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In topology, t h e r e  i s  a dichotomy between two genera l  c l a s s e s  

@paces and ways of th ink ing  about  t h e i r  r o l e s .  On t h e  one hand, 

are a r e  t h e  concre te  geometric spaces ,  most important ly t h e  var ious  

pas of manifolds. Typical  problems one proposes t o  s tudy about 

h spaces a r e  t h e i r  c l a s s i f i c a t i o n ,  a t  l e a s t  up t o  cobordism, and 

obs t ruc t ions  t o  t h e  ex i s tence  of  an equivalence of a given space 

h u space with a r i c h e r  type of  s t r u c t u r e .  Bundles and f i b r a t i o n s  

r geometric spaces g e n e r a l l y  play a c e n t r a l  r o l e  i n  t h e  s o l u t i o n  

ouch problems. On t h e  o t h e r  hand, t h e r e  a r e  t h e  c l a s s i f y i n g  spaces 

bundle and f i b r a t i o n  t h e o r i e s  and o t h e r  cohomological i n v a r i a n t s  

paces. These a r e  thought  of a s  t o o l s  f o r  t h e  a n a l y s i s  of geo- 

c problems, and it is  a f a m i l i a r  f a c t  t h a t  theorems on t h e  

#&iifying space l e v e l  o f t e n  t r a n s l a t e  t o  y i e l d  i n t r i n s i c  informa- 

n on t h e  bundle theory l e v e l .  Thus, f o r  example, Bot t  p e r i o d i c i t y  

inated a s  a s tateme2t  about  t h e  homotopy types of c l a s s i f y i n g  

u ,  but  i s  most u s e f u l l y  i n t e r p r e t e d  a s  a s tatement  about bundles 

t ensor  products .  

l a s t  decade has s e e n  an i n t e n s i v e  a n a l y s i s  of t h e  homotopy 

t h e  c l a s s i f y i n g  spaces of geometric topology, with a view 

p p l i c a t i o n s  t o  t h e  c l a s s i f i c a t i o n  and o b s t r u c t i o n  theory 

l e s s  r i c h l y  s t r u c t u r e d  than d i f f e r e n t i a b l e  manifolds. 

very much more s t r u c t u r e  than t h e  mere homotopy type i s  

The s tudy of t o p o l o g i c a l  and PL manifolds and of Poincare 

i t y  spaces fo rces  cons idera t ion  of bundle and f i b r a t i o n  t h e o r i e s  

ool~ornology of whose c l a s s i f y i n g  spaces i s  wholly i n a c c e s s i b l e  

ho c l a s s i c a l  techniaues and i n v a r i a n t s  of homotopy theory.  

The appropriate framework for the study of these classifying spaces is  

lriCo loop space theory and, in particular, i ts multiplicative elaboration 
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which is  the theme of this book This is  also the appropriate framework for The prototype of an Em ring spectrum is  the sphere spectrum %so. 

the most structured development of algebraic K-theory, by which we understand 

the homotopy theory of discrete categories, and one of the main goals of this 

volume is  a complete analysis of the relationship between the classifying spaces i p  between its additive infinite loop space structure and the multiplicative 

of geometric topology and the infinite loop spaces of algebraic K-theory. ' The lnitc loop space structure on the component SF of its identity element. It i s  

results obtained have powerful calculational consequences, which a re  presented I I C ~  hterrelationships which win be codified in our basic definitions. 

0 
in [26]. F o r  example, they make it possible to pass quite directly from If we ignore QS and concentrate on SF, then the interest focuses on 

representation theoretical computations of the homologies of appropriate finite c~rnctric topology and, in particular, on the relationships among F ,  Top, PL, 

groups to detailed analysis of characteristic classes for topological bundles clnssi'cal groups, and their homogeneous and classifying spaces. We give 

(away from 2).and spherical fibrations. 

From the point of view of classical algebraic topology, infinite loop space tlloory of Em spaces developed in [45] (and recapitulated later in this 

theory may be thought of as  the use of unstable methods for the study of stable 

homotopy theory. Its starting point is  a recognition principle for infinite loop 

spaces that allows one to pass back and forth between spectra and spaces with Our cons t ruc t ion  of an i n f i n i t e  loop space s t r u c t u r e  on SF de- 

appropriate internal structure, namely E spaces. We shall enrich this m on use no t  j u s t  of t h e  SF(n) b u t  of t h e  SFW) f o r  a l l  f i n i t e -  

additive theory with a multiplicative structure which allows one to pass back f l ional  r e a l  inner  product  spaces VCR-. I f  we a r e  t o  s e e  t h i s  

and forth between E ring spectra and E ring spaces. w w 

Conceptually, the new theory is  different in kind from the old: the npectra  i n  chap te r  11,which is mainly an e x t r a c t  and summary 

appropriate multiplicative structure on spectra is  itself unstable in that it 1481 of t h a t  s l i g h t  amount of information about  coordinate-  

appears not to admit an equivalent formulation expressible solely in terms of Bpectra and t h ~  s t a b l e  homotopy category needed i n  t h i s  book. 

structure visible to the stable homotopy category. This i s  because the rele- WQ reach t h e  d e f i n i t i o n  of E, r i n g  s p e c t r a  i n  chap te r  I V ,  which 

vant structure requires very precise algebraic data on the point-set level on 
I n t  work wi th  Frank Quinn and Nigel Ray. The fundamental idea  

t t i n g  an Em space s t r u c t u r e  on a spectrum i n  order  t o  o b t a i n  
the spaces which together comprise the spectrum. The applications that 

c h e s t  p o s s i b l e  no t ion  of a r i n g  spectrum i s  e n t i r e l y  due t o  

concern us here center around space level exploitation of this algebraic data. 
Quinn. A manageable and t e c h n i c a l l y  c o r r e c t  way of  doing t h i s  

It has very recently become possible to express a significant portion of the u s  f o r  some t ime.  The e s s e n t i a l  i n s i g h t  l ead ing  t o  t h e  c o r r e c t  

structure in terms of maps in the stable category. This reformulation leads t ion  came from Nigel  Ray, who pointed o u t  t h a t  good concre te  

to applications in stable homotopy theory and will be the subject of a future uct ions of Thom s p e c t r a  gave n a t u r a l l y  occuring examples of 

volume. 
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spectra with the right kind of structure and that these examples e o .  Much more significantly, it encodes the interrelationship 

could be taken as models on which t~'~attern the general definition. WQcn kO and the spectrum determLned by BO . ~t is one easy 
(3 

One key family of classifying spaces in geometric topology is aocluence of this interrelationship which is exploited in chapter 

missing from chapter I, namely the classifying spaces for sphere 

bundles of a given type oriented with respect to a specified cohomo- "r in nature as an Em ring spectrum and must therefore be man- 

logy theory. In fact, no concrete constructions of such classifying 

sDaces exist in the literature. We remedy this in chapter I11 by 
This brings us to the last four chapters which, aside from 

use of the general classification theory for fibrations and bundles of definitions contained in the first sections of chapters I, 

developed in [471. In 53 of chapter IV, we give these classifying 
and IV,are largely independent of the first five. In chapter 

spaces infinite loop space structures when the specified cohomology I wa define Em ring spaces and show that the classifying spaces 

theory is represented by an Em ring spectrum. ntegories with appropriate internal structure, namely bipermuta- 

In chapter V, we demonstrate that formal analysis on the class-' categories, are examples of such spaces. In chapter VII, we 

ifying space level allows one to deduce sharpened versions of the el the machine constructed in [45 and 461 for the manufacture 

results of Adams [4,5] on J(X) and of Sullivan [721 on topological poctra from Em spaces so as to make it turn out coordinate-free 

bundle theory (away from the prime 2) from the k0-orientation of h a .  We then show that if the machine is fed the additive 

Spin-bundles and the ko[l/2]-orientation of STop-bundles together Lure of an Em ring space, then it turns out an Em ring spectrum. 

v,ith the Adams operations, the cannibalistic classes derived from mmediate application is a multiplicatively enriched version 

them by use of the specified orientations, and the  dams conjecture. 10 Barratt-Quillen theorem [16,68,46] to the effect that Q ~ Q ,  

the last section, we combine various results from throughout this Chua the stable homotopy groups of spheres, can be constructed 

volume with results of Adams and Priddy [a], Madsen, Snaithl and of symmetric groups. Our version shows that the infinite loop 

Tornehave [42], and Ligaard I381 to analyze the infinite loop space 0 SF, and thus the classifying space BSF for stable spherical 

structure of BTop (away from 2) and of various other classifying tions, can also be constructed out of symmetric groups. 

spaces utilized in earlier parts of the chapter.  his material In the last section of chapter VII, we study the spectra turned 

completes most bf the program envisioned in a preprint version of whon the machine is fed the multiplicative structure of an E~ 

this chapter. apace. In particular, we obtain a purely multiplicative version 

Aside from its last section, chapter V is largely independent relationship between SF and symmetric groups. In chapter VIII, 

of infinite loop space theory and is reasonably self-contained- o the promised analysis of the relationship between the classifying 

However, its earlier sections do make essential use of the fact of geometric topology and the infinite loop spaces of algebraic 

that real connective K-theory is represented by an Em ring spectrum ry. This basic material is a mosaic of'results due to Jfirgen Tornehave 

ko. This fact implies in particular that BO the component of oolf and includes new proofs and generalizations of the results 
8' 

the identity element of the zeroth space of k0, is an infinite loop nlly given in his thesis [75] and in his unpublished preprints 

\ - 



[76] and [77] ; it is presented here under joint authorship. The 

connection between algebrilic and topological K-theory was established 

in the work of Quillen [58,591, and we show that the maps giver. by 

Brauer lifting which he used to prove the ~'.darr,s conjecture are 

infinite loop maps, both additively and multiplicatively. Via the 

Probenius automorphism, this information yields a good understanding 

of the infinite loop space BCokerJ, which is the basic building block 

for BSF and for BTop (away from 2) and turns out to be the classifying 

space for j-oriented stable sp:-.erical fibrations for a suitable 

E, ring spectrum j .  We also show that BSF splits as BImJ X BCokerJ 

as an infinite loop space when localized at an odd prime p, and that, 

at 2, there is a (non-splittable) infinite loop fibration B Coker J -t BSF -tB Im J. 

Chapter M contains a theory of pairings in infiruts loop space tneory. 

This is used to compare our machine-built spectra of algebraic K-theory 

to the spectra constructed by Gersten and Wagoner [30,79]. 

Logically, this book is a sequel to [45 and 461. However, I 

have tried to make it self-contained modulo proofs. Thus the de- 

finitions of operads and Em spaces are recalled in TIIS 1, and the 

main results of the cited papers are stated without proof in VII 5 

1-3. Nevertheless,the reader may find a preliminary reading of 

the first three sections of [45] helpful, as they contain a leisurely 

explanation of the motivation behind the basic definitions. While 

a full understanding of the constructions used in VII requires pre- 

liminary reading of [45,59 and 8111, the pragmatic (and trusting) 

reader may regard the results of that chapter as existence statements 

derived by means of a black box, the internal intricacies of which 

can safely be ignored in the applicatiorsof the remaining chapters. 

It is to be stressed, howe~rer, that all of our applications 

which go beyond the mere assertion that a given space is an infinite 

loop space depend on special features -- the new multiplicative structi 
various consistency statements, flexibility in the choice of raw 

materials -- of our black box which allow us to fit together different 
parts of the theory. 

We illustrate this point with a discussion of how BO ap2ears in our 

theory. As explained in chapter I, the ordinary classifying space 

of the infinite orthogonal group is an Em space and thus an infinite 

loop space. As explained in chapter VI, BO(n) is an Em ring 
n 

space (and the relevant Em operad is different from that used in 

chapter I): the zeroth space of the resulting Em ring spectrum is 

equivalent to BO X 2. We thus have two infinite loop space structures 

on BO corresponding to two machine-built connective spectra. If we 

are to take these structures seriously, then we must prove that the 

machine-built spectra are equivalent to that obtained from the periodic 

nott spectrum by killing its homotopy groups in negative degrees. 

(Other manufacturers of black boxes have not yet studied such con- 

slstency problems.) For our first model, the required proof follows 

from a commutation rel~tion between looping and delooping. For our 

sccond model, the reouired proof follows directly from the ring 

structure. In both cases, we rely on a characterization of the 

connective spectrum associated to a periodic space which only makes 

..ense because of special features of our new construction of the 

,table homotopy category. That both models are necessary can be 

%Seen most clearly in the orientation sequence for k0-oriented stable 

spherical fibrations. This is a fibration sequence of infinite loop 

*;paces 

SF + BO + B(SF;~O) + BSF 
€3 

vhrch is derived by use of the E, structure on SF coming from chapter 

I together with the E, ring structure on kO given by the second model. 

!'he first model is essential to relate this sequence to the natural 

nialp ]:SO +SF on the infinite loop level. Many of our applications 

# ) f  chapters V and VIII center around this sequence, and its deriva- 

I ion really seems to require every bit of our general abstract mach- 



i n e r y .  That even t h e  much simpler  consis tency ques t ion  about  Bott  

p e r i o d i c i t y  is  no t  a l t o g e t h e r  t r i v i a l  i s  ind ica ted  by t h e  f a c t  t h a t  

our  e a s i e r  second proof w i l l  apply equa l ly  w e l l  t o  prove t h e  r e s u l t  

about  ( a d d i t i v e )  Brauer l i f t i n g  c i t e d  above. 

Beyond i ts  new r e s u l t s ,  t h i s  book i s  intended t o  g ive  a coherent  

account of t h e  most important  d e s c r i p t i v e  ( a s  opposed t o  computa- 

t i o n a l )  a p p l i c a t i o n s  of i n f i n i t e  loop space theory.  A thorough study 

of t h e  homology of Em spaces and of  Em r i n g  space appears  i n  t261,  

where t h e  theory and r e s u l t s  of t h e  p resen t  volume a r e  app l ied  t o  

t h e  s tudy of c h a r a c t e r i s t i c  c l a s s e s .  An informal  summary of t h e  

m a t e r i a l  i n  both t h a t  volume and t h i s  one i s  given i n  [49], which 

g i v e s  an extended i n t u i t i v e  in t roduc t ion  t o  t h i s  genera l  a r e a  of 

topology. 

It i s  a p leasure  t o  acknowledge my d e b t  t o  t h e  very many people 

who have helped me with t h i s  work. I owe d e t a i l s  t o  Don Anderson, 

Zig Fiedorowicz, Dick Lashof, Arunas L i u l e v i c i u s ,  Stewart  Priddy,  

Vic Sna i th ,  Nark S te inberger ,  Dick Swan, and Larry Taylor .  I am 

p a r t i c u l a r l y  indebted t o  my coauthors  Frank Quinn, Nigel Ray, and 

J$rgen Tornehave f o r  t h e i r  i d e a s  and i n s i g h t s ,  t o  I b  Pladsen f o r  

key d i scuss ions  of 2-primary phenomena and correspondence about 

var ious  a s p e c t s  of t h i s  work, and t o  Frank Adams f o r  proofs  of a 

number of  t e c h n i c a l  lemmas and mucb o t h e r  he lp .  I owe a s p e c i a l  
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and h i s  many suggest ions +or i t s  improvement. 

F i n a l l y ,  my thanks t o  Maija May f o r  p repar ing  t h e  index. 

1. J func tors  

In [19], Boardman and Vogt introduced the concept of $-functor. 

Their purpose was to show how certain collections of spaces, such as  BFV 

or  BTopV, indexed on inner product spaces V produce E spaces and 
w 

03 therefore infinite loop spaces by passage to limits over V C R . In section 1, 

we give a detailed exposition of this part of their theory, reformulated in terms 

of operads and operad actions as defined in [45,§ 11. In particular, we give a 

systematic discusssion of the classical groups and their homogeneous spaces 

as 9-functors and display the Bott maps as  morphisms of d -functors. 

In section 2, we relate the two-sided geometric bar construction to 

4 -functors and rederive the theorems of Bpardman and Vogt to the effect that 

F, Top, P L  and the related classifying spaces and homogeneous spaces a re  

infinite loop spaces. (We shall use brief ad hoc arguments based on the 

triangulation theorem to handle PL. ) Most of the material of these sections 

dates from 1971 and has been circulating in preprint form since 1972. 

Boardman and Vogt's own account of their theory has since appeared [20]. 

Their language and choice of details a re  quite different from ours, and there 

is very little overlap. The present language and results will be needed in 

the rest of this book . 

1. Linear isometries and classical groups 

Let 9 denote the category of compactly generated and nondegenerately 

based weak Hausdorff spaces. For  an operad $, let & [ y ]  denote the 

category of c-spaces [45,§ 11 (or VI, $1). 

To obtain an action of an operad on the infinite classical groups and 



re la ted  spaces ,  i t  is conceptually and notationally s imples t  to pass  f r o m  a 

functor  defined on  a c e r t a i n  category $ to  a n  act ion by a re la ted  operad  x .  
The definition- a?Ld prapertiies of 3 a n d q  a r e  due to Boardman and Vogt [19,20]. 

Definition1 :i. Define the category $ of l inear  i s o m e t r i e s  a s  

follows. The objects  of $ a r e  finite o r  countably infinite dimensional  

r e a l  inner  product spaces ,  topologized a s  the l imi t s  of the i r  finite dimen- 

sional  subspaces.  The morphisms  $(v,  W) f r o m  V to W a r e  l i n e a r  

i s o m e t r i e s  V + W, and (V, W) i s  given the (compactly generated) 

compact-open topology. Note that the d i r e c t  s u m  Q: X J  + d) i s  a 

continuous functor  and is commutative,  associat ive,  and unital (with unit 

( 0 ) )  up to  coheren t  na tura l  isomorphism. 

