
This set of notes will combine a review of material generally covered in an undergraduate
course in probability with some standard brain teasers in probability. When discussing
“undergraduate” probability, we mean topics that do not use measure theory. We will first
consider discrete probability spaces and then go to continuous spaces.

1 Discrete probability

1.1 Random variables and expectation

A probability space is a set Ω, sometimes denoted by S, called the sample space, as well as
a collection F of subsets of Ω called the events and a probability (measure) P assigned to
events.

� The elements of Ω are sometimes called outcomes.

� The probability space can be discrete, that is, consist of a finite or countable infinite
set of points that can be enumerated {x1, x2, . . .} or can be uncountable. If the space
is discrete we generally can let F denote the set of all subsets of Ω. This is not true
of the space is continuous but this usually is not important for applied purposes since
every subset one can think of is in F .

� The probability is a function P that assigns to each event A ∈ F , a number P(A) ∈ [0, 1]
which denotes the probability that A occurs. It satisfies P(Ω) = 1 and countable
additivity: if A1, A2, . . . are disjoint events, then

P (A1 ∪ A2 ∪ · · · ) =
∞∑
k=1

P(Ak).

Most of the time one does not worry about the probability space — the notion of prob-
ability is usually well defined on the possible events that one is looking at. However, it is
important to remember the countable additivity rule.

We will use P for probability but P is also a standard notation.

Recall that ∅ denotes the empty set. We also write Ω \A for the complement of A. As
a subset, it is the set of points in Ω that are not in A. In probability language it is the
event “A does not happen”. Events A1, A2, . . . are disjoint (sometimes called mutually
exclusive) if for each j 6= k, Aj ∩Ak = ∅.
In measure theory, one learns that one must assume that the set of events F is a
σ-algebra which means that it satisfies:

� ∅ ∈ F
� If A ∈ F then Ω \A ∈ F .
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� If A1, A2, . . . ∈ F , then so is A1 ∪A2 ∪ · · · .

For a discrete probability space Ω = {a1, a2, . . .} a probability is the same thing as a
function p : Ω→ [0, 1] with p(a1) + p(a2) + · · · = 1. An event A is a subset of Ω and

P(A) =
∑
a∈A

p(a).

Example Suppose we want to model the flipping of a fair coin 10 times. For our proba-
bility space we could choose the set of all finite sequences of heads and tails: for example
HHTHHTTTHH would represent the outcome that tails came on tosses number 3,6,7,8
and heads came on the others. There are 210 outcomes and since the coin is fair we assign
probability 2−10 to each one. We often write events using words. For example we might
write {exactly 9 heads} for the event{
HHHHHHHHHT, HHHHHHHHTH, HHHHHHHTHH, HHHHHHTHHH,

HHHHHTHHHH, HHHHTHHHHH, HHHTHHHHH, HHTHHHHHH

HTHHHHHHH, THHHHHHHHH
}
.

For practical purposes, one does not worry so much about the probability space but
rather on random variables which are numerical outcomes from some random phenomenon.
Formally we define a random variable on a discrete probability space to be a function from Ω
to the real line. The standard notation for random variables is capital letters, X, Y, Z being
the most typical.

A discrete random variable X takes on either a finite or countably infinite number of
different values. The probability (mass) function for the random variable is the function

p(x) = pX(x) = P{X = x}.

This is nonzero only on a countable set, say, {x1, x2, . . .}. It satisfies

1 = P{−∞ < X <∞} =
∑
x

p(x) =
∞∑
j=1

p(xj).

To specify the distribution of a discrete random variable is to give its probability function.
Equivalently, one can give the (cumulative) distribution function defined by

F (t) = FX(t) = P{X ≤ t} =
∑
x≤t

p(x).

Example Uniform distribution: If V if a finite set with n elements, a random variable
has a uniform distribution on V if each point is equally likely to be chosen.

p(x) =
1

n
, x ∈ V.
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The expectation (also called expected value, mean, average value) of a discrete random
variable E[X] is the average value that one would expect in the long run from repeated trials
from this distribution. It is defined by

E [X] =
∑
x

x p(x)

provided that

E [|X|] =
∑
x

|x| p(x) <∞.

We say that X is an integrable random variable if E[|X|] < ∞. Other standard notations
are E[X], µX .

Let us recall some facts about infinite sums. If a1, a2, . . . is a sequence of real numbers,
we say that the sum (or series)

∞∑
j=1

aj

is absolutely convergent if
∞∑
j=1

|aj | <∞.

In this case the sum above is well defined. There is a notion of conditional convergence
in calculus but we will not use it here — in order for the expectation of a random
variable to exist the sum must be absolutely convergent.

If a random variable takes on only nonnegative values and
∑
xp(x) =∞, then we will

write E[X] =∞. However if∑
x>0

x p(x) =∞ and
∑
x<0

|x| p(x) =∞,

we just say that the expectation is not defined.

Example Suppose X is the value of a roll of a standard 6-sided die. Then

p(1) = p(2) = · · · = p(6) =
1

6

and

E[X] = 1 · 1

6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
= 3.5.

Note that E[X] does not have to be a possible value for X.
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Example Suppose we roll a die until we get a 6. Let X be the number of rolls needed
until we get a 6. Note that P{X = 1} = 1/6 and more generally if k ≥ 1 is an integer, the
probability that it takes k rolls to get a 6 is the probability that the first k − 1 rolls are not
a 6 and the last roll is a 6,

p(k) = P{X = k} =

(
5

6

)k−1
1

6
,

E [X] =
∞∑
k=1

k

(
5

6

)k−1
1

6
.

There are various ways to compute the last sum. One trick is to use a rule that the expecta-
tion must satisfy. We have X ≥ 1 since we must always roll at least once. With probability
1/6 we stop after the first roll. Otherwise, the expected number of rolls from then on is the
same as if we started at the beginning. This gives the equation

E[X] = 1 +
5

6
E[X]

and hence E[X] = 6.

There is a very important property about expectation.

� Linearity. If X and Y are random variables and a, b are real numbers then,

E[aX + bY ] = aE[X] + bE[Y ].

This is easy to derive from the definition but it is a very powerful result. As the next example
illustrates, this result holds regardless of how dependent the random variables are on each
other.

Example Suppose we roll two independent fair dice one of which is red and the other is
green. Let

X = value of red die, Y = value of green die.

As we have already seen E[X] = E[Y ] = 3.5. Hence

E[X + Y ] = E[X] + E[Y ] = 7.

But it is also true that E[X + X] = E[X] + E[X] = 7. This is not to say that X + Y
and X + X have the same distribution; they just have the same expectation. The random
variable X +X gives probability 1/6 to each element of {2, 4, 6, 8, 10, 12}. It is not hard to
show (check it if you have never seen it!) that X + Y has density

p(2) = p(12) =
1

36
, p(3) = p(11) =

2

36
, p(4) = p(10) =

3

36
,
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p(5) = p(9) =
4

36
, p(6) = p(8) =

5

36
, p(7) =

6

36
.

If you enjoy arithmetic you can check that

2 · 1

6
+ 4 · 1

6
+ 6 · 1

6
+ 8 · 1

6
+ 10

1

6
+ 12 · 1

6
= 7,

2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36
+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36
= 7.

In optimization problems in applied mathematics, one often chooses to maximize the

expected value of a quantity such as profit. Expected value is one possible thing to

maximize but there are other choices which involve risk factors. What people often

do not say is that one reason to try to maximize expected value is that it is one of

the easiest things to work with. It is the linearity of expectation, even for dependent

random variables, that makes it easier.

1.2 Independence and conditional probability

We have already used the notion of independence which is very intuitive. If A and B are
two events and they are independent, that is, whether one occurs does not affect whether
the other occurs, then the probabilities satisfy a product rule, P(A ∩B) = P(A)P(B). How
do we make this notion mathematically precise? We go backwards and use this intuitive rule
as the definition of independence.

Definition Two events A and B are independent if they satisfy the product rule

P(A ∩B) = P(A)P(B).

When more than two events are involved, the definition becomes a little more complicated.
We want to say that a collection of events {Aj} is (mutually) independent if for each j, no
information about the other events is useful in determining if Aj occurs. It is not sufficient
to assume that P(Aj ∩ Ak) = P(Aj)P(Ak) for each j 6= k.

Definition A (possibly infinite) collection of event {Ak} is (mutually) independent if for
every distinct j1, . . . , jk,

P(Aj1 ∩ · · · ∩ Ajk) = P(Aj1)P(Aj2) · · ·P(Ajk).

The parentheses indicate that when we say independent we will implicitly mean mutually
independent. If the events satisfy P(Aj ∩Ak) = P(Aj)P(Ak) for each j 6= k, then the events
are called pairwise independent. As the next example shows, pairwise independence does not
imply independence.
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Example Suppose we roll two dice, one red and one green, and let

X = value on red die , Y = value on green die .

Consider the events

A = {X = 2}, B = {Y = 5}, C = {X + Y = 7}.

Then one can check that P(A) = P(B) = P(C) = 1
6
. Also, the events A ∩ B,A ∩ C,B ∩ C

all represent the event {X = 2, Y = 5} and hence

P(A ∩B) = P(A ∩ C) = P(B ∩ C) =
1

36
.

This shows that the events are pairwise independent. However, the event A ∩B ∩ C is also
the event {X = 2, Y = 5} and hence

1

36
= P(A ∩B ∩ C) 6= P(A)P(B)P(C),

and hence the events are not (mutually) independent. We can think of this intuitively. If
one is rolling a pair of dice and wants the sum of the values to equal 7, then having someone
tell you that the red die is 2 does not change the probability of success. Similarly, having
someone tell you that the green die is 5 does not change the probability. However, having
someone tell you both that X = 2 and that Y = 5 changes the probability significantly!

