SUBSPACES OF COMPUTABLE VECTOR SPACES

RODNEY G. DOWNEY, DENIS R. HIRSCHFELDT, ASHER M. KACH,
STEFFEN LEMPP, JOSEPH R. MILETI, AND ANTONIO MONTALBAN

ABSTRACT. We show that the existence of a nontrivial proper sub-
space of a vector space of dimension greater than one (over an infi-
nite field) is equivalent to WKL over RCAq, and that the existence
of a finite-dimensional nontrivial proper subspace of such a vector
space is equivalent to ACAy over RCAy.

1. INTRODUCTION

This paper is a continuation of [3], which is a paper by three of the
authors of the present paper. In [3], the effective content of the theory
of ideals in commutative rings was studied; in particular, the following
computability-theoretic results were established:

Theorem 1.1. (1) There ezists a computable integral domain R
that is not a field such that deg(I) > 0 for all nontrivial proper

ideals I of R.
(2) There exists a computable integral domain R that is not a field
such that deg(I) = 0’ for all finitely generated nontrivial proper

tdeals I of R.

These results immediately gave the following proof-theoretic corol-
laries:

Corollary 1.2. (1) Over RCAy, WKLy is equivalent to the state-
ment “Every (infinite) commutative ring with identity that is
not a field has a nontrivial proper ideal.”
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(2) Over RCAy, ACAq is equivalent to the statement “Every (infi-
nite) commutative ring with identity that is not a field has a
finitely generated nontrivial proper ideal.”

In the present paper, we complement these results with related re-
sults from linear algebra. (We refer to [3] for background, motivation,
and definitions.)

We start with the following

Definition 1.3. (1) A computable field is a computable subset F' C
N equipped with two computable binary operations + and - on F,
together with two elements 0,1 € F such that (F,0,1,4,-) is a
field.

(2) A computable vector space (over a computable field F') is a
computable subset V- C N equipped with two computable opera-
tions +: V2 =V and -: FxV — V, together with an element
0 € V' such that (V,0,4+,-) is a vector space over F.

This notion was first studied by Dekker [2], then more systematically
by Metakides and Nerode [5] and many others.

As in [3] for nontrivial proper ideals in rings, one motivation in the
results below is to understand the complexity of nontrivial proper sub-
spaces of a vector space of dimension greater than one, and the proof-
theoretic axioms needed to establish their existence. For example, con-
sider the following elementary characterization of when a vector space
has dimension greater than one.

Proposition 1.4. A vector space V' has dimension greater than one if
and only if it has a nontrivial proper subspace.

As in the case of ideals in [3], we will be able to show that this
equivalence is not effective, and to pin down the exact proof-theoretic
strength of the statement in two versions, for the existence of a non-
trivial proper subspace and of a finite-dimensional nontrivial proper
subspace:

Theorem 1.5. (1) There exists a computable vector space V' of di-
mension greater than one (over an infinite computable field)
such that deg(W) > 0 for all nontrivial proper subspaces W

of V.
(2) There exists a computable vector space V' of dimension greater
than one (over an infinite computable field) such that deg(W') >
0’ for all finite-dimensional nontrivial proper subspaces W of V.

Again, after a brief analysis of the induction needed to establish
Theorem we obtain the following proof-theoretic corollaries:
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Corollary 1.6. (1) Over RCAy, WKLy is equivalent to the state-
ment “Every vector space of dimension greater than one (over
an infinite field) has a nontrivial proper subspace.”

(2) Over RCAy, ACA, is equivalent to the statement “Every vector
space of dimension greater than one (over an infinite field) has
a finite-dimensional nontrivial proper subspace.”

2. THE PROOF OF THEOREM [L.5]

For the proof of part of Theorem , we begin with a few easy
lemmas:

Lemma 2.1. Suppose that V' is a vector space, that {v,w} is a linearly
independent set of vectors in'V', and that u # 0 is a vector in V. Then
there exists at most one scalar A such that u € (v — Aw).

Proof. Suppose that u € (v — A\jw) and that u € (v — Aw). Fix uy, pio
such that u = p;(v—A\w) and u = ps(v— Aw). Notice that pq, o # 0
because u # 0. We now have

PV — HIATW = U = figU — Ua AW,
and hence
(1 — p2)v + (p2A2 — A )w = 0.
Since {v,w} is linearly independent, it follows that p; — pe = 0 and

paAo — piAr = 0, hence py = pp and gy Ay = poAg. Since pg = po # 0,
it follows from the second equation that A\; = \s. O

Lemma 2.2. Suppose that V is a vector space with basis B, which is
linearly ordered by <. Suppose that

(1) veV.

(2) e € B.

(3) X is a scalar.