Definition 1. 2. Define t h e  l i n e a r  i s o m e t r i e s  operad  by 

z ( j )  = S ( ( R ~ ~ , R ~ ) ,  w h e r e  (Rm)j i s  the d i r e c t  s u m  of j copies of R 
m 

with i t s  s tandard inner  product; the requis i te  data a r e  specified by 

(a) ~(f:g~,...,g~)=fo(g~@... Qgk) .  f~ x ( k )  and g i €  x ( j i ) .  

(b) 1 E q ( 1 )  i s  the identity map. 

(c) ( i d ( y )  = i ( q )  f o r  f s ~ ( j ) .  r i zj. and y E ( R ~ ) '  . 

In o ther  words,  is requi red  to  be a sub-operad of the endomorphism 

m 
operad  of R (where Rm has basepoint  zero) .  

It i s  t r iv ia l  to ver i fy  that  Z. a c t s  f ree ly  on x ( j ) .  The following 
J 

l e m m a  therefore  impl ies  that  i s  a n  E operad.  Recall  that  i s o m e t r i e s  
m 

need not be  i somorphisms .  

L e m m a  1.3. d. (V, Rm) i s  contract ible for  a l l  inner  product spaces  V. 

Proof.  Le t  (e.1 ir i ) ,  {ef ,  e;l i L  i ) ,  I f . ) ,  and {f!,fl!} be  ortho- 
J J J  

m 
n o r m a l  b a s e s  for  R , Rm CB Rm, V, and V Q V respectively. Define 

a :  Rm + Rm by a(e.)  = eZi and define p:Rm + R m @  Rm by p(e2i-i) = e l  

and p(e ) = e! . Then 6 i s  a n  i somorphism such  that  pa  = i t ,  the  inject ion 
2i  I 

of the f i r s t  summand. Define a path Hi:I + (RC0,Rm) f r o m  the  identi ty 

to rr and define a path H : I  -4 (V,V 63 V) f r o m  i '  to  i "  by normal iz ing  
2 

the  obvious l inear  paths 

Gl(t)(e.) = ( i - t )e .  t t e  and G (t)(f.) = (i-t)f! t tf'! . 
1 2i 2 J J J  

F i x  y E dl (V, Rm) and define H: I X $ (V, Rm) + $ (v, Rm) by 

Then H(0, k) = k and H(1, k) = p-'i"y, which i s  independent of k. 

We now define $- func tors  and a functor  f r o m  9. -functors to  

X-spaces .  

Definition 1.4.  An 4 -functor (T ,  w) i s  a continuous functor  

T:J + together with a commutative,  associat ive,  and continuous 

natural  t ransformat ion  w: T X T -+ T fB (of functors X .! -. .r) such  

that 

(a)  if x E TV and if 1 e T (0) i s  the basepoint, then 

W(X, 1) = x E T(V 63 {0)) = TV 

(b) if V = V' 63 V", d i m  V' < m, and if i: V' + V is the inclusion, 

then Ti: TV' + TV (which, by (a), i s  given by Ti(x)  = w(x, i ) ,  

where  1 i s  the basepoint of TV") i s  a homeomorphism onto a 

closed subset ,  and 

(c) TV = l i m  TV' a s  a space,  where V' runs  o v e r  t h e  f ini te  -. 
dimensional  sub inner  product spaces  of V. 

We ca l l  w the  Whitney s u m ;  f o r  x. E TVi. 1 I i l j, we wr i te  

w(xi ,..., x.) = x fB ... Q x.. A m o r p h i s m  @:(T,w)- (T1,w ' )  of 
J 1 J 

3 -functors i s  a continuous na tura l  t ransformat ion  Q :  T + T '  which com-  



mutes  with the Whitney sums. [ 5 ] denotes the category of dl -functors. 

Remarks  1.  5. (i) The category 3 [ ] has finite products; if 

t: T'X T -+ T X T '  i s  the interchange natural  transformation,  then 

(T, w) X (TI, w') = (T X T', (w X wl)(l X t X 1)) . 
Similarly,  the category [ y ]  has fibred products. 

(ii) F o r  C E 3 and an  d-functor  (T,o), define the function space $-functor 

F(C,  T) by F(C,  T)(V) = F(C,  TV), with Whitney sum the composite 

F(C,  TV) X F(C,  TW) -. F(C X C, TV X TW) F ( A ~  r F ( C ,  T(V tB W)). 

(iii) If U i s  the universal covering space functor and if (T, w) i s  an 

-functor, then (UT, Uw) i s  an $ -functor, where Uo i s  induced f rom 

P o  on P T  = F(1, T) by passage to quotient spaces (compare [26,It % 81). 

Definition 1.6. Define a functor @: =L! [ f ]  + [ ] by letting 

@(T, w) = (TRW, 0) on objects and @(a) = @: T R ~  + T ' R ~  on morphisms, 

where 8.: x(j) X ( T R ~ ) '  + T R ~  i s  defined by 
J 

w 
0 .(f, x i ,  . . . , x.) = ( T ~ ) ( x ~  &) . . . &) xj), f E x(j) and xi E TR . 

J 3 

8.  i s  continuous by the continuity of T and w. Observe that 63 commutes 
J 

with the various constructions specified in the previous remarks ,  where 

these constructions a r e  defined on [ T I  by [45,1.5-1.7 and 26, I. 4.81. 

As i s  customary, we shall  often write T both fo r  $ -functors and for  

the derived x - s p a c e s  T R ~  . 

Remark 1.7. Let a: RW+ Rm be a l inear i sometr ic  isomorphism. Then 

a determines an automorphism x a  of the operad by 

( x a ) ( f )  = af(a-i)': (ROD)' + R~ for  f E x(j). If (T,  w) i s  an -functor, 

then Ta: T R ~  -+ T R ~  i s  an xa-equivar iant  homeomorphism, in the sense 

that Tao 8 = 8 .o ( f a  X ( ~ a ) ' ) .  
j~ 

To construct x - spaces ,  we need only construct  4 -functors. We 

next show that  to construct $ -functors we need only study finite-dimensional 

inner product spaces and the i r  l inear  isometric isomorphisms. 

Definition 1.8. Let j n. n < m, be the full subcategory of $whose 

objects a r e  n-dimensional, and le t  & be the graded subcategory of con- 

sisting of the union of the Note that the functors &): $ mX 4 
-+ bP m+n n' 

together define a graded functor &): Q,, x + $ . An J*-functor (T, w) 

i s  a continuous functor T: 4* + together with a commutative, associative, 

and continuous natural  transformation w: T X T + To 8 such that 

(a) if x E TV and if 1 E T (0) i s  the basepoint, then 

W(X, 1) = x E T(V €3 (0)) = TV . 
(b) if V = V' &) V", dim V < cu, then the map TV' + TV given by 

x + w(x, i )  i s  a homeomorphism onto a closed subset. 

Morphisms of $+ -functors a r e  defined in the evident way, and d, [x ] 
denotes the category of j.+ -functors. 

Proposition 1.9. The forgetful functor Q [ 3 ] -+ $, [ TI i s  an 

isomorphism of categories.  

Proof. We must verify that an 4% -functor (T, w) admits a unique 

extension to an  J -functor. If dim V = m, we can and must define TV 

by Definition 1.4(c); we shall write x' 8 1 for  the image in TV of x '  E TV' 

(since V = V' B) ( v ' ) ~  when dim V' < w) .  Similarly,  we can and must 

define w: TVX TW + T(V 61 W) by x 63 y = (x' &) y') 61 1 if x = x '  83 1 and 

y = y' €3 1 with x '  E TV' ard y' E TW' for  finite dimensional subspaces 

V' of V and W' of W. Finally, if f:V + W i s  a l inear  i sometry  and if 

x = x'  &) 1 E TV, with x' E TV' where dim V' < w ,  we define 

(1) (Tf)(x) = (Tf')(xZ) &) 1 , where f' = f l ~ ' : ~ '  -+ f(V'). 



. 
C 

This definition i s  forced since the image of f" = f I ( v ' ) ~  i s  contained in TV X TV - TV T V X T V X T W X T W  = T V X T W  

f ( v l ) I ,  hence f = f'61 f", and we therefore must have 

( T ~ ) ( x )  = T ( ~ I  Q fl1)(x1 8 )  1) = (T~')(X')  Q ( ~ f " ) ( i )  = ( T ~ I ) ( x ' )  Q 1, T(V Q W) x T(V Q W) T(V B) W) 

the l a s t  equality holding since Tf" must preserve  basepoints. It i s  straight-  simply amounts to the validity of the formulas 

forward to verify that (T, w), so constructed, i s  indeed a well-defined 
fgg6f- I  = (fgf-l)(fg'f-l) and ggf 61 hhl = (g 61 h)(gl B) h ' )  

d -functor. Similarly,  morphisms of -J*-functors extend uniquely to 
fo r  f a b\ (v, w), g, g' a TV, and h, h' a TW. On T R ~ ,  the composition 

morphisms of .! -functors by passage to limits. 
product will be homotopic to the (internal) Whitney sum induced f rom the 

Henceforward, we shall  identify the categories Je [ ] and Q [ 31. 
action of ( see  [45,8.7 o r  46, 3 . 4  1). When, fur ther ,  TV i s  a 

We shall  speak of -functors but shall only construct  the underlying 
sub topological group of the group of homeomorphisms tV + tV, the inverse  

- f u n c t o r s .  The following remarks  will be basic to the applications. 
map i: TV + TV will define a morphism of 9; -functors by virtue of the 

Remarks i. 10. F o r  many of the I -functors (T, w) of interest ,  the points 

x a TV will be (o r  will be derived from) maps tV * tV, fo r  some space (fgf-i)-i = fg-If-' and (g Q h)-' = g- i  Q h-'. 

tV depending functorially on V; the basepoint of TV will be  the identity We now define the c lass ica l  groups and the i r  homogeneous spaces 

map of tV. Moreover, when dim V = dim W < m, a point f a d (v, W) 
systematically a s  $ -functors. Let K denote one of the normeddivision 

will determine a homeomorphism tf: tV * tW and we will have rings R, C, o r  H ( r ea l  numbers,  complex number s ,  o r  quaternions). F o r  

( ~ f ) ( x )  = tfoxo(tf)- '  f o r  x a TV. a r ea l  inner product space V, let  VK denote K@ V regarded a s  a ( le f t )  
R 
J 

Henceforward, we shall  generally replace formulas ( i )  and (2) by the notat- 
inner product space over K and, for  J C K, le t  VK denote ' V K  regarded 

ionally s impler  expression a s  an  inner product space over  J. By a c lass ica l  group G, we undkrstand 

( ~ f ) ( x )  = fxf-' f o r  x a TV and f a d. (V, W). any one of the following functors f rom j. to the category of topological 

We thus suppress f rom the notation both the passage f rom f to tf and the 

required restrict ion to finite dimensional subspaces. It will often be the 

ca se  that TV i s  a sub topological monoid of the monoid (under composition) R R 
SU(VC)C U(VC) C S0(Vc) C 0(Vc) 

of maps tV -C tV. It will follow that the composition product C: TV X TV * TV n 
defines a morphism of J -functors. Indeed, the commutativity of the dia- 

grams 

 h he vertical  inclusions a r e  a l l  of the f o r m  g -c i @ g. ) If G i s  a classical  



group and if Gi, 
i < i < n, a r e  c lass ica l  subgroups of G (in the sense of 

n 
the lat t ice above), then the homogeneous space G/.X Gi i s  defined to be the 1 = i  

functor -+ 7 which i s  given on objects by 

n 
( ~ 4 %  G ~ ) ( v )  = G(V.)/ i = i  x G ~ ( v )  . 

n 
F o r  f E (V, W), dim V = dim W < m, (G/X Gi)(f) i s  induced by passage 

1-1 
i n 

to orbit  spaces f rom g -+ Pg( f -  ) for  g E G(vn), where ?: vn + wn i s  

the  d i rec t  sum of f with itself n t imes.  With Whitney sum induced by 

passage to orbit spaces f rom the composite 

G(vn) X G(wn) G(vn@ wn) G ( v )  > G((V B3 w ) ~ ) ,  

n 
where v i s  the evident shuffle isometry,  each (G/.E Gi, u) i s  an 4 -functor. 

1-1 

If H C G and H. C G., then the evident maps of orbi t  spaces define a morph- 
1 1  

n n 
i s m  of $ -functors H/.X H. + G/ X Gi ; when H= G, the  inclusion of the 

r = i  1 i=i  

n n 
f ibre  X G./H. in G/ X H. is also a morphism of -functors. By the 

i= i  1 1 i = i  1 

universal  bundle of a c lass ica l  group G, we understand the morphism of 

J? -functors 
n : E G =  G / ~ X G  -+ G / G X G  = BG 

obtained by setting n = 2, G = e o r  G, and G2 = G in the framework 
i 

above. Remarks 1. 10 show that the product and inverse  map on each 

c lass ica l  group G a r e  morphisms of -functors. 

W e  can define Spin by letting Spin(V) be the universal cover of SO(V). 

Alternatively, and preferably,  Spin and a lso  SpinC, Pin, and pinC can be 

explicitly described a s  -functors by means of the i r  standard descriptions 

i n  t e r m s  of the Clifford algebras of inner product spaces [12]. Theproduct  

and inverse maps on these groups and the usual maps between these groups 

and c lass ica l  groups a r e  then morphisms of -functors. 

We observe next that each of the Bott maps may be regarded a s  a 

morphism of 3 -functors of the form 

In fact, each p i s  induced by passage to orbit  spaces f rom a map 

2 2 p: H(V ) -+ RG(V ) of the form 

p(g)(t) = ga(t)g-la-l(t) , g E H ( v ~ )  and 0 S t 2 1. 

Here a(t): V' + v2 i s  a l inear  isometric isomorphism of the general  form 
K K 

a(t)(v,vT) = (val(t) ,v1a2(t))  f o r  v ,v l  E V 
K 

where the a.(t) a r e  elements of norm one in the relevant ground field K. 

F o r  example, 
p :BU= U / U X U  + R(SU/exe) = RSU 

i s  so  determined by a (t) = emit and a (t) = e-mit. Explicit definitions of 1 2 

the a.(t) required in the r ea l  ca se  may be found i n  [21 and 251. The 

verification that each p i s  a morphism of 3 -functors i s  an easy  calculation f rom 

the fo rm of the maps (and explicit expressions fo r  the u.(t) a r e  not needed). 

The point i s  that if  f E $ (V. W), then f z  commutes with a.(t). 

In order  to i te ra te  the Bott maps,  it i s  necessary  to use the natural  

maps 6 :  G +RBG fo r  G = 0, U, and Sp. Proposit ions 2.3 and 2.4 below 

show that, after  passage to 7 - s p a c e s ,  these maps become composites of 

X-maps and of homotopy inverses  of x -maps  which a r e  hornotopy equival- 

ences. As our  definition of the stable category and ou r  arguments in 1153 

will make c l ea r ,  these inverses  will not complicate the following discussion. 

Definition 1 .6  yields a natural  s t ruc ture  of q - s p a c e  on the homo- 

n co 
geneous spaces G/ Gi = (G/ .  X Gi)(R ), on Spin, etc. Each of these 

i=  1 I =  1 
spaces i s  grouplike (no i s  a group) and i s  thus an  infinite loop space by 

r46, 2.31 (or VII, 3. 2 below). Certain of these spaces a r e  also infinite loop 

spaces by Bott periodicity. To show the consistency of these s t ruc tures ,  

let  X be one of the spaces entering into Bott periodicity of period d, d = 2 

2 8 
o r  d = 8, such a s  R BU r BU X Z o r  $2 BO -- BOX Z. The x - s p a c e  
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s t ructure  on X determines a connective coordinatized spectrum (or infinite 

loop sequence) B X = {B.x) such that B X i s  naturally equivalent to X. 
m 0 

The i tera ted Bott map P: X + 52% induces a weak homotopy equivalence 

B,P: BmX - B ~ %  of spectra.  As will be  explained in VII. 3.4, [46,3.1] 

d 
gives a map B 52% + 52 B X in  the stable category, the zeroth level of 

m m 

which i s  equivalent to the identity map of a%. By composition, we there-  

d 
fore have a map B X - 52 BmX, the zeroth level of which i s  equivalent to 

m 

p:X +a%. It i s  intuitively obvious, and will be rigorously proven in  II $3, 

that the connective spectrum associated to the periodic spectrum with zeroth 

space X determined by P i s  characterized, up to isomorphism in the stable 

category, by precisely these conditions. 

2. The bar  construction; F ,  Top, and PL. 

The two-sided geometric b a r  construction will play a central  role in 

our  theory, and the following notations will be used throughout the la ter  

chapters.  Let  G be a topological monoid the identity element of which i s  a 

nondegenerate basepoint and le t  X and Y be left and right G-spaces. Then 

there  i s  a simplicia1 topological space B*(Y, G,X), the n-th space of which 

i s  Y X G~ X X [45, $101. Its geometric realization [45, 11 .l] will be denoted 

B(Y, G, X). We shall  always write 

p:B(Y,G,X) + B(Y,G,*) and q:B(Y,G,X) +B(*,G,X) 

fo r  the maps induced f rom the trivial  G-maps X + * and Y - *, where * 
i s  the one point G-space. p and q a r e  quasi-fibrations with f ibres  X and Y 

when G i s  grouplike and a r e  G-bundles when G is  a topological group 

[47,7. 6 and 8. 21. We shall  write 

T = T ( ~ ) : Z + B ( Y , G , X )  and E =  E ( A ) : B ( Y , G , X ) + Z  

fo r  the  maps induced by a map p: Z + Y X X and by a map A :Y X X + Z 

such that A(yg, x) = A(y, gx) [45,9.2]; the intended choice of p and A 

should be c l ea r  f rom the context. By [45,9.8,9.9, and 11.101, the G-maps 

E. : B ( Y , G , G ) + Y  and E :B(G,G,X)+X 

;Ire deformation retractions with right inverses  the evident maps T .  We 

Lkgree to abbreviate B(IY, y, p)  = BIY if y and p a r e  identity maps, and 

s imilar ly  in the other  variables. 