The product rule for independence can be stated as: if B is independent of A, then the
probability that B occurs given that A has occurred is P(B), exactly the same as without
that information. We wish to generalize to the idea that P(B | A) is the “probability that
B occurs given that A occurs”. In this case the generalization of the product rule is

P(A ∩B) = P(A)P(B | A). (1)

Similarly to independence, we use this intuition as the definition of conditional probability.

Definition If A,B are events with P(A) > 0, the conditional probability of B given A
denoted by P(B | A) is defined by

P(B | A) =
P(A ∩B)

P(A)
.

If P(A) = 0, we do not define P(B | A). The definition immediately implies that (1) holds
if P(A) > 0. If P(A) = 0, we can say that it still holds since we do not care what P(B | A)
is. As can be seen in the next example, P(B | A) and P(A | B) are different quantities.
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Example Let X, Y denote the values of the red and green die as above and consider the
events

A = {X = 2}, B = {X + Y = 8},

and recall that P(A) = 1/6,P(B) = 5/36. Note that A ∩ B = {X = 2, Y = 6} and hence
P(A ∩B) = 1/36. Therefore,

P(B | A) =
P(A ∩B)

P(A)
=

1

6
, P(A | B) =

P(A ∩B)

P(B)
=

1

5
.

One of the most important rules in probability goes under the name the law of total
probability. A collection of events A1, A2, . . . , An is called a partition of the sample space if
exactly one of the events will occur, in other words,

Aj ∩ Ak = ∅ if j 6= k,
n⋃
j=1

Aj = Ω.

If B is another event, then A1 ∩B,A2 ∩B, . . . , An ∩B are disjoint events whose union is B
and the rules for probability tell us that

P(B) = P(A1 ∩B) + P(A2 ∩B) + · · ·+ P(An ∩B).

If P(Aj) > 0, we can write P(Aj ∩B) = P(Aj)P(B ∩ Aj).

Fact If A1, . . . , An is a partition of the sample space, and B is another event,

P(B) =
n∑
j=1

P(Aj)P(B | Aj). (Law of Total Probability)

This also holds if we have a countable partition A1, A2, . . ..

Example We will do a complicated example using the law of total probability to compute
the probability of winning the game of craps. We start by giving the rules. The player starts
by rolling two dice, and let X be the sum of the two rolls. Suppose that X = k.

� If k = 2, 3, 12, the player has lost the game.

� If k = 7, 11, the player has won the game.

� If k = 4, 5, 6, 8, 9, 10, then the number k becomes the player’s “point” and the game
continues.

If the game continues, the player rolls the dice until the player rolls either a 7 or the point
k. In this case

� If the player rolls k first, the player wins.
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� If the player rolls 7 first, the player loses.

We let W denote the event that the player wins the game, and we consider the partition
A2, A3, . . . , A12 where Ak is the event that the player’s first roll is k. The law of total
probability gives

P(W ) =
12∑
j=2

P(Aj)P(W | Aj). (2)

We know how to calculate P(Aj). Also, it is immediate from the rules for the game that

P(W | Ak) =

{
0, k = 2, 3, 12
1, k = 7, 11

.

What is not immediate is the value of P(W | Ak) when k = 4, 5, 6, 8, 9, 10. We will find that
by doing a separate problem.

Suppose we repeat an experiment such that at each time one of three outcomes happens:
I,II,III with the probability of I being p, II being q and III being 1 − p − q. We ask the
question, what is the probability of a I outcome before the first II outcome? Again we use
the law of total probability using the partition

C1 = {first outcome is I}, C2 = {first outcome is II}, C3 = {first outcome is III}.

If B is the event that we get a I before a II, then

P(B) = P(C1)P(B | C1) + P(C2)P(B | C2) + P(C3)P(B | C3).

Clearly P(B | C1) = 1,P(B | C2) = 0. Finding P(B | C3) is as hard as the original problem
— indeed, if one thinks about it, it is exactly the same problem, P(B | C3) = P(B). Plugging
in we get

P(B) = p · 1 + q · 0 + (1− p− q)P(B)

giving

P(B) =
p

p+ q
.

Using this we get

P(W | A4) = P(W | A10) =
3

9
, P(W | A5) = P(W | A9) =

4

10
,

P(W | A6) = P(W | A8) =
5

11
.

We can plug the appropriate numbers back into (2) to get

P(W ) = .4929292929 · · · .

This is the closest thing to a fair game as you will find in a casino.
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There is an immediate corollary of the law of total tricks that is better known, Bayes
theorem or Bayes rule. It follows from the fact that we can write

P(Aj ∩B) = P(B)P(Aj | B) = P(Aj)P(Aj | B).

Fact If A1, . . . , An is a partition of the sample space, and B is another event,

P(Aj | B) =
P(Aj)P(B | Aj)

P(A1)P(B | A1) + · · ·+ P(An)P(B | An)
Bayes Theorem.

Example One of the most common applications of Bayes theorem is to medical diagnosis.
Here is a simple example. Suppose there is a disease that affects .01% of the population and
there is a test that always comes out positive if the patient has the disease but for which
there is a 5% chance of a “false positive” for patients without the disease. Suppose a patient
tests positive — what is the probability that the patient has the disease? Letting A be the
event that the test is positive, D the event that the patient has the disease, and O the event
that there is no disease, we have

P(A | D) = 1, P(A | O) = .05, P(D) = 1− P(O) = .0001

and

P(D | A) =
P(D)P(A | D)

P(D)P(A | D) + P(O)P(A | O)
=

(.0001) · 1
.0001 · 1 + (.9999) · .05

= .001996 · · · .

1.3 Independence of random variables and variance

The definition of independence to discrete random variables is essentially the same as for
events. A collection of random variables {Xj} is (mutually) independent if for each j, no
information about the other random variables is useful in predicting the value of Xj.

Definition A collection of random variables {Xj} is (mutually) independent if for every
distinct j1, . . . , jk and subsets V1, . . . , Vk of the real line

P{Xj1 ∈ V1, . . . , Xjk ∈ Vk} = P{Xj1 ∈ V1}P{Xj2 ∈ V2} · · ·P{Xjk ∈ Vk}.

We say that the collection is pairwise independent if for each j 6= k, Xj and Xk are indepen-
dent random variables.

Fact If X and Y are independent discrete random variables, then

E[XY ] = E[X]E[Y ] (3)
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This is not hard to show. We give the derivation to show where independence is used.

E[XY ] =
∑
a,b

abP{X = a, Y = b}

=
∑
a,b

abP{X = a}P{Y = b} (Independence)

=

[∑
a

aP{X = a}

] [∑
b

bP{Y = b}

]
= E[X]E[Y ].

It is possible for the product rule (3) to hold without the random variables being independent.
As a simple example, suppose that P{X = 1} = P{X = 2} = 1/2 and Y is an independent
random variable with P{Y = 1} = P{Y = −1} = 0. Let Z = XY . Then we leave it to you
to check that X and Z are not independent but E[Z] = 0,E[XZ] = 0 and hence X,Z satisfy
(3).

Definition A collection of random variables {Xj} is called an orthogonal collection if for
every j 6= k, E[Xj Xk] = E[Xj]E[Xk].

Independent random variables are orthogonal but orthogonal does not imply independent.

Definition The variance of a random variable X is defined by

Var[X] = σ2(X) = E
(
[X − E(X)]2

)
= E

[
X2
]
− E[X]2.

The last equality follows from the simple calculation

E
(
[X − E(X)]2

)
= E

[
X2 − 2X E(X) + E(X)2

]
= E[X2]− E[X]2.

Two simple but important properties of the variance are: if a, b are real numbers

Var[aX] = a2 Var[X], Var[X + b] = Var[X].

Definition The (theoretical) standard deviation of a random variable X, is given by

SD(X) =
√

Var(X).

The first definition for variance shows that Var[X] ≥ 0 for all X with Var[X] = 0 only
for the trivial random variable that takes on only a single value. We can use the second
definition to see that E[X2] ≥ E[X]2. More generally if q ≥ 1, E[|X|q] ≥ E[|X|]q.
We use the term theoretical standard deviation to distinguish this from a statistical
or sample standard deviation that we will describe later. When people talk about the
standard deviation of a collection of data they are referring to the sample standard
deviation.

There are many possible ways to measure the expected deviation from the mean for a
random variable. The variance is chosen because of its nice properties, in particular,
because of the next proposition.
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Most of the times the following proposition is used for independent random variables but
we state it more generally for orthogonal random variables.

Fact If X1, . . . , Xn are orthogonal random variables, then

Var [X1 + · · ·+Xn] = Var [X1] + Var [X2] + · · ·+ Var [Xn].

In particular, this holds if X1, . . . , Xn are independent.

This follows from the product rule for expectation as we now demonstrate. Suppose for
ease that E[Xj] = 0 for each j. If not, let Yj = Xj − E[Xj]. Then

Var[X1 + · · ·+Xn] = E[(X1 + · · ·Xn)2]

=
n∑
j=1

E[X2
j ] +

∑
j 6=k

E[Xj Xk]

=
n∑
j=1

E[X2
j ] +

∑
j 6=k

E[Xj]E[Xk] (Orthogonal)

=
n∑
j=1

Var[Xj].

We will introduce a notion of conditional expectation — this idea will be expanded later.
Suppose X is a random variable and A1, A2, . . . is a partition of the probability space. If
P(Aj) > 0, we define the conditional expectation of X given Aj by

E [X | Aj] =
E
[
A 1Aj

]
P(Aj)

.

We do not define this if P(Aj) = 0. We then have the law of total expectation

Fact If A1, A2, . . . is a partition of the probability space and X is a random variable, then

E [X] =
∞∑
j=1

P(Aj)E[X | Aj]. Law of Total Expectation

In this sum, if P(Aj) = 0, we let P(Aj)E[X | Aj] = 0 even if E[X | Aj] is not defined.