(4) e > max(supp(v)) (where supp(v) = suppg(v), the support
of v, is the finite set of basis vectors in B meeded to write v as

a linear combination in this basis).
Then B\ {e} is a basis for V over (e — \v), and, for all w € V,
max(suppp (o} (W + (€ — Av))) = max(suppg(w)).

Proof. Notice that e € ((B\ {e}) U{e — Av}) because e ¢ supp(v), so
(B\ {e})U{e— v} spans V. Suppose that e, es,...,e, € B\ {e} are
distinct and puq, po, . . ., iy, are scalars such that

pi€1 + poes + -+ ppe, € (e — Av).



4  DOWNEY, HIRSCHFELDT, KACH, LEMPP, MILETI, AND MONTALBAN

Fix p such that
paer + piaea + - -+ pnen = pi(e — Av)

and notice that we must have ;1 = 0 (by looking at the coefficient of e),
hence each p; = 0 because B is a basis. Therefore, B \ {e} is a basis
for V over (e — Av). By hypothesis (), the last line of the lemma now
follows easily. O

Lemma 2.3. Suppose that V is a vector space with basis B, which is
linearly ordered by <. Suppose that

(1) U1,V € V.

(2) e1,ex € B with e; # es.

(3) A is a scalar.

(4) €1 = max(supp(vy) Usupp(vs)).

(5) {vi,e1} is linearly independent.

(6) (%1 ¢ <€2 - /\UQ).

Then {v1,e1} is linearly independent over (e; — Avg).
Proof. Suppose that

p1vy + poer = ps(es — Aug).
We need to show that p; = pe = 0.

Case 1: e; < ey. In this case, we must have uz = 0 (by looking at
the coefficient of e;). Thus, pyv; + pee; = 0, and hence py = py = 0
since {vy, €1} is linearly independent.

Case 2: ey = ey. In this case, we must have uy = 0 (by looking at
the coefficient of e1). Thus, v, = pz(ea — Avg). Since vy & (ea — Avg),
this implies that p; = 0. U

By applying the above three lemmas in the corresponding quotient,
we obtain the following results.

Lemma 2.4. Suppose that V' is a vector space, that X C V', that {v,w}
is linearly independent over (X), and that u ¢ (X). Then there exists
at most one A such that u € (X U{v — Aw}). O

Lemma 2.5. Suppose that V' is a vector space, that X C V', and that
B is a basis for V over (X) that is linearly ordered by <. Suppose that
(1) veV.
(2) e € B.
(3) X is a scalar.
(4) e = max(supp(v)).
Then B\ {e} is a basis for V over (X U{e — Av}) and, for allw €V,
max(suppp (o} (0 + (X U {e — A\v}))) < max(suppg(w)). O
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Lemma 2.6. Suppose that V is a vector space, that X C V', and that
B is a basis for V' over (X) that is linearly ordered by <. Suppose that
(1) V1,V € V.
(2) e1,ex € B with e; # es.
(3) A is a scalar.
(4) €1 = max(supp(v;) Usupp(vs)).
(5) {vi,e1} is linearly independent over (X).
(6) U1 ¢ <X U {62 — )\U2}>.
Then {v1,e1} is linearly independent over (X U {es — Avg}). O

Proof of Theorem[1.9. Fix two disjoint c.e. sets A and B such that
deg(S) > 0 for any set S satisfying A C S and BNS = 0. Let
V> be the vector space over the infinite computable field F' on the
basis eq, €1, €g, ... (ordered by < as listed) and list V°° as v, v1, vg, . . .
(viewed as being coded effectively by natural numbers). We may as-
sume that vy is the zero vector of V*°. Fix a computable injective
function g: N* — N such that ey; j,,) > max(supp(v;) U supp(v;)) for
all 7, 7,n € N. We build a computable subspace U of V> with the plan
of taking the quotient V' = V>°/U.
We have the following requirements for all v;,v; ¢ U:

Rijn:n¢& AUB = each of {v;,eqin)} and {v;, €450}
are linearly independent over U,
n € A= eyijn) — Av; € U for some nonzero A € F', and
n € B = ey jn) — Av; € U for some nonzero A € F.

We now effectively build a sequence Us, Us, Uy, ... of finite subsets
of V> such that U C Us; C Uy C ..., and we set U = {J, -, Up.
We also define a function h: N* — {0,1} for which h(i,j,n,s) = 1 if
and only if we have acted for requirement R; ;,, at some stage < s (as
defined below). We ensure that for all & > 2, we have v, € U if and
only if vy € U, which will make our set U computable. We begin by
letting Uy = {vo} and letting h(i, j,n, s) = 0 for all 7, j,n, s with s < 2.
Suppose that s > 2 and we have defined U, and h(i, 7, n, s) for all 7, j, n.
Suppose also that we have for any 4, j, n, and s such that v;, v; ¢ (Us):

(1) If h(i,7,n,s) = 0, then each of {v;, ey jn)} and {vj, eqq )} is
linearly independent over (Us).