BG = B(*, G, *) i s  the standard classifying space of G. If G i s  

group-like, the natural inclusion &:.G + S2B G i s  a weak homotopy equivalence. 

I f ,  further,  p': E '  - B' i s  a principal quasi G-fibration with E '  aspherical,  

Lhen the maps 
B' <- B(E1, G, xc) b BG 

display a weak homotopy equivalence between B' and BG [47,8.7 and 7.71. 

F o r  a morphism j: H -F G of grouplike topological monoids, define 

the left and right "homogeneous spaces" by 

G/H = B(G, H, *) and H\G = B(*, H, G). 

There i s  a weak homotopy equivalence 8: G/H -+ FBj, where F B j  denotes the 

I~ornotopy theoretic fibre,  and a quasifibration sequence 

HL GG G/H& BHL BG 

[ 4 7 ,  8. 81. By symmetry, the same  statements hold for  H\G. 

Now le t  6 be any operad. As explained in  [46,$3], B(Y, G, X) i s  a 

c - s p a c e  when Y, G, and X a r e  -spaces and the product and unit of G 

. ~ n d  i ts  action on Y and on X a r e  morphisms of ("-spaces. Such a G i s  

sS,id to beamonoid in c[T]; i t s  monoid product i s  homotopic to t h e  product 

given by the action of l443.41. When all given maps in  any of the con- 

t;Lructions of the previous paragraphs a r e  morphisms of c - spaces ,  then 

H O  a r e  all derived maps (where homotopies X X I -+ Y a r e  in terpreted a s  

+ 
!naps X -F F( I  ,Y) and where the  fibre of a &-map i s  a 6 - s p a c e  via  



[45 ,1  .a]). F o r  m o s t  of t h e  m a p s  above, this  s ta tement  follows f r o m  the  fac t  

tha t  geomet r ic  rea l iza t ion  defines a functor  f r o m  s impl ic ia l  &-spaces 

t o  (?'-spaces [45,12.2]. F o r  the  remaining m a p s ,  e a s y  d i r e c t  calculat ions 

a s  in  [46,3.6], w h e r e  5 : G -c RBG is handled, a r e  requi red .  

We next  show tha t  p rec i se ly  s i m i l a r  s ta tements  apply to  -functors. 

Definition 2.1. A monoid-valued $) -functor, o r  monoid in  [ 71, 
i s  a n  $ -functor G such  tha t  each  GV i s  a topological monoid, t h e  identi ty 

e l e m e n t  of GV is i t s  basepoint ,  and the  products  GV X GV + GV define a 

m o r p h i s m  of 3 -functors.  G i s  s a i d  t o  be  group-valued if each  GV is a 

topological  group and  t h e  i n v e r s e  m a p s  GV + GV define a m o r p h i s m  of 

$ -functors.  G i s  s a i d  to  be  grouplike if e a c h  -rr GV i s  a group. A lef t  
0 

act ion of a monoid-valued J -functor G on  a n  -functor X i s  a morphism 

of Q -functors G X X + X such  that  the m a p  GV X XV + X V  i s  a n  act ion 

of GV on  XV f o r  each  V. 

Definition 2.2. Le t  G b e  a monoid-valued d -functor which a c t s  

f r o m  the  lef t  and r ight  on  $ -functors X and Y. Define a n  d- func tor  

B(Y, G, X) a s  follows. F o r  V E and f o r  a m o r p h i s m  f: V + V t  i n  $ , 

define 

B(Y,G,X)(V)= B(YV,GV,XV) and B(Y,G,X)(f) = B(Yf,Gf,Xf). 

T h e  Whitney s u m  on B(Y, G,X) i s  defined b y  the  composite  m a p s  

B(YV X YW, GV X GW, XV X XW) 

I B(w, (0, w) 

B(Y(V@ W), G(V@ W), X ( V @  W)) 

w h e r e  5 i s  t h e  commultative and assoc ia t ive  n a t u r a l  homeomorphism given 

by :45.10.1 and  11. 51. 

I t  i s  eas i ly  ver i f ied  tha t  B(Y, G,X) i s  well-defined. The  only point 

worth mentioning is that  the functor  B(Y, G,X) i s  continuous because 

geomet r ic  rea l iza t ion  i s  continuous if the s e t  of m a p s  of s impl ic ia l  s p a c e s  

f r o m  C to  D i s  topologized a s  a subspace  of the  product  o v e r  n of the 

s p a c e s  of m a p s  f r o m  Cn to Dn. C l e a r l y  the  x - s p a c e  obtained by f i r s t  

applying t h e  functor  B to (Y, G,X) and  then  applying the  functor  8 of 

Definition 1 .6  coincides with the 7 - s p a c e  obtained by f i r s t  applying 8 to  

Y, G, and X and then applying B. 

In view of R e m a r k s  1. 5, a l l  of the  m a t e r i a l  of the  f i r s t  few paragraphs  

of this  sec t ion  c a n  b e  r e p h r a s e d  i n  t e r m s  of Q -functors (where  a homotopy 

between m a p s  T -+ T 1  of 3 -functors m e a n s  a m o r p h i s m  of J-functors 

f 
T - F ( I  ,TI )  and where ,  jus t  a s  f o r  s p a c e s ,  the  f ib re  of a m a p  of 4 - f u n c t o r s  

i s  defined a s  the  evident f ib red  product). It i s  again s t ra igh t forward  to  v e r i f y  

that  a l l  cons t ruc ted  m a p s  a r e  m o r p h i s m s  of 9 -functors when all given m a p s  

a r e  so. We s u m m a r i z e  resu l t s  in t h e  following s ta tements .  

Propos i t ion  2.3. If j: H + G is a m o r p h i s m  of grouplike monoid- 

valued Q -functors,  then  t h e  following i s  a quasi-f ibrat ion sequence of 

$I -functors 

HL G LG/H&BH B G .  

5 :  G + RBG and  8: G/H + F B j  a r e  weak equivalences of -functors. 

The  c l a s s i c a l  groups define group-valued $ -functors by ~ k m a r k s  1.10. 

Propos i t ion  2.4. When G i s  a c l a s s i c a l  group L. -functor, the  m a p s  

G / G X G  a B(G/eXG,G,*) --%-+ BG 

of $I -functors de te rmine  a weak  equivalence of x - s p a c e s  between the 

two na tura l  classifying s p a c e s  of G. 



Henceforward, we shall work relative to a fixed continuous 

sphere-valued functor t: $, -+ 7 such that tVh tW = t(V B W). By the 

continuity, commutativity, and associativity of the smash  product, t i s  itself 

an $*-functor with the natural projection tV X t W -(. t(V (B W) a s  Whitney 

sum. We have the following l is t  of monoid-valued d*-functors which act 

f rom the left on t .  

(Y 

ExarnpIes 2.5. Let F denote the $*-functor specified by 

# 

FV = F(tV, tV) and $f = ~ ( t f - l ,  tf) for  f: V -. V' , 
rU 

with the Whitney sum ~ : F v  X FW -. ?(v f3 W) given by the smash  product 

w 

of maps. Define sub Q*-functors F, SF, TOP, and STOP of F by restricting 

attention to based homotopy equivalences, degree one homotopy equivalences, 

homeomorphisms, and degree one homeomorphisms of tV. Define e to be 

w 

the trivial  sub Q*-functor of I?, eV = ( 1 ) .  When tV i s  the one-point com- 

pactification V* of V, 0 and SO become sub -!)*-functors of Top and 

STop via one-point compactification of maps . Moreover, the twisted adjoint 

representation of [12, p. 71 defines morphisms of $*-functors f rom Pin, 

Spin, r, pinc, Spinc, and rC to 0. When tV = V: , U and SU become 

sub $ *-functors of STop via  one-point compactification, and s imilar ly  

for  Sp when tV = V: . By Remarks 1.10, and [ld, a l l  of these j ,-functors 

Z 
a r e  monoid-valued and all  but SF, F, and F a r e  group-valued. 

We pass f rom j*-functors to 3 -functors by Proposition 1.9. 

w 
Write " " F R ~  = 'ij(n), ? R ~  = F, and s imilar ly  for  other J -functors. 

I t  i s  usual to define G(n) to be the space of a l l  homotopy equivalences of 

Sn-l and to regard F(n-1) a s  the subspace of based homotopy equivalences. 

It  i s  c l ea r  that G = l im  G(n) i s  then homotopy equivalent to F .  G i s  the 

more  natural space to consider in some geometric situations, but we shall  

work with F since it i s  this space which occurs  naturally in our theory. 

We pass f rom -functors to q - s p a c e s  via  Definition 1 .6  and f rom 

X - s p a c e s  to infinite loop spaces via  [45and46] (o r  VII§3).Thus F , S F ,  Top, 

STop, the c lass ical  groups, Spin, spinc, and related groups and all of their 

classifying spaces and homogeneous spaces a r e  infinite loop spaces,  and a l l  

of the natural maps between these spaces a r e  infinite loop maps. 

It remains to consider P L  and related spaces.  One could perhaps 

develop a complete geometric theory by introducing categories with the same  

objects a s  f[ but with simplicia1 se t s  of morphisms f rom V to W, the k- 

simplices of which would be appropriate piecewise l inear  and piecewise 

differential fibrewise homeomorphisms A X V -. Ak X W; here  PD would 
k 

be required in o rde r  to relate P L  to 0. I have not attempted to go through 

the details. 

A second approach would be to consider the 4 -functor l lPL" such 

that "PLV" i s  the subspace of F V  consisting of the based piecewise 

l inear homeomorphisms of v*. Unfortunately, "PL" has the wrong homo- 

topy type; according to Rourke (private communication), the inclusion of 

"PL" in  Top i s  a weak homotopy equivalence. It i s  at leas t  conceivable 

lhat a l a r g e r  topology on "PL" exists which does have the right homotopy 

type. 

Our approach i s  to ignore these difficulties, to recall  that P L  was 

largely introduced in o rde r  to study the triangulation problem, and to observe 

that the homotopy types of PL,  BPL, PL/o, etc. a r e  completely determined 

.ts infinite loop spaces  by the solution to this problem and by the infinite loop 

space s t ructures  already derived on Top, ETop, Top/O, etc. 

In detail, we note that Top/pL = K(Z2, 3), Top/0 i s  a 2-connected 

hpace, IT ( T O ~ / O )  = Z2, and the natural map ~ o p / O  + T O ~ / P L  induces an  
3 

isomorphism on rr3. Recall  that there  i s  only one (n-1)-connected spectrum 



th  
X(Z2 ,  n) with zero- space a K(Z2, n) (up to isomorphism in any good 

stable category) and there is only one non-trivial map from an (n-1)-connected 

spectrum with T E = Z2 into 'X(Z2. n). Thus T O ~ / P L ,  however i t  i s  con- 
n 

structed geometrically, i s  just K(Z2, 3) a s  an infinite loop space, and the 

unique non-trivial map T O ~ / O  + T O ~ / P L  i s  an infinite loop map in precisely 

one way. 

Now define the following spaces (or rather homotopy types, since that 

i s  a l l  our  data determine). In each case, i t  i s  clear that any permissible 

geometric construction of the space named must yield the specified homo- 

t0PY type. 

(a) PL/O i s  the fibre of the unique non-trivial map T O ~ / O  + K(Z2, 3). 

(b) P L  i s  the fibre of the composite Top -c T O ~ / O  + K(Z2, 3) and SPL 

i s  the fibre of the restriction of this composite to STop. 

(c) BPL i s  the fibre of the composite BTop + B ~ ( T O ~ / O )  + K(Z2, 3) and 

BSPL i s  the fibre of the restriction of this composite to BSTop. 

(Here BTop i s  equivalent to the delooping B Top by VII. 3. 5 . ) 
1 

(d) E /PL is the fibre of the composite BPL + BTop -c BE. 

Clearly the fibre of an infinite loop map i s  an infinite loop space, and 

it  follows that each space we have constructed has a well-defined infinite 

loop space structure such that all  of the natural maps between these spaces 

are  infinite loop maps. Similar constructions handle PL/G and related 

maps for other classical groups G. 

e Obviously such rigid structures cannot possibly be related to infinite loop 

f spaces before passage to homotopy, and our spectra will be cell-free a s  

11. Coordinate-free  s p e c t r a  

A spectrum T i s  usually defined to be a sequence of spaces T. 

and maps u.: Z Ti + Titi. Let {e } be the standard basis for Rm and 
n 

think of the i-sphere a s  the one-point compactification tRe of the sub- 
n 

space Re of Rm. Then a change of notation allows us to describe T 
n 

a s a s e q u e n c e o f s p a c e s  T ( R ~ )  a n d m a p s w . : ~ ( R ~ ) h  tRe +T(R~"). 
i+ 1 

Thus the usual notion of spectrum implicitly refers  to a fixed chosen basis 

for RCO. Many very real  difficulties in the homotopy theory of spectra, in 

particular the problems associated with the construction of well-behaved 

smash products, ar ise  from permutations of suspension coordinates. Such 

permutations can be thought of a s  resulting from changes of basis for ROD, 

and we shall see in [48] that the coordinate-free definition of spectra to be 

given here  leads to a relatively simple development of the properties of the 

stable homotopy category. 

However, our present concern i s  with more than just stable homotopy 

theory. In order  to define E ring spectra, i t  i s  essential to work in a 
m 

category of (omega) spectra which enjoys good properties even before passage 

to homotopy. The point is that these spectra have very rich internal 

structure, much of which i s  lost upon passage to the homotopy category. 

The spectra used in the best previous constructions of stable homotopy 

categories a r e  (or a r e  derived from) CW-spectra, namely those spectra T 

such that Ti is a CW-complex and each u. is a cellular inclusion. 

well as  coordinate-free. Restriction to CW-spectra i s  in any case unde- 



sirable since CW-spectra seldom occur in nature and a r e  not closed under 

such simple and useful constructions a s  formation of product and loop 

spectra. In our stable category, desuspension will be given by the loop 

spectrum functor. I 
Wedefine coordbate-free prespectra and spectra, show how to pass back 1 

and forth between spaces, prespectra,  and spectra,  and relate coordinate-free to 1 
coordinatized spectra in section i .  We define the stable homotopy category l 
and discuss ring spectra, connective spectra,  and localizations and com- I 
pletions of spectra in section 2. We shall omit most proofs in these sections; 

the missing details may be found in [48] and a r e  largely irrelevant to our 
I 

la ter  work in this book . In section 3 ,  we consider cohomology theories and 

give a rather pedantic analysis of the precise relationships between periodic 

spaces, periodic spectra,  and "periodic connective spectra". 

Although exploited-in a wholly different way, the idea of using linear 

isometrics to study the stable category i s  due to Boardman [18]. Puppe [56] 

independently came to the idea of coordinate-free prespectra. I 
i. Spaces, prespectra, and spectra 

Recall the definition of a * f rom I. 1.8 and, as  in I § 2, fix a con- 

tinuous sphere-valued functor t: d * -+ 3 such that t (0) = SO and 

~ V A  tW = t(V8W). In practice, tV will be the one-point compactification 

of TV for  some functor -r :\S -+ $ , and we shall see in Remarks 1.9 that 

restriction to the identity functor T would result in no real  loss of 

generality. Recall that F(X, Y) denotes the space of based maps X + Y 

and define the suspension and loop functors based on V to be 

zVx = X tV and SIVx = F(tV, X). 

It will be important to keep in mind the old-fashioned distinction be- 

tween external and internal direct sums; we write 8 for the former and t 

for the latter. We write V 1 W to indicate that two sub inner product 

spaces of a given inner product space a r e  orthogonal ; the notation t will 

only be used between orthogonal subspaces and will thus ca r ry  orthogonality 

a s  an implied hypothesis. 

Let J *(Rm) denote the full subcategory of d* the objects of which 

a re  the finite-dimensional sub inner product spaces of Rm and let 

denote the category of based spaces and based homeomorphisms. Let h a  

denote the homotopy category associated to a topological category a .  Since 

$&(v, W) i s  homeomorphic to O(n), (hJn)(v, W) has precisely two elements 

if n > 0. Remarks 1. 10 below indicate a possible simplification of the 

of the following definition 

m 
Definition 1.1. A prespectrum (T, u) i s  a function T: $*(R ) + teg 

(on objects and rnorphisms) which induces a functor T: h j . * ( ~ ~ )  -+ h $  

together with based maps u: Z ~ T V  -z T(V t W) for  VJ,. W which satisfy 

the following conditions. 

(i) Each adjoint map z: TV + SlWT(v + W) i s  an inclusion with 

closed image. 