Example Suppose we roll two dice and get a number k and then we flip a fair coin k times.
What is the expected number of heads? If we let X be the number of heads and let Ak be
the event that k is rolled, then

E(X | Ak) =
k

2
,

and hence

E[X] =
12∑
j=2

P(Aj)E(X | Aj) =
7

2
.
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Let us write this somewhat differently. Let A denote the partition and define the random
variable E[X | A] to be the random variable that outputs E[X|Aj] if Aj occurs. The random
variable E[X | A] is A-measurable. This means that if you know which of the events
A1, A2, . . . occurred, then you know the value of E[X | A].

We will say that an event V is A-measurable if we can write

V =
∞⋃
k=1

Ajk ,

that is, if V is a union of sets in the partition. Then one can check from the definition that

E [1V X] = E [1V E[X | A]] .

We will see that these two properties characterize conditional expectation.

1.4 Some discrete distributions

1.4.1 Indicator random variables

Definition If A is an event then the indicator function or indicator random variable as-
sociated to A is the random variable 1A which equals one if A occurs and 0 if A does not
occur.

Note that

E[1A] = P(A), Var[1A] = E[12
A]− E[1A]2 = P(A)− P(A)2 = P(A) [1− P(A)].

If A is an event written say as A = {X = 2, Y = 3} we often write 1{X = 2, Y = 3} for 1A.

1.4.2 Uniform distribution

We have already stated that a random variable has a uniform distribution on a finite set if
it gives the same probability to each element. Let us consider a uniform random variable X
on {1, . . . , n}. The die roll we have considered is the case n = 6. Then

E[X] =
n∑
j=1

j · 1

n
=

1

n

n(n+ 1)

2
=
n+ 1

2
,

E[X2] =
n∑
j=1

j2
1

n
=

1

n

n∑
j=1

j2 =
1

n
· n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6
.

Var[X] = E[X2]− E[X]2 =
(n+ 1)(2n+ 1)

6
−
(
n+ 1

2

)2

=
n2 − 1

12
.
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1.4.3 Binomial distribution

Bernoulli trials are repeated independent experiments each with the same probability p ∈
(0, 1) of success. There are several distributions coming from Bernoulli trials.

The binomial distribution gives the number of successes in n Bernoulli trials.

Definition A random variable X has a binomial distribution with parameters n and p if

P{X = k} =

(
n

k

)
pk (1− p)n−k, k = 0, 1, 2, . . . , n.

Recall that
(
n
k

)
is the binomial coefficient(

n

k

)
=

n!

k! (n− k)!
.

It represents the number of different ways that we can arrange k S’s (S= success)

and (n − k) F’s (F = failure). For example if n = 10 and k = 6 one possibility is

SFFFSSSSFS. Each particular ordering of S’s and F’s has probability pk (1 − p)n−k
of happening (this uses the independence assumption) so the total probability is the

number of orderings times the probability for each one.

We will compute the expectation and variance. We could do this directly from the
definition using

E[X] =
n∑
k=0

k

(
n

k

)
pk (1− p)n−k, E[X2] =

n∑
k=0

k2
(
n

k

)
pk (1− p)n−k

and Var[X] = E[X2]− E[X]2 but these sums are a little tricky. We use a simpler approach
with indicator random variables. Let Ij denote the indicator function of the event that the
jth trial is a success. Then the Bernoulli assumptions imply that I1, . . . , In are independent,
and by definition we see that

X = I1 + I2 + · · ·+ In.

We have seen that E[Ij] = p,Var[Ij] = p(1− p). Therefore,

E[X] = E[X1] + · · ·+ E[Xn]= np,

Var[X] = Var[X1] + · · ·+ Var[Xn]= np(1− p).
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1.4.4 Geometric distribution

There are two very similar distributions that go under the name geometric distribution.
They also use the assumption of Bernoulli trials and give the amount of time until a success.

X = number of trials until a success, Y = number of failures before a success.

Note that X = Y + 1; the only difference between the two is whether one includes the first
success in the total time. The word geometric can be used for either one so one must be
careful when reading which is being used by a particular author.

Definition A random variable X has a geometric distribution representing the number of
trials until a success if it has distribution

P{X = k} = (1− p)k−1 p, k = 1, 2, 3, . . . .

The random variable Y = X − 1 has a geometric distribution representing the number of
failures until a success and has distribution

P{Y = k} = (1− p)k p, k = 0, 1, 2, . . . .

The rules for expectation and variance tell us that E[Y ] = E[X]−1 and Var[Y ] = Var[X]
so it suffices to compute E[X],Var[X]. This can be done directly

E [X] =
∞∑
k=1

k (1− p)k−1 p =
1

p
,

E
[
X2
]

=
∞∑
k=1

k2 (1− p)k−1 p =
2− p
p2

,

Var[X] = E[X2]− E[X]2 =
1− p
p2

.

E[Y ] = E[X]− 1 =
1− p
p

, Var[Y ] = Var[X] =
1− p
p2

.

There is a slick way to get E[X] by noting that

E[X] = 1 + (1− p)E[X],

and then solving for E[X].
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There is a trick for computing these infinite sums. If 0 < p < 1 the geometric series
tells us that

∞∑
k=0

pk =
1

1− p
.

We can differentiate both sides with respect to p twice to get the formulas

∞∑
k=1

k pk−1 =
1

(1− p)2
,

∞∑
k=2

k (k − 1) pk−2 =
2

(1− p)3
.

These give
∞∑
k=0

k pk−1 (1− p) =
1

(1− p)
.

∞∑
k=0

k2 pk−1 (1− p) =
2p

(1− p)2
+

∞∑
k=0

k pk−1 (1− p) =
2p

(1− p)2
+

1

1− p
=

p+ 1

(1− p)2
.

1.4.5 Poisson distribution

This section will use two facts about the exponential function from calculus, the expo-
nential series

ex =
∞∑
n=0

xn

n!
,

and the limit
lim
n→∞

(
1 +

x

n

)n
= ex.

The Poisson distribution describes “rare events”. It an be considered as a limit of the
binomial distribution where the number of trials n goes to infinity while the probability p
of success goes to zero in a way so that the expected number of successes np stays fixed at
some constant λ > 0. If we set p = λ/n then the probability of exactly k successes is(

n

k

)
pk (1− p)n−k =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
.

The Poisson distribution is obtained by taking the limit of this expression as n goes to infinity
with k, λ fixed. After a little manipulation, the right-hand side can be written as

λk

k!

[
n

n
· n− 1

n
· · · n− k + 1

n

] [
1− λ

n

]−k (
1− λ

n

)n
.

If we fix λ, k and let n go to infinity, the first term does not depend on n, the middle two
terms go to 1, and the third term becomes a familiar exponential limit from calculus.
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Definition A random variable X has a Poisson distribution with parameter (mean) λ if

P{X = k} = e−λ
λk

k!
, k = 0, 1, 2, . . . .

This is a well-defined distribution because

∞∑
k=0

P{X = k} = e−λ
∞∑
k=0

λk

k!
= 1.

Also,

E[X] =
∞∑
k=0

k P{X = k} = e−λ
∞∑
k=1

λk

(k − 1)!
= λ e−λ

∞∑
k=0

λk

k!
= λ,

E[X2] =
∞∑
k=0

k2 P{X = k} = e−λ
∞∑
k=0

[
λ2 · λk−2

(k − 2)!
+
λ · λk−1

(k − 1)!

]
= λ2 + λ.

Var[X] = E[X2]− E[X]2 = λ.

1.5 Some problems and brain teasers

1.5.1 St. Petersburg Paradox

One interpretation of expectation is the amount of money that one would bet in a game so
that the payoff would be a fair game. However, one must be careful with this interpretation.
Suppose we flip a fair coin until it comes up heads and let T denote the number of tails that
were flipped before getting the heads. Let X = 2T . Note that T = k corresponds to the first
k flips being tails and the (k + 1)st flip being heads; therefore,

P{T = k} =

(
1

2

)k+1

, k = 0, 1, 2, 3, . . . ,

and hence

P{X = 2k} =

(
1

2

)k+1

, k = 0, 1, 2, 3, . . . .

and

E[X] = 1 · 1

2
+ 2 · 1

4
+ 4 · 1

8
+ 8 · 1

16
+ · · · =∞ !

This seems to indicate that one would be willing to bet any amount of money in order to
play a game with this payoff! Of course, this is not correct. Here are several reasons:

� The mathematical modeling of the problem has assumed that the “utility function of
money is linear” which is a fancy way of saying that 2 billion dollars is twice as valuable
to a person as 1 billion dollars.
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� Our idealized problem has assumed that the casino you are playing against has an
infinite amount of money. Suppose that the casino has assets of only a billion dollars.
In this case, your payoff will be the smaller of X and one billion dollars. In this case,
since 229 < 1, 000, 000, 000 < 230, if T < 30, we get 2T but if T ≥ 30 we get “only” a
billion dollars. The expected value is

1 · 1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · ·+ 29 · 1

230
+ (1, 000, 000, 000) · 1

230
< 15.

1.5.2 Monty Hall problem

The Monty Hall or “Let’s Make a Deal” problem is a well known problem that comes from a
simplification of a TV game show. Monty Hall was the host of Let’s Make a Deal. Although
this is not exactly what happened on the show, we will give the problem as usually stated.
There are three curtains numbered 1, 2, 3 and there is a prize behind one of the curtains.
A contestant chooses a curtain and before Monty opens the curtain he opens one of the
other curtains and shows that there is no prize behind that curtain. He then gives the
contestant the chance to change their mind and choose the other unopened curtain. Should
the contestant do this?

