# The Dimension Spectrum Conjecture for Lines

#### Don Stull

Northwestern University Department of Computer Science

#### Definition

Fix a universal Turing machine U. Let u be a finite binary string. The *Kolmogorov complexity of u* is

$${\cal K}(u)=\min\{|\pi|\,|\,\pi\in\{0,1\}^*,\,\,{
m and}\,\,\, U(\pi)=u\}.$$

#### Definition

Let  $n, r \in \mathbb{N}$ , and  $x \in \mathbb{R}^n$ . The Kolmogorov complexity of x at precision r is

$$K_r(x)=K(u),$$

where  $u = x \upharpoonright r$  is the first *nr* bits in the binary representation of *x*.

#### Definition (J. Lutz, Mayordomo)

Let  $x \in \mathbb{R}^n$ . The effective dimension of x is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$$

- $0 \leq \dim(x) \leq n$ .
- x is ML-random  $\implies \dim(x) = n$
- x is computable  $\implies$  dim(x) = 0.
- quantitative, fine-grained measure of the algorithmic randomness of x.

# Dimension of Points on a Line

What are the (effective) dimensions of points on a line  $L_{a,b}$  with slope *a* and intercept *b*?



The dimension spectrum of a line is

$$sp(L_{a,b}) = {dim(x, ax + b) | x \in [0, 1]}.$$

- Algorithmic randomness perspective:
  - $\bullet$  Lines in  $\mathbb{R}^2$  are the simplest non-trivial sets.
  - Cannot claim to understand effective dimension without understanding the dimension spectrum of planar lines.
- Deep connections with (classical) geometric measure theory:
  - Proof of the DSC in higher dimensions would solve the Kakeya conjecture.
  - The principle obstruction for the DSC is present in many of the important unsolved problems in geometric measure theory
    - Kakeya conjecture, Furstenberg set conjecture, dimension of sum-product sets, Kauffman's projection bounds,...

# Geometric Measure Theory (Detour)

- Hausdorff dimension gives quantitative notion of the size of sets.
  - Fine grained notion, allowing us to distinguish Lebesgue measure 0 sets.



- We can attack problems in classical geometric measure theory using algorithmic techniques.
- Any non-trivial lower bounds on the **effective** dimension of points on a line in  $\mathbb{R}^3$  would improve the best-known bounds of the notorious Kakeya conjecture.

## Dimension of Points on a Line



The dimension spectrum of a line L with slope a and intercept b is the set

$$sp(L) = \{ dim(x, ax + b) \, | \, x \in \mathbb{R} \}.$$



### Theorem (Turetsky '11)

The set of points in  $\mathbb{R}^n$  of (effective) dimension 1 is connected.

As a consequence, for every line L,  $1 \in \operatorname{sp} L$ .

# Previous Results

### Theorem (N. Lutz and Stull)

Let  $(a, b) \in \mathbb{R}^2$ . Then for every  $x \in \mathbb{R}$ ,

 $\dim(x, ax + b) \ge \dim^{a,b}(x) + \min\{\dim(a, b), \dim^{a,b}(x)\}.$ 

### Corollary (N. Lutz and Stull)

If dim(a, b) < 1, then

$$\operatorname{sp}(L_{a,b}) \supseteq [2\dim(a,b), 1 + \dim(a,b)].$$

If  $dim(a, b) \ge 1$ , then

$$2 \in \operatorname{sp}(L_{a,b}).$$

This theorem gives improved bounds on Furstenberg sets for certain values of  $\alpha$  and  $\beta$ .

Fix a line  $L_{a,b}$ . Assume that dim(a, b) = d < 1. Let  $x \in [0, 1]$  be random relative to (a, b).

Fix a precision r. Assume that  $K_r(a, b) = dr$ . We want to prove that

$$K_r(x,ax+b) \geq K_r(x,a,b) = (1+d)r.$$

It suffices to show that, given a  $2^{-r}$  approximation of (x, ax + b), we can compute a  $2^{-r}$  approximation of (x, a, b).

- How can we compute (an approximation of) a line only given a point?
- The line  $L_{a,b}$  is special it is of low complexity.
- Want to show that it is essentially the *only* low complexity line intersecting (x, ax + b).

イロト イポト イヨト イヨト

Want to show that (a, b) is essentially the *only* low complexity line intersecting (x, ax + b).

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.



Want to show that (a, b) is essentially the *only* low complexity line intersecting (x, ax + b).

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.





Suppose that (u, v) intersects (x, ax + b). Let  $t = -\log ||(a, b) - (u, v)||$ . Then

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

3 × 1

Suppose that (u, v) intersects (x, ax + b), and  $K_r(u, v) \leq dr$ . Let  $t = -\log ||(a, b) - (u, v)||$ . Then

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

Since x is random relative to (a, b),

$$r-t \leq K_r^{a,b}(u,v).$$

Since (u, v) shares the first t bits with (a, b), and  $K_r(u, v) \leq dr$ ,

$$r-t \leq dr-dt$$
.

This cannot happen if d < 1, and therefore (a, b) is the unique line such that

• 
$$(a, b)$$
 intersects  $(x, ax + b)$ , and

•  $K_r(a,b) \leq dr$ .

• The general intersection lemma shows that

$$s(r-t) \leq K_r^{a,b}(u,v) \leq d(r-t),$$
  
where  $s = \dim^{a,b}(x).$ 

- This proof makes essential use of the assumption that *s* was greater than *d*.
- The obstacle when s is smaller than d seems very deep.
  - Heart of the difficulty of the Kakeya conjecture, Furstenberg set conjecture,...