(ii) The following diagrams commute in d , where V l  W 1 Z L V : 

and Z'I;~TV = z ~ + ~  TV = ZOTV TV 

(iii) The following diagrams commute in h$ , where f J *(v, VV), 

g €9 ,(w, w'), V I  W and VIJ. W1 : 



(T, u) i s  said to be a spectrnm if each G: TV + Q ~ T ( V  fW)  i s  a homeo- 

morphism. A morphism 8: (T, a) -+ (TI, ul) of prespectra consists of maps 

8: TV + T'V such that 8: T + T1 i s  a natural transformation of functors 

h4*(RW) -F h d  and such that the following diagrams commute in 9 for 

V L  w: 

Let @ denote the category of prespectra and le t  4 denote i ts full sub- 

category of spectra. Let v : d -+ 8) denote the inclusion functor. 

The category d i s  of primary interest ,  and @' i s  to be regarded a s  

a convenient auxiliary category. The pair of t e rms  (prespectrum, spectrum), 

which was introduced by Kan, i s  distinctly preferable to the older pair 

(spectrum,Q-spectrum) since spectra a r e  the fundamental objects of study 

and since prespectra naturally give r i se  to spectra. The use of homeo- 

morphisms, rather than homotopy equivalences, in the definition of spectra 

is  both essential  tothe theory and convenient in the applications. We have 

little use for the classical notion of an SZ-spectrum. 

Granted the desirability of a coordinate-free theory of spectra, i t  

i s  clearly sensible to think of the finite-dimensional subspaces of R~ as  

an indexing set. Thus a prespectrum ought, a t  least ,  to consist of spaces 

TV and maps u: Z ~ T V  + T(V f W), and i t  i s  obviously reasonable to insist  

that TV be homeomorphic to TW if dim V = dim W. Our definition 

merely codifies these specifications in a coherent way. The use of the homo- 

m 
topy category h'$*(R ) can be thought of a s  a systematic device for letting 

linear isometries keep t rack of signs, changes of coordinates, and such like 

complications in the usual theory of spectra. One might be tempted to define 

prespectra by requiring T to be a functor *(ROD) and u to be 

natural, without use of homotopy categories, but such a definition would not 

allow-the construction of spectra from prespectra o r  of coordinate-free 

spectra from coordinatized spectra. 

We next make precise the categorical interrelationships among 3 , 

@,  and ,d (as was done in [43] for  ordinary spectra). Observe that we 

have forgetful, o r  zeroth space, functors @ + and d) + d defined 

on objects by (T, u) + To = ~ ( 0 ) .  

Definition 1.2. Define the suspension prespectrum functor 1 Z :  3 - F  by letting 

(zWx)(v )  = zVx and (zmx)(f)  = z% 3 I / \  tf 

on objects V and morphisms f of 9*(RW) and by letting 

Ir = 1 : zWzvx + xvfw x for VLW. 

1 F O ~ ~ $ : X + X ' ,  let  --Zvxl. 

Lemma 1.3. zC0x i s  the f ree  prespectrum generated by the 

space X; that i s ,  for T E @ and 6:X + To, there i s  a unique map 
," th fi : z W X  -. T of prespectra with zero map 6. 

Definition 1.4. Define the associated spectrum functor am: c? + 

k $ as  follows. Let (T, u) E @ . We have identifications 
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for VL W l  Z L V and we define 

where the limit is taken with respect to the inclusions 

31 

3 (X, EO) g d ( Q ~ x ,  E) ,  X e 3 and E e A . 

Finally, we define coordinatized prespectra and spectra and relate 

them to the coordinate-free variety. 

Definition 1.7. Let A = {A.), (0) = A0 C A1 C . . . C Ai C . . . , be 

m an increasing sequence of subspaces of R , with fim = Ai. Let Bi 
i, 0 

F o r  VLW, the required homeomorphisms I denote the orthogonal complement of A. in Aifl. A prespectrum {Ti, ui} 

g :  (nmT)(v) -+ f l ( n m T ) ( v  + W) 

a r e  obtained by passage to limits over Z from the identifications (*). To 

define (nmT)(f): ( Q ~ T ) ( v )  -c (CZWT)(~') for  f :  V + V1, choose Z which 

contains both V and V', let W and W' be the orthogonal complements 

of V and V1 in 2, and observe that there is  one and, up to homotopy, 

only one linear isometry g: W + W '  such that f Sg  i s  homotopic (through 

m 
isometries) to the identity of 2. The required homeomorphism (n T)(f) 

is  obtained by passage to limits over Z 'LZ from the maps 

Q ~ ~ ~ ~ ~ ( ~  + Z I )  + awsSz' T(Z + Z1) 

given by composition with t(g-l+ 1). F o r  a map 8: T + T1 of prespectra, 

define nm8: (nmT)(v) -+ (nmT')(v) by passage to limits from the maps 

awe: C T ( V  + W) -. nWT1(v + W). 

0 
Lemma 1. 5. The inclusions TV = T(V + {0)) lipCZWT(~+ W) 

define a map L : T + vnmT of prespectra, and nmT is  the free spectrum 

generated by the prespectrum T; that is ,  for E 6 d. and 8: T -. vE, there 

- m Y 

i s  a unique map 8:n T -r E of spectra such that 01. = 8. 

Definition 1.6. Define Qm = nmZm: + d and define QX = (Q m X) 0' 

Observe that DX i s  then homeomorphic to li_m nnZnx. QmX i s  the free 

spectrum generated by X, and we thus have an adjunction 

indexed by A i s  a sequence of based spaces T. and maps 

b. 
tBi+ TiSl such that the adjoints g.: T. + S2 ITiSl a r e  inclusions 

1 1  

with closed images. { T ~ ,  ui] is  a spectrum if each u. is a homeomorphism. 

A map {ei}: {Ti, ui} -). {Ti, IT;} of prespectra i s  a sequence of based maps 

bi 
H.: T. - T1 such that Oitlo u. = u! oZ 8.. Let @A and denote the 
1 1  i 1 1  

,.ategory of prespectra indexed by A and its full subcategory of spectra. 

Define a forgetful functor $: .@+ @A by letting $(T, u) = {Ti, u.}, where 

bi 
' I ' .  = TA. and u. = u:Z TAi + TA 

i + l  ' 

With trivial modifications, the previous definitions and lemmas 

.rpply to coordinatized prespectra and spectra. The following result would 

I,c false on the prespectrum level. 

Theorem 1.8. The forgetful functor $: ,d + &A is  an equivalence 

, , f  categories; that is ,  there i s  a functor $ : AA + & and there a re  

11.ttura.1 isomorphisms 

I(r.rnark 1.9. Suppose that tV = TV u m for some nontrivial additive 

tttnctor T:$ -+ $ . Then T R ~  has countably infinite dimension and we 

8tt.ry choose an isometric isomorphism g: T R ~  + Visibly g deter- 

tjtrnes an isomorphism between the category d~ defined by use of t and 

! I t $ .  category ,dgA defined by use of the one-point compactification of inner 



product spaces. Therefore,  up to equivalence, the category d i s  independent 

of the choice of t (of the specified form). 

Remark 1.10. Theorem 1.8 implies that explicit use of l inear  i sometr ies  in 

ou r  definition of a spectrum i s  quite unnecessary, and the details in Definition 

1 . 4  show why this i s  the case.  I find the introduction of i sometr ies  conceptually ' 

helpful, part icularly on the prespectrum level (compare IV. 1.3), but the 

r eade r  i s  f r ee  to ignore them throughout. 

2. The stable homotopy category 

We require  smal l  smash  products and function spectra,  "small" 

meaning between spaces and spect ra  ra ther  than between spect ra  and 

spectra. 

Definition 2.1. F o r  X E 3 and T E f? , define T A X  E 55 by 

letting 
(TA X)(V) = TVAX and (ThX)(f) = Tf A ]  

on objects V and morphisms f of Q * ( R ~ )  a n d h y  letting the s t ruc tura l  

maps  u be the composites 

F o r  E E$ , define EAX E & by E A X  = n r n ( v ~ A x ) .  

Observe that  nrn and v can be used s imi lar ly  to t ranspor t  to 

spect ra  any functor on prespect ra  which does not preserve  spectra.  The 

m 
functors Z and nW preserve  smash products with spaces. 

Lemma 2.2. F o r  X E and Y E 3 , zm(yA X) i s  isomorphic to 

( Z ~ Y ) A X .  F o r  X E 3 and T E@ , nrn( L A l):nm(TAx) -- ( Q ~ T ) A X  i s  an 

isomorphism. 

Definition 2.3. F o r  X E 3. and T E @ , define F(X, T) E B, by 

letting 
F(X, T)(V) = F (X, TV) and F(X, T)(f) = F(1, Tf) 

on objects V and morphisms f of J * ( R m )  and by letting the s t ruc tura l  

maps u be the adjoints of the composites 

F ( X , T V ) ~ F @ , Q ~ T ( V + W ) )  3 ; I ~ F ( X , T ( V + W ) ) .  

If T i s  a spectrum, then so  i s  F(X, T). 

Lemma 2.4. F o r  X € 3  and E E d , VF(X, E )  = F(X, vE).  F o r  

x E 7 and T €6) , F(X, T ) ~  = F(X, T ~ ) .  

Lemma 2.5. F o r  X E 3 , t he re  a r e  na tura l  (adjunction) isomorphisms 

@(TAX, T I )  G @(T,F(x, TI) ) ,  T ,TI  E @ 

and A (EAX, E') % A(E, F(X, E')) , E, E' A . 
Z 

Explicitly, the adjoint 8 :  E -c F(X, El)  of 6: E A  X -c E 1  -has Vth map  

EV -c F(X, EIV) the adjoint in fJ of the composite 

Let  K +  denote the union of a space K and a disjoint basepoint. 

Definition 2 . 6 .  F o r  Y and Z both in 3 o r  @ o r  A , define a 

homotopy h: f -- fl  between maps  f.: Y + Z to  be  a map h: YAI' - Z 
0 

+ 
(in the relevant category) such that hl  Y A {i) = fi. Note that h could 

equally well be considered a s  a map Y + F(If,  2). Let n(Y, Z) denote the 

set of homotopy c lasses  of maps Y -c Z. 

The bas ic  machinery of elementary homotopy theory, such a s  the  

dual Barratt-Puppe sequences and dual Milnor 1%' exact sequences, 

applies equally well in 3 and in & [48, I 1. Lemmas 2.2 and 2.4 imply 

that zm, am, am, v , and the zeroth space functors @-c d and d 4 

are  all homotopy preserving. Clearly zm, am, and Q a r e  st i l l  f r ee  
m 

functors af ter  passage to homotopy categories. In particular,  we have a 



natural isomorphism 

n ( X , E ) = . l r ( Q m X , E ) ,  X E ~  and E E ~ .  
0 

1 
Definitions 2.7. F o r  E E ,f , define ZE = E h S' and RE = F(S , E). 

Abbreviate S = Q So and define the homotopy groups of E by 
m 

n E = n(Zrs, E)  and r-,E = n(RrS, E)  for r ) 0. 

Since Z r s  Q sr, by Lemma 2.2, n E = n E for r 2 0. A map 8:E-cE1 
w r r O  

in .d i s  said to be a weak equivalence if n 8 i s  an isomorphism for all  

integers r. 

The adjunction between Z and R gives natural maps 

q : E  + R Z E  and E:ZRE + E . 
The following result i s  a version of the Puppe desuspension theorem [55]. 

Theorem 2.8. F o r  all  spectra E, q and E a r e  weak equivalences. 

There i s  a category H.L and a functor L: h& 4. H d  such that L 

i s  the identity function on objects, L carr ies  weak equivalences to isomorph- 

isms, and L is  universal with respect to the latter property [48,II and XI]. 

We call H .i the stable homotopy category. Its morphisrns a r e  composites 

of morphisms in h & and formal inverses of weak equivalences in h d . 
In HJ  , the functors Z and R become inverse equivalences of categories, 

and we therefore write Rr = x - ~  for  al l  integers r. It will be shown in [48] 

that H& has all the good properties one could hope for and, despite i ts  

wholly different definition, i s  in fact equivalent to the stable categories of 

Boardman [18] and Adams [7]. 

Let H5 denote the category obtained from hJ by formally invert- 

ing the weak equivalences and let [Y, Z] denote the set of morphisms in H a  

o r  H A  between spaces o r  spectra Y and Z. Again, we have 

[X,EO] r [Q,X,E] , X E ~  and E E  & . 

Qm should be regarded as  the stabilization functor from spaces to spectra. 

I Let ?/ denote the category of spaces in  3 of the (based) homotopy type of 
I 

CW-complexes. F o r  X E ?I and Y €3  , [X,Y] = n(X, Y); the categories h d  

and Ha a r e  equivalent [48,III]. Analogous statements a r e  valid for H &  

[48, XI]. 

H &  admits a coherently associative, commutative, and unital smash 

product with unit S [48,XI 1. Define a (commutative) ring spectrum to be a 

s p e ~ t r u m  E together with an associative (and commutative) product 

fi E A  E + E with a two-sided unit e: S + E. The following lemma 

will play a vital role in  our study of Bott periodicity and Brauer lifting in  

VIE $2. 

Lemma 2.9. The product $ of a ring spectrum E induces a map 

(again denoted $) from E A Eo  to E. 

Proof. F o r  spaces X. E 6 X i s  coherently naturally isomorphic to 

E A Q X [48, XI 1; indeed, such a relationship between small  and large smash 
m 

products i s  a standard property of any good stable category. Via Definition 

1.6, the identity map of Eo determines a map +: Q,EO -c E of spectra. 

The required map i s  the composite 

A spectrum E is  said to be n-connected if n E = 0 for  r 5 n and 

to be connective if i t  is (-1)-connected. Infinite loop space theory i s  con- 

cerned with connective spectra ,  and we r e  quire the following obsenrations. 

Lemma 2.10. If C and D a r e  (q-1)-connected and O:D -. E i s  

a map in HJ such that n.8 is an isomorphism for all  i q, then 

8 *: [C, D] [C, E] i s  an isomorphism. 

Proof. Let F denote the cofibre of 8. Up to sign, cofiberings - 



placing C by a CW-spectrum, applying induction over i ts  skeleta, and 

using the lE1 exact sequence, we find easily that [C, niF] = 0 

for  i 2 0. The conclusion follows by the Barratt-Puppe sequence . 
Lemma 2.11. F o r  a spectrum E, there exists one and, up to 

equivalence, only one connective spectrum D and map 8:D + E in ~ d -  

such that n.8 i s  an isomorphism for i l  0. If E i s  a ring spectrum, 
1 

then D admits a unique structure of ring spectrum such that 8 i s  a map 

of ring spectra. 

Proof. While the existence and uniqueness could be proven by - 
00 

stable techniques, we simply note that the map ;:R TEO + E in ,d con- 

structed in VII. 3.2 has the properties required of 8 and that, given 

8:D + E and B1:D' -+ E'  a s  specified, the naturality of 2 yields the 

following commutative diagram in HA? , in which al l  arrows with targets 

other than E a r e  isomorphisms: 

Since D A D i s  connective, the assertion about ring structures follows 

directly from the previous lemma. 

Note that our proof not only gives an associated connective spectrum 

functor on H & , i t  already gives such a functor on 5 . 
F o r  a (commutative) ring R, the Eilenberg-MacLane spectrum 

HR = ?C(R, 0) i s  a (commutative) ring spectrum. 

Lemma 2.12. If E i s  a connective ring spectrum, then the unique 

map d: E -+ Hn E in H d which realizes the identity map of n E i s  a map 0 0 

of ring spectra. 

0 
Proof. Hom(noE, noE) = H (E; r0E) = [E, Hn El  (see Definition 3.1), 

0 

hence d i s  well-defined. d i s  a ring map because 

Hom(noE @ noE, n E) = [Eh E, HT El. Note that d can be explicitly con- 
0 0 

structed by application of the functor nmT to the discretization 

Eo + aOEO = noE. 

Localizations and completions will often be needed in our  work. Let 

T be a set of primes. Recall that a n  Abelian group A i s  said to be T-local 

if i t  i s  a module over the localization ZT of Z at T and to be T-complete 

if H O ~ ( Z [ T - ~ ] / Z ,  A) = 0 and the natural (connecting) homomorphism 

A + EX~(Z[T-']/Z, A) i s  an isomorphism (where z[T-'] i s  the localization 

of Z away from T). A (connected) simple space Y is said to be T-local 

o r  T-complete if each n.Y is T-local o r  T-complete. A localization 

h:X + X T  o r  completion y:X -+gT of a simple space X at T i s  a map 

into a T-local o r  T-complete space such that 

A*: [xT, Y] + [X. Y]  o r  $: [GT. Y] -+ [X. Y] 

is an isomorphism for a l l  T-local o r  T-complete spaces Y or ,  equivalently, 

such that (with Z = z / ~ z )  
P 

A 

A,:H*(X;ZT)+H*(XT,Z T ) o r e a c h  Y*:H*(X;Zp)+H*(XT;Zp), p e  T, 

is an isomorphism. X and y exist (and a r e  unique), and ;iT is equivalent 

to the completion of XT a t  T and to X 2 where X and 2 denote 
 pa^ P' P P 

the localization and completion of X at p. Localizations and completions 

commute with products, fibrations, and loops and localizations but not 

completions commute with wedges, cofibrations, suspensions, and smash 

A A 
products. However, the completion at T of y~ ~ : X A X '  + X A Xk i s  

T 

an equivalence. 

The completions just described a re  those due to Bousfield and Kan 

[23]; the completions of Sullivan [73] a r e  not adequate for our applications 

i 
i 
i 
i.. 
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in VIII. A new topological treatment of localizations and completions will 

be given in [48], and it  will be seen there that completions a re  not appreciably 

more difficult to analyze than localizations. Incidentally, the category H f  

(and not i t s  equivalent h? j  ) i s  the appropriate one in which to study localisa- 

tions and completions since Postnikov towers with infinitely many non-zero 

homotopy groups never have the homotopy type of CW-complexes. 