As stated the question is incomplete. As is often the case in the real world, there were
some implicit assumptions being made and since we are being mathematical we will make
them explicit. Assume that:

� The prize is equally likely to be behind any of the three curtains.

� Monty Hall knows which curtain the prize is behind.

� No matter which curtain the contestant chooses, Monty Hall always opens a different
curtain that does not have the prize behind it. (He can do this since he knows where
the prize is.)

These assumptions are not good enough to determine the conditional probability that the
prize is behind the curtain the contestant originally chose. There is another implicit assump-
tion that needs to be made esplicit.

� If the contestant has chosen the correct curtain at the beginning so that Monty has
two choices for which curtain to open, he is equally likely to pick either one.

For ease, let us assume that the contestant chooses curtain 1 at the beginning. Let Aj
be the event that the prize is behind curtain j and let Ok be the probability that Monty
opened curtain k. Then our assumptions give

P(A1) = P(A2) = P(A3) =
1

3
,

P(O1 | Ak) = 0, k = 1, 2, 3,
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P(O2 | A1) =
1

2
, P(O2 | A2) = 0, P(O2 | A3) = 1,

P(O3 | A1) =
1

2
, P(O3 | A2) = 1, P(O3 | A3) = 0.

Therefore, if Monty Hall opens curtain number 2,

P(A2 | O2) =
P(A2)P(O2 | A2)

P(A1)P(O2 | A1) + P(A2)P(O2 | A2) + P(A3)P(O2 | A3)
=

2

3
.

So if all our assumptions are correct, one should choose the other curtain.

1.5.3 Hat check problem

Suppose there is an entering class of N = 120 masters students at a university and they all
need to be handed their new ID card. A lazy administrator decided to take the ID cards
and hand them out completely randomly. What is the probability that anyone gets their
own card in this procedure?

This is a bit tricky, but it is much easier to compute the expected number of students
who get their correct card. We will do it for general N . Let Ij be the indicator function that
that the jth student receives their correct card. Clearly the probability that this happens is
1/N and hence E[Xj] = 1/N . If X denotes the total number of students that get their own
card, then

E [X] = E

[
N∑
j=1

Xj

]
=

N∑
j=1

E[Xj] =
N∑
j=1

1

N
= 1.

Are the random variables I1, I2, . . . , IN independent? The answer is “almost but not
quite” if N is large. For the moment let us assume that they were and see what we can do.
If Aj denotes the event that the jth student does not get the correct card, then

P{X = 0} = P(A1 ∩ · · · ∩ AN) ≈ P(A1)P(A2) · · · P(AN) =

(
N − 1

N

)N
.

We wrote ≈ to indicate that that step is not exact — the product rule would require inde-
pendence. But if it were true we would have

lim
N→∞

P{X = 0} = lim
N→∞

(
N − 1

N

)N
= lim

N→∞

(
1− 1

N

)N
=

1

e
.

We can give an exact answer using the inclusion-exclusion principle. We will not prove
it here but we will give the idea. Let Vj be the event that the jth student gets the correct
card. Then the probability that at least one person gets their card is P(V1 ∪ · · · ∪ VN). As a
first approximation, we might estimate this by

N∑
j=1

P(Vj).
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But this will be an overestimate because there may be more than one student who gets their
correct card. To compensate we subtract the pairwise intersections

−
∑
j 6=k

P(Vj ∩ Vk).

This subtracts too much and we have to compensate by adding the probabilities of triple
intersections:

+
∑
j,k,l

P(Vj ∩ Vk ∩ Vl)

where this is the sum over all distinct j, k, l;.

Fact Inclusion-Exclusion Principle

P(V1 ∪ · · · ∪ VN) =
N∑
k=1

(−1)k+1
∑
j1,...,jk

P(Vj1 ∩ Vj2 ∩ · · · ∩ Vjk)

where the sum is over all subsets {j1, . . . , jk} of {1, 2, . . . , N} with exactly K elements.

The inclusion-exclusion formula is generally too bulky to give precise answers for large N ,
but this problem is an exception. If we choose k students, then the probability that they all
get the correct card is

1

N

1

N − 1

1

N − 2
· · · 1

N − k + 1
This can be seen by conditional probabilities. For example the probability that the first
student gets the correct card is 1/N and the conditional probability that the second student
gets the correct card given that the first student gets the right card is 1/(N−1). The number
of k element subsets is

(
N
k

)
and hence for our problem, the probability that no one gets their

correct card is

1− P(V1 ∪ · · · ∪ VN) = 1 +
N∑
k=1

(−1)k
∑
j1,...,jk

P(Vj1 ∩ Vj2 ∩ · · · ∩ Vjk)

= 1 +
N∑
k=1

(−1)k
(
N

k

)
1

N · (N − 1) · · · (N − k + 1)

=
N∑
k=0

(−1)k

k!
.

The exact answer is the first N + 1 terms of the exponential series for e−1. While this is not
exactly equal to e−1 it is very close even for relatively small N ; indeed,∣∣∣∣∣1e −

N∑
k=0

(−1)k

k!

∣∣∣∣∣ ≤ 1

(N + 1)!
.

This problem is often phrased in terms of individuals giving their hats at a hat-check and
having them returned randomly. This is why it is often called the hat-check problem.
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1.5.4 Time until a pattern appears

Suppose one flips a fair coin until one flips three heads in a row. What is the expected
number of flips until one stops? What about for j heads in a row?

There are various ways of doing this problem. One approach is to let e(j) be the expected
number of steps until we have had a string of j heads. In order to have a string of j heads,
one need to get a string of j − 1 heads first. Then either we will get a heads and succeed, or
we get a tails and we are back to square one. We can write this as

e(j) = e(j − 1) + 1 +
1

2
e(j), e(j) = 2 e(j − 1) + 2.

This is a recursion equation. We have e(0) = 0, e(1) = 2 and we can keep on going. If we
are only interested in e(3) we can just plug in

e(2) = 2 e(1) + 2 = 6, e(3) = 2 e(2) + 2 = 14.

To try to get a closed formula, we see that e(j) is approximately doubling at each stage,
so let g(j) = 2−j e(j). then the recursion becomes

g(j) = g(j − 1) + 2−(j−1)

and hence

g(j) =

j−1∑
k=0

2−k = 2− 2−(j−1), e(j) = 2j g(j) = 2j+1 − 2.

1.5.5 Two envelopes problem

We will give a paradox here that we will not completely resolve (this makes it more fun!).
Here is the problem:

� I choose a random positive number that I will call N .

� After doing so, I write the numbers N and 2N on pieces of identical paper, place them
in identical envelopes and seal the envelopes.

� You have a simple game — you choose an envelope (without opening it) and after
opening it you receive the amount of money in the envelope.

This is pretty dull but we add a slight twist similar to the Let’s Make a Deal game. After
choosing the envelope but before opening it, I give you the opportunity to switch envelopes.
Should you switch?

Let J be the amount of money in the envelope that you have chosen and let K be the
amount in the other envelope. Note that J is equally likely to be either N or 2N . Therefore
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K is equally to be J/2 or 2J . If you keep your envelope, you will receive J while your
expected amount if you switch envelopes is

E[K] =
1

2
· J

2
+

1

2
· (2J) =

5

4
J.

Therefore, it must be right to switch envelopes!
However, since you always switch, after you switch (and before you open) the number you

hold is either N or 2N . I ask you again if you want to switch back and the same argument
tell you that switching back has an expectation of (5/4) times keeping the envelope. By
doing this twice we now have increased our expectation by a factor of (5/4)2, but we have
exactly the same number that we started with! What’s wrong here?

Part of the problem comes with the idea “choose a number at random”. There is no way
to choose a number uniformly over all real numbers. I must be using some distribution. For
example, suppose that I choose N uniformly on {1, . . . , 100}. The number J can then be in
AO := {1, 3, 5, . . . , 99}, AE := {2, 4, 6, . . . , 100} or B := {102, 104, 106, . . . , 200}. If k ∈ AO,
then the only way for J = k is for to choose N = k. Similarly if k ∈ B, then the only way
that J = k is that N = k/2 and we have chosen 2N . For k ∈ AE, there are two ways that
J can equal k: either N = k or N = k/2. From this we see that

P{J = k} =

{
1

200
k ∈ AO ∪B,

1
100

k ∈ AE,

Using the rule for conditional expectation, we get that E[K] equals∑
k

P{J = k}E[K | J = k} =
∑
k∈AO

P{J = k} 2k +
∑
k∈AE

P{J = k} 5k

4
+
∑
k∈B

P{J = k} k
2
.

which one can check is the same as E[J ] which is the same as (3/2)E[N ].

1.5.6 Secretary problem

Suppose someone will be interviewing n candidate for a job (traditionally called a secretarial
position). The (rather implausible) assumptions are the following: the interviewer will inter-
view the candidate one by one. The interviewer does not know the quality of the candidates
ahead of time, but after each interview, the interviewer will know if the current candidate
is better than all of the other candidates interviewed. The interviewer will have the option
to offer the job to that candidate immediately but it must be done before seeing any of the
other candidates. If the interviewer does not immediately offer the job, then the person will
be unavailable later to accept it.

What is the optimal strategy for the interviewer? We will make the assumption that the
candidates are in a random order. However, one cannot do optimization problems unless one
decides what quantity are we trying to optimize? For a secretarial position, one would like
to get the best candidate, but in most cases the second or third best candidate would also be
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suitable for the position. However, in this problem our goal is to maximize the probability
that the best candidate is chosen.

Suppose we decide that for large n the best strategy is to see the first bn candidates,
accept none of them, and then choose the first candidate after that who is better than all
the previous candidates. What is the probability that the best candidate is chosen? We
partition into the events

A0 = {best candidate occurs before time bn},

A1 = {best occurs after bn but second best occurs before}

A2 = {best two occur after bn but the third best occurs before}
...

