
1 Simple Random Walk

We consider one of the basic models for random walk, simple random walk on the integer
lattice Z

d. At each time step, a random walker makes a random move of length one in one
of the lattice directions.

1.1 One dimension

We start by studying simple random walk on the integers. At each time unit, a walker flips
a fair coin and moves one step to the right or one step to the left depending on whether the
coin comes up heads or tails. We let Sn denote the position of the walker at time n. If we
assume that the walker starts at x, we can write

Sn = x + X1 + · · ·+ Xn

where X1, X2, . . . are independent random variables with P{Xj = 1} = P{Xj} = −1 = 1/2.
In this chapter we assume that the walker starts at the origin (x = 0) and investigate

where we expect the walker to be. The main questions are:

• On the average, how far is the walker from the starting point?

• What is the probability distribution for the position of the walker?

• What is the probability that at a particular time the walker is at the origin?

• Does the random walker keep returning to the origin or does the walker eventually
leave forever?

Probabilists use the notation E for expectation (also called expected value, mean, average
value) defined for discrete random variables by

E[X] =
∑

z

z P{X = z}.

The random walk satisifes E[Sn] = 0 since steps of +1 and −1 are equally likely. To compute
the average distance, one might try to compute E [|Sn|]. It turns out to be much easier to
compute E[S2

n],

E[S2
n] = E





(

n
∑

j=1

Xj

)2




= E

[

n
∑

j=1

n
∑

k=1

XjXk

]

=

n
∑

j=1

n
∑

k=1

E[XjXk] = n +
∑

j 6=k

E[XjXk].

1



This calculation uses an easy (but very important) property of average values: E[X + Y ] =
E[X] + E[Y ]. If j 6= k, then XjXk is equally likely to be +1 and −1 and so the expectation
is zero. We therefore get

Var[Sn] = E[S2
n] = n.

The variance of a random variable is defined by

Var[X] = E
[

(X − EX)2
]

= E[X2] − (EX)2

(a simple calculation establishes the second equality). Our calculation illustrates an impor-
tant fact about variances of sums: if X1, . . . , Xn are independent, then

Var[X1 + · · · + Xn] = Var[X1] + · · ·+ Var[Xn].

Sum rules like this make it much easier to compute averages of the square of a random
variable than other powers. In many ways, this is just an analogy of the Pythagorean
theorem from geometry: the independence of the random variables is the analogue of the
idea of perpendicular or orthogonal vectors.

The next question is: what is the probability that the walker is at the origin after n steps?
Before computing this very accurately, let us do a heuristic argument. Since E[S2

n] = n, the
typical distance away from the origin is of order

√
n. There are about

√
n even integers that

are distance
√

n from the starting point, so one might guess that the probability for being
at a particular one should decay like n−1/2. This is indeed the case as we demonstrate.

In fact, it is easy to give an exact formula for the distribution of the walker after n steps.
It is easy to see that after an odd number of steps the walker is at at odd integer and after
an even number of steps the walker is at an even integer. Therefore, P{Sn = x} = 0 if n + x
is odd. Let us suppose the walker has taken an even number of steps, 2n. In order for the
walker to be back at the origin at time 2n there need to be exactly n “+1” steps and n “−1”
steps. The number of ways to choose which n steps are +1 is

(

2n
n

)

and each particular choice
of 2n +1s and −1s has probability 2−2n of occuring. Therfore,

P{S2n = 0} =

(

2n

n

)

2−2n =
(2n)!

n! n!
2−2n.

More generally,

P{S2n = 2j} =

(

2n

n + j

)

2−2n =
(2n)!

(n + j)! (n − j)!
2−2n.

While these formulas are exact, it is not obvious how to use them because they contain ratios
of very large numbers. Trying to understand this quantity leads to studying the behavior of
n! as n gets large. This we discuss in the next section.
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1.2 Stirling’s formula

Stirling’s formula states that as n → ∞,

n! ∼
√

2π nn+ 1

2 e−n,

where ∼ means that the ratio of the two sides tends to 1. We will prove this in the next two
subsections. In this subsection we will prove that there is a positive number C0 such that

lim
n→∞

bn = C0, where bn =
n!

nn+ 1

2 e−n
, (1)

and in Section 1.3 we show that C0 =
√

2π. To start, it is easy to check that b1 = e and if
n ≥ 2,

bn

bn−1
= e

(

n − 1

n

)n− 1

2

= e

(

1 − 1

n

)n (

1 − 1

n

)−1/2

.

Let δn = (bn/bn−1) − 1 so that for n ≥ 2,

bn = b1

n
∏

m=2

bm

bm−1

= e
n
∏

m=2

[1 + δm].

Then (1) can be restated as saying that the infinite product

e
∞
∏

n=2

[1 + δn] = lim
N→∞

e
N
∏

n=2

[1 + δn]

converges to a positive constant that we call C0. By taking the logarithm of both sides, we
see that convergence to a positive constant is equivalent to

∞
∑

n=2

log[1 + δn] < ∞. (2)

One of the most important tools for determining limits is Taylor’s theorem with remain-
der, a version of which we now recall. Suppose f is a Ck+1 function. Let Pk(x) denote the
kth order Taylor series polynomial about the origin. Then, for x > 0

|f(x) − Pk(x)| ≤ ak xk+1,

where

ak =
1

(k + 1)!
max
0≤t≤x

|f (k+1)(t)|.

A similar estimate is derived for negative x by considering f̃(x) = f(−x). The Taylor series
for the logarithm gives

log(1 + u) = u − u2

2
+

u3

3
− · · · ,
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which is valid for |u| < 1. In fact, the Taylor series with remainder tells us that for every
positive integer k

log(1 + u) = Pk(u) + O(|u|k+1), (3)

where Pk(u) = u − (u2/2) + · · · + (−1)k+1(uk/k). The O(|u|k+1) denotes a term that is
bounded by a constant time |u|k+1 for small u. The Taylor series with remainder implies
that there is a constant ck such that for all |u| ≤ 1/2,

| log(1 + u) − Pk(u)| ≤ ck |u|k+1. (4)

We will use the O(·) notation as in (3) when doing asymptotics — in all cases this will be
shorthand for a more precise statement as in (4).

By taking the Taylor series, we can see that to prove (2) assuming 1 + δn > 0 for all n, it
suffices to show that

∑

|δn| < ∞. We will establish this by showing that δn = O(n−2), i.e.,
there is a c such that

|δn| ≤
c

n2
.

To see this consider (1 − 1
n
)n which we know approaches e−1 as n gets large. We use the

Taylor series to estimate how fast it converges. We write

log

(

1 − 1

n

)n

= n log

(

1 − 1

n

)

= n

[

−1

n
− 1

2n2
+ O(n−3)

]

= −1 − 1

2n
+ O(n−2).

log

(

1 − 1

n

)−1/2

=
1

2n
+ O(n−2).

By adding the terms we finish the proof of (1). In fact (see Exercise 6.19) we can show that

n! = C0 nn+ 1

2 e−n
[

1 + O(n−1)
]

. (5)

1.3 Central limit theorem

Let Sn be the position of a simple random walker on the integers assuming S0 = 0. For every
integer j,

P{S2n = 2j} =

(

2n

n + j

)

2−2n =
2n!

(n + j)!(n − j)!
.

Let us assume that |j| ≤ n/2 . Then plugging into Stirling’s formula and simplifying gives

P{S2n = 2j} ∼
√

2

C0

(

1 − j2

n2

)−n (

1 +
j

n

)−j (

1 − j

n

)j (
n

n2 − j2

)1/2

. (6)

In fact (if one uses (5)), there is a c such that the ratio of the two sides is within distance
c/n of 1 (assuming |j| ≤ n/2).
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What does this look like as n tends to infinity? Let us first consider the case j = 0. Then
we get that

P{S2n = 0} ∼
√

2

C0 n1/2
.

