The Dimension Spectrum Conjecture for Lines

Don Stull

Northwestern University
Department of Computer Science

Kolmogorov Complexity

Definition

Fix a universal Turing machine U. Let u be a finite binary string. The Kolmogorov complexity of u is

$$
K(u)=\min \left\{|\pi| \mid \pi \in\{0,1\}^{*}, \text { and } U(\pi)=u\right\} .
$$

Definition

Let $n, r \in \mathbb{N}$, and $x \in \mathbb{R}^{n}$. The Kolmogorov complexity of x at precision r is

$$
K_{r}(x)=K(u)
$$

where $u=x \upharpoonright r$ is the first $n r$ bits in the binary representation of x.

Effective Dimension

Definition (J. Lutz, Mayordomo)

Let $x \in \mathbb{R}^{n}$. The effective dimension of x is

$$
\operatorname{dim}(x)=\liminf _{r \rightarrow \infty} \frac{K_{r}(x)}{r} .
$$

- $0 \leq \operatorname{dim}(x) \leq n$.
- x is ML-random $\Longrightarrow \operatorname{dim}(x)=n$
- x is computable $\Longrightarrow \operatorname{dim}(x)=0$.
- quantitative, fine-grained measure of the algorithmic randomness of x.

Dimension of Points on a Line

What are the (effective) dimensions of points on a line $L_{a, b}$ with slope a and intercept b ?

The dimension spectrum of a line is

$$
\operatorname{sp}\left(L_{a, b}\right)=\{\operatorname{dim}(x, a x+b) \mid x \in[0,1]\} .
$$

Why Lines?

- Algorithmic randomness perspective:
- Lines in \mathbb{R}^{2} are the simplest non-trivial sets.
- Cannot claim to understand effective dimension without understanding the dimension spectrum of planar lines.
- Deep connections with (classical) geometric measure theory:
- Proof of the DSC in higher dimensions would solve the Kakeya conjecture.
- The principle obstruction for the DSC is present in many of the important unsolved problems in geometric measure theory
- Kakeya conjecture, Furstenberg set conjecture, dimension of sum-product sets, Kauffman's projection bounds,...

Geometric Measure Theory (Detour)

- Hausdorff dimension gives quantitative notion of the size of sets.
- Fine grained notion, allowing us to distinguish Lebesgue measure 0 sets.

Theorem (J. Lutz and N. Lutz)

Let $E \subseteq \mathbb{R}^{n}$. Then

$$
\operatorname{dim}_{H}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{dim}^{A}(x) .
$$

- We can attack problems in classical geometric measure theory using algorithmic techniques.
- Any non-trivial lower bounds on the effective dimension of points on a line in \mathbb{R}^{3} would improve the best-known bounds of the notorious Kakeya conjecture.

Dimension of Points on a Line

The dimension spectrum of a line L with slope a and intercept b is the set

$$
\operatorname{sp}(L)=\{\operatorname{dim}(x, a x+b) \mid x \in \mathbb{R}\} .
$$

Conjecture

For every $a, b, \operatorname{sp}\left(L_{a, b}\right)$ contains an interval of length 1.

Previous Results

Theorem (Turetsky '11)
The set of points in \mathbb{R}^{n} of (effective) dimension 1 is connected.

As a consequence, for every line $L, 1 \in \mathrm{sp} L$.

Previous Results

Theorem (N. Lutz and Stull)

Let $(a, b) \in \mathbb{R}^{2}$. Then for every $x \in \mathbb{R}$,

$$
\operatorname{dim}(x, a x+b) \geq \operatorname{dim}^{a, b}(x)+\min \left\{\operatorname{dim}(a, b), \operatorname{dim}^{a, b}(x)\right\} .
$$

Corollary (N. Lutz and Stull)

If $\operatorname{dim}(a, b)<1$, then

$$
\operatorname{sp}\left(L_{a, b}\right) \supseteq[2 \operatorname{dim}(a, b), 1+\operatorname{dim}(a, b)] .
$$

If $\operatorname{dim}(a, b) \geq 1$, then

$$
2 \in \operatorname{sp}\left(L_{a, b}\right)
$$

This theorem gives improved bounds on Furstenberg sets for certain values of α and β.