If we let B be the event that the best candidate is chosen we have

P(B | A0) = 0, P(B | A1) = 1, P(B | A2) =
1

2
, · · · , P(B | An) =

1

n
.

Also, in the limit as n→∞
P(An) = b (1− b)n.

Therefore (in the limit) using the law of total probability,

P(B) =
∞∑
n=0

P(An)P(B | An) =
∞∑
n=1

b(1− b)n 1

n
.

The Taylor series for log(1− x) about x = 0 is

− log(1− x) = x+
x2

2
+
x3

3
+ · · ·

and hence we see that (again, in the limit as n→∞),

P(B) = −b log b.

To find which value of b maximizes this we use calculus

f(b) = −b log b, f ′(b) = − log b− 1.

Setting f ′(b) = 0 gives b = 1/e. Therefore for large n, the optimal strategy is to interview the
first n/e candidates and then choose the first person that is better than all the candidates
seen at that point. The probability that this succeeds is f(1/e) = 1/e.
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2 Continuous random variables

2.1 Density and distribution function

Continuous random variables take values in R; they have the property that for each real num-
ber the probability of getting exactly that number is 0. In order to describe the distribution
of such a random variable, one uses the (cumulative) distribution function

F (t) = FX(t) = P{X ≤ t}.

The distribution function satisfies the following conditions:

(Increasing) F (s) ≤ F (t) if s ≤ t,

F (−∞) = 0, F (∞) = 1,

(Right continuous) F (t) = F (t+) := lim
s↓t

F (s).

A random variable is continuous if and only if the distribution function is continuous. We
will restrict ourselves to a subclass of continuous functions, those with densities.

Definition The (probability) density (function) or pdf of a continuous random variable X
is a function f such that for all a < b,

P{a < X < b} =

∫ b

a

f(x) dx.

Since X is a continuous random variable, the probability of getting exactly a or b is zero
and so we could also write the left-hand side as P{a ≤ X ≤ b}. The conditions that a density
satisfy are

f(x) ≥ 0 for all x,

∫ ∞
−∞

f(x) dx = 1.

Definition A random variable has a uniform distribution on the interval [a, b] if it has
density

f(x) =
1

b− a
, a < x < b.

Here we use a standard practice to define f only at the places where it is nonzero. It
is implicit that f(x) = 0 if x < a or x > b. Also, since the integral of a function does not
change if we change the value at a single point, it does matter what the values of f(a), f(b)
are. If we know the density, then we can get the distribution function immediately,

F (t) = P{X ≤ t} =

∫ t

−∞
f(x) dx. (4)
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For example, for the uniform distribution we have

F (t) =


0, t ≤ a
t−a
b−a , a ≤ t ≤ b

1, t ≥ b
.

Conversely, if we know the distribution function, we can get the density by differentiating
(4) with respect to t. However, we have to be a little careful. The fundamental theorem
of calculus tells us that the function F (t) defined in (4) is differentiable in t only at those
points where f(t) is continuous.

Fact If F and f are the distribution function and the density, respectively, for a continuous
random variable X, then

f(x) = F ′(x)

at all x at which f is continuous.

One can check that this holds for the uniform distribution except at the points a and
b which are the points at which f is not continuous. When trying to find the density
of a random variable it is often easier to first find the distribution function and then to
differentiate as this next example demonstrates.

Example Suppose X is a uniform random variable on [0, 2]. Let Y = X2. Find the density
of Y .
Note that

FY (y) = P{Y ≤ y} = P{X ≤ √y} =


0, y ≤ 0√
y

2
, 0 ≤ y ≤ 4

1, y ≥ 4

.

Differentiating gives

fY (y) = F ′Y (y) =
1

4
√
y
, 0 < y < 4.

The expectation and variance for continuous random variables with a density f are
defined analogously to the discrete definitions, replacing the summation with an integral.

E[X] =

∫ ∞
−∞

x f(x) dx, E[X2] =

∫ ∞
−∞

x2 f(x) dx,

Var[X] = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2,

and satisfy the same properties

E[aX + bY ] = aE[X] + bE[Y ], Var[aX + b] = Var[aX] = a2 Var[X].

For example, if X is uniform on [0, 2],

E[X] =

∫ ∞
−∞

x f(x) dx =

∫ 2

0

x
1

2
dx = 1,

E[X2] =

∫ ∞
−∞

x2 f(x) dx =

∫ 2

0

x2
1

2
dx =

4

3
, Var[X] =

4

3
− 12 =

1

3
.
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2.1.1 Normal distribution

Probably the most important distribution in probability is the normal distribution which
arises as the natural distribution of the average of many quantities. Here we will only define
it but later we will discuss the central limit theorem.

Definition A random variable X is said to have a normal (or Gaussian) distribution with
mean µ and variance σ2 if it has density

f(x) =
1√

2πσ2
e

−(x−µ)2

2σ2 =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, −∞ < x <∞.

If µ = 0, σ2 = 1, then X has a standard normal distribution. We will write X ∼ N(µ, σ2).

The notation exp(x) or exp{x} is the same as ex. It is often used to aid reading when
the expression in the exponent is complicated.

In order for this to be a probability density we need to show that it integrates to one.
Here is a derivation of this for the standard normal of this using polar coordinates.
Suppose

I =

∫ ∞
−∞

e−
x2

2 dx.

Then

I2 =

[∫ ∞
−∞

e−
x2

2 dx

] [∫ ∞
−∞

e−
y2

2 dy

]
=

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dx dy

=

∫ 2π

0

∫ ∞
0

e−
r2

2 r dr dθ

= 2π.

Here we use the rule dx dy = r dr dθ and the extra factor of r makes the integral doable!

Let us consider the standard normal first. The density does not have an antiderivative
that can be written in closed form. (It is actually a theorem in mathematics that one cannot
a nice form, so don’t waste any time trying to find one!). We can still define the standard
normal distribution function and we will use the letter Φ,

Φ(t) = P{X ≤ t} =

∫ t

−∞

1√
2π

e−
x2

2 dx.
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(Approximate) numerical values for Φ can be found either in tables or in computer packages.
As would be expected from the definition,

E[X] =
1√
2π

∫ ∞
−∞

x e−
x2

2 dx = 0, Var[X] = E[X2] =
1√
2π

∫ ∞
−∞

x2 e−
x2

2 dx = 1.

For other values of µ, σ2 we use the following simple fact.

Fact If X has a normal distribution with mean µ and variance σ2 and Y = (X − µ)/σ,
then Y has a standard normal distribution. In particular, E[X] = µ,Var[X] = σ2 and X has
distribution function

F (x) = P{X ≤ x} = Φ

(
x− µ
σ

)
.

To see this we can just check the distribution function.

P{Y ≤ y} = P
{
X − µ
σ

≤ y

}
= P{X ≤ σy + µ}

=

∫ σy+µ

−∞

1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
dx

=

∫ y

−∞

1√
2π

e−
t2

2 dt.

The last step uses the change of variables x = µ+ σ t.

2.1.2 Exponential distribution

The exponential distribution comes from making the assumption of the memoryless property.
Suppose T is the time at which some event will occur. The memoryless property states that
if we have waited for t time units and the event has not occurred, then the probability that
the event will occur in the next s times units is exactly the same as the probability it would
have occurred in the first s time units. We write this assumption as

P{T > s+ t | T > t} = P{T > s}.

Since,

P{T > s+ t | T > t} =
P{T > s+ t, T > t}

P{T > t}
=

P{T > s+ t}
P{T > t}

,

we can write this as

G(s+ t) = G(s)G(t) where G(t) = P{T > t}.

The only continuous functions of t with this property satisying G(0) = 1, G(∞) = 0 are
G(t) = e−λt.
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Definition A random variable T has an exponential distribution with parameter (rate)
λ > 0 if it has distribution function

F (t) = P{T ≤ t} = 1− e−λt, t ≥ 0,

or equivalently, if it has density function

f(t) = λ e−λt, t ≥ 0.

By using integration by parts we can evaluate the integrals to show that

E[X] =

∫ ∞
−∞

t λ eλt dt =
1

λ
,

E[X2] =

∫ ∞
−∞

t2 λ eλt dt =
2

λ2
, Var[X] = E[X2]− E[X]2 =

1

λ2
.

The expectation makes sense if we view T as the expected time until an event occurs when
events occur at rate λ per time unit. In this case, the expected time for the next event is
1/λ.

2.2 Joint densities and independence

Dealing with multiple random variables in the continuous case is very similar to the discrete
case although the notation gets a little bulky. We will consider the case of a random vector
(also called a random variable taking values in Rn) X = (X1, . . . , Xn) where X1, . . . , Xn are
continuous random variables.

Definition

� The joint (cumulative) distribution function F = FX is the function from Rn to [0, 1]
given by

F (t1, . . . , tn) = P{X1 ≤ t1, . . . , Xn ≤ tn}.

� The joint (probability) density (function) f = fx is a function from Rn to [0,∞) such
that for every subset V ⊂ Rn,

P{X ∈ V } =

∫
V

f(x) dx.

Here we write x = (x1, . . . , xn) for a point in Rn and dx denotes usual integrals in Rn.

� The distribution function and density of a particular component Xj are called marginal
distribution function and marginal density.
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One can get the joint distribution from the joint density and vice versa using

F (t1, . . . , tn) =

∫ tn

−∞
· · ·
∫ t1

−∞
f(x1, x2, . . . , xn) dx1 · · · dxn,

f(x1, . . . , xn) = ∂x1 ∂x2 · · · ∂xnF (x1, . . . , xn).

The marginal density for a particular component can be found from the joint density by
integrating out the other variables, e.g.,

fX1(x) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX(x, x2, . . . , xn) dx2 dx3 · · · dxn.