We now consider j of order
√

n. If we write j = r
√

n, the right hand side of (6) becomes

√
2

C0

√
n

(

1 − r2

n

)−n
[

(

1 +
r√
n

)−√
n
]r [

(

1 − r√
n

)−√
n
]−r

(

1

1 − (r2/n)

)1/2

.

As n → ∞, this is asymptotic to

√
2

C0

√
n

er2

e−r2

e−r2

=

√
2

C0

√
n

e−j2/n.

For every a < b,

lim
n→∞

P{a
√

2n ≤ S2n ≤ b
√

2n} = lim
n→∞

∑

√
2

C0

√
n

e−j2/n,

where the sum is over all j with a
√

2n ≤ 2j ≤ b
√

2n. The right hand side is the Riemann
sum approximation of an integral where the intervals in the sum have length

√

2/n. Hence
the limit is

∫ b

a

1

C0
e−x2/2 dx.

This limiting distribution must be a probability distribution, so we can see that

∫ ∞

−∞

1

C0
e−x2/2 dx = 1.

This gives the value C0 =
√

2π (see Exercise 6.21), and hence Stirling’s formula can be
written as

n! =
√

2π nn+ 1

2 e−n
[

1 + O(n−1)
]

,

where this means that there exists a c such that for all n,

∣

∣

∣

∣

n!√
2π nn+ 1

2 e−n
− 1

∣

∣

∣

∣

≤ c

n
.

1.4 Returns to the origin

We now consider the number of times that the random walker returns to the origin. Let
Jn = 1{Sn = 0}. Here we use the indicator function notation: if E is an event, then 1E or
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1(E) is the random variable that takes the value 1 if the event occurs and 0 if it does not
occur. The total number of visits to the origin by the random walker is

V =

∞
∑

n=0

J2n.

Note that

E[V ] =

∞
∑

n=0

E[J2n] =

∞
∑

n=0

P{S2n = 0}.

We know that P{S2n = 0} ∼ c/
√

n as n → ∞. Also,
∑

n−a converges if and only if a > 1.
Therefore,

E[V ] = ∞.

Let q be the probability that the random walker ever returns to the origin after time 0.
We will show that q = 1 by first assuming q < 1 and deriving a contradiction. Suppose that
q < 1. Then we can give the distribution for V . For example, P{V = 1} = (1 − q) since
V = 0 if and only if the walker never returns after time zero. More generally,

P{V = k} = qk−1 (1 − q), k = 1, 2, . . .

This tells us that

E[V ] =
∞
∑

k=1

k P{V = k} =
∞
∑

k=1

k qk (1 − q) =
1

1 − q
< ∞.

But, we know that E[V ] = ∞. Hence it must be the case that q = 1. We have established
the following.

Theorem 1.1. The probability that a (one-dimensional) simple random walker returns to
the origin infinitely often is one.

Note that this also implies that if the random walker starts at x 6= 0, then the probability
that it will get to the origin is one.

1.5 Several dimensions

We now consider a random walker on the d-dimensional integer grid

Z
d = {(x1, . . . , xd) : xj integers} .

At each time step, the random walker chooses one of its 2d nearest neighbors, each with
probability 1/2d, and moves to that site. We again let

Sn = x + X1 + · · ·+ Xn
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denote the position of the particle. Here x, X1, . . . , Xn, Sn represent points in Z
d. If S0 = 0,

then E[Sn] = 0. Note that E[Xj · Xj] = 1 and E[Xj · Xk] = 0 if j 6= k. A calculation as in
the one-dimensional case gives

E[|Sn|2] = E[Sn · Sn] = E

[(

n
∑

j=1

Xj

)

·
(

n
∑

j=1

Xj

)]

= n.

What is the probability that we are at the origin after n steps assuming S0 = 0? This is
zero if n is odd. If n is even, let us give a heuristic argument. The typical distance from the
origin of Sn is of order

√
n. In d dimensions that number of lattice points with distance

√
n

grows like (
√

n)d. Hence the probability that we choose a particular point should decay like
a constant times n−d/2.

The combinatorics for justifying this is a little more complicated than in the one dimen-
sional case so we will just wave our hands to get the right behavior. In 2n steps, we expect
that approximately 2n/d of them will be taken in each of the d possible directions (e.g., if
d = 2 we expect about n horizontal and n vertical steps). In order to be at the origin, we
need to take an even number of steps in each of the d-directions. The probability of this
(Exercise 6.17) is 2−(d−1). Given that each of these numbers is even, the probability that
each individual component is at the origin is the probability that a one dimensional walk is
at the origin at time 2n/d (or, more precisely, an even integer very close to 2n/d). Using
this idea we get the asymptotics

P{S2n = 0} ∼ cd

nd/2
, cd =

dd/2

πd/2 2d−1
.

Consider the expected number of returns to the origin. If V is the number of visits to
the origin,

E[V ] =

∞
∑

n=0

P{S2n = 0}.

Since P{S2n = 0} ∼ c/nd/2,

E[V ]

{

< ∞, d ≥ 3
= ∞, d = 2

.

Theorem 1.2. Suppose Sn is simple random walk in Z
d. If d = 1, 2, the random walk is

recurrent, i.e., with probability one it returns to the origin infinitely often. If d ≥ 3, the
random walk is transient, i.e., with probability one it returns to the origin only finitely often.
Also,

P{Sn 6= 0 for all n > 0 | S0 = 0} > 0 if d ≥ 3.
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2 Dirichlet problem

2.1 One-dimension: gambler’s ruin

Let us fix a positive integer N and suppose that a random walker on the integers starts at
x ∈ {0, 1, . . . , N}. Let Sn denote the position of the walker at time n. We will stop the
walker when the walker reaches 0 or N . To be more precise, we let

T = min {n : Sn = 0 or N} ,

and consider Ŝn = Sn∧T . Here n ∧ T means the minimum of n and T . We know that with
probability one T < ∞. Define the function F : {0, . . . , N} → [0, 1] by

F (x) = P{ST = N}.

We can give a gambling interpretation to this by viewing Sn as the current winnings of a
gambler who at each time step plays a fair game winning or losing one unit. The gambler
starts with a bankroll of x and plays until he or she has N or has gone bankrupt. The chance
that the gambler does not go bankrupt before attaining N is F (x). Clearly, F (0) = 0 and
F (N) = 1. Suppose 0 < x < N . After the first game, the bankroll of the gambler is either
x − 1 or x + 1, and each of these outcomes is equally likely. Therefore,

F (x) =
1

2
F (x + 1) +

1

2
F (x − 1), x = 1, . . . , N − 1. (7)

One function F that satisfies (7) with the boundary conditions F (0) = 0, F (N) = 1 is
F (x) = x/N . In fact, this is the only solution as we show now see.

Theorem 2.1. Suppose a, b are real numbers and N is a positive integer. Then the only
function F : {0, . . . , N} → R satisfying (7) with F (0) = a and F (N) = b is the linear
function

F0(x) = a +
x(b − a)

N
.

This is a fairly easy theorem to prove. In fact, we will give several proofs. It is often
useful to give different proofs to the same theorem because it gives us a number of different
approaches to trying to prove generalizations. It is immediate that F0 satisfies the conditions;
the real question is one of uniqueness.