We also need localizations and completions of connective spectra. 

This subject is  nowhere treated in the literature, a situation that will be 

rectified in [48]. In H1( , the summary above applies verbatim with spaces 

replaced by connective spectra, the only twist being that the commutation of 

completions with products, fibrations, and loops implies their commutation 

with finite wedges, cofibrations, and suspensions, but still not with smash 

c. A 

products. Again, the completions at T of y A y: E A E + ETh E;, and, 

A A .  
for a simple space X, of y r, y: E A X  + E fi X a r e  isomorphisms in H d  . 

T T 

In particular, the completion a t  T of a ring spectrum E is  a ring spectrum 

with unit 5 --% E PT and product 

The zeroth space functor commutes with completions in the sense that the 

A 
zeroth space of ET is  equivalent to the product of the completion at  T of 

the component of the basepoint of Eo and the discrete group 

EX~(Z[T-~] /Z ,  X ~ E ~ ) .  When s E = Z, the latter group is  the T-adic integers 0 0 

Finally, we shall need the following pair of results from [48]. Taken 

together, they asser t  that, under minimal technical hypotheses, a map be- 

tween T-local infinite loop spaces which completes to an infinite loop map at 

each prime p E T is  it'self an infinite loop map. 

Theorem 2.13. Let D and E be 0-connected spectra such that 

T*D and w*E are  of finite type over ZT and let f: D + Eo be a map (in 

H T )  whose localization at p is the zeroth map of a map 6 : D -+ E (in 
P P  P 

HA) for each prime p E T. Assume either that D 0 and E 0 have no T-torsion 

and f is  an H-map o r  that Do r ~ e l ( D ; ) ~  where each D; is  a finite 

1 
CW-complex and - l im ( 2 ~ 2 ,  E ~ )  = 0. Then f i s  the zeroth map of a map 

6: D + E. Moreover, if D cl Tel Dq T where each Dq is  a finite CW- 

1 
spectrum and lim c (ZDq, E) = 0, then there is  exactly one such map 6 which 

localizes to the given map 6 at each prime p e T. 
P 

Theorem 2.14. Let D and E be 0-connected spectra such that w*D and 

T*E are  of finite type over Z and let f: Do Eo  be a map (in HT) whose 
(PI 

rationalization i s  an H-map and whose completion at p is  the zeroth map of a 

A A  ,. 
map bp:D + Ep (in Hb.). Assume either that Do and E have no p-torsion 

P 0 

and f is an H-map or  that Do -- Tel(DOq) where each D$ i s  a finite CW- 
P 

1 
complex and l@ (ZD:, E ~ )  = 0. Then f i s  the zeroth map of a map 6: D + E. 

Moreover, i f  D =Tel  D where each Dq i s  a finite CW- spectrum and 
P 

1 Ijm (ZDq, E) = 0, then there i s  exactly one such map ,d which completes at p 

LO the given map 3 . 
P 

One pleasant feature of these results is  the complete irrelevance of 

let terms associated to the spaces Dnand En for n > 0. As will be dis- 

1 
cussed in [48], results of Anderson [ 9  and 111 show that the stable lLm terms 

vanish in the cases relevant to this book. 

3.  Cohomology: periodic spaces and spectra 

Definition 3.1. F o r  spectra Y and E, define the E-cohomology 

Y by 
E ~ Y  = [any, El = [Y, z~E] .  



F o r  a space X, define E% = E ~ Q  X; this i s  what i s  usually called the 
w 

reduced E-cohomology of X. In terms of H g  , E% can be described by 

E% = [X, EV] if dim tV = n 2 0 and E-% = [x, if n 2 0. 

This description of E% will be essential to our treatment of 

orientation theory in the next chapter. A complete analysis of homology 

and cohomology theories within the framework given by H B  will be pre- 

sented in [48]. Suffice it  to say that all of the familiar machinery i s  available. 

We shall shortly need the following result, which i s  proven in [48]. 

Observe that, with the standard coordinatization Yi = YR' and tV = V u oo, 

the restriction of 0 e [Y,E] to maps Bi E [Yi, Ei] specifies a homomorphism 

EOY 1 s  E?ii . 
0 i Proposition 3.2. F o r  all  spectra Y and E,  the map E Y + lim E Y 

c i  
1 i-1 

i s  an epimorphism with kernel isomorphic to E Y i. 

This result i s  closely related to Whitehead's analysis of cohomology 

theories on spaces in terms of l e s s  stringent notions of spectra and their 

maps than we have been using. Define (coordinatized) weak prespectra by 

deleting the inclusion condition on the 8. in Definition 1.7, define weak 
1 

R-prespectra by requiring the $. to be weak equivalences, and define weak 

maps of weak prespectra by requiring only that Oi+l D cri = r! a 23 Bi (and 

retain the t e rm map for the case when equality holds). Weak R-prespectra 

and weak maps determine (additive) cohomology theories on spaces and 

morphisms thereof. Two weak maps determine the same morphism if 

0. = 0: in H y  ; we then say that 0 and 0' a r e  weakly homotopic. Similarly, 
1 1  

we say that two maps 0,0' E [Y, E] a r e  weakly homotopic if 0V = 0'V in HZ' 

for  each indexing space V. In view of Theorem 1.8, we see that 0 and 0' a r e  

weakly homotopic if and only if 0 - 0' i s  in the kernel liml Ei-'y. of the 
C 

0 
epimorphism E Y - l im E1yi. 

4-- 
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Let W H ~  denote the category of spectra and weak homotopy classes 

I of maps in Hh . 
Inductive mapping cylinder arguments [43, Theorem 41 allow one to 

replace a weak prespectrum T by a weakly equivalent (coordinatized) pre- 

spectrum, functorially up to weak homotopy. One can then use the functor Rm 

of Definition 1.4 (on the coordinatized level) and the functor + of Theorem 1.8 

to obtain an actual spectrum in A .  Alternatively, one can use Q and a 
w 

direct telescope construction on the spectrum level to pass from weak pre- 

spectra to spectra [48,XII]. Either way, one obtains the following result. 

F o r  a spectrum E, we may of course regard the underlying coordinatized 

prespectrum V$E as  a weak R-prespectrum. 

Theorem 3.3. There i s  a functor L from the category of weak pre- 

spectra and weak homotopy classes of maps to the category W H ~  and there 

i s  a map K : T - V$LT of weak prespectra, natural up to weak homotopy, 

which i s  a weak equivalence if T i s  a weak R-prespectrum. Further,  for 

E E .& , there is a natural weak equivalence p: LV$E + E of spectra such 

that the following composite i s  the identity map: 

V$E A V$LV$E A V$E. 

Finally, there is a natural weak equivalence w:RLT -+ LQT such that the 

following diagrams commute: 

RK 
RT ------+ Qv$LT and LV$RE = . UV$E 

Together with standard representability arguments, this result implies 

that a cohomology theory on spaces extends uniquely to a cohomology theory 

on spectra and that a morphism of cohomology theories on spaces extends to a 



morphism of cohomology theories on spectra but not, however, uniquely since 

there are  non-trivial maps in H A  which a r e  weakly null homotopic and thus 

induce the trivial morphism of cohomology theories on spaces. Formally, 

W H A  i s  equivalent to the category of cohomology theories on spaces and 

Hd - WH/9 corresponds to the forgetful functor from cohomology theories 

on spectra to cohomology theories on spaces. 

We also require the analogous result for products. Recall the notion 

of a pairing (T', TI') -* T of weak prespectra from IX.2.5 below. (Our signs 

differ from Whitehead's [SO] since we write suspension coordinates on the right. ) 

It is  easy to see that a map 8: E'AE" + E of spectra determines a pairing 

~(63): (v$E', v$E") -, V$E of weak prespectra (compare IV. 1.3 below). Via 

either of the two lines of proof of the previous theorem, one can verify the 

following addendum [48, XII]. 

Proposition 3.4. A pairing f: (TI, T") - T of weak prespectra 

determines a map $(f): LT1h LT1' -, LT of spectra, unique up to weak homo- 

topy, such that K O  f and ~($( f ) )  * ( K ,  K) are  weakly homotopic pairings 

(TI, TI') -+ LT. If 8: E'AE" - E i s  a map of spectra, then po$(w(8)) is  

weakly homotopic to 63 0 (PA p). 

The notion of pairing gives rise to a notion of weak ring prespectrum, 

and this notion is  adequate for the study of products in cohomology theories 

on spaces [SO]. Define a weak ring spectrum in H A  by only requiring the 

associativity and unit laws to hold up to weak homotopy. The proposition and 

theorem imply that a weak ring prespectrum T determines a weak ring 

spectrum LT. 

The distinction between maps in H a  and morphisms of cohomology 

theories on spaces and the concomitant distinction between weak ring spectra 

and ring spectra are  folklore. The Ew ring spectra to be introduced in 

I chapter IV a re  always honest ring spectra, and we shall construct E ring w 

spectra from E ring spaces in chapter VII. Thus, where it applies, our 
m 

1 
work will circumvent any need for analysis of lim terms. F o r  the periodic 

C 

-1 
K-theories, the relevant liml terms vanish-because KU (BG) = 0 and 

C 

KO-'(BG) i s  a finite dimensional vector space over ZZ for any compact 

1 
Lie group G [14]. F o r  the connective K-theories, the relevant l im terms 

vanish by results of Anderson [ l l ] .  We shall keep track of these distinctions 

in this section but, because of the arguments just given, shall generally 

ignore them in the rest of the book . 
We now turn to the study of periodic spaces and spectra, and we fix 

an even positive integer d throughout the discussion. As a harmless simpli- 

th 
fication, we assume henceforward that the zero- spaces of all spectra lie in 

the category V of spaces of the based homotopy type of CW-complexes. 

Definition 3.5. F o r  6 = hl/ o r  6 = W H L ,  define IIc , the category 

of periodic objects in , to be the category of pairs (X.X) where X E 

and x:X -+ n% i s  an isomorphism in Ijf . The morphisms 5: (X,X) + (XI, x') 

d 
a r e  the maps 5:X - rX1 such that Sox  = ~ ' 0 5 .  

Proposition 3.6. The zeroth' space functor from periodic spectra to 

periodic spaces i s  an equivalence of categories. 

Proof. We shall work with coordinatized prespectra (as in - 
Definition 1.7) taken with each B of dimension d and with tV the one-point 

i 
d 

compactification of V, so that cr. maps I: T. to Titl for all i, 0. Let 

(X.x) 6 IIhv . Let X. = X, let x. = x:Xi - n%,, and let a,: B % ~  + Xitl 

be the adjoint of X. Then {X., cr. ] is  a weak prespectrum and 
1 1  

d 
(Xi}: {Xi} - Q {x.} i s  a weak map of weak prespectra (because, since d i s  

1 

d 
even, the interchange of coordinates self homeomorphism of Q Q% i s  homo- 

d 
Lopic to the identity). Define KX = L{x~) e 1 and define z: KX -r Cl KX to 



be  the composite  of L(x.3 and the n a t u r a l  i s o m o r p h i s m  

d 
w-': ISd{xi} - R  L{X.} of T h e o r e m  3.3. With the  evident maps ,  we thus 

obtain a functor  K: I Ihv  -+ IIWHL . By the  na tura l i ty  of K and the f i r s t  

d i a g r a m  of T h e o r e m  3.3,  the zeroth m a p  of K : { x ~ ]  + v$L{xi} spec i f ies  

a n  equivalence of periodic s p a c e s  (X, X) + (KX, ). Conversely,  given 

(E, 6) E IIwH.2 , w r i t e  (X,X) = (E , ), define yo = l : E  
0 0 

- X and define 

yi: Ei = E R ~ ~  - X inductively a s  t h e  compos i te  

d 
Then  {yi 2:vjdE +{X$ i s a w e a k m a p a n d  { y i ) o { ~ i ) = h i ) o { y i 3  as 

weak  m a p s .  Define y: E + KX to be  t h e  composite  of pl: E + LvjdE and 

~ { y . ) .  B y  the  na tura l i ty  of p and the  second d i a g r a m  of T h e o r e m  3 . 3 ,  

y: (E, 5) -+ ( K X , ~  ) i s  a weak  equivalence of periodic s p e c t r a  (and of c o u r s e ,  

a s  we have used  s e v e r a l  t i m e s ,  weak equivalences a r e  i somorphisms  i n  

W H ~  ). 

We a r e  r e a l l y  i n t e r e s t e d  no t  i n  per iod ic  s p e c t r a  but i n  "periodic con- 

nective spec t ra" ,  and we wr i te  ,dc f o r  the ca tegory  of connective spec t ra .  

Definition 3 . 7 .  Define IIWH L C ,  the  ca tegory  of periodic connective 

s p e c t r a ,  to be  the ca tegory  of p a i r s  (D, 6), where  D i s  a connective s p e c t r u m  

d d 
and  6: D -+ R  D i s  a m a p  i n  WH & such  that  tjO: Do - R  Do i s  a n  equivalence 

of spaces .  The m o r p h i s m s  5 : (D, 6) -+ (Dl, 6') a r e  the  m a p s  5: D -+ D* such  

d 
tha t  R  5.6 = 6'oX i n  WHR. . 

Propos i t ion  3.8. The  a s s o c i a t e d  connective s p e c t r u m  functor  f r o m  

periodic s p e c t r a  to periodic connective s p e c t r a  i s  a n  equivalence of ca tegor ies .  

Proof .  Given a periodic s p e c t r u m  (E, 5), l e t  8: D -+ E be i t s  - 
assoc ia ted  connective s p e c t r u m  of L e m m a  2.11 and note that  L e m m a  2.10 

d d 
gives a unique m a p  6: D + SZ D such  that  R  00 6 = 50 0 (since these  r e s u l t s  

1 1  1 I I ~ l l l ~ l l  
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for  H d  c l e a r l y  r e m a i n  val id f o r  W H . ~  ). C l e a r l y  00: (D 0 , 6  0 ) -c (E 0 , 5 0 ) 

i s  a n  equivalence of periodic spaces .  Given a periodic connective s p e c t r u m  

(D, 6), the  l a s t  p a r t  of the  previous proof applies v e r b a t i m  to  yield a m a p  

d 
y: D -+ KDo such  that  R y 0 6 = 600 y i n  WHS . By inspection of the  z e r o  

th 

space  level ,  -r.y i s  an i somorphism f o r  i 2 0. T h e r e f o r e  y induces a 
1 

natura l  i s o m o r p h i s m  between the  identi ty functor  of IIWH & and  the  composite  

1 The conclusion follows formal ly  f r o m  Propos i t ion  3 . 6 .  

P 
The following consequence h a s  a l r e a d y  been used  in chapter  I and  will 

be  used  m o r e  deeply i n  chapter  VIII. 

C o r o l l a r y  3 . 9 .  Let  (D, 6) and  (Dl, 6') be  periodic connective s p e c t r a  

and l e t  A :  (D , 6  ) -+ (Dl ,  6 ' )  be  a m a p  of periodic spaces .  Then t h e r e  is a 
0 0 0 0 

t h  
unique m a p  d: (D, 6) - (Dl, 6') of periodic connective s p e c t r a  with zero-  

map A . If A i s  a n  equivalence,  then A i s  a weak equivalence of s p e c t r a .  

Proof.  A i s  given b y  L e m m a  2.10 a s  the unique m a p  (up to  weak 

homotopy) such  that  the following d i a g r a m  commutes  i n  WH : 
/ 

Note that ,  when A is a n  equivalence,  only one of and 6; need  be  

a s s u m e d  to  be  a n  equivalence. The c o r o l l a r y  c h a r a c t e r i z e s  the periodic 

connective s p e c t r u m  assoc ia ted  to a periodic space.  We a l s o  need a mult i-  

plicative elaborat ion applicable to periodic r ing  spaces .  

Definition 3.10. A r ing  space  i s  a space  X together with a basepoint  

0 and unit point 1,  products  @ and @ , and a n  additive i n v e r s e  m a p  such  

that  the r ing  ax ioms hold up to homotopy and 0 i s  a s t r i c t  z e r o  f o r  @ (so 



that @ fac tors  through X A  X); X i s  said to be commutative if @ i s  homotopy 

commutative. By [26, I. 4.61, X i s  equivalent to X X n X a s  an H-space 
0 0 

under 83, where Xo denotes the O-component. Define IIRh2/, the category 

of periodic ring spaces ,  to be the subcategory of llh'\/ whose objects a r e  

pa i rs  (X, X)  such that X i s  a commutative ring space and x:X - S2% i s  

adjoint to the composite 

X A S ~  - Q, 
l A b  XAX 4 X 

fo r  some [b] E -II~X = s ~ ( X ~ ,  0); the morphisms 5: (X, X) - (XI, x ')  a r e  the 

maps L:X - X' of ring spaces such that 5*[b] = [b']. Note that x i s  auto- 

matically an H-map with respect to 83 and i s  determined by i t s  restrict ion 

Xo - S2tx0 to basepo"t components and by nOx: nOX - T ~ S ~ %  = n X; since 
d 

(n0x)[a] = [a][b] for  [a] E rOX, r X must be the f r ee  w X-module generated 
d 0 

by [bl. 