There also is a notion of conditional densities. The definition is a natural analogue of
conditional probability. Suppose Y is another random variable so that (X, Y ) is a random
vector in Rn+1. Let us write its density as f(x, y) and

fX(x) =

∫ ∞
−∞

f(x, y) dy

for the corresponding marginal.

Definition The conditional density for Y given X = x is given by

f(y | x) =
f(x, y)

fX(x)
,

provided that fX(x) 6= 0. If fX(x) = 0, then f(y | x) is not defined. In other words,

f(X,Y )(x, y) = fX(x) f(y | x).

Example Consider the two-dimensional random vector (X, Y ) with a uniform distribution
over the triangle

D = {(x, y) : 0 ≤ x ≤ y ≤ 1}.

This triangle has area 1/2 and hence the joint density is given by

f(x, y) = 2, 0 ≤ x ≤ y ≤ 1.

The marginal densities are

fX(x) =

∫ ∞
−∞

f(x, y) dy = 2 (1− x), x ≤ y ≤ 1,

fY (y) =

∫ ∞
−∞

f(x) dx = 2 y, 0 ≤ x ≤ y,
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and the conditional densities are given by

f(x | y) =
f(x, y)

fY (y)
=

1

y
, 0 ≤ x ≤ y,

f(y | x) =
f(x, y)

fX(x)
=

1

1− x
, 1− x ≤ y ≤ 1.

In particular, the conditional densities have uniform distributions.

The notion of (mutual) independence for continuous random variables is essentially the
same as for discrete but we can write the condition in terms of the joint distribution and joint
density. A finite collection of continuous random variables X = (X1, . . . , Xn) is independent
if and only if the joint distribution function and the joint density is given by the product of
the marginal quantities,

FX(x1, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn),

fX(x1, . . . , xn) = fX1(x1) fX2(x2) · · · fXn(xn).

Sometime we are given the densities of the individual random variables and the assumption
that they are independent. Then we can write the joint density as the product of the
individual densities.

Example Suppose X, Y are independent exponential random variables each with rate λ.
Find the density of Z = X + Y .

The joint density of (X, Y ) is given by the product of the two individual densities and
hence is

f(x, y) = λ e−λx λ e−λy = λ2 e−λ(x+y), x, y > 0.

In order to find a density we will find the distribution function for Z first and then differen-
tiate. If z > 0,

FZ(z) = P{Z ≤ z} = P{X + Y ≤ z}

=

∫
x+y≤z

λ2 e−λ(x+y)dy dx

=

∫ z

0

∫ z−x

0

λ2 e−λ(x+y)dy dx

=

∫ z

0

λe−λx[1− e−λ(z−x)] dx

=

∫ z

0

λ [e−λx − e−λz] dx

= 1− e−λz − λ z e−λz.

fZ(z) = F ′Z(z) = λ2 z e−λz, z > 0.
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An infinite collection of random variables is (mutually) independent if each finite subset
of them is independent. The basic properties of independent random variables extend to
continuous random variables — they are important enough to repeat them here.

Fact

� If X, Y are independent random variables, then E[XY ] = E[X]E[Y ].

� If X1, . . . , Xn are independent (or, more generally, orthogonal), then

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn].

There are two other quantities associated to pairs of random variables.

Definition

� The covariance of X and Y is defined by

Cov(X, Y ) = E
[
(X − E[X]) (Y − E[Y ])2

]
= E[XY ]− E[X]E[Y ].

� The correlation coefficient is defined by

ρ(X, Y ) =
Cov(X, Y )√

Var(X) Var(Y )
.

Note that Cov(X, Y ) = 0 if and only if X, Y are orthogonal. The correlation coefficient
satisfies −1 ≤ ρ(X, Y ) ≤ 1. Roughly speaking, if Cov(X, Y ) > 0, or equivalently,
ρ(X, Y ) > 0, then when X is larger we expect Y to be larger. In this case we say that
X, Y are positively correlated.

3 Moment generating function and sums of indepen-

dent random variables

There are two closely related quantities associated to random variables that at first may not
be motivated.

Definition Suppose X is a random variable.

� The moment generating function (mgf) of X is defined to be

M(s) = MX(s) = E[esX ]

provided that the expectation exists.
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� The characteristic function (cf) of X is defined to be

φ(s) = φX(s) = E[eisX ].

Here i =
√
−1. If x is a real number, then

eix = cosx+ i sinx,

and
|eix|2 = cos2 x+ sin2 x = 1.

For this reason, we see that |eisX | ≤ 1 for all s and hence the expectation in the defi-

nition of the characteristic polynomial always exists. One advantage of characteristic

function over moment generating function is that the expectation always exists. One

disadvantage is that one has to deal with complex numbers. When MX exists, then

we have φX(s) = MX(is).

We will give some examples later, but let us discuss some properties first for which we
will not give complete proofs. Clearly,

MX(0) = φX(0) = 1.

Fact If two random variables have the same mgf or have the same cf, then they have the
same distribution.

It suffices in fact to show that their mgf or cf exist in a neighborhood of the origin and

agree there.

If we formally differentiate the formula with respect to s and interchange the derivative
and the expectation we get

M
(n)
X (s) = E

[
Xn esX

]
, φ

(n)
X (s) = E

[
(iX)n eisX

]
.

Here the (n) denotes the nth derivative. One needs to do some work to justify this, but it
can be shown to be valid for the mgf if it exists. It is also valid for the cf provided that
E[|X|n|] <∞. If we plug in s = 0 we get the following.

� If the moment generating function exists for s in a neighborhood of the origin, then
for all positive integers n,

E[Xn] = M (n)(0).
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� For all positive integers n, If E[|X|n] <∞, then

in E[Xn] = φ(n)(0).

The number E[Xn] is called the nth moment of the random variable and we see where

the term mgf comes from.

If a, b are real numbers, we can write the mgf or cf of aX + b in terms of the mgf or cf of
X as follows:

MaX+b(s) = E[es(aX+b)] = ebs E[e(as)X ] = ebsMX(as),

φaX+b(s) = E[eis(aX+b)] = eibs E[ei(as)X ] = eibs φX(as),

Finally, we get a nice formula for the mgf or cf of the sum of independent random
variables.

Fact If X1, X2, . . . , Xn are independent random variables and S = X1 + · · ·+Xn, then

MS(s) = MX1(s)MX2(s) · · ·MXn(s), φS(s) = φX1(s)φX2(s) · · ·φXn(s).

This follows from

MS(s) = E[esX1esX2 · · · esXn ] = E[esX1 ]E[esX2 ] · · ·E[esXn ] = MX1(s)MX2(s) · · ·MXn(s),

and similarly for φS(s). The second equality uses the independence of the random variables.

Example

� If X ∼ N(0, 1),

M(s) =

∫ ∞
−∞

esx
1√
2π

e−x
2/2 dx = es

2/2, φ(s) = M(si) = e−s
2/2.

� if X ∼ N(µ, σ2), then X = σ Y + µ where Y ∼ N(0, 1) and

M(s) = eµsMY (σs) = eµs eσ
2s2/2, φ(s) = M(is) = eiµs e−σ

2s2/2.

� If X is Poisson with mean λ,

M(s) =
∞∑
n=0

esn e−λ
λn

n!
= e−λ

∞∑
n=0

(λes)n

n!
= e−λ eλe

s

= exp {λ(es − 1)} ,

φ(s) = M(is) = exp {iλ(es − 1)} .
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� If X is exponential with rate λ,

M(s) =

∫ ∞
0

esx λe−λx dx =
λ

λ− s
, φ(s) = M(is) =

λ

λ− is
.

M(s) is valid only for s < λ but φ(s) exists for all s.

We use this to establish some important results about sums of independent random
variables.

Fact If X1, . . . , Xn are independent random variables with Xj ∼ N(µj, σ
2
j ), then X1 + · · ·+

Xn ∼ N(µ, σ2), where µ = µ1 + · · ·+ µn, σ
2 = σ2

1 + · · ·+ σ2
n.

The fact that

E[X1 + · · ·+Xn] = µ, Var[X1 + · · ·+Xn] = σ2,

follow from properties of expectations and variance of sums. The important fact is that the
distribution of the sum is normal. To check this we just check that

MX1+···+Xn(s) = MX1(s)MX2(s) · · ·MXn(s)

=
n∏
j=1

exp

{
µj s+

σ2
j s

2

2

}
= exp

{
µ s+

σ2 s2

2

}
But this is the mgf of a N(µ, σ2) random variable, and the mgf determines the distribution.

Fact If X1, . . . , Xn are independent random variables with Xj being Poisson with rate λj,
then X1 + · · ·+Xn is Poisson with rate λ1 + · · ·+ λn.

To check this we just check that

MX1+···+Xn(s) = MX1(s)MX2(s) · · ·MXn(s)

=
n∏
j=1

exp {λj (es − 1)}

= exp {(λ1 + · · ·+ λn) (es − 1)}

which is the mgf of a Poisson random variable with rate λ1 + · · ·+ λn.
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4 Sums of independent random variables

In this section we will assume that X1, X2, . . . are independent, identically distributed (i.i.d.)
random variables with E[Xj] = µ,Var[Xj] = σ2 <∞ and let

Sn = X1 +X2 + · · ·+Xn.

We know that
E [Sn] = µn, Var[Sn] = σ2 n, SD[Sn] = σ

√
n.

This simple calculation underpins one of the most important facts about independent random
trials.

Fact The “typical error” (standard deviation) of the sum of n i.i.d. quantities grows like√
n.

We will start by giving a couple of simple inequalities that relate expectation and variance
to probabilities of being far from the mean.

Fact Suppose a > 0.

� Markov inequality:

P{|X| ≥ a} ≤ a

E[|X|]
,

� Chebyshev inequality:

P{|X − E(X)| ≥ a} ≤ a2

Var[X]
.