Proof 1. Consider the set V of all functions F : {0, . . . , N} → R that satisfy (7). It is
easy to check that V is a vector space, i.e., if f, g ∈ V and c1, c2 are real numbers, then
c1f + c2g ∈ V. In fact, we claim that this vector space has dimension two. To see this, we
will give a basis. Let f1 be the function defined by f1(0) = 0, f1(1) = 1 and then extended
in the unique way to satisfy (7). In other words, we define f1(x) for x > 1 by

f1(x) = 2f1(x − 1) − f1(x − 2).
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It is easy to see that f1 is the only solution to (7) satisfying f1(0) = 0, f1(1) = 1. We define
f2 similarly with initial conditions f2(0) = 1, f2(1) = 0. Then c1f1 + c2f2 is the unique
solution to (7) satisfying f1(0) = c2, f1(1) = c1. The set of functions of the form F0 as a, b
vary form a two dimensional subspace of V and hence must be all of V.

Proof 2. Suppose F is a solution to (7). Then for each 0 < x < N ,

F (x) ≤ max{F (x − 1), F (x + 1)}.

Using this we can see that the maximum of F is obtained either at 0 or at N . Similarly, the
minimum of F is obtained on {0, N}. Suppose F (0) = 0, F (N) = 0. Then the minimum
and the maximum of the function are both 0 which means that F ≡ 0. Suppose F (0) =
a, F (N) = b and let F0 be the linear function with these same boundary values. Then F −F0

satisfies (7) with boundary value 0, and hence is identically zero. This implies that F = F0.

Proof 3. Consider the equations (7) as N − 1 linear equations in N − 1 unknowns,
F (1), . . . , F (N − 1). We can write this as

Av = w,

where

A =



















−1 1
2

0 0 · · · 0 0
1
2

−1 1
2

0 · · · 0 0
0 1

2
−1 1

2
· · · 0 0
...

0 0 0 0 · · · −1 1
2

0 0 0 0 · · · 1
2

−1



















, w =



















−F (0)
0
0
...
0

−F (N)



















.

If we prove that A is invertible, then the unique solution is v = A−1w. To prove invertibility
it suffices to show that Av = 0 has a unique solution and this can be done by an argument
as in the previous proof.

Proof 4. Suppose F is a solution to (7). Let Sn be the random walk starting at x. We claim
that for all n, E[F (Sn∧T )] = F (x). We will show this by induction. For n = 0, F (S0) = F (x)
and hence E[F (S0)] = x. To do the inductive step, we use a rule for expectation in terms of
conditional expectations:

E[F (S(n+1)∧T )] =
N
∑

y=0

P{Sn∧T = y}E[F (S(n+1)∧T ) | Sn∧T = y].

If y = 0 or y = N and Sn∧T = y, then S(n+1)∧T = y and hence E[F (S(n+1)∧T ) | Sn∧T = y] =
F (y). If 0 < y < x and Sn∧T = y, then

E[F (S(n+1)∧T ) | Sn∧T = y] =
1

2
F (y + 1) +

1

2
F (y − 1) = F (y).
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Therefore,

E[F (S(n+1)∧T )] =
N
∑

y=0

P{Sn∧T = y}F (y) = E[F (Sn∧T )] = F (x),

with the last inequality holding by the inductive hypothesis. Therefore,

F (x) = lim
n→∞

E[F (S(n+1)∧T )]

= lim
n→∞

N
∑

y=0

P{Sn∧T = y}F (y)

= P{ST = 0}F (0) + P{ST = N}F (N)

= [1 − P{ST = N}] F (0) + P{ST = N}F (N).

Considering the case F (0) = 0, F (N) = 1 gives P{ST = N | S0 = x} = x/N and for more
general boundary conditions,

F (x) = F (0) +
x

N
[F (N) − F (0)].

One nice thing about the last proof is that we did not need to have already guessed the
linear functions as solutions. The proof produces these solutions.

2.2 Higher dimensions

We will generalize this result to higher dimensions. We replace the interval {1, . . . , N} with
an arbitrary finite subset A of Z

d. We let ∂A be the (outer) boundary of A defined by

∂A = {z ∈ Z
d \ A : dist(z, A) = 1},

and we let A = A ∪ ∂A be the “closure”1 of A. We define the linear operators Q,L on
functions by

QF (x) =
1

2d

∑

y∈Zd,|x−y|=1

F (y),

LF (x) = (Q − I)F (x) =
1

2d

∑

y∈Zd,|x−y|=1

[F (y) − F (x)]

(The term linear operator is often used for a linear function whose domain is a space of
functions. In our case, the domain is the space of functions on the finite set A which
is isomorphic to R

K where K = #(A). Hence a linear operator is the same as a linear
transformation from linear algebra. We can think of Q and L as matrices.) The operator L

1This terminology may seem strange, but in the continuous analogue, A will be an open set, ∂A its

topological boundary and A = A ∪ ∂A its topological closure.
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is often called the (discrete) Laplacian. We let Sn be a simple random walk in Z
d. Then we

can write
LF (x) = E[F (S1) − F (S0) | S0 = x].

We say that F is (discrete) harmonic at x if LF (x) = 0; this is an example of a mean-value
property.

Dirichlet problem for harmonic functions. Given a set A ⊂ Z
d and a function F :

∂A → R find an extension of F to A such that is harmonic in A, i.e.,

LF (x) = 0 for all x ∈ A. (8)

We let TA = min{n : Sn 6∈ A}.

Theorem 2.2. If A ⊂ Z
d is finite, then for every F : ∂A → R, there is a unique extension

of F to A that satisfies (8). It is given by

F0(x) = E[F (STA
) | S0 = x] =

∑

y∈∂A

P{STA
= y | S0 = x}F (y).

It is not difficult to verify that F0 as defined above is a solution to the Dirichlet problem.
The problem is to show that it is unique. Let us consider the last method of proof in the
previous section. Suppose F is harmonic on A; S0 = x ∈ A; and let

Mn = F (Sn∧TA
).

Then (8) can be rewritten as

E[Mn+1 | S0, . . . , Sn] = F (Sn∧TA
) = Mn. (9)

A process that satisfies E[Mn+1 | S0, . . . , Sn] = Mn is called a martingale (with respect to the
random walk). It is easy to see that F (Sn∧TA

) being a martingale is essentially equivalent
to F being harmonic on A. It is easy to check that martingales satisfy E[Mn] = E[M0], and
hence if S0 = x,

E[Mn] =
∑

y∈A

P{Sn∧TA
= y}F (y) = M0 = F (x).

An easy argument shows that with probability one TA < ∞. We can take limits and get

F (x) = lim
n→∞

∑

y∈A

P{Sn∧TA
= y}F (y) =

∑

y∈∂A

P{STA
= y}F (y).

(There is no problem interchanging the limit and the sum because it is a finite sum.)
Let us consider this from the perspective of linear algebra. Suppose that A has N elements

and ∂A has K elements. The solution of the Dirichlet problem can be considered as a linear
function from the set of functions on ∂A to the set of functions on A (the reader should
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check that this is a linear transformation). Any such function can be written in terms of an
N × K matrix which we write as

HA = [HA(x, y)]x∈A,y∈∂A

What we have shown is that

HA(x, y) = P {STA
= y | S0 = x} .

This matrix is often called the Poisson kernel. For a given set A, we can solve the Dirichlet
problem for any boundary function in terms of the Poisson kernel.

What happens if we allow A to be an infinite set? In this case it is not always true that the
solution is unique. Let us consider the one-dimensional example with A = {1, 2, 3, . . .} and
∂A = {0}. Then for every c ∈ R, the function F (x) = cx is harmonic in A with boundary
value 0 at the origin. Where does our proof break down? This depends on which proof we
consider (they all break down!), but let us consider the martingale version. Suppose F is
harmonic on A with F (0) = 0 and suppose Sn is a simple random walk starting at positive
integer x. As before, we let T = min{n : Sn = 0} and Mn = F (Sn∧T ). The same argument
shows that Mn is a martingale and

F (x) = E[Mn] =
∞
∑

y=0

F (y) P{Sn∧T = y}.