Framework

Fix a line $L_{a, b}$. Assume that $\operatorname{dim}(a, b)=d<1$. Let $x \in[0,1]$ be random relative to (a, b).

Fix a precision r. Assume that $K_{r}(a, b)=d r$. We want to prove that

$$
K_{r}(x, a x+b) \geq K_{r}(x, a, b)=(1+d) r
$$

It suffices to show that, given a 2^{-r} approximation of $(x, a x+b)$, we can compute a 2^{-r} approximation of (x, a, b).

- How can we compute (an approximation of) a line only given a point?
- The line $L_{a, b}$ is special - it is of low complexity.
- Want to show that it is essentially the only low complexity line intersecting $(x, a x+b)$.

Framework

Want to show that (a, b) is essentially the only low complexity line intersecting $(x, a x+b)$.

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.

Framework

Want to show that (a, b) is essentially the only low complexity line intersecting $(x, a x+b)$.

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.

Framework

Suppose that (u, v) intersects $(x, a x+b)$. Let $t=-\log \|(a, b)-(u, v)\|$. Then

$$
K_{r-t}^{a, b}(x) \leq K_{r}^{a, b}(u, v)
$$

Framework

Suppose that (u, v) intersects $(x, a x+b)$, and $K_{r}(u, v) \leq d r$. Let $t=-\log \|(a, b)-(u, v)\|$. Then

$$
K_{r-t}^{a, b}(x) \leq K_{r}^{a, b}(u, v)
$$

Since x is random relative to (a, b),

$$
r-t \leq K_{r}^{a, b}(u, v)
$$

Since (u, v) shares the first t bits with (a, b), and $K_{r}(u, v) \leq d r$,

$$
r-t \leq d r-d t
$$

This cannot happen if $d<1$, and therefore (a, b) is the unique line such that

- (a, b) intersects $(x, a x+b)$, and
- $K_{r}(a, b) \leq d r$.

Framework

- The general intersection lemma shows that

$$
s(r-t) \leq K_{r}^{a, b}(u, v) \leq d(r-t)
$$

where $s=\operatorname{dim}^{a, b}(x)$.

- This proof makes essential use of the assumption that s was greater than d.
- The obstacle when s is smaller than d seems very deep.
- Heart of the difficulty of the Kakeya conjecture, Furstenberg set conjecture,...

Dimension Spectrum Conjecture

Goal: Given a line (a, b), for every $s \in(0,1]$, construct a point x such that

- $\operatorname{dim}^{a, b}(x)=s$.
- $\operatorname{dim}(x, a x+b)=s+\min \{\operatorname{dim}(a, b), 1\}$.

For simplicity, let $\operatorname{dim}(a, b)=d<1$ and let r be a precision such that $K_{r}(a, b)=d r$. Want to construct a point x (finite binary string) such that

- $K_{r}^{a, b}(x)=s r$.
- $K_{r}(x, a x+b)=(s+d) r$.

Dimension Spectrum Conjecture

Let $\operatorname{dim}(a, b)=d<1$ and let r be a precision such that $K_{r}(a, b)=d r$.
Want to construct a point x (finite binary string) such that

- $K_{r}^{a, b}(x)=s r$.

Two immediate ideas:

- Take random, relative to (a, b), string and every change every $\frac{1}{s}$ th bit to 0 .
- Constructions of Furstenberg sets from geometric measure theory seem to rule this out.
- Take random, relative to (a, b), string and set all bits after index $s r$ to 0.
- Runs into the main obstacle.

Dimension Spectrum Conjecture

We use the structure of the problem to remove the main obstacle:

- Take random, relative to (a, b), string of length sr and concatenate the first $r-s r$ bits of a.
Thus, our string x satisfies

$$
K_{r}^{a, b}(x)=s r .
$$

Moreover, for all $r^{\prime} \leq s r$,

$$
K_{r^{\prime}}^{a, b}(x)=r^{\prime} .
$$

Key point: For precisions less than sr, we are essentially in the high complexity case we know how to solve.