Definition 3.11. F o r  % = W H ~  o r  = W H d c ,  define IIRG, the 

category of periodic ring objects in , to be  the subcategory of n whose 

objects a r e  the pairs (E, 5) such that E i s  a weak commutative ring spectrum 

d 
and 5: E -. S2 E i s  adjoint to the composite 

d I A  b er 
E A S  - E h E O  --+ E 

f o r  some [b] E rdEO, where @ i s  a s  constructed in Lemma 2.9; the morphisms 

5: (E, 6 )  - (El, 6') a r e  the maps 5: E - E' of weak ring spect ra  such that 

5*[b] = [bl]. By Lemmas 2.4 and 2.5, the zeroth space functor & -t hT1 

induces a functor IIR - IIRh?/ . 

We have the following complement to Proposit ion 3.6. 

th 
Proposit ion 3.12. The zero- space functor f rom periodic r i ng  spect ra  t o  

periodic ring spaces i s  an  equivalence of categories. 

Proof. Given (X, X )  E IIRh'V, the following diagram i s  homotopy 

commutative (where b determines x and T denotes the transposition): 

Therefore @:XihX. = X A X  - X = X defines a pairing ({Xi}, {Xi}) + {Xi} 
J i t j  

and thus determines a weak ring spectrum s t ructure  on KX by Proposit ion 

3.4. That resul t  a lso  implies that K O:X -+ K X i s  a map of ring spaces.  
0 

Conversely, given (E,5 ) E I I R W H ~  , i t  i s  straightforward to verify that the 

map {yi): v $E + {xi), Xi = E o ,  in the proof of Proposition 3.6 c a r r i e s  

the pairing induced by the  product on E to  that just constructed. Therefore  

y : E + KEO i s  a map  of weak ring spectra.  

The analogous complement to  Proposition 3 . 8  i s  a d i rec t  conse- 

quence of Lemma 2.11 (which c lear ly  remains  valid f o r  weak ring spect ra)  

and application of the l a s t  part  of the argument just given to (D, 6 ) E I I R w H ~ ~ .  

Proposition 3.13. The associated connective spectrum functor f rom 

periodic ring spect ra  to periodic connective ring spect ra  i s  an equivalence 

of categories. 

Corollary 3.14. Let (D, 6) and (Dl, 6') be periodic connective 

ring spect ra  and le t  h: (Do, liO) -, (Dl ,  0 6 ' )  0 be  a map of periodic ring 

spaces.  Then the re  i s  a unique map A: (D, 6) -C (Dl, 6') of periodic con- 

nective ring spect ra  with zeroht map X. 



Proof. The maps KA and y in  the proof of Corollary 3.9 a r e  - 
maps of weak ring spectra,  and it  follows from Lemma 2.10 that A i s  

so a s  well. 

Remarks 3. 15. Let the periodic connective ring spectrum (D, 6) be 

determined by [b] E adDo. Suppose that (J : D - Do i s  a map of ring 
0 

spaces such that JI*[b] = n[b], where n is  a unit of the ring .rroDo. Then 

the adjoint 6; of 

i 
i s  an equivalence. Since (J*( - [b]) = [b], the corollary yields a map 

n 
t h  

3: (D, 6') -c (D, 6)  of periodic connective ring spectra with zero map (J. 

111. O r i e n t a t i o n  t h e o r y  

The notion of orientability with respect to an extraordinary coho- 

mology theory i s  central to bundle theory. We shall  here  use the coordinate- 

f ree  spectra of chapter I1 to relate orientation theory to the geometric 

classifying spaces of chapter I. We shall think of a monoid-valued A*- 
functor G which maps to F as  specifying a theory of sphere bundles 

(orthogonal, topological, etc.). In section 1, we shall use the general 

theory of fibrations developed in [47] to make rigorous a folklore treatment 

of orientation theory for GV-bundles oriented with respect to a commutative 

ring spectrum E. In section 2, we shall use the two-sided bar  construction 

discussed in I i 2  to give a precise geometric description of a classifying 

space B(GV;E) for  E-oriented GV-bundles. That i t  does indeed classify 

will be deduced f rom the much more general classification theorems for 

fibrations and bundles with additional structure established i n  [47], and 

several cther consequences of the general theorems there will also be  

discussed. 

1 .  Elementary orientation theory. 

It i s  folklore that the theory of Thom complexes and orientations 

works particularly smoothly if one s t a r t s  with spherical fibrations 

: D * X with a given cross-section cr:X -+ D such that cr i s  a cofibration. 

One then defines the Thom complex TC; to be the quotient space D/X. F o r  

an n-plane bundle, the idea is  to think of the n-sphere bundle obtained by 

applying one-point compactification to each fibre. The Thom complex ob- 

tained in this way will usually agree with that obtained by one-point compacti- 



fication of the total space and will always agree with that obtained by taking 

the quotient of the unit disc bundle by i ts  boundary (n-1)-sphere bundle. 

Clearly, if the homotopy type of TS i s  to be an invariant of the 

fibre homotopy equivalence class of f ,  then the la t ter  notion must be defined 

in t e rms  of section preserving fibrewise maps (and homotopies). In turn, if 

homotopic maps X1 + X a r e  to induce fibre homotopy equivalent fibrations 

f rom 6, then the covering homotopy property must also be formulated in t e r m s  

of section preserving fibrewise maps. It i s  then not immediately obvious how 

much of the standard theory of fibrations goes through; for example, the usual 

procedure for replacing a spherical quasifibration by a spherical fibration 

c lear ly  fails. 

In [47, $1-31, the basic theory of fibrations i s  redeveloped with fibres 

and maps of fibres constrained to l ie in any preassigned category of spaces 3. 

Let V be a finite dimensional real  inner product space and take 9 to be the 

C 

subcategory of J which consists of the spaces of the (based) homotopy type of 

tV and thei r  (based) homotopy equivalences. The basepoints of fibres a r e  

required to define cross-sections which a r e  fibrewise cofibrations (see [47, 

5.21). This condition both allows our proposed construction of Thom com- 

plexes and i s  necessary to circumvent the problem with quasifibrations 

mentioned above [47, $51. We shall call  spherical fibrations of the sor t  just 

specified "FV-bundles". 

Now assume given a grouplike monoid-valued j*-functor G together 

with a morphism G -+ F of monoid-valued J. *-functors, a s  in I. 2.5.  

Define a GV-bundle to be an FV-bundle together with a reduction of i t s  

s t ructural  monoid to GV. The precise meaning of a "reduction" in  this 

generality i s  specified in [47,10.4], and the cited definition shows that GV- 

bundles a r e  naturally equivalent to Steenrod fibre bundlss with group GV 

and fibre tV when G i s  group-valued and GV acts effectively on tV. 

In this context, fibrewise joins a r e  replaced by fibrewise smash pro- 

ducts. Explicitly, if f and $ a r e  GV and GW bundles over X and Y with 

total spaces DE and D$, define f ~ $  to be the G(V Q W)-bundle over XX Y 

with total space D ( ~ A  $) = (D5 X D$)/(M). where the equivalence identifies 

1 
the wedge (ox, $- y)v(f- 'x ,  uy) to the point (ox, uy) for  each (x, y) E X X Y. 

The projection f A JI i s  induced f rom f x  $ and the section i s  induced f rom 

u X a. e h $  i s  in  fact a G(VBW)-bundle because it  i s  an F(VQ W)-bundle by 

[47, 5.61 and because i t  inherits a reduction from those of 6 and $ by [47, 

5.6 and 10.41 and use of the Whitney sums given in  I. 2. 2 on the ba r  construc- 

tions which appear in [47,10.4]. We have an evident homeomorphism 

T ~ A T $  L ~ ( f n $ )  . 
When X = Y, define the Whitney sum 6 Q $ to be the G(VQ W)-bundle 

over X induced f rom 6 A $ by the diagonal map A: X + X X X. We then 

have a homeomorphism 
r 

T(E Q $1 - ~f *($)/T$ * 

where f*($) i s  the GW-bundle over Df induced f rom $ by 6 :DC + X; 

of course,  $ i s  the GW-bundle over X induced f rom f *($) by u:X + Df 

(since 6 cr = 1)' and the GW-bundle map over  cr induces the inclusion used 

to define the quotient on t h e  right. 

Let  E E & be a commutative ring spectrum and recal l  the definition 

* 
of E X from 11.3.1. 

Definition 1.1. A GV-bundle 6 i s  E-orientable if there exists a c l a s s  

p E E n ~ f ,  n = dim tV, such that p r e s t r i c t s  to a generator of the f r ee  

n*E-module E*TX for  each fibre x of 6 (where fibres a r e  thought of a s  

GV-bundles over points of the base space). 

Remarks 1. 2. Let fl:D-+ E b e  a map of commutative ring spectra. Clear ly  

6 i s  E-orientable if i t  i s  D-orientable. Conversely, if D i s  connective and 



ii.8 i s  an isomorphism fo r  i , O ,  then 5 i s  D-orientable if i t  i s  E-orientable 

n 
(because 8*:D T5 -+ E ~ T ~  i s  an isomorphism since TE i s  (n-1)-connected). 

By II. 2.11 and 2.12, i t  follows that orientation theory depends only on con- 

nective spect ra  and that a bundle 5 i s  HiioE-orientable if i t i s  E-orientable. 

Henceforward, write R f o r  ii E = iigEo. Recall  that (HR)*(x) i s  the 
0 

ordinary reduced cohomology E*(x,R) . By an R-orientation (or orientation 

if R = Z) of a GV-bundle 5 ,  we understand a c lass  p E ~ " ( T S  ; R) such 

e n  that p r e s t r i c t s  to a generator of the f r ee  R-module H (TX; R) fo r  each 

fibre x ; the pair  (5 ,  p) i s  then said to be an  R-oriented GV-bundle. Since 

we can identify R"(Tx; n*E) with E*TX, p r e s t r i c t s  to a definite fundamental 

c lass  in E ~ T ~  for  each fibre x . 
Definition 1.3. An E-orientation of an R-oriented GV-bundle €, i s  a 

c lass  p c. E ~ T E ,  n = dim tV, such that p r e s t r i c t s  to the fundamental c lass  

of E ~ T ~  for  each fibre X ;  the pair  ( 5 ,  p) i s  then said to be an E-oriented 

GV-bundle. 

Thus E-orientations a r e  required to be consistent with preassigned 

R-orientations. The following proof of the Thom isomorphism theorem 

should help motivate this precise definition. Let X' denote the union of X 

and a disjoint basepoint. 

Theorem1 .4.  Let (5 , p )  be an  E-oriented GV-bundle over a finite 

dimensional CW-complex X. Then the cup product with p defines an  iso- 

* t morphism E*X+-C E * T ~ .  Therefore E * T ~  i s  the f ree  E X -module 

generated by p. 

Proof.  The cup product i s  determined by the reduceddiagonal - 
t 

Tc - X A Tfj (which i s  induced via 5 A 1 f rom the ordinary diagonal 

t DE - DE+ t~ Dc the total  space). Now u p  induces a morphism of 

Atiyah-Hirzebruch spect ra l  sequences which, on the E -level, i s  the iso- 
2 

morphism " p : G*(X+; T*E) -+ E*(TE+ ; n*E) 

determined by the preassigned R-orientation of 5 .  

Of course,  the finite-dimensionality of X se rves  only to ensure  

convergence of the spect ra l  sequences. 

The following remarks  summarize  other basic facts about orientations; 

the proofs a r e  immediate f rom the definitions, the previous theorem, and 

the facts about Thom complexes recorded above. 

Remarks 1.5. Let X and Y be  (finite-dimensional) CW-complexes. 

(i) The t r iv ia l  GV-bundle E = EV:X X tV & X  satisfies TE = X'A tV. 

The image under suspension of 1 6 EOX' i s  an E-orientation of E ; it i s  

called the canonical orientation and i s  denoted )r 
0' 

(ii) If (+, v) i s  an E-oriented GV-bundle over Y and f:X+ Y i s  a map, 

then (Tf)*(v) i s  an E-orientation of £*(+), where Tf: ~ f * +  -) T+ i s  the 

induced map of Thom complexes. If, further,  f i s  a cofibration, then the 

cup product with v induces an isomorphism 

E*(Y/x) 5 E*(T+/T(JI I X ) )  

(by the long exact cohomology sequences and the five lemma).  

(iii) If (5 , &) and (+, v)  a r e  E-oriented GV and GW-bundles over  X and Y ,  

then (E,-,+, )*4 v )  i s  an E-oriented G(V B) W)-bundle over  X X Y ,  where 

p~ v i s  the image of p@ v under the external product [48,XII] 

4 

When X = Y ,  p B) V denotes the induced E-orientation ( T A ) ~ ( ~  A v ) 

(iv) If ( J I ,  v )  and (5 B) +, w ) a r e  E-oriented GW and G(V B) W) -bundles 
. . 

over X, where 5 i s  a GV-bundle over X, then the image p of 1 under 
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the composite isomorphism 

i s  the unique E-orientation of f Such that )rB) v = w . 
(v) If 5 and J, a r e  stably equivalent GV and GW -bundles over X, so  

that  f @ e (WB) Z) i s  equivalent to  J,B) €(V@ 2) fo r  some 2 ,  then 6 i s  

E-orientable if and only if J, i s  E-orientable. 

2 .  Classification of E-oriented GV-bundles 

We retain the  notations of the previous section and a s sume  that a l l  

spaces  in sight a r e  in the category &'of spaces of the homotopy type of 

CW-complexes. By [ 4 6 , ~ .  61, B(Y, G, X) is  i n  h' if Y ,  G, and X a r e  in X. 

Let  SGV denote the component of the identity element of GV. 

Let  F R  denote the group of units of the ring R = roE0  and le t  

F E  C E o  denote the union of the corresponding components. Define 

d: F E  -. rr F E  = F R  to be  the discretization map. Let SFE C F E  denote 
0 

the  component corresponding to the identity element of R. When E i s  the 

0 0 .-, 
sphere  spect rum Q S , the space Eo = QS coincides with F; in  par-  

m 

t icular,  F E  = F and SFE = SF. In the genera l  case ,  we may take the 

unit e: Q SO -. E to be an honest map in A r a the r  than just a map  in H,4 
m 

(by II.Z.7), and we a lso  wri te  e fo r  the composite 

GV -+ FV c F 5 FE, v c R ~ .  

By the  definition, 11.1 $1, of a spect rum,  we have a homeomorphism 

,.d 

cr: Eo -. F(tV, EV) f o r  each finite-dimensional sub inner product spat; V 

of We r e s t r i c t  attention to such V, and we identify F E  with a sub- 

space of F(tV, EV) v i a  ?. We a r e  given a morphism of monoids 

GV -. FV C F(tV, tV), and composition of maps defines a right action of GV 

B(GV; E) = B(FE, GV, *) and B(SGV; E)  = B(SFE, SGV, *). 

We then have the  following commutative "orientation diagram", in which 

the maps  i a r e  the evident inclusions and B(GV; R) i s  defined to be  

B(FR, GV, *): 

e T 9 
SGV . SFE > B(SGV; E) - BSGV 

The rows a r e  quasifibration sequences by [47,7.9], and the maps  q can be  

thought of a s  universal  determinant bundles. 

We shall  in terpre t  geometrically the functors and natura l  t ransforma-  

tions represented  on the homotopy category hM/ by the spaces  and maps  of the  

orientation diagram by quoting appropriate resul ts  of [47J. Recal l  that  brackets  

denoted unbased homotopy c l a s se s  in that paper but denote based homotopy 

c l a s se s  here.  

4 
We note f i r s t  that ,  by [47, 9.81, [X , BFV] i s  naturally isomorphic 

to the s e t  of equivalence c l a s se s  of FV-bundles over  X. Next, by  [47,11.1 

4 
and 10.41, [X , B(GV\FV, FV,  *)] i s  naturally isomorphic to the s e t  of 

equivalence c l a s se s  of FV-bundles over  X with a reduction of t he  s t ruc tu ra l  

monoid to GV. Here,  by [47,8.9], B(GV\FV, FV, *) i s  homotopy equivalent 

to BGV and the maps  

q: B(GV\FV, FV,  *) + BFV and Bj: BGV " BFV 

can be used interchangeably, j: G - F .  Of course,  if G i s  group-valued 



and GV a c t s  effectively on tV, then BGV also  classifies Steenrod fibre 

bundles over  X with group GV and fibre tV [47,9.10]: he re  the map Bj 

induces the transformation obtained by sending a f ibre  bundle to i t s  under- 

lying spherical  fibration, whereas q induces the transformation f rom GV- 

bundles to FV-bundles obtained by forgetting the reduction of the s t ruc tura l  

monoid. Given i: H + G, BHV can be  regarded a s  classifying either FV- 

bundles o r  GV-bundles with a reduction of t he i r  s t ruc tura l  monoid to HV. 

Theorem 2.1.  F o r  X E A' , [x', B(GV; E)] i s  naturally isomorphic 

to  the s e t  of equivalence c lasses  of E-oriented GV-bundles over X under 

the relation of orientation preserving GV-bundle equivalence. 

Proof.  F i r s t ,  let  G = F .  An orientation p of an FV-bundle E: D - X 

can be described a s  a homotopy c l a s s  of maps D * EV such that, f o r  any map 

+ : tV D which i s  a based homotopy equivalence into some fibre, the com- 

posite p+:tV -+. EV l ies  in FE .  Here  the basepoints of f ibres  determine the 

cross-sec t ion  of g, and p fac tors  through Te because px i s  a based map 

-1 
for  each inclusion X: (x) C D. The condition px E F E  also ensures  that 

n * 
the res t r ic t ion  of p E E Te to E ~ T ~  i s  a generator of E TX over ri*E. In 

the language of [47: 10.1,10. 2, and 10.61, p i s  an  FE-s t ructure  defined with 

respect  to the admissible pair  (FE, EV). Therefore the result  fo r  G = F i s  

a special  ca se  of [47,11.1]. F o r  general  G, an  orientation of a GV-bundle 

depends only on the underlying FV-bundle (and not on the reduction), hence 

the resul t  fo r  F implies the result  fo r  G by [47,11.3]. Alternatively, 

when G i s  group-valued and GV acts effectively on tV, we could appeal 

to the bundle-theoretic resul t  [47,11.4] ra ther  than to the quoted fibration- 

theoretic results .  