We have shown in a previous chapter that with probability one T < ∞. This implies

lim
n→∞

∑

y>0

P{Sn∧T = y} = 0.

However, if F is unbounded, we cannot conclude from this that

lim
n→∞

∑

y>0

F (y) P{Sn∧T = y} = 0.

However, we do see from this that there is only one bounded function that is harmonic on A
with a given boundary value at 0.

3 Heat equation

We will now introduce the discrete heat equation which is a model for heat flow. Let A be
a finite subset of Z

d with boundary ∂A. Suppose we set the temperature at the boundary
to be zero. Consider the temperature in A to be controlled by a very large number of “heat
particles”. These particles perform random walks on A until they leave A at which time
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they are killed. The temperature at x at time n, pn(x) is given by the density of particles
at x. The random walk rule gives the relation

pn+1(x) =
1

2d

∑

|y−x|=1

pn(y).

If we introduce the notation ∂npn(x) = pn+1(x) − pn(x), we get the heat equation

∂npn(x) = Lpn(x), x ∈ A. (10)

The initial temperature is given as an initial condition

p0(x) = f(x), x ∈ A. (11)

The boundary condition is
pn(x) = 0, x ∈ ∂A. (12)

If x ∈ A and the initial condition is f(x) = 1 and f(z) = 0 for z 6= x, then

pn(y) = P{Sn∧TA
= y | S0 = x}.

Given any initial condition f , it is easy to see that there is a unique function pn satisfing
(10)–(12). Indeed, we just set p0(x) = f(x), x ∈ A and for n > 0, we define pn(x), x ∈ A
recursively by (10). This tells us that set of functions satisfying (10) and (12) is a vector
space of dimension #(A). In fact, {pn(x) : x ∈ A} is the vector Qnf .

Once we have existence and uniqueness, the problem remains to find the function. For
a bounded set A, this is a problem in linear algebra and essentially becomes the question of
diagonalizing the matrix Q. We will state an important fact from linear algebra.

Theorem 3.1. Suppose A is a k×k symmetric matrix. Then we can find k (not necessarily
distinct) real eigenvalues

λk ≤ λk−1 ≤ · · · ≤ λ1,

and k orthogonal vectors v1, . . . ,vk that are eigenvectors,

Avj = λj vj .

Example Let us compute the function pn in the case d = 1, A = {1, . . . , N − 1}. We start
by looking for functions satisfying (10) of the form

pn(x) = λn φ(x). (13)

If pn is of this form, then
∂npn(x) = (λ − 1) pn(x).

This leads us to look for eigenvalues and eigenfunctions of Q, i.e., to find λ, φ such that

Qφ(x) = λ φ(x), (14)

13



with φ ≡ 0 on ∂A. The sum rule for sine

sin((x ± 1)θ) = sin(xθ) cos(θ) ± cos(xθ) sin(θ),

tells us that
Q[sin(θx)] = λθ sin(θx), λθ = cos θ.

If we choose φj(x) = sin(πjx/N), then we satisfy the boundary condition φj(0) = φj(x) = 0.
Since these are eigenvectors with different eigenvalues, we know that they are orthogonal,
and hence linearly independent. Hence every function f on A can be written in a unique
way as a finite Fourier series

f(x) =
N−1
∑

j=1

cj sin

(

πjx

N

)

, (15)

and the solution to the heat equation with initial condition f is

pn(y) =
N−1
∑

j=1

cj

[

cos

(

jπ

N

)]n

φj(y).

It is not difficult to check that

N−1
∑

x=1

sin

(

πjx

N

)

sin

(

πkx

N

)

=

{

N−1
2

if j = k
0 if j 6= k

.

(For j 6= k this is orthogonality of different eigenvectors. For j = k one can show that the
sum is the same if we replace sin wth cos and we can add the sums.) In particular, if we
choose the solution with initial condition f(x) = 1; f(z) = 0, z 6= x is

P{Sn∧TA
= y | S0 = x} 2

N − 1

N−1
∑

j=1

φj(x)

[

cos

(

jπ

N

)]n

φj(y).

As n → ∞, this sum is dominated by the j = 1 and j = N−1 terms for which the eigenvalue
has maximal absolute value. These two terms give

2

N − 1
cosn

(

2π

N

) [

sin
(πx

N

)

sin
(πy

N

)

+ (−1)n sin

(

xπ(N − 1)

N

)

sin

(

yπ(N − 1)

N

)]

.

One can check that

sin

(

xπ(N − 1)

N

)

= (−1)x sin
(πx

N

)

,

and hence if x, y ∈ {1, . . . , N − 1}, as n → ∞,

P{Sn∧TA
= y | S0 = x} ∼ 4

N − 1
cosn

(

2π

N

)

(−1)n+x+y sin
(πx

N

)

sin
(πy

N

)

.
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The technique of finding solutions of the form (13) goes under the name of separation of
variables. In the case of finite A this is essentially the same as computing powers of a matrix
by diagonalization. We summarize here.

Theorem 3.2. If A is a finite subset of Z
d with N elements, then we can find N linearly

independent functions φ1, . . . , φN that satisfy (14) with real eigenvalues λ1, . . . , λN . The
solution to (10)–(12) is given by

pn(x) =

N
∑

j=1

cj λn
j φj(x),

where cj are chosen so that

f(x) =
N
∑

j=1

cj φj(x).

In fact, the φj can be chosen to be orthonormal,

〈φj, φk〉 :=
∑

x∈A

φj(x) φk(x) = δ(k − j).

Here we have introduced the delta function notation, δ(z) = 1 if z = 0 and δ(z) = 0 if
z 6= 0. Since pn(x) → 0 as n → ∞, we know that the eigenvalues have absolute value strictly
less than one. We can order the egienvalues

1 > λ1 ≥ λ2 ≥ · · · ≥ λN > −1.

We will write p(x, y; A) to be the solution of the heat equation with initial condition equal
to one at x and 0 otherwise. In other words,

pn(x, y; A) = P{Sn = y, TA > n | S0 = x}, x, y ∈ A.

Then if #(A) = N ,

pn(x, y; A) =
N
∑

j=1

cj(x) λn
j φj(y)

where cj(x) have been chosen so that

N
∑

j=1

cj(x)φj(y) = δ(y − x).

In fact, this tells us that cj(x) = φj(x). Hence

pn(x, y; A) =

N
∑

j=1

λn
j φj(x) φj(y).
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Note that the quantity on the right is symmetric in x, y. One can check that the symmetry
also follows from the defintion of pn(x, y; A).

The largest eigenvalue λ1 is often denoted λA. We can give a “variational” definition of
λA as follows.

Theorem 3.3. If A is a finite subset of Z
d, then λA is given by

λA = sup
f

〈Qf, f〉
〈f, f〉 ,

where the supremum is over all functions f on A, and 〈·, ·〉 denotes inner product

〈f, g〉 =
∑

x∈A

f(x) g(x).

The proof of this is easy. First, if φ is an eigenvector with eigenvalue λ1, then Qφ = λ1φ
and plugging in φ shows that the supremum is at least as large as λ1. Conversely, there is
an orthogonal basis of eigenfunctions φ1, . . . , φN and we can write any f as

f =
N
∑

j=1

cj φj.

Then

〈Qf, f〉 =

〈

Q

N
∑

j=1

cj φj,

N
∑

j=1

cj φj

〉

=

〈

N
∑

j=1

cjQφj,

N
∑

j=1

cj φj

〉

=
∑

j=1

cj λj 〈φj, φj〉

≤ λ1

∑

j=1

cj 〈φj, φj〉 = λ1 〈f, f〉.

The reader should check that the computation above uses the orthogonality of the eigen-
functions and also the fact that 〈φj, φj〉 ≥ 0.