(2) If h(i,j,n,s) = 1 and n € A,, then ey jn) — Av; € Us for some
nonzero \ € F.

(3) If h(i,4,n,s) =1 and n € By, then ey ;) — Av; € U, for some
nonzero \ € F.
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Check whether there exists a triple (i,7,n) < s (under some effective
coding) such that

(1) vy & (UL).

(2) n € A; U B;.

(3) h(i,j,n,s) =0.
Suppose first that no such triple (i, j, n) exists. If vs11 € (Us), then let
Usy1 = UgU{vsy1}, otherwise let Ugyy = Us,. Also, let h(i, j,n,s+1) =
h(i,j,m,s) for all i, j,n.

Suppose then that such a triple (i, j, n) exists, and fix the least such
triple. If n € Ay, then search for the least (under some effective coding)
nonzero A € F such that vy & (Us U {eg( n) — Avi}) for all k& < s such
that v, ¢ Us. (Such A must exist by Lemma [2.4] and the fact that F is
infinite.) Let U, = Us;U{ey(i jn)—Avi} and let h(i, j,n,s+1) = 1. If n €
Bg, then proceed likewise with v; replacing v;. Now, if v,y € (U.), then
let Usyq = UL U {vs11}; otherwise let Usyy = U.. Also, let h(i, j,n,s +
1) = h(i,j,n,s) for all other ,7,n. Using Lemma [2.6] it follows that
our inductive hypothesis is maintained, so we may continue.

We can now view the quotient space V = V>/U as the set of <y-
least representatives (which is a computable subset of V*°). Notice that
V' is not one-dimensional because {v1, eg(1727n)} is linearly independent
over U for any n ¢ AU B (since vy,vy ¢ U). Suppose that W is a
nontrivial proper subspace of V', and fix Wy such that W = W, /U.
Then W, is a W-computable subspace of V*>°, and U C Wy C V*°. Fix
v;,v; € Vo \ U such that v; € Wy and v; € Wy. Let S = {n: ey n €
Wo}. We then have that S <p Wy = W, that A C S, and that
BN S =0. Thus deg(S) > 0, establishing part (1)) of Theorem [1.5

Part of Theorem now follows easily from part and Ar-
slanov’s Completeness Criterion [I]: If W is a finite-dimensional non-
trivial proper subspace of the above vector space V' then W is a c.e. set
that computes a degree > 0; thus deg(W) must equal 0'. O

3. THE PROOF OF COROLLARY

As usual for these arguments, we only have to check that

(i) WKLy (or ACAy, respectively) suffices to prove the existence of a
(finite-dimensional) nontrivial proper subspace (establishing the
left-to-right direction of Corollary ; and

(ii) the above computability-theoretic arguments can be carried out
in RCAy(establishing the right-to-left direction of Corollary .

Part just requires a bit of coding. Using WKLy, one can code
membership in a nontrivial proper subspace W of a vector space V on
a binary tree T" where one arbitrarily fixes two linearly independent
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vectors w,w’ € V such that w € W and w’ ¢ W is specified. A node
o € Ty is now terminal if the subspace axioms for W are violated
along o using coefficients with Gédel number < |o|, which can be
checked effectively relative to the open diagram of the vector space.
Using ACAy, one can form the one-dimensional subspace generated by
any nonzero vector in V.

Part boils down to checking that 3{-induction suffices for the
computability-theoretic arguments from Section [2] First of all, note
that the definition of U and of the vector space operations on U can
be carried out using A%-induction. WKL, is equivalent to showing 39-
Separation, so fix any sets A and B that are X%-definable in our model
of arithmetic. Then their enumerations {As}se,, and {Bs}se, exist in
the model, and from them we can define the subspace U, the quotient
space V' = V>°/U, and the function mapping each vector v € V> to its
<n-least representative modulo U, using only ¥:%-induction. (The latter
function only requires that in RCA, any infinite Af-definable set can
be enumerated in order.) The hypothesis now provides the nontrivial
proper subspace W, and from it we can define the separating set S by
AY-induction.

Proving the right-to-left direction of Corollary could be done
using the concept of maximal pairs of c.e. sets as in our companion
paper [3]. But for vector spaces, there is actually a much simpler proof:
In the above construction, simply set A to be any ¥9-set and B = 0.
Now V must be a vector space of dimension greater than one. Since
any finitely generated nontrivial proper subspace can compute a one-
dimensional subspace, we may assume we are given a one-dimensional
subspace W, spanned by v;, say. But then

n € Aiff {v;, e44,1,n)} is linearly dependent in V'
iff eg(i717n) S VV,

and so W can compute A as desired.
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