Dimension Spectrum Conjecture

Suppose that (u, v) intersects $(x, a x+b)$, and $K_{r}(u, v) \leq d r$. Let $t=-\log \|(a, b)-(u, v)\|$, and suppose that $t \geq r-s r$.

$$
K_{r-t}^{a, b}(x) \leq K_{r}^{a, b}(u, v)
$$

Since x is random relative to (a, b) at precisions less than $s r$,

$$
r-t \leq K_{r}^{a, b}(u, v) \leq d r-d t
$$

Therefore (a, b) is the unique line such that

- (u, v) intersects $(x, a x+b)$,
- $K_{r}(u, v) \leq d r$, and
- $t=-\log \|(a, b)-(u, v)\| \geq r-s r$

We would be done if we could restrict our search to lines such that

$$
t=-\log \|(a, b)-(u, v)\| \geq r-s r
$$

Dimension Spectrum Conjecture

Given a 2^{-r} approximation of $(x, a x+b)$:
(1) We have access to the first r bits of x.
(2) Thus, we know the first $r-s r$ bits of a.
(3) Combining these with our approximation of $(x, a x+b)$ we can compute the first $r-s r$ bits of b.
(9) Hence, we know the first $r-s r$ bits of (a, b), and can restrict our search for lines (u, v) such that

- (u, v) intersects $(x, a x+b)$
- $K_{r}(u, v) \leq d r$, and
- $t=-\log \|(a, b)-(u, v)\| \geq r-s r$
(6) (a, b) is the only such line, and so $K_{r}(x, a x+b) \geq K_{r}(x, a, b)=s+d$.

Dimension Spectrum Conjecture

Full proof of low dimensional lines $(\operatorname{dim}(a, b) \leq 1)$

- Choose very sparse set of precisions r such that $K_{r}(a, b)=d r$, and modify the bits of x.
- At these precisions, the previous argument works.
- For other precisions, need a slightly different approach.

High dimensional lines $(\operatorname{dim}(a, b)>1)$

- This argument doesn't immediately work.
- It will only prove that $K_{r}(x, a x+b) \geq(s+1) r$, but we need this to be an equality.
- In this case, we use a non-constructive argument.
- Consider strings $x_{0}, \ldots, x_{r-s r}$. The point x_{m} encodes first m bits of a.
- We can upper bound the point corresponding to x_{0}, and we have a good lower bound for $x_{r-s r}$.
- Using a discrete version of MVT, we show that some point has dimension $(s+1)$.

The End

Thank you!

The Kakeya Conjecture

Question

Let $E \subseteq \mathbb{R}^{n}$ be a set containing a line in every direction (a Kakeya set). How big must E be?.

- Besicovitch: Can have measure 0 .
- Davies: In \mathbb{R}^{2}, Kakeya sets must have Hausdorff dimension 2.
- For $n>2$ this is still an open question.

Conjecture (Kakeya Conjecture)

Every Kakeya set in \mathbb{R}^{n} has Hausdorff dimension n.

Furstenberg Sets

Definition

Let $\alpha, \beta \in(0,1]$. A set of Furstenberg type with parameters α and β is a subset $F \subseteq \mathbb{R}^{2}$ such there is a set $J \subseteq S^{1}$ (set of directions) satisfying the following.

- $\operatorname{dim}_{H}(J) \geq \beta$.
- For every e $\in J$, there is a line l_{e} in the direction of e such that $\operatorname{dim}_{H}\left(F \cap I_{e}\right) \geq \alpha$.

Open question: For α, β, how big must a set of Furstenberg type with parameters α and β be?

Theorem (Molter and Rela)

For all $\alpha, \beta \in(0,1]$ and every set $E \in F_{\alpha, \beta}$,

$$
\operatorname{dim}_{H}(E) \geq \alpha+\max \left\{\frac{\beta}{2}, \alpha+\beta-2\right\} .
$$