Using this variational formulation, we can see that the eigenfunction for λ1 can be chosen
so that φ1(x) ≥ 0 for each x (since if φ1 took on both positive and negative values, we would
have 〈Q|φ1|, |φ1|〉 > 〈φ1, φ1〉). The eigenfunction is unique, i.e., λ2 < λ1, provided we put
an additional condition on A. We say that a subset A on Z

d is connected if any two points
in A are connected by a nearest neighbor path that stays entirely in A. Equivalently, A is
connected if for each x, y ∈ A there exists an n such that pn(x, y; A) > 0. We leave it as
Exercise 6.23 to show that this implies that λ1 > λ2.

Before stating the final theorem, we need to discuss some parity (even/odd) issues. If
x = (x1, . . . , xd) ∈ Z

d we let e(x) = (−1)x1+···+xd. We call x even if e(x) = 1 and otherwise
x is odd. If n is a nonnegative integer, then

pn(x, y; A) = 0 if (−1)ne(x + y) = −1.

If Qφ = λφ, then Q[eφ] = −λeφ.
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Theorem 3.4. Suppose A is a finite connected subset of Z
d with at least two points. Then

λ1 > λ2, λN = −λ1 < λN−1. The eigenfunction φ1 can be chosen so that φ1(x) > 0 for all
x ∈ A.

lim
n→∞

λ−n
1 pn(x, y; A) = [1 + (−1)n e(x + y)] φ1(x) φ1(y).

Example One set in Z
d for which we can compute the eigenfunctions and eigenvalues exactly

is a d-dimensional rectangle

A = {(x1, . . . , xd) ∈ Z
d : 1 ≤ xj ≤ Nj − 1}.

The eigenfunctions are indexed by k̄ = (k1, . . . , kd) ∈ A,

φk̄(x1, . . . , xd) = sin

(

k1πx1

N1

)

sin

(

k2πx2

N2

)

· · · sin

(

kdπxd

Nd

)

,

with eigenvalue

λk̄ =
1

d

[

cos

(

k1π

N1

)

+ · · ·+ cos

(

kdπ

Nd

)]

.

4 Expected time to escape

4.1 One dimension

Let Sn denote the position of a one-dimensional random walk starting at x ∈ {0, . . . , N} and
let T be the first time that the walker reaches {0, N}. Here we study the expected time to
reach 0 or N ,

e(x) = E[T | S0 = x].

Clearly e(0) = e(N) = 0. Now suppose x ∈ {1, . . . , N − 1}. Then the walker takes one step
which goes to either x − 1 to x + 1. Using this we get the relation

e(x) = 1 +
1

2
[e(x + 1) + e(x − 1)] .

Hence e satisfies

e(0) = e(N) = 0, Le(x) = −1, x = 1, . . . , N − 1. (16)

A simple calculation shows that if f(x) = x2, then Lf(x) = 1. Using this we can see that
one solution to (16) is

e(x) = x (N − x).

In fact it is the unique solution. To see this, assume that e1 were another solution. Then
e− e1 is harmonic on {1, . . . , N − 1} and vanishes at 0 and N which implies that e− e1 = 0.
Suppose N = 2m is even. Then we get

e(m) = N2/4 = m2.
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In other words, the expected time for a random walker to go distance m is exactly m2. Note
that the expected time starting at x = 1 to leave the interval is N . While this is an expected
value, it is not necessarily a “typical” value. Most of the time the random walker will leave
quickly. However, there is a probability of 1/m that the random walker will reach m before
leaving the interval. If that happens then the walker will still have on the order of N2 steps
before leaving.

One other interesting fact concerns the time until a walker starting at 1 reaches the origin.
Let T0 be the first n such that Sn = 0. If S0 = 1, we know that T0 < ∞ with probability
one. However, the amount of time to reach 0 is at least as large as the amount of time to
reach 0 or N . Therefore E[T0] ≥ N . Since this is true for every N , we must have E[T0] = ∞.
In other words, while it is guaranteed that a random walker will return to the origin the
expected amount of time until it happens is infinite!

4.2 Several dimensions

Let A be a finite subset of Z
d; Sn a simple random walker starting at x ∈ A; and TA the

first time that the walker is not in A. Let

eA(x) = E[TA | S0 = x].

Then just as in the one-dimensional case we can see that f(x) = eA(x) satisfies

f(x) = 0, x ∈ ∂A (17)

Lf(x) = −1, x ∈ A. (18)

We can argue in the same as in the one-dimensional case that there is at most one function
satisfying these equations.

Let f(x) = d|x|2 = d(x2
1 + · · · + x2

d). Then a simple calculation shows that Lf(x) = 1.
Let us consider the process

Mn = dS2
n∧TA

− (n ∧ TA).

Then, we can see that
E[Mn+1 | S0, . . . , Sn] = Mn,

and hence Mn is a martingale. This implies

E[Mn] = E[M0] = d|S0|2, E[n ∧ TA] = d
[

E[|Sn∧TA
|2] − |S0|2

]

.

In fact, we claim we can take the limit to assert

E[TA] = d
[

E[|STA
|2] − |S0|2

]

.

To prove this we use the monotone convergence theorem, see Exercise 6.6. This justifies the
step

lim
n→∞

[

E[|STA
|2 1{TA ≤ n}

]

= E[|STA
|2].
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Also,
[

E[|STA
|2 1{TA > n}

]

≤ P{TA > n}
[

max
x∈A

|x|2
]

→ 0.

This is a generalization of the formula we derived in the one-dimensional case. If d = 1 and
A = {1, . . . , N − 1}, and

E[|STA
|2] = N2

P{STA
= N | S0 = x} = N x,

E[TA] = E[|STA
|2] − x2 = x (N − x).

Example Suppose that A is the “discrete ball” of radius r about the origin,

A = {x ∈ Z
d : |x| < r}.

Then for every y ∈ ∂A satisfies r ≤ |y| < r + 1. Suppose we start the random walk at the
origin.

d r2 ≤ E[TA] < d (r + 1)2.

For any y ∈ A, let Vy denote the number of visits to y before leaving A,

Vy =

TA−1
∑

n=0

1{Sn = y} =

∞
∑

n=0

1{Sn = y, TA > n}.

Here we again use the indicator function notation. Note that

E[Vy | S0 = x] =

∞
∑

n=0

P{Sn = y, TA > n | S0 = x} =

∞
∑

n=0

pn(x, y; A).

This quantity is of sufficient interest that it is given a name. The Green’s function GA(x, y)
is the function on A × A given by

GA(x, y) = E[Vy | S0 = x] =

∞
∑

n=0

pn(x, y; A).

We define GA(x, y) = 0 if x 6∈ A or y 6∈ A. The Green’s function satisfies GA(x, y) = GA(y, x).
This is not immediately obvious from the first equality but follows from the symmetry of
pn(x, y; A). If we fix y ∈ A, then the function f(x) = GA(x, y) satisfies the following:

Lf(y) = −1,

Lf(x) = 0, x ∈ A \ {y},
f(x) = 0, x ∈ ∂A.

Note that
TA =

∑

y∈A

Vy,

and hence
E[TA | S0 = x] =

∑

y∈A

GA(x, y).
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Theorem 4.1. Suppose A is a bounded subset of Z
d; and g : A → R is a given function.

Then the unique function F : A → R satisfying

F (x) = 0, x ∈ ∂A,

LF (x) = −g(x), x ∈ A,

is

F (x) = E

[

TA−1
∑

j=0

g(Sj) | S0 = x

]

=
∑

y∈A

g(y) GA(x, y). (19)

We have essentially already proved this. Uniqueness follows from the fact that if F, F1

are both solutions, then F − F1 is harmonic in A with boundary value 0 and hence equals 0
everywhere. Linearity of L shows that

L
[

∑

y∈A

g(y) GA(x, y)

]

=
∑

y∈A

g(y)LGA(x, y) = −g(x). (20)

The second equality in (19) follows by writing

TA−1
∑

j=0

g(Sj) =

TA−1
∑

j=0

∑

y∈A

g(y) 1{Sj = y} =
∑

y∈A

g(y)

TA−1
∑

j=0

1{Sj = y} =
∑

y∈A

g(y) Vy.