The proofs of [47,11.1 and 11. 41 give explicit universal  E-oriented 

GV-bundles (a, 13) with base  B(GV; E)  and with a classified by 

q: B(GV; E)  + BGV [47,11.2]. Therefore q induces the obvious forgetful 

transformation f rom E-oriented GV-bundles to GV-bundles. 

If F E  happens to admit a s t ruc ture  of topological monoid such that 

e: GV - F E  i s  a map of monoids, so that B(GV; E)  = FE/GV i s  homotopy 

t 
equivalent to the f ibre  of Be: BGV - BFE, then w*(Be) E [X , BFE] i s  the 

only obstruction to the E-orientability of the GV-bundle classified by 

cr:X - BGV. As f a r  a s  I know, the only examples a r e  E = HR and E = S 

(both discussed below). Nevertheless,  a s imi lar  obstruction will  be con- 

structed much m o r e  generally in the  next chapter. 

Example 2.2. Let E = HR. It i s  not ha rd  to construct  a model f o r  HR 

such that e: GV +FHR i s  a morphism of monoids. Rather than give the 

details, we note that Bd: B(GV; HR) B(GV; R) i s  a homotopy equivalence, 

since d: FHR -+ F R  i s ,  and we can thus use the middle and bottom rows of 

the orientation diagram interchangeably. Clear ly  de: GV 4 F R  i s  a morphism 

of monoids, B(GV; R) i s  equivalent to  the fibre of B(de), and B(de) fac tors  

through Bd: BGV - BaoGV. BSGV i s  contained in B(GV; R), and we have 

the following commutative diagram: 

BSGV A BGV Bd > K(aOGV, 1) 

The GV-bundle classified by cr:X BGV i s  R-orientable if and only if 

w*~(de)  = 0, and this holds if .rr 0 GV = (1) o r  if aoGV = Z2 and either 

1 
cha r  R = 2 o r  the f i r s t  Stiefel-Whitney c lass  wi = a*Bd E H (X; Z2) i s  

zero. By the diagram, BSGV B(Gv; R) i s  a homotopy equivalence if 

a GV = F R .  
0 
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Let (v0, €I0) be the (integrally) oriented GV-bundle classified by 

t the inclusion of BSGV i n  B(GV; 2). Via ff + cr*(no. Q O ) ,  [X , BSGV] i s  

naturally isomorphic to the se t  of equivalence c lasses  of SGV-bundles, by 

which we understand GV-bundles with a canonical orientation. In other 

words, Theorem 2.1 allows us to choose compatible preferred orientations 

simultaneously on a l l  GV-bundles with a reduction of thei r  s t ructural  monoid 

to SGV. 

Definition 2.3. An E-oriented SGV-bundle i s  an E-oriented GV- 

bundle and an SGV-bundle such that the preassigned R-orientation i s  that 

induced f rom the canonical orientation. 

The map Bd: B(GV; E)  + B(GV; R) induces the evident forgetful 

transformation f rom E-oriented to R-oriented GV-bundles and i s  an isomorph- 

i s m  on components. Our original definition of an E-orientation takes cogni- 

zance of the fact that the se t  of equivalence c lasses  of E-oriented GV-bundles 

over  X i s  the union of the inverse images under (Bd)* of the elements of the 

se t  of R-oriented GV-bundles over X. The image of B(SGV;E) under Bd. i 

i s  precisely BSGV C B(GV; R). This implies the following corollary. 

+ 
Corollary 2.4. F o r  X 6 , [X , B(SGV; E)] i s  naturally iso- 

morphic to the se t  of equivalence c lasses  of E-oriented SGV-bundles over X. 

We complete the analysis of the upper two rows of the orientation 

diagram in the following remarks  (compare [47,11. 21). 

t Remarks 2.5. (i) [X ,FE] i s  isomorphic to the se t  of E-orientations of the 

trivial  GV-bundle EV over X. Indeed, given cr: X + F E ,  i t s  adjoint XXtV +EV 

gives the corresponding E-orientation p . cr has image in  SFE if and only if 
cr 

pa r e s t r i c t s  to the canonical fundamental c lass  of each fibre of EV. 

(ii) The maps-r of the orientation diagram induce the transformations 

which send an  E-orientation p of EV to the equivalence c lass  of the pair  ( EV, P). 

t 
(iii) [X ,GV] i s  isomorphic to the se t  of homotopy c lasses  of GV-bundle 

equivalences EV + EV. Indeed, given a: X - GV, i ts  adjoint XX tV + tV gives 

the second coordinate of the corresponding GV-bundle map v a has image in  
a. 

SGV if and only if Tv preserves  the canonical orientation of & V. 
ff 

(iv) The maps e of the orientation diagram induce the transformations 

* 
which send a GV-bundle map v to the E-orientation (Tv) where po i s  the 

canonical E-orientation of EV. 

There i s  an analogy between orientations and trivializations that 

plays an important role in the applications. Suppose given morphisms 

H A G F of monoid-valued $ *-functors, where H i s  group-valued. 

By [47,10.3 and 11.11 (and, for cases  such a s  H = Spin where HV fails 

t 
to act effectively on tV, [47,10.4 and 11.3]), [X , GV/HV] i s  naturally iso- 

morphic to the se t  of equivalence c lasses  of GV-trivialized HV-bundles over X. 

Remarks 2.6. Be: GV/W = B(GV, HV, *) -+ B(FE, HV, *) = B(HV; E) induces 

* 
the transformation which sends (5, b) to (5, (Tb) ()I&), where pO i s  the 

canonical E-orientation of the trivial  GV-bundle. The following diagram 

commutes: 

In the upper row, T induces the transformation which sends v : EV -c EV 

to ( EV, v ) and q induces the evident forgetful transformation. 

Example 2.. 7. Let E = S, so that F E  = F and E(GV; E)  = F/Gv. Since 

Be: BGV -+ BF induces the transformation which sends a GV-bundle 5 to 

i ts stable fibre homotopy equivalence c lass ,  this c lass  i s  the obstruction to 

the S-orientability of 5. This fact can also be  seen directly since, if 



V = Rm and tV = Sm, an  S-orientation p: TE - asm has  adjoint a map 

DE X Sn - sntm f o r  n suitably large  (if the base  of 5 i s  compact), and 

the l a t t e r  map  i s  the second coordinate of a stable trivialization of 5 . 
Finally,  we relate Theorem 2. 1 to  fibrewise smash products and 

discuss i t s  naturali ty in E. 

Remarks 2.8. Let V and W b e  orthogonal finite dimensional sub inner  

product spaces of Rw. It i s  an ea sy  consequence of the definition of the 

smash product on HA given inBE3] that the product on E determines maps 

$:FE X F E  + F E  and PI: EVAEW + E(V t W) (depending on an appropriate 

w 
l inear  i sometry  R CB RW .r RW) such that the following diagram i s  

commutative: 

L @ 

F E 
J 

>F(t (V t W),E(V t W)) 

(at  leas t  if the product on E i s  given by an  honest map in 8 ; possible required 

formal  inverses  of weak equivalences would mildly complicate the argument 

to follow). If {Vi] and {w.] a r e  expanding sequences such that V i l  Wi 

and Rm = (0:) t ( U W i ) ,  then there  i s  a sequence of maps 
i i 

fli:~vih EWi -. E(V. t W.) so compatible with $:FE X F E  + FE.  The dia- 
l l 

g r a m  and the definitions of w on F and of the right actions y by the GV 

on F E  imply that the following diagram also commutes: 

Therefore,  s ince  the ba r  construction commutes with products, $ and w 

induce 

B(W; $1: B(GV; E) x B(GW; E) - B(G(V t w); E) . 
Let ( e ,  p) and (4, v ) be E-oriented GV and GW-bundles over  X and Y 

f classified by and F. Then (EA 4, pn  v )  i s  classified by B(w ; $)(; X F). 

f The proof i s  based on the observation that [47; 5.6,7.4. and 11. 11 imply 

1: that B( w ; $) can be  covered by a map  of E-oriented G(V t W)-bundles f rom 

f the fibrewise smash product of the universal  bundles over  B(GV; E)  and 

f B(GW;E) to the universal  bundle over B(G(V t W);E). 

I Remarks 2.9. Let 5 : E - E1  be  a map  of commutative ring spectra.  By 

t the definition of a map of spect ra  ,IL 1.1, and of the actions y, the following 

diagrams a r e  commutative: 

- > F ( ~ v , E v )  and F E X G V  I X 1  > F E I X G V  

F E 1  > F(tV, E'V) 

I Therefore I induces a map BL: B(GV: E) * B(GV; El) , and the following 

f diagram i s  obviously commutative: 

f F E  > B(GV;E) > BGV 

I The construction of the universal  E and E '  oriented GV-bundles (T, 8) and 

( T I ,  GI1) i n  [47,11. 1 ] shows that the map of Thom complexes 

induced by BG i s  such that the diagram 



i s  homotopy commutative. We conclude that BG induces the transformation 

which sends an E-oriented GV-bundle ( 5 ,  t ~ )  to the El-oriented GV-bundle 

( 5 ,  Gp), where we have also written & for the cohomology operation i t  

determines. 

IV. E r i n g  spectraY 
P3 

In the previous chapter, the basics of orientation theory were 

developed for a cohomology theory represented by a commutative ring 

spectrum E. In order  to analyze the obstruction to orientability, and 

for many other purposes, it is  desirable to have a more structured 

notion of a ring spectrum. 

To see what is  wanted, consider the unit space F E  C Eo and the 

component SEE of the identity element of r 0 E .  The product $: EAE+ E 

and unit e: S - E determine H-space structures on F E  and SEE. Recall 

that, when E = S ,  F E  = F and SEE = SF. When E = kO, Adams pointed 

out in [4, $71 that the group of kO-oriented spherical fibrations over X 

ought to play a key role in the analysis of J(X) and that the obstruction to 

kO-orientability ought to be directly related to the d-invariant. Now the 

d-invariant can be thought of a s  induced from the H-map e: SF -+ BO = SFkO, 63 
and Sullivan pointed out in [72, $61 that if e were to admit a delooping 

Be: BSF + BBO then the fibre of Be ought to be equivalent to B(SF; kO) 
€3' 

and Be therefore ought to be the universal obstruction to kO-orientability. 

Thus one wants at least suffiaient structure on E to ensure that 

F E  admits a classifying space (or delooping). One's first thought i s  to 

insist that F E  admit a structure of topological monoid. One cannot re- 

quire @ to be associative and unital, without passage to homotopy, since 

the smash product of spectra is  itself only associative and unital after 

passage to homotopy. However, one can ignore the smash product, r e -  

vert to Whitehead's notion of a ring spectrum defined in terms of a pair- 

* (by J.P. May, F. Quinn, and N. Ray) 
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ing of spectra [80], and assume that the given pairing i s  strictly associative theories of E-oriented G-bundles and corresponding new cobordism theories. 

and unital. This i s  perfectly satisfactory in theory, and has been used by 1 Our work ra ises  many unanswered questions. Can these new 

Pat terson and Stong in an investigation of the orientability of bundles [52], ( theories be calculated in interesting cases  ? What i s  the relationship 

but i s  a t  present of little use in practice since the only known strictly I betweenthe cohomology theory determined by an  E m ring spectrum E and 

associative ring spectra a r e  S (under the composition pairing) and the I that determined by FE?  What a r e  the implications for T*E of the 

Eilenberg-Mac Lane spectra HR, where R i s  a ring. I existence of an  E ring structure on E? All that we show here  i s  that 
m 

We shall  define the notion of an E ring spectrum in section 1. I the representing spectra of most of the interesting cohomology theories 
m 

When E i s  such a spectrum, F E  and SFE will not only have deloopings, I have an enormously richer internal structure than has yet been studied 

they will actually be infinite loop spaces. Paradoxically, although the I and that this structure gives r ise  to a collection of potentially powerful 

implications of an  E ring structure a r e  thus much stronger than the im- I new thee-ries. 
m 

plications of s t r ic t  associativity, i t  i s  not hard to construct E ring 
m I 

spectra. Indeed, among other examples, we shall s ee  in section 2 that the 

various Thom spectra MG, including such exotic ones a s  MTop and MF, 

a r e  E ring spectra a s  they occur in nature. In VII, the f i r s t  author will 
m 

give a machine for  the construction of E ring spectra from spaces 
m 

with appropriate internal structure. This machine will construct Em 

ring spectra which represent the various connective K-theories (geo- 

metr ic  and algebraic) and the ordinary cohomology theories. 

In section 3 ,  we study E-orientation theory when E i s  an  E ring m 

spectrum. Here the obstruction to E-orientability takes on a conceptual 

form: i t  i s  a degree one "Stiefel-Whitney" c lass  inthecohomology theory 

determined by the infinite loop space FE.  We shall give a number of 

examples to show how this obstruction can be calculated in favorable cases. 

Moreover, the classifying space B(G; E) for E-oriented stable G-bundles 

(G = O,U,F, Top, etc.) i s  itself an infinite loop space, and the Thom 

spectrum M(G; E) associated to the universal E-oriented GV-bundles, 

V C R ~ ,  i s  again an E ring spectrum. Thus we have new cohomology 
m 

I 1. Em ring prespectm and spectra 

One way to prove that a space i s  an infinite loop space i s  to display 

an action of an E operad on i t  [vI,! 11. We think of spectra a s  already 
m 

carrying additive structures,  and we shall superimpose multiplicative 

structures by means of actions by operads. Since spectra,  a s  defined in 

11,l.l' a r e  indexed on the finite-dimensicn a1 sub inner product spaces 

of R ~ ,  i t  i s  natural to give the l inear isornetries operad 2 of I. 1.2 

a privileged role in our theory. F o r  the examples in this chapter, i t  would 

suffice to use only 7 , but it i s  essential for la ter  chapters to allow 

more general operads. Thus we assume given an E operad fj and a 
m 

morphism of operads /!! -+ $ . By abuse, we shall think of elements 

of (j) a s  l inear isometries via the given map to 2 (j). 

Actions by operads refer  to chosen basepoints. We think of actions 

by h on spaces a s  multiplicative, and the relevant basepoint i s  denoted 

by 1. We do not want to impose additive structures on spaces, but we 

do want to impose zeroes. Thus let  3, denote the category of spaces 



0 
X together with cofibrations e: SO + X where S = {0,1}. By a f i  -space 

with zero, o r  O-space, we understand a /5 -space (X.5) such that 

X s  r e  and Ej(g,xl ,..., x.)= 0 if any x. = 0; ino the rwords ,  
J 

Cj: b (j) X xJ -+ X i s  required to factor through the equivariant half-smash 

b (j)Xz. XA. .  .A x/A ( j ) ~ ~  * defined with respect to the basepoint 0. Let 
J j 

[ y e ]  denote the catego=y of b -spaces with zero. 

The spaces TV of a prespectrum have given basepoints, which we de- 

note by 0; a l l  wedges and smash products used below a r e  to be taken with 

respect to these basepoints. By a unit for T s jf) o r  fo r  E E A% we understand 

W O  
a map e: >3 S 4 T in  @ o r  e: Q So 4 E in A such that the resulting (and, 

w 

by 11. 1 .J and 11.1.7, determining) map SO + To o r  SO - Eo i s  a cofibration. 

Let pe and .Be denote the categories of prespectra with units and spectra  

with units (and morphisms which preserve units). The constructions and re -  

sults of LI $ 1  extend immediately to the categories g e ,  Be , and . 
'e 

The reader  i s  advised to review the definitions of operads (VI. 1.2), of 

actions by operads (VI. 1.3), of the l inear isometries operad (I. 1.2), and of 

prespectra  and spectra  (II. 1 . l )  before proceeding to the f o l l o ~ n g  definition. 

Definition 1 .l. A b -prespectrum (T, u, 5) i s  a unital prespectrum 

(T, u) together with maps 

g.(g): TV1 A . . . TV. + Tg(Vl d . . . @ V.) 
J J J 

for  j 2 0, g t 8 (j), and Vi G ~ , ( R w ) ,  where cO(*) i s  to be interpreted a s  the 

0 
inclusion e: S -. To , such that the following conditions a r e  satisfied. 

(a) If g E )%(k), hr r &Gr) for  1 5 r 5 k, and j = jl + . . . + jk, then the 

following diagram i s  commutative. 

5 . (~ (g ;  hl ' ' " > hk)) 
TV1" ... ATV. Ty(g;hl, ... ,$)(V1 8 . .. @ V.1, 

J J 

where W - 
r - hr(Vjl+. . . +jr-l  

B ... B V. J f . . .+jr ) (or (0) if jr = 0). 
1 

(b) (1): TV * TV i s  the identity map. 

(c) If g s fJ (j) and T s Z then the following diagram i s  commutative: 
j' 

Sj(g7) 
T V ~  A . . . h TV. > Tg7(V1 8 . . . '83 V.) 

J J 

(d) F o r  fixed V. and W, E j  i s  continuous in  g a s  g ranges through the 

subspace of /3 (j) which consists of those elements such that 

g(v1 8 ... 8 V.) = W. 
J 

(e) If g E (j) and V. i LW i' then the  following diagram i s  commutative:' 

U A . .  .A  U 
TV1~tW1~. .  . . ATV.A~W > T(V1 + Wl) A . .  . AT(V. + W.) 

