ≤ s (as
defined below). We ensure that for all k ≥ 2, we have vk ∈ U if and
only if vk ∈ Uk, which will make our set U computable. We begin by
letting U2 = {v0} and letting h(i, j, n, s) = 0 for all i, j, n, s with s ≤ 2.
Suppose that s ≥ 2 and we have defined Us and h(i, j, n, s) for all i, j, n.
Suppose also that we have for any i, j, n, and s such that vi, vj /∈ 〈Us〉:

(1) If h(i, j, n, s) = 0, then each of {vi, eg(i,j,n)} and {vj, eg(i,j,n)} is
linearly independent over 〈Us〉.

(2) If h(i, j, n, s) = 1 and n ∈ As, then eg(i,j,n) − λvi ∈ Us for some
nonzero λ ∈ F .

(3) If h(i, j, n, s) = 1 and n ∈ Bs, then eg(i,j,n) − λvj ∈ Us for some
nonzero λ ∈ F .
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Check whether there exists a triple 〈i, j, n〉 < s (under some effective
coding) such that

(1) vi, vj /∈ 〈Us〉.
(2) n ∈ As ∪Bs.
(3) h(i, j, n, s) = 0.

Suppose first that no such triple 〈i, j, n〉 exists. If vs+1 ∈ 〈Us〉, then let
Us+1 = Us∪{vs+1}, otherwise let Us+1 = Us. Also, let h(i, j, n, s+1) =
h(i, j, n, s) for all i, j, n.

Suppose then that such a triple 〈i, j, n〉 exists, and fix the least such
triple. If n ∈ As, then search for the least (under some effective coding)
nonzero λ ∈ F such that vk /∈ 〈Us ∪ {eg(i,j,n) − λvi}〉 for all k ≤ s such
that vk /∈ Us. (Such λ must exist by Lemma 2.4 and the fact that F is
infinite.) Let U ′s = Us∪{eg(i,j,n)−λvi} and let h(i, j, n, s+1) = 1. If n ∈
Bs, then proceed likewise with vj replacing vi. Now, if vs+1 ∈ 〈U ′s〉, then
let Us+1 = U ′s ∪ {vs+1}; otherwise let Us+1 = U ′s. Also, let h(i, j, n, s +
1) = h(i, j, n, s) for all other i, j, n. Using Lemma 2.6, it follows that
our inductive hypothesis is maintained, so we may continue.

We can now view the quotient space V = V ∞/U as the set of <N-
least representatives (which is a computable subset of V ∞). Notice that
V is not one-dimensional because {v1, eg(1,2,n)} is linearly independent
over U for any n /∈ A ∪ B (since v1, v2 /∈ U). Suppose that W is a
nontrivial proper subspace of V , and fix W0 such that W = W0/U .
Then W0 is a W -computable subspace of V ∞, and U ⊂ W0 ⊂ V ∞. Fix
vi, vj ∈ V ∞ \U such that vi ∈ W0 and vj /∈ W0. Let S = {n : eg(i,j,n) ∈
W0}. We then have that S ≤T W0 ≡T W , that A ⊆ S, and that
B ∩ S = ∅. Thus deg(S)� 0, establishing part (1) of Theorem 1.5.

Part (2) of Theorem 1.5 now follows easily from part (1) and Ar-
slanov’s Completeness Criterion [1]: If W is a finite-dimensional non-
trivial proper subspace of the above vector space V then W0 is a c.e. set
that computes a degree � 0; thus deg(W ) must equal 0′. �

3. The proof of Corollary 1.6

As usual for these arguments, we only have to check that

(i) WKL0 (or ACA0, respectively) suffices to prove the existence of a
(finite-dimensional) nontrivial proper subspace (establishing the
left-to-right direction of Corollary 1.6); and

(ii) the above computability-theoretic arguments can be carried out
in RCA0(establishing the right-to-left direction of Corollary 1.6).

Part (i) just requires a bit of coding. Using WKL0, one can code
membership in a nontrivial proper subspace W of a vector space V on
a binary tree T where one arbitrarily fixes two linearly independent
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vectors w,w′ ∈ V such that w ∈ W and w′ /∈ W is specified. A node
σ ∈ TW is now terminal if the subspace axioms for W are violated
along σ using coefficients with Gödel number < |σ|, which can be
checked effectively relative to the open diagram of the vector space.
Using ACA0, one can form the one-dimensional subspace generated by
any nonzero vector in V .

Part (ii) boils down to checking that Σ0
1-induction suffices for the

computability-theoretic arguments from Section 2. First of all, note
that the definition of U and of the vector space operations on U can
be carried out using ∆0

1-induction. WKL0 is equivalent to showing Σ0
1-

Separation, so fix any sets A and B that are Σ0
1-definable in our model

of arithmetic. Then their enumerations {As}s∈ω and {Bs}s∈ω exist in
the model, and from them we can define the subspace U , the quotient
space V = V ∞/U , and the function mapping each vector v ∈ V ∞ to its
<N-least representative modulo U , using only Σ0

1-induction. (The latter
function only requires that in RCA0, any infinite ∆0

1-definable set can
be enumerated in order.) The hypothesis now provides the nontrivial
proper subspace W , and from it we can define the separating set S by
∆0

1-induction.
Proving the right-to-left direction of Corollary 1.6 (2) could be done

using the concept of maximal pairs of c.e. sets as in our companion
paper [3]. But for vector spaces, there is actually a much simpler proof:
In the above construction, simply set A to be any Σ0

1-set and B = ∅.
Now V must be a vector space of dimension greater than one. Since
any finitely generated nontrivial proper subspace can compute a one-
dimensional subspace, we may assume we are given a one-dimensional
subspace W , spanned by vi, say. But then

n ∈ A iff {vi, eg(i,1,n)} is linearly dependent in V

iff eg(i,1,n) ∈ W,

and so W can compute A as desired.
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