We can consider the Green’s function as a matrix or operator,

GAg(x) =
∑

x∈A

GA(x, y) g(y).

Then (20) can be written as
−LGAg(x) = g(x),

or GA = [−L]−1 For this reason the Green’s function is often referred to as the inverse of
(the negative of) the Laplacian.

If d ≥ 3, then the expected number of visits to a point is finite and we can define the
(whole space) Green’s function

G(x, y) = lim
A↑Zd

GA(x, y) = E

[ ∞
∑

n=0

1{Sn = y} | S0 = x

]

=

∞
∑

n=0

P{Sn = y | S0 = x}.

It is a bounded function. In fact, if τy denotes the smallest n ≥ 0 such that Sn = y, then

G(x, y) = P{τy < ∞ | S0 = x}G(y, y) = P{τy < ∞ | S0 = x}G(0, 0) ≤ G(0, 0) < ∞.

The function G is symmetric and satisfies a translation invariance property: G(x,y) =
G(0, y − x). for fixed y, f(x) = G(x, y) satisfies

Lf(y) = −1, Lf(x) = 0, x 6= y, f(x) → 0 as x → ∞.
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5 Space of harmonic functions

If A is a finite subset of Z
d, then the space of functions on A that are harmonic on A has

dimension #(∂A). In fact, as we have seen, there is a linear isomorphism between this space
and the set of all functions on #(∂A). One standard basis for the space is the Poisson kernel,
i.e., for each z ∈ ∂A, we consdier the function

Hz(x) = HA(x, y) = P{STA
= z | S0 = x}.

Sometimes other bases are useful.

Example Let A be the rectangle in Z
2,

A = {(x1, x2) : xj = 1, . . . , N − 1}.

We will find a basis for the space of harmonic functions by another form of “separation
of variables”. We can write ∂A = ∂1,0 ∪ ∂1,N ∪ ∂2,0 ∪ ∂2,N where ∂1,0 = {(0, x2) : x2 =
1, . . . , N − 1}, etc. Consider the function

hj(x) = hj,1,N(x) = sinh

(

βj x1

N

)

sin

(

jπx2

N

)

.

Using the sum formulas for sinh and sin we get

Lhj(x) =

[

1

2
cosh

(

βj

N

)

+
1

2
cos

(

jπ

N

)

− 1

]

hj(x).

Since cosh(0) = 1 and cosh(x) increases to infinity for 0 ≤ x < ∞, we can see that there is
a unique number which we call βj such that

cosh

(

βj

N

)

+ cos

(

jπ

N

)

= 2,

When we choose this βj, hj is a harmonic function. Note that hj vanishes on three of the
four parts of the boundary and

hj(N, y) = sinh(βj) sin

(

jπy

N

)

.

If we choose y ∈ {1, . . . , N − 1} and find constants c1, . . . , cN−1 such that

N−1
∑

j=1

cj sinh(βj) sin

(

jπk

N

)

= δ(y − k),

Then,

H(N,y)(x) =

N−1
∑

j=1

cj hj(x).
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But we have already seen that the correct choice is

cj =
2

(N − 1) sinh(βj)
sin

(

πjy

N

)

.

Therefore,

H(N,y)(x1, x2) =
2

N − 1

N−1
∑

j=1

1

sinh(βj)
sin

(

πjy

N

)

sinh

(

βj x1

N

)

sin

(

jπx2

N

)

. (21)

The formula (21) is somewhat complicated, but there are some nice things that can be
proved using this formula. Let AN denote the rectangle and let

ÂN =

{

(x1, x2) ∈ A :
N

4
≤ xj ≤

3N

4

}

.

Note that ÂN is a cube of half the side length of AN in the middle of AN . Let y ∈ {1, . . . , N−
1} and consider H(N,y). In Exercise 6.13 you are asked to show the following: there exist

c, c1 < ∞ such that the following is true for every N and every y and every x, x̃ ∈ ÂN :

•
c−1 N−1 sin(πy/N) ≤ HN,y(x) ≤ c N−1 sin(πy/N). (22)

In particular,
HN,y(x) ≤ 2c HN,y(x̃). (23)

•
|HN,y(x) − HN,y(x̃)| ≤ c1

|x − x̃|
N

Hn,y(x) ≤ c1 c
|x − x̃|

N
N−1 sin(πy/N). (24)

The argument uses the explicit formula that we derive for the rectangle. Although we cannot
get such a nice formula in general, we can derive two important facts. Suppose A is a finite
subset of Z

2 containing AN . Then for x ∈ AN , z ∈ ∂A,

HA(x, z) =
∑

y∈∂AN

HAN
(x, y) HA(y, z).

Using this and (23) we get for x, x̃ ∈ ÂN ,

HA(x, z) ≤ 2c HA(x̃, z),

|HA(x, z) − HA(x̃, z)| ≤ c1
|x − x̃|

N
HA(x, z).

We can extend this to harmonic functions.
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Theorem 5.1 (Difference estimates). There is a c < ∞ such that if A is a finite subset of
Z

d and F : A → [−M, M ] is harmonic on A, then if x, z ∈ A with |z − x| = 1,

|F (z) − F (x)| ≤ c M

dist(x, ∂A)
. (25)

Theorem 5.2 (Harnack principle). . Suppose K is a compact subset of R
d and U is an

open set containing K. There is a c = c(K, U) < ∞ such that the following holds. Suppose
N is a positive integer; A is a finite subset of Z

d contained in NU = {z ∈ R
d : z/N ∈ U};

and Â is a subset of A contained in NK. Suppose F : A → [0,∞) is a harmonic function.
Then for all x, z ∈ Â,

F (x) ≤ c F (z).

As an application of this, let us show that that: the only bounded functions on Z
d that

are harmonic everywhere are constants. For d = 1, this is immediate from the fact that
the only harmonic functions are the linear functions. For d ≥ 2, we suppose that F is a
harmonic function on Z

d with |F (z)| ≤ M for all z. If x ∈ Z
d and AR is a bounded subset

of Z
d containing all the points within distance R of the origin, then (25) shows that

|F (x) − F (0)| ≤ c M
|x|

R − |x| .

(Although (25) gives this only for |x| = 1, we can apply the estimate O(|x|) times to get this
estimate.) By letting R → ∞ we see that F (x) = F (0). Since this is true for every F , F
must be constant.

5.1 Exterior Dirichlet problem

We consider the following question. Suppose A is a cofinite subset of Z
d, i.e., a subset such

that Z
d \ A is finite. Suppose F : Z

d \ A → R is given. Find all bounded functions on Z
d

that are harmonic on A and take on the boundary value F on Z
d \ A. If A = Z

d, then this
was answered at the end of the last section; the only possible functions are constants. For
the remainder of this section we assume that A is nontrivial, i.e., Z

d \ A is nonempty.
For d = 1, 2, there is, in fact, only a single solution. Suppose F is such a function with

L = sup |F (x)| < ∞. Let Sn be a simple random walk starting at x ∈ Z
d, and let T = TA

be the first time n with Sn 6∈ A. If d ≤ 2, we know that the random walk is recurrent and
hence T < ∞ with probability one. As done before, we can see that Mn = F (Sn∧T ) is a
martingale and hence

F (x) = M0 = E[Mn] = E[F (ST ) 1{T ≤ n}] + E [F (Sn) 1{T > n}] .