The first follows from

E[|X|] ≥ E[|X| 1{|X| ≥ a}] ≥ aP{|X| ≥ a},

and the second follow from applying the first to the random variable |X − E(X)|2.
The law of large numbers (LLN) concerns the average of n trials,

Xn =
Sn
n
.

Note that

E
[
Xn

]
=

E[Sn]

n
= µ, Var

[
Xn

]
=

Var[Sn]

n2
=
σ2

n
, SD

[
Xn

]
=

√
Var[Xn] =

σ√
n
.

Note that for every ε > 0, Chebyshev’s inequality gives,

P{|Xn − µ| ≥ ε} ≤ Var[Xn]

ε2
=

σ2

ε2 n

which goes to zero as n→∞.
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We have demonstrated what is often called the weak law of large numbers (WLLN).

There is a stronger statement called the strong law of large numbers (SLLN) which

states that with probability one Xn → µ. To make this precise we need measure

theory so we will not do it here. One can show that the SLLN and WLLN hold if the

expectation exists even if σ2 =∞.

The standardized sum associated to Sn is the one shifted and normalized so that it have
mean zero and variance 1,

Zn =
Sn − µn
σ
√
n

, E[Zn] = 0, Var[Zn] = 1.

Probably the most important theorem in probability is the central limit theorem which states
that as n→∞, the distribution of Zn approaches that of a standard normal.

Fact Central Limit Theorem If a < b, then

lim
n→∞

P{a ≤ Zn ≤ b} = Φ(b)− Φ(a) =
1√
2π

∫ b

a

e−
x2

2 dx.

We will not prove this, but we will discuss part of the argument so that the reader can
see where the normal distribution arises. Without loss of generality we will assume
that µ = 0 and σ2 = 1 for otherwise we can consider Yj = (Xj − µ)/σ. In this
case Zn = Sn/

√
n. Let φ be the characteristic function for Xj ; we know that φ(0) =

1, φ′(0) = iE[Xj ] = 0 and φ′′(0) = −E[X2
j ] = −1. Let us expand φ about the origin

φ(s) = 1− s2

2
+ o(s2), s→ 0.

The characteristic function for Zn is

φZn(s) = φSn

(
s√
n

)
=

[
φ

(
s√
n

)]n
=

[
1− s2

2n
+ o(n−1)

]n
.

As n → ∞, the right-hand side approaches e−s
2/2 which is the characteristic function

for a N(0, 1) random variable.
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5 Some other Distributions

5.1 Gamma distribution

Definition A random variable X has a Gamma distribution with shape parameter r and
rate λ if it has density function

f(x) = Cλ,r x
r−1 e−λx, x > 0,

where Cλ,r is the constant so that f integrates to one. In fact,

Cλ,r =
λr

Γ(r)
,

where Γ(r) denotes the Gamma function

Γ(r) =

∫ ∞
0

xr−1 e−x dx.

If r = 1, the Gamma distribution is the same as the exponential with rate λ.

The Gamma function is the generalization of the factorial function to all positive num-
bers. Note that r > 0 is needed for the integral to converge near 0. Using integration
by parts one can prove the rule

Γ(r + 1) = r Γ(r).

If r is an integer, then Γ(r) = (r − 1)!.

It has
E [X] =

r

λ
, Var[X] =

r

λ2
,

and moment generating function

M(s) =

[
λ

λ− s

]r
, s < λ.

Using this we get the following property. Note that X and Y have the same λ in the
statement.

Fact If X and Y are independent random variables and X is Gamma with rate λ and shape
parameter r1 and Y is Gamma with rate parameter λ and shape parameter r2, then X + Y
is Gamma with rate λ and shape parameter r1 + r2.

The following can be checked.

Fact Iy X has a Gamma distribution with shape parameter r and rate λ and a > 0, then
aX has a Gamma distribution with shape parameter r and rate λ/a.

If we consider a Gamma distribution as measuring times, then we can view multipli-

cation by a constant as changing the time unit.
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5.2 Chi-square distribution

Definition A random variable X has a chi-square distribution with n degrees of freedom,
written χ2

n, if it has the distribution of

Z2
1 + Z2

2 + · · ·+ Z2
n

where Z1, Z2, . . . , Zn are independent standard normal random variables.

To find the distribution density of Z2
1 we compute the distribution function F first.

P{Z2
1 ≤ t} = P{−

√
t ≤ Z1 ≤

√
t}

=

∫ √t
−
√
t

1√
2π

e−x
2/2 dx

= 2

∫ √t
0

1√
2π

e−x
2/2 dx

We cannot find a closed form for this integral. But we can still differentiate it using the
fundamental theorem of calculus and the chain rule.

f(t) = F ′(t) = 2 ·
√

1

2π
e−(
√
t)2/2 · 1

2
√
t

=
1√
2π

t−1/2 e−t/2.

From this we see that that the χ2
1 distribution is the same as the Gamma distribution with

shape parameter r = 1/2 and rate parameter λ = 1/2. Using the rule for sums of independent
Gamma random variables we get the following general rule.

Fact The χ2
n distribution is the same as the Gamma distribution with shape parameter n/2

and rate 1/2.

In particular. if X ∼ χ2
n,

E[X] = n, Var[X] = 2n.

5.3 Beta distribution

The beta distribution arises in Bayesian statistics from the following problem. Suppose we
have a coin with probability p of coming up heads but we do not know p. Since we know
nothing we assume a prior distribution of a uniform distribution on [0, 1]. Suppose we flip
the coin m + n − 2 times and observe m − 1 heads and n − 1 .tails. What is our posterior
density for p? This is worked out using a form of Bayes theorem. Let A be the event of
m− 1 heads and n− 1 tails amd write informally

f(p | A) =
P{p,A}
P(A)

.
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Note that given p the probability that A occurs is
(
m+n
m

)
pm (1− p)n and hence

f(p | A) =
1

β(m,n)
pm−1 (1− p)n−1

where β(m,n) denotes the integral

Definition A random variable X has a beta distribution with parameters m and n if it has
density

xm−1 (1− x)n−1

β(m,n)
, 0 < x < 1

where

β(m,n) =

∫ 1

0

xm−1 (1− x)n−1 dx =
Γ(m+ n)

Γ(m) Γ(n)
=

(m+ n− 1)!

(m− 1)! (n− 1)!
.

Fact The beta distribution with parameters m and n is the posterior distribution for p
where there are Bernoulli trials with probability of success p, the prior distribution on p is
uniform, and m+ n− 2 trials have been done with exactly m− 1 successes.

Integration by parts gives∫ 1

0
xm−1 (1− x)n−1 dx =

n− 1

m

∫ 1

0
xm (1− x)n−2,

which gives the rule

β(m,n) =
n− 1

m
β(m+ 1, n− 1).

Also β(1, n) = 1/n.

5.4 Multivariate normal distribution

Note: this section is cut and paste from Introduction to Stochastic Calculus with Applications.

Although the normal or Gaussian distribution is a little inconvenient in the sense that
the distribution function cannot be computed exactly, there are many other aspects that
make the distribution very convenient. In particular, when dealing with many variables,
assuming a joint or multivariate normal distribution makes computations tractable. In this
section we will give the basic definitions. Roughly speaking, the basic assumption is that
if (X1, . . . , Xn, Y ) have a joint normal distribution then not only does each variable have a
normal distribution but also, the conditional distribution of Y given X1, . . . , Xn is normal
with mean E[Y |X1, . . . , Xn] and a variance that depends on the joint distribution but not
on the observed data points. There are a number of equivalent ways to define a joint normal
distribution. We will use the following.
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Definition A finite sequence of random variables (X1, . . . , Xn) has a joint (or multivari-
ate) normal (or Gaussian) distribution if they are linear combinations of independent stan-
dard normal random variables. In other words, if there exist independent random variables
(Z1, . . . , Zm), each N(0, 1), and constants mj, ajk such that for j = 1, . . . , n,

Xj = mj + aj1 Z1 + aj2 Z2 + · · ·+ ajm Zm.

Clearly E[Xj] = mj. Let us consider the case of mean-zero (also called centered) joint
normals, in which case the equation above can be written in matrix form

X = AZ,

where

X =


X1

X2
...
Xn

 , Z =


Z1

Z2
...
Zm

 ,

and A is the n×m matrix with entries ajk. Each Xj is a normal random variable with mean
zero and variance

E[X2
j ] = a2j1 + · · ·+ a2jm.

More generally, the covariance of Xj and Xk is given by

Cov(Xj, Xk) = E[XjXk] =
m∑
l=1

ajlakl.

Let Γ = AAT be the n× n matrix whose entries are

Γjk = E[XjXk].

Then Γ is called the covariance matrix.
We list some important properties. Assume (X1, . . . , Xn) has a joint normal distribution

with mean zero and covariance matrix Γ.

� Each Xj has a normal distribution. In fact, if b1, . . . , bn are constants, then

b1X1 + · · ·+ bnXn,

has a normal distribution. We can see this easily since we can write the sum above as
a linear combination of the independent normals Z1, . . . , Zm.

� The matrix Γ is symmetric, Γjk = Γkj. Moreover, it is positive semi-definite which
means that if b = (b1, . . . , bn) is a vector in Rn, then

b · Γb =
n∑
j=1

n∑
k=1

Γjkbjbk ≥ 0. (5)
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(If the ≥ is replaced with > 0 for all b = (b1, . . . , bn) 6= (0, . . . , 0), then the matrix is
called positive definite.) The inequality (5) can be derived by noting that the left-hand
side is the same as

E
[
(b1X1 + · · ·+ bnXn)2

]
,

which is clearly nonnegative.