**Goal:** Given a line (a, b), for every  $s \in (0, 1]$ , construct a point x such that

- dim<sup>a,b</sup>(x) = s.
- $\dim(x, ax + b) = s + \min\{\dim(a, b), 1\}.$

For simplicity, let dim(a, b) = d < 1 and let r be a precision such that  $K_r(a, b) = dr$ . Want to construct a point x (finite binary string) such that

- $K_r^{a,b}(x) = sr$ .
- $K_r(x, ax + b) = (s + d)r$ .

く得 とく ヨ とく ヨ とう

Let dim(a, b) = d < 1 and let r be a precision such that  $K_r(a, b) = dr$ . Want to construct a point x (finite binary string) such that

• 
$$K_r^{a,b}(x) = sr$$
.

Two immediate ideas:

- Take random, relative to (a, b), string and every change every  $\frac{1}{s}$ th bit to 0.
  - Constructions of Furstenberg sets from geometric measure theory seem to rule this out.
- Take random, relative to (*a*, *b*), string and set all bits after index *sr* to 0.
  - Runs into the main obstacle.

We use the structure of the problem to remove the main obstacle:

• Take random, relative to (*a*, *b*), string of length *sr* and concatenate the first *r* - *sr* bits of *a*.

Thus, our string x satisfies

$$K_r^{a,b}(x) = sr.$$

Moreover, for all  $r' \leq sr$ ,

$$K_{r'}^{a,b}(x)=r'.$$

**Key point**: For precisions less than *sr*, we are essentially in the high complexity case we know how to solve.

# Dimension Spectrum Conjecture

Suppose that (u, v) intersects (x, ax + b), and  $K_r(u, v) \le dr$ . Let  $t = -\log ||(a, b) - (u, v)||$ , and suppose that  $t \ge r - sr$ .

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

Since x is random relative to (a, b) at precisions less than sr,

$$r-t \leq K_r^{a,b}(u,v) \leq dr-dt.$$

Therefore (a, b) is the unique line such that

- (u, v) intersects (x, ax + b),
- $K_r(u, v) \leq dr$ , and
- $t = -\log ||(a, b) (u, v)|| \ge r sr$

We would be done if we could restrict our search to lines such that

$$t = -\log \|(a,b) - (u,v)\| \ge r - sr$$

く得 とく ヨ とく ヨ とう

- Given a  $2^{-r}$  approximation of (x, ax + b):
  - **(**) We have access to the first r bits of x.
  - 2 Thus, we know the first r sr bits of *a*.
  - So Combining these with our approximation of (x, ax + b) we can compute the first r sr bits of b.
  - Hence, we know the first r sr bits of (a, b), and can restrict our search for lines (u, v) such that
    - (u, v) intersects (x, ax + b)
    - $K_r(u, v) \leq dr$ , and
    - $t = -\log ||(a, b) (u, v)|| \ge r sr$

(a, b) is the only such line, and so  $K_r(x, ax + b) \ge K_r(x, a, b) = s + d$ .

Full proof of low dimensional lines  $(\dim(a, b) \le 1)$ 

- Choose very sparse set of precisions r such that K<sub>r</sub>(a, b) = dr, and modify the bits of x.
  - At these precisions, the previous argument works.
  - For other precisions, need a slightly different approach.

High dimensional lines  $(\dim(a, b) > 1)$ 

- This argument doesn't immediately work.
  - It will only prove that  $K_r(x, ax + b) \ge (s + 1)r$ , but we need this to be an **equality**.
- In this case, we use a non-constructive argument.
  - Consider strings  $x_0, \ldots, x_{r-sr}$ . The point  $x_m$  encodes first m bits of a.
  - We can upper bound the point corresponding to x<sub>0</sub>, and we have a good lower bound for x<sub>r-sr</sub>.
  - Using a discrete version of MVT, we show that some point has dimension (s + 1).

・ロト ・ 一下 ・ ・ ヨト ・ モート

### Thank you!

3

イロト イロト イヨト イヨト

#### Question

Let  $E \subseteq \mathbb{R}^n$  be a set containing a line in every direction (a Kakeya set). How big must E be?.

- Besicovitch: Can have measure 0.
- $\bullet$  Davies: In  $\mathbb{R}^2,$  Kakeya sets must have Hausdorff dimension 2.
- For n > 2 this is still an open question.

#### Conjecture (Kakeya Conjecture)

Every Kakeya set in  $\mathbb{R}^n$  has Hausdorff dimension n.

# Furstenberg Sets

### Definition

Let  $\alpha, \beta \in (0, 1]$ . A set of Furstenberg type with parameters  $\alpha$  and  $\beta$  is a subset  $F \subseteq \mathbb{R}^2$  such there is a set  $J \subseteq S^1$  (set of directions) satisfying the following.

- dim<sub>H</sub>(J)  $\geq \beta$ .
- For every e ∈ J, there is a line l<sub>e</sub> in the direction of e such that dim<sub>H</sub>(F ∩ l<sub>e</sub>) ≥ α.

Open question: For  $\alpha,\beta,$  how big must a set of Furstenberg type with parameters  $\alpha$  and  $\beta$  be?

### Theorem (Molter and Rela)

For all  $\alpha, \beta \in (0, 1]$  and every set  $E \in F_{\alpha, \beta}$ ,

$$\dim_{H}(E) \geq \alpha + \max\{\tfrac{\beta}{2}, \alpha + \beta - 2\}.$$