The monotone convergence theorem tells us that

lim
n→∞

E[F (ST ) 1{T ≤ n}] = E[F (ST )].
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Also
lim

n→∞
|E [F (Sn) 1{T > n}]| ≤ lim

n→∞
L P{T > n} = 0.

Therefore,
F (x) = E[F (ST ) | S0 = x],

which is exactly the same solution as we had for bounded A.
If d ≥ 3, there is more than one solution. In fact,

f(x) = P{TA = ∞ | S0 = x},

is a bounded function that is harmonic in A and equals zero on Z
d \ A. The next theorem

shows that this is essentially the only new function that we get. We can interpret the theorem
as saying that the boundary value determines the function if we include ∞ as a boundary
point.

Theorem 5.3. If A is a nontrivial cofinite subset of Z
d, then the only bounded functions on

Z
d that vanish on Z

d \ A and are harmonic on A are of the form

F (x) = r P{TA = ∞ | S0 = x}, r ∈ R. (26)

We will first consider the case A = Z
d \ {0} and assume that F : Z

d → [−M, M ] is a
function satisfying LF (x) = 0 for x 6= 0. Let α = LF (0) and let

f(x) = F (x) − α G(x, 0).

Then f is a bounded harmonic function and hence must be equal to a constant, say C. Since
G(x, 0) → 0 as x → ∞, the constant must be r and hence

F (x) = r − α G(x, 0) = r P{τ0 = ∞ | S0 = x} + P{τ0 < ∞ | S0 = x}[r − αG(0, 0)].

Since F (0) = 0 and P{τ0 = ∞ | S0 = 0} = 0, we know that r − αG(0, 0) = 0 and hence F is
of the form (26).

For other cofinite A, assume F is such a function with |F | ≤ 1. Then F satisfies

LF (x) = −g(x), x ∈ A

for some function g that vanishes on A. In particular,

f(x) = F (x) +
∑

y∈Zd\A

G(x, y) g(x),

is a bounded harmonic function (why is it bounded?) and hence constant. This tells us that
there is an r such that

F (x) = r −
∑

y∈Zd\A
G(x, y) g(x),
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which implies, in particular, that F (x) → r as r → ∞. Also, if x ∈ Z
d \ A, F (x) = 0 which

implies
∑

y∈Zd\A

G(x, y) g(x) = r.

If we show that G(x, y) is invertible on Z
d \ A, then we know there is a unique solution to

this equation, which would determine g, and hence F .
To do this, assume #(Zd \A) = K; let T̃A = min{n ≥ 1 : Sn 6∈ A}; and for x, y ∈ Z

d \A,
we define

J(x, y) = P{T̃A < ∞, ST̃A
= y | S0 = x}.

then J is a K × K matrix. In fact (Exercise 6.25),

(J − I) G = −I. (27)

In particular, G is invertible.

6 Exercises

Exercise 6.1. Suppose that X1, X2, . . . are independent, identically distributed random vari-
ables such that

E[Xj ] = 0, Var[Xj ] = E[X2
j ] = 0 P{|Xj| > K} = 0,

for some K < ∞.

• Let M(t) = E[etXj ] denote the moment generating function of Xj. Show that for every
t > 0, ǫ > 0,

P{X1 + · · · + Xn ≥ ǫn} ≤ [M(t) e−tǫ]n.

• Show that for each ǫ > 0, there is a t > 0 such that M(t) e−ǫt < 1. Conclude the
following: for every ǫ > 0, there is a ρ = ρ(ǫ) < 1 such that for all n

P{|X1 + · · ·+ Xn| ≥ ǫn} ≤ 2 ρn.

• Show that we can prove the last result with the boundedness assumption replaced by the
following: there exists a δ > 0 such that for all |t| < δ, E[etXj ] < ∞.

Exercise 6.2. Prove the following: there is a constant γ (called Euler’s constant) and a
c < ∞ such that for all positive integers n,

∣

∣

∣

∣

∣

(

n
∑

j=1

1

j

)

− γ − log n

∣

∣

∣

∣

∣

≤ c

n
.
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Hint: write

log

(

n +
1

2

)

− log

(

1

2

)

=

∫ n+ 1

2

1

2

1

x
dx,

and estimate
∣

∣

∣

∣

∣

1

j
−
∫ j+ 1

2

j− 1

2

dx

x

∣

∣

∣

∣

∣

.

Exercise 6.3. Show that there is a c > 0 such that the following is true. For every real
number r and every integer n,

e−cr2/n ≤ er
(

1 − r

n

)n

≤ ecr2/n. (28)

Exercise 6.4. Find constants a1, a2 such that the following is true as n → ∞,
(

1 − 1

n

)n

= e−1
[

1 +
a1

n
+

a2

n2
+ O

(

n−3
)

]

.

Exercise 6.5. Let Sn be a one-dimensional simple random walk and let

pn = P{S2n = 0 | S0 = 0}.

• Show that

pn+1 = pn
2n + 1

2n + 2
, (29)

and hence

pn =
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
.

• Use the relation (29) to give another proof that there is a c such that as n → ∞

pn ∼ c√
n

.

(Our work in this chapter shows in fact that c = 1/
√

π, but you do not need to prove this
here.)

Exercise 6.6.

• Show that if X is a nonnegative random variable, then

lim
n→∞

E[X 1{X ≤ n}] = lim
n→∞

E[X ∧ n] = E[X].

• (Monotone Convergence Theorem] Show that if 0 ≤ X1 ≤ X2 ≤ · · · , then

E

[

lim
n→∞

Xn

]

= lim
n→∞

E[Xn].
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In both parts, the limits and the expectations are allowed to take on the value infinity.

Exercise 6.7. Suppose X1, X2, . . . are independent random variables each of whose distri-
bution is symmetric about 0. Show that for every a > 0,

P

{

max
1≤j≤n

X1 + · · ·+ Xj ≥ a

}

≤ 2 P{Xn ≥ a}.

(Hint: Let K be the smallest j with X1 + · · ·+ Xj ≥ a and consider

P{X1 + · · · + Xn ≥ a | K = j}. )

Exercise 6.8. Suppose X is a random variable taking values in Z. Let

φ(t) = E[eitX ] = E[cos(tX)] + i E[sin(tX)] =
∑

x∈Z

eitx
P{X = x},

be its characteristic function. Prove the following facts.

• φ(0) = 1 , |φ(t)| ≤ 1 for all t and φ(t + 2π) = φ(t).

• If the distribution of X is symmetric about the origin, then φ(t) ∈ R for all t.

• For all integers x,

P{X = x} =
1

2π

∫ π

−π

φ(t) e−ixt dt.

• Let k be the greatest common divisor of the set of all integers n with P{|X| = n} > 0.
Show that φ(t + (2π/k)) = φ(t) and |φ(t)| < 1 for 0 < t < (2π/k).

• Show that φ is a continuous (in fact, uniformly continuous) function of t. Hint: use

|eiθ − eiθ′ | ≤ min{2, |θ − θ′|}.

Exercise 6.9. Suppose X1, X2, . . . are independent, identically distributed random variables
taking values in the integers with characteristic function φ. Suppose that the distribution of
Xj is symmetric about the origin, Var[Xj ] = E[X2

j ] = π, E[|Xj|3] < ∞. Also assume,

P{Xj = 0} > 0, P{Xj = 1} > 0.

The goal of this exercise is to prove

lim
n→∞

√
2πσ2n P{Sn = 0} = 1.

Prove the following facts.

• The characteristic function of X1 + · · ·+ Xn is φn.
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• For every 0 < ǫ ≤ π there is a ρ < 1 such that |φ(t)| < ρ for ǫ ≤ |t| ≤ π.

•
P{Sn = 0} =

1

2π

∫ π

−π

φ(t)n dt =
1

2π
√

n

∫ π
√

n

−π
√

n

φ(t/
√

n)n dt.