� If Γ is a positive semidefinite, symmetric matrix, then it is the covariance matrix for
a joint normal distribution. The proof of this fact, which we omit, uses linear algebra
to deduce that there exists an n× n matrix A with AAT = Γ. (The A is not unique.)

� The distribution of a mean-zero joint normal is determined by the covariance matrix
Γ.

In order to show that the covariance matrix Γ determines the distribution of a mean-
zero joint normal, we compute the characteristic function. Suppose that Γ = AAT

where A is n×n. Using the independence of Z1, . . . , Zn and the characteristic function
of the standard normal, E[eitZk ] = e−t

2/2, we see that the characteristic function of
(X1, . . . , Xn) is

φ(θ1, . . . , θn) = E [exp {i(θ1X1 + . . .+ θnXn)}]

= E

exp

i
n∑
j=1

θj

n∑
k=1

ajkZk




= E

exp

i
n∑
k=1

Zk(
n∑
j=1

θjajk)




=
n∏
k=1

E

exp

iZk(
n∑
j=1

θjajk)




= exp

−1

2

n∑
k=1

 n∑
j=1

θjajk

2
= exp

−1

2

n∑
k=1

n∑
j=1

n∑
l=1

θjθiajkalk


= exp

{
−1

2
θAAT θT

}
= exp

{
−1

2
θΓθT

}
where we write θ = (θ1, . . . , θn). Even though we used A, which is not unique, in our
computation, the answer only involves Γ. Since the characteristic function determines
the distribution, the distribution depends only on the covariance matrix.
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� If Γ is invertible, then (X1, . . . , Xn) has a density. We write it in the case that the
random variables have mean m = (m1, . . . ,mn),

f(x1, . . . , xn) = f(x) =

1

(2π)n/2
√

det Γ
exp

{
−(x−m) · Γ−1(x−m)T

2

}
.

Sometimes this density is used as a definition of a joint normal. The formula for the
density looks messy, but note that if n = 1, m = m,Γ = [σ2], then the right-hand side
is the density of a N(m,σ2) random variable.

� If (X1, X2) have a mean-zero joint normal density, and E(X1X2) = 0, then X1, X2 are
independent random variables. To see this let σ2

j = E[X2
j ]. Then the covariance matrix

of (X1, X2) is the diagonal matrix with diagonal entries σ2
j . If (Z1, Z2) are independent

N(0, 1) random variables and Y1 = σ1Z1, Y2 = σ2Z2, then by our definition (Y1, Y2) are
joint normal with the same covariance matrix. Since the covariance matrix determines
the distribution, X1, X2 must be independent,

It is a special property about joint normal random variables that orthogonality implies
independence. In our construction of Brownian motion, we will use a particular case, that
we state as a lemma.

Proposition 5.1. Suppose X, Y are independent N(0, 1) random variables and

Z =
X + Y√

2
, W =

X − Y√
2

.

Then Z and W are independent N(0, 1) random variables.

Proof. By definition (Z,W ) has a joint normal distribution and Z,W clearly have mean 0.
Using E[X2] = E[Y 2] = 1 and E[XY ] = 0, we get

E[Z2] = 1, E[W 2] = 1, E[ZW ] = 0.

Hence the covariance matrix for (Z,W ) is the identity matrix and this is the covariance
matrix for independent N(0, 1) random variables.

5.5 Distributions from statistics: F and (student’s) T

We will discuss two distributions that arise in the statistical analysis of normal random
variables. For this section, we will assume that X1, X2, . . . are independent random variables
each with a N(µ, σ2) distribution but where at least one of µ, σ2 is unknown. We let

Xn =
X1 + · · ·+Xn

n
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which is called the sample mean. We have already seen that Xn ∼ N(µ, σ2/n), or equiva-
lently, √

n (Xn − µ)

σ
∼ N(0, 1). (6)

The best statistical estimator of µ is Xn and if we know σ (which is a big assumption!), we
can estimate the probability of a large error in this estimator by

P{
∣∣Xn − µ

∣∣ ≥ a} = P
{√

n |Xn − µ|
σ

≥ a
√
n

σ

}
= 2 Φ

(
−a
√
n

σ

)
.

Similarly, if we knew µ and wanted to estimate σ we could use the estimator

V n =
1

n

n∑
j=1

(Xj − µ)2 =
σ2

n

n∑
j=1

(
Xj − µ
σ

)2

.

The summation on the right is the sum of the squares of independent N(0, 1) random vari-
ables. Therefore, we get

nV n

σ
∼ χ2

n.

The more realistic situation is when both µ and σ2 are unknown. In this case, we still use
Xn as the estimator for µ but we replace the estimator for σ2 or σ by the sample variance
or (sample) standard deviation defined by

S2
n =

1

n− 1

n∑
j=1

(Xj − X̄n)2, Sn =

√√√√ 1

n− 1

n∑
j=1

(Xj − X̄n)2.

Note that Xn and Sn are statistics of the data, that is, they are functions of the data points.
One can compute these numbers without regard to the distribution of the data. However,
if we assume that the data is coming from i.i.d. normal random variables we can give the
distribution on these statistics.

Note that we are dividing by 1/(n− 1) rather then 1/n in the definition of S2
n. Roughly

speaking this is because if we estimate the mean by the sample mean, then the data which
produced the sample mean will tend to be a bit closer to the sample mean than the actual
mean. As an extreme, note that if we have only one piece of data (n = 1), then we have no
estimate for variance since our one data point agrees with the sample mean. To show that
n − 1 is the correct denominator, let us show that E[S2

n] = σ2 assuming n ≥ 2. For ease

assume that µ = 0 in which case σ2 = E[X2
j ] = nE[X

2

n]. Then,

E

[
n∑
j=1

(Xj − X̄n)2

]
=

n∑
j=1

(
E[X2

j ]− 2E[Xj X̄n] + E[X̄2
n]
)

=
n∑
j=1

n− 1

n
σ2 = (n− 1)σ2.
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Here we use

E[X2
j ] = σ2, E[X̄2

n] = Var[Xn] =
σ2

n
,

E[Xj Xn] =
1

n

[
E[X2

j ] +
∑
k 6=j

E[XjXk]

]
=

1

n
E[X2

j ] =
σ2

n
.

The next fact is surprising — it uses our assumption of i.i.d. normal random variables.

Fact

� X̄n and S2
n are independent random variables.

� The distribution of (n− 1)S2
n is χ2

n−1.

Here we show how to prove this fact. Assume that µ = 0, σ2 = 1 for otherwise we
could consider (Xj − µ)/σ.

Let Yj = Xj − X̄n and Y = (Y1, . . . , Yn−1). Y has a centered multivariate normal
distribution and we denote its covariance matrix by Γ. Note also that (Y, X̄n) has
a multivariate normal distribution with E[Yj X̄n] = 0,E[X̄2

n] = 1/n, and hence the
covariance matrix of (Y, X̄n) has a block form[

Γ 0
0 1/n

]
.

This is the same matrix that one obtains by choosing X̄n to be a centered normal
independent of Y and by uniqueness of distribution, we see that X̄n is independent of
Y1, . . . , Yn−1. Note that

Yn = −(Y1 + · · ·+ Yn−1)

and hence

S2
n =

1

n− 1

n∑
j=1

Y 2
j

is a function of Y1, . . . , Yn−1 and is also independent of Xn.

To see the distribution of (n− 1)S2
n =

∑
(Xj −Xn)2 we first check that

n∑
j=1

X2
j =

n∑
j=1

(Xj −Xn)2 + nX
2
n = (n− 1)S2

n +

(
Xn

1/
√
n

)2

.

The left-hand side has a χ2
n distribution and the second term on the right has a χ2

1

distribution. Since the two terms on the right are independent it will follow that the

first term has a χ2
n−1 distribution.
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Definition If m,n are positive integers, the F -distribution with m and n degrees of freedom
is the distribution of

Y/m

Z/n

where Y, Z are independent, Y ∼ χ2
m, Z ∼ χ2

n. It has density

cm,n x
m
2
−1
(

1 +
m

n
x
)−m+n

2

where cm,n is the constant so that it integrates to one.

The constant cm,n can be given explicitly but we will not write it here. We think of the
definition as the ratio of the chi-square random variables, and the computation of the density
is an exercise in multivariate calculus. The density is not something to be memorized!

The student t-distribution is what one gets when one replaces the actual standard devi-
ation in (6) with the standard deviation.

Definition The student t-distribution with n− 1 degrees of freedom is the distribution of

Xn − µ
Sn/
√
n
.

This can also be defined as the distribution of

Z/
√
n

Y/
√
n

where Y, Z are independent, Z ∼ N(0, 1), and Y ∼ χ2
n−1. The density is given by

cn

(
1 +

x2

n

)−n+1
2

,

where cn is the constant so that it integrates to one.

As n→∞, the t-density approaches the standard normal density. We can see this as

lim
n→∞

(
1 +

x2

n

)−n+1
2

= e−x
2/2.

From a practical perspective, if one is summing a large amount of data (even thirty data
points makes a good approximation), one can use the standard normal rather than the
t-distribution.

44


	Discrete probability
	Random variables and expectation
	Independence and conditional probability
	Independence of random variables and variance
	Some discrete distributions
	Indicator random variables
	Uniform distribution
	Binomial distribution
	Geometric distribution
	Poisson distribution

	Some problems and brain teasers
	St. Petersburg Paradox
	Monty Hall problem
	Hat check problem
	Time until a pattern appears
	Two envelopes problem
	Secretary problem


	Continuous random variables
	Density and distribution function
	Normal distribution
	Exponential distribution

	Joint densities and independence

	Moment generating function and sums of independent random variables
	Sums of independent random variables
	Some other Distributions
	Gamma distribution
	Chi-square distribution
	Beta distribution
	Multivariate normal distribution
	Distributions from statistics: F and (student's) T