• There is a c such that for |t| ≤ π,
∣

∣

∣

∣

φ(t) − 1 − σ2 t2

2

∣

∣

∣

∣

≤ c t3.

•
lim

n→∞

∫ π
√

n

−π
√

n

φ(t/
√

n)n dt =

∫ ∞

−∞
e−σ2t2/2 dt =

√
2π

σ
.

Hint: you will probably want to use (28).

Exercise 6.10. Suppose A is a bounded subset of Z
d and

F : ∂A → R, g : A → R

are given functions. Show that there is a unique extension of F to A such that

LF (x) = −g(x), x ∈ A.

Give a formula for F .

Exercise 6.11. Suppose A is a bounded subset of Z
d and

F : ∂A → R, f : A → R

are given functions. Show that there is a unique function pn(x), n = 0, 1, 2 . . . , x ∈ A satis-
fying the following:

pn(x) = F (x), x ∈ ∂A,

∂pn(x) = LF (x), x ∈ A.

Show that p(x) = limn→∞ pn(x) exists and describe the limit function p.

Exercise 6.12. Consider β(j, N), j = 1, . . . , N − 1 where β(j, N) is the unique positive
number satisfying

cosh

(

β(j, N)

N

)

+ cos

(

jπ

N

)

= 2.

Prove the following estimates. The constants c1, c2, c3 are positive constants independent of
N and the estimates should hold for all N and all j = 1, . . . , N − 1.

•
β(1, N) < β(2, N) < · · · < β(N − 1, N) ≤ N cosh−1(2).
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• There is a c1 such that
∣

∣

∣

∣

cosh

(

jπ

N

)

+ cos

(

jπ

N

)

− 2

∣

∣

∣

∣

≤ c1 j4

N4
.

• There is a c2 such that

|β(j, N) − πj| ≤ c2 j4

N3
.

• There is a c3 such that
β(j, N) ≥ c3 j.

Exercise 6.13. Prove (22) and (24).

Exercise 6.14. Find the analogue of the formula (21) for the d-dimensional cube

A = {(x1, . . . , xd) ∈ Z
d : xj = 1, . . . , N − 1}

Exercise 6.15. Suppose F is a harmonic function on Z
d such that

lim
|x|→∞

|F (x)|
|x| = 0.

Show that F is constant.

Exercise 6.16. The relaxation method for solving the Dirichlet problem is the following.
Suppose A is a bounded subset of Z

d and F : ∂A → R is a given function. Define the
functions Fn(x), x ∈ A as follows.

Fn(x) = F (x) for all n if x ∈ ∂A.

F0(x), x ∈ A, is defined arbitrarily ,

and for n ≥ 0,

Fn+1(x) =
∑

|x−y|=1

Fn(y), x ∈ A.

Show that for any choice of initial function F0 on A,

lim
n→∞

Fn(x) = F (x), x ∈ A,

where F is the solution to the Dirichlet problem with the given boundary value. (Hint:
compare this to Exercise 6.11.)

Exercise 6.17. Let Sn denote a d-dimensional simple random walk and let R1
n, . . . , Rd

n denote
the number of steps taken in each of the d-directions. Show that for all n > 0, the probability
that R1

2n, . . . , Rd
2n are all even is 2−(d−1).
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Exercise 6.18. Suppose that Sn is a biased one-dimensional random walker. To be more
specific, let p > 1/2 and

Sn = X1 + · · ·+ Xn,

where X1, . . . , Xn are independent with

P{Xj = 1} = 1 − P{Xj = −1} = p.

Show that there is a ρ < 1 such that as n → ∞,

P{S2n = 0} ∼ ρn 1√
πn

.

Find ρ explicitly. Use this to show that with probability one the random walk does not return
to the origin infinitely often.

Exercise 6.19. Suppose δn is a sequence of real numbers with |δn| < 1 and such that

∞
∑

j=1

|δn| < ∞.

Let

sn =
n
∏

j=1

(1 + δj).

Show that the limit s∞ = limn→∞ sn exists and is strictly positive. Moreover, there exists an
N such that for all n ≥ N ,

∣

∣

∣

∣

1 − sn

s∞

∣

∣

∣

∣

≤ 2

∞
∑

j=n+1

|δj |.

Exercise 6.20. Find the number t such that

n! =
√

2π nn+ 1

2 e−n

[

1 +
t

n
+ O(n−2)

]

.

Exercise 6.21. Prove that
∫ ∞

−∞
e−x2/2 dx =

√
2π.

(Hint: there are many ways to do this but direct antidifferentiation is not one of them. One
approach is to consider the square of the left hand side, write it as a double (iterated) integral,
and then use polar coordinates.)

Exercise 6.22. Suppose Sn is a simple random walk in Z
d and A ⊂ Z

d is finite with N
points. Let TA be the smallest n such that Sn 6∈ A. Show that

P{TA > kN} ≤
(

1 − 1

2d

)k

.
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Exercise 6.23. Finish the proof of Theorem 3.4 by doing the following.

• Use connectedness of A to show that any nonzero eigenfunction φ with every component
nonnegative must actually have every component strictly positive.

• Give an example of a nonconnected A such that λ1 has multiplicity greater than one.

• Given an example of a disconnected A such that λ1 has multiplicity one. Does Theorem
3.4 hold in this case?

Exercise 6.24. Suppose A is a bounded subset of Z
d. We call {x, y} an edge of A if x, y ∈ A,

|x− y| = 1 and at least one of x, y is in A. If F : A → R is a function, we define its energy
by

E(f) =
∑

[f(x) − f(y)]2,

where the sum is over the edges of A. For any F : ∂A → R, define E(F ) to be the infimum
of E(f) where the infimum is over all f on A that agree with F on ∂A. Show that if f agrees
with F on ∂A, then E(f) = E(F ) if and only if f is harmonic in A.

Exercise 6.25. Verify (27).

Exercise 6.26. We will construct a “tree” each of whose vertices has three neighbors. We
start by constructing T1 as follows: the vertices of T1 are the “empty word”, denoted by o, and
all finite sequences of the letters a, b, i.e., “words” x1 . . . , xn where x1, x2, . . . , xn ∈ {a, b}.
Both words of one letter are adjacent to o. We say that a word of length n− 1 and of length
n are adjacent if they have the exact same letters, in order, in the first n − 1 positions.
Note that each word of positive length is adjacent to three words and the root is adjacent
to only two words. We construct another tree T2 similarly, calling the root õ and using the
letters ã, b̃. Finally we make a tree T by taking the union of T1 and T2 and adding one more
connection: we say that o and õ are adjacent.

• Convince yourself that T is a connected tree, i.e., between any two points of T there
is a unique path in the tree that does not go through any point more than once.

• Let Sn denote simple random walk on the tree, i.e., the process that at each step chooses
one of the three nearest neighbors at random, each with probability 1/3, with the choice
being independent of all the previous moves. Show that Sn is transient, i.e., with
probability one Sn visits the origin only finitely often. (Hint: Exercise 6.18 could be
helpful.)

• Show that with probability one the random walk does one of the two following things:
either the random walk visits T1 only finitely oftern or it visits T2 only finitely often.
Let f(x) be the probability that the walk visits T1 finitely often. Show that f is a
nonconstant bounded harmonic function. (A function f on T is harmonic if for every
x ∈ T f(x) equals the average value of f on the nearest neighbors of x.)
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• Consider the space of bounded harmonic functions on T . Show that this is an infinite
dimensional vector space.

Exercise 6.27. Show that if A ⊂ A1 are two subsets of Z
d, then λA ≤ λA1

. Show that if A1

is connected and A 6= A1, then λA < λA1
. Give an example with A1 disconnected and A a

strict subset of A1 for which λA = λA1
.
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