J j J J 
I 

(where t i s  a sphere-valued functor on $* a s  in I1 9 1). 



(f) If g E ( l ) ,  then tl(g):  TV + TgV i s  a homeomorphism in the homotopy 

w 
class  T ( ~ ~ v ) ,  and every morphism f E ) *(R ) i s  obtainable by res t r ic-  

tion f rom some g E & (1). ((f) could be deleted; see Remarks 11.1.10.) 

(T,u, 5) i s  a !d -spectrum if (T, u) i s  a spectrum. A morphism 

+: (T, u, 5) + (TI, u', 5') of f i  -prespectra i s  a morphism +: (T, u) -, (TI, 0-1) of 

unital prespectra such that the following diagrams a r e  commutative: 

S jk )  
TVl A . . . A TV. r Tg(V1 B) . . . QV.) . 

J J 

J. 5;(g) t 
T1V1 h . . . A T'V. 

J 
S- T1g(V1 83.. . B)V.) J 

Let /J [pel denote the category of 4 -prespectra and le t  kj [ de] denote i ts 

full subcategory of !d -spectra. Let v : & [gel + fJ [, ] denote the inclusion 

functor. 

Definition 1.2. An E ring prespectrum (or spectrum) i s  a )j. -pre- 
w 

spectrum (or -spectrum) over any E operad & with a given morphism of 
w 

operads !j + 2 . 
We have not defined and do not need any notion of a morphism between 

Em ring spectra over different operads. 

Think of a prespectrum (T, u) a s  determining an underlying space, the 

wedge over all  V E d *(RW) of the spaces TV. Then conditions (a), (b), and 

(c) a r e  precisely the algebraic identities required for the 5 .  to give this space 
J 

a structure of bo-space. Condition (d) describes how to weave in the topo- 

logy of h , but we should add that we only h o w  how to make effective use of 

the topology when the V. and W a r e  all  (0). The las t  two conditions relate 

the 5. to the internal structure of (T, u). In practice, (f) i s  used to define 
J 

the maps T ( ~ ~ v ) ,  and the h r c e  of the definition l ies  in condition (e). 

In [48,X1], a smash product functor A - .AX 8 + A i s  defined for 
g ' 

each element g E 3 (2); all  such functors become equivalent in  the stable 

homotopy cagegory H 8 . Our definition ensures that, for each & -spectrum 

E and each g E 15 (2), there i s  a well-defined map E A E - E in Lf which 
g 

gives E a structure of commutative ring spectrum in  HA . 
Although irrelevant to our theory, a comparison with Whitehead's 

notion of a ring spectrum may be illuminating. 

Remarks 1.3. Let (T, cr, 6) be a -prespectrum and le t  g E &(2). Let RW 

and Rm B) RW have orthonormal bases {ei) and {el, e'! 1 .  Assume that tV 
1 1  

i s  the one-point compactification of V and l e t  Ti = TR' and 

u. = u: ZT. = T. A tRe. 
+ Titl. 

Consider the following diagram for  any 
1 1 1 1+1 

q+l 
i s  the obvious l inear isometry p 2 0 and 9 2 0 ,  where d: Rgel + Rge' 

p+l 

and f: g ( ~ P  B) RqS1) + RPfqtl i s  any linear isometry: 

I II 
~ h t ( 0 ) h ~ ~ t R e  ---+ UA u T A T  

P 9 s+l  P 9f l  

The left rectangle commutes trivially, the two trapezoids commute by ( e  ) in 



the definition of a b-prespectrum,  and the two left triangles commute while 

the remaining rectangle and triangle homotopy commute by the very definition 

of a prespectrum. This looks just like Whitehead's diagram (see M. 2.5), ex- 

cept that we haven't mentioned signs. The point i s  that, to get a pairing in  

Whitehead's sense, we must use fixed chosen isometries f . g ( ~ p ~ ~ q )  -. RPf q. 
P q' 

If f = f  in  our  diagram, then f may lie in  the opposite component 
p, s+l p*l,'q 

f rom f ( l e d )  in the space of l inear  isornetries g ( ~ p + l @  Rq) - Ref q'l. 
P* q+l 

Of course,  our theory requires  no such choices, and the l inear isometries 

i n  the definition of a prespectrum efficiently keep t rack of a l l  such changes 

of coordinates. 

The interes t  l ies in E ring spectra,  but it i s  E spaces and ring 
m m 

prespectra  which occur in nature. We next show that the relationships be- 

tween the categories e, @ and 8, derived in 11, § 1 res t r ic t  to give 
e ' 

s imi la r  relationships between the categories [ I  93 [@ and [ be] .  

Clear ly  we have forgetful functors h [@ -. f j  [ I  and ,&[ A,] * [ ye] 
defined on objects by (T, u, 5 ) -+ (To, 5 I To). 

Lemma 1.4. The functor zm: ye  - @ res t r ic ts  to a functor 

zm: [ g,] -+ &J [%I, and there  i s  a natural isomorphism 

h [ ,=l(x, T,) h [Qel(zmx,  TI,  x E b [ g e l  and T E 93 [ Ql. 

Proof. F o r  (X, 5 )  E i% [gell g E b ( j ) ,  xi€ X, and V . E  tVi, define 

5 j ( g ) ( ~ l ~ ~ l ~ .  ..Ax.Av.) = 6 .(g)(xlh.. .hx.)h(tg)(vlh. . . ~ v . ) .  
J J  J  J  J  

Then 5 gives zmx a structure of h -prespectrurn, and the remaining 

verifications a r e  trivial. (For  (f), each ( i ( g ) : ~  + X must be a homeomorphism. ) 

m 0 
Lemma 1.5. z0S0 i s  a !j -prespectrum, and e: Z S T i s  

a morphism of b -prespectra t o r  every Id -prespectrum T. 

- 
0 0 

Proof. With E.(g) = 1 on S h .. . AS = So for  eakh g E (j), 
3 

SO i s  a h -space witn zero such that e:SO-+x i s  a morphism of /d -spaces 

with s e r o  for a l l  X E & [ye]. The conclusion follows by taking X = T 0 

and applying the previous lemma. 

Lemma 1.6. The functor nW: Qe  + Be rest r ic ts  to a functor 

nm: [.@,I -C h [Ae], and there i s  a natural isomorphism 

Proof. By 11.1.4, ( n m ~ ) ( v )  = l im  S ~ ~ T ( V  + W) , WlV. Let 
* 

Wi 
(T, u, 5) E h [@,I, g E b (j), and f. E S2 T(Vi + Wi) and define a map 

gj(g)(flh . . . A f .) by commutativity of the diagram 
J 

tW1h ... htW 
1 * T(Vl + Wl) h .. . A T(V. + W.) 

j . J J  

Ej(g): (SZm~)(V,) A . .  . A ( Q ~ T ) ( V ~ )  ^ (S2m~)g(~1@.  . .OVj) i s  obtained by 

m 
passage to l imits,  and these maps a r e  easily verified to make i2 T a 

h -spectrum. With Wi = { 0)  in  our  diagram, we see  that the map 

m 
I. : T - v'i2 T of 11.1.5 is  a morphism of 15 -prespectra,  and the r e s t  

i s  clear.  

The previous two lemmas imply the following result. 

m m 0  
Lemma 1.7. S = Q  Z: S i s  a &-spectrum,  and e : S + E  

i s  a morphism of kf -spectra for every !$-spectrum E. 

m w 
Qm = S2 X , and Lemmas 1 .4  and 1.6 can be  composed. 

Lemma 1.8. The functor Qm: - le restr ic ts  to a functor 



Q m: h [ gel -+ h [ de], and there  i s  a natural  isomorphism 

The following immediate consequence of this lemma will be  needed 

in VII. Recall  that CX = (Q X) 
w 0 '  

Lemma 1.9. The monad (Q p . 1) i n  r e s t r i c t s  to a monad 

in )1 [ 3.1; f o r  E c b [ Le], the n a t u r d  map  m0 - Eo gives E 
0 a 

s t ruc ture  of C2-algebra in b [ 7 1. 

As we shall  s ee  inVII, the  l emma implies that Eo i s  an "E ring m 

space",  which i s  a space with two E space s t ruc tures  so  interrelated 
m 

that  the  underlying H- space s t ruc tures  satisfy the distributivity laws up to 

a l l  possible higher coherence homotopies. Moreover, we shall  s ee  that 

a connective b -spectrum E can be  reconstructed (up to  homotopy) f rom 

the Em ring space E 
0' 

Lemma 1.8 gives the following c lass  of examples. Recall that any 

infinite loop space i s  an E space (VII.2.l)and any grouplike E space  i s  an  m a, 

infinite loop space (VII. 3 .  2). 

Example 1.10. F o r  any b -space (X, E), without zero,  construct  a 

+ h -space (X , 5 )  with zero  by adjoining a disjoint basepoint 0 to  X and 

extending 5 in the evident way. Qmxf i s  then a 93 -spectrum, and the 

+ .  inclusion of X in CM xs a morphism of A-spaces.  If 13' i s  any E 
m 

operad and f i  = h '  X , then any h a - s p a c e  i s  a f i  -space v ia  the 

projection b -+ h l ,  while the projection f i  +;f) allows k to be used in 

the present theory. Therefore Q X' i s  an E ring spect rum fo r  any E m m m 

space X. 

2. *-prefunctors and Thom spect ra  

! As explained in I§ 1, to construct  an  x - s p a c e  i t  i s  often 

simplest  to f i r s t  construct an $*-functor. Analogously, to construct  

an Y)-prespectrum, i t  i s  often simplest  to  f i r s t  construct  an  J*-pre- 

[ functor. 

Definition 2.1. An j*-prefunctor (T,w , e) i s  a continuous 

functor T: -' 3 together with a commutative, associative,  and con- 

tinuous natural  transformation w : T X T + T.83 (of functors Q*x $* + ) 

and a continuous natural  transformation e: t + T such that 

(a) w : TV X TW + T(V (B W) factors through TV A TW. 

l ~ e  
(b) The composite TVh tW - TVATW L T ( V  (B W) has  adjoint 

f an inclusion with closed image and coincides with the identity map of 

1 TV when W = {o). 

I (c) The diagram t ( V  83 W) 5 T(V 83 W) i s  commutative. 

I I 1. 
tVA tW - TVhTW 

A morphism Q: (T,w, e) + (TI, o ' ,  el) of J*-prefunctors i s  a continuous 

natural  transformation Q :  T -C T i  such that wl(QX @) = Qw and e '  = me. 

The *-functor t with w: tV X tW + t(V 83 W) the projection i s  also an  

J*-prefunctor with e the identity. Condition (c) a s s e r t s  that e: t * T i s  

I a morphism of *-prefunctors. 

Lemma 2. 2. An $*-prefunctor (T, w, e) naturally determines 

an x - p r e s p e c t r u m  (T, u, 5). 

Proof. The continuity of T ensures  that i ts  restrict ion to sub - 
m .  m 

inner product spaces of R ~ n d u c e s  a functor h $ * ( ~  ) -C h d .  De- 

fine u = w ( 1 ~ e ) :  TVA tW + T(V + W) fo r  orthogonal pa i rs  (V, W) of sub- 

m 
spaces of R . Then (a)-(c) and the associativity of w ensure  that (T, u) 



cn 0 i s  a prespect rum and that  e: B S - T i s  a morphism of prespectra.  

F o r  Vi C Rm and g E y(j), define 

s ~ ( ~ ) : T v ~ A  ... ATV. -- T ~ ( V  l ~ . . . ~ ~ . )  
3 .I 

to  be the composite 

T(glV,@. . .(By) 
T V ~ A . .  . ATV. % T ( v ~ Q . .  .(Bv.) T ~ ( v ~ Q . .  . (BV.). 

3 3 J 

It i s  straightforward to verify tha t  (T, u, 6) i s  then an ' 2 -p re spec t rum.  

As pointed out to us by Becker,  Kochman, and Schulte, there  i s  a 

c l a s s  of J*-functors which leads via Lemmas 2 .2  and 1 . 6  to cer ta in  of 

t 
the E ring spec t r a  Q X of Example 1.10. 

03 m 

Example 2. 3 .  Let X be an Abelian topological monoid with product 
@ 

and unit q. Define an  d*-prefunctor (TX, w, e) by 

( T X ) ( V ) = x t ~ t V  and ( T X ) ( f ) = l ~ t f  fo r  f : V A V ' ,  

with w and e given by the maps 

$ + , - i : ~ + h t ~ A ~ + h t ~  ( X X X ) + ~ ~ V A ~ W  + x + A ~ ( v  Q W) 
and 

f t 
q h l : t V g   fit fit^ -cX h t V .  

Note tha t  t i s  recovered a s  the special  ca se  ~ (1 ) .  

0 The 7 - s p e c t r u m  determined by t i s  Q S . The derived 
03 

0 < -space s t ruc ture  on the  zeroth space QS coincides with the q - s p a c e  

N 
s t ruc tu re  derived f r o m  the $ *-functor F defined in I. 2.5. This phe- 

nomenon generalizes to a rb i t r a ry  $*-prefunctors. 

Definition 2.4. Let (T, w, e) be an $ *-prefunctor. and wri te  M 

m f o r  the  3 - s p e c t r u m  derived by application of the functor 0 to  the 

r., 

associated 7 - p r e s p e c t r u m  T. Define an  $ *-functor F T  by 

rU ,., 
FTV = nVTV and F T f  = nf-'Tf f o r  f:V - V '  . 

with w: ?TV X FTW + ?T (V (B W) given by the composite 

- 
As explained in I. 1.6 and I, 1.9, F T determines  an x - s p a c e  (also denoted 

.., 
by F T )  by passage to l imi ts  over  v c Rm. A t r iv ia l  comparison of 

'U 

definitions shows that  F T  = M a s  an  x - s p a c e .  There  a r e  evident sub 

'U 

Q*-functors F T  and SET of F T  which give r i s e  to the sub 7 - s p a c e s  

FM and SFM of Mo. 

We next display the Thom spect ra  a s  -! *-prefunctors. Recall  

the discussion of the two-sided geometric b a r  construction a s  an  

.!,-functor f rom I. 2.1 and I. 2. 2. 

A. 

Construction 2. 5. Let G + F be  a morphism of monoid-valued 

*-functors. Then G acts  f rom the left  by evaluation on the J*-functor 

t and f rom the lef t  and right on  the t r iv ia l  d *-functor *. Let Y be  any 

4*-functor on  which G acts  f rom the right. The map 

p: B(YV, GV, tV) + B(YV, GV, *) i s  a quasi-fibration if G i s  grouplike 

and a GV-bundle i f  G i s  group-valued. p admits a cross-sec t ion  u 

induced f rom the morphism of GV-spaces * + tV and has f ibre  

T : tV + B(YV, GV, tV) over  the basepoint of B(YV, GV, *). Moreover,  

p, u, and i a r e  all morphisms of d *-functors. Define a n  *-prefunctor 

(T(G; Y), w, e )  by 

T(G;Y)(V) = B(YV, GV, ~v)/B(YV, GV,*), 

with w and e induced f r o m  the Whitney s u m  of B(Y, G, t)  and f r o m  T . 
Write T(G; Y) fo r  the associa ted  7 -p re spec t rum and wr i t e  M(G; Y) 

m 
fo r  the derived 4 - s p e c t r u m  0 T(G; Y). In a n  evident sense,  T and M 

a r e  functorial  on pai rs  (G, Y). Abbreviate T(G; *) = TG and 

M(G; *) = MG. TG and MG a r e  called the  Thom prespect rum and 

spect rum of G. 



0 
Clear ly  Me coincides with RmS . When G i s  group-valued, 

we could just a s  well define MG by use of the associated sphere  bundles 

to  the principal bundles 

G(V B) ~ ) / e  X GV G(V 83 V)/GV X GV. 

However, since these bundles a r e  not universal  (because the i r  total  spaces 

a r e  not contractible), i t  seems preferable even in the c lass ica l  ca se  to use 

the ba r  construction. 

When G = F, p must be replaced by an  appropriate fibration 

DFV + BFV in  o rde r  to obtain a universal  FV-bundle (spherical  fibration 

with cross-section).  Here we could replace TFV by DFV/BFV; the new 

TFV would again determine a n  d*-prefunctor and the old TFV would be 

deformation r e t r ac t s  of the new ones via deformations which define 

morphisms of $ *-prefunctors f o r  each parameter  value. A s imi lar  re-  

m a r k  applies to  the general  ca se  T(G; Y) when G maps to F. 

In view of I. 2.5, a l l  of the usual cobordism theories except for  

P L  theory a r e  thus represented by y - spec t r a .  While i t  may be  possible 

to handle MPL and MSPL in an  ad  hoc manner based on the  triangulation 

theorem, a s  B P L  and BSPL were  handled in  I 5 2 , i t  i s  certainly pre- 

ferable to t r ea t  these within a general  framework of axiomatic bundle 

theory. Such a t rea tment  will be given by the second author in [64]. 

We note one other important example to which ou r  theory does 

not yet apply, namely the Brown-Peterson spectrum. The point i s  that 

ou r  theory requires  a good concrete geometric model, not mere ly  a homo- 

topy theoretical  construction, and no such model i s  presently known fo r  BP. 

F o r  general  Y in Construction 2.5, Lashof 's  t rea tment  [36] of the 

Pontryagin-Thom construction implies that i f  G i s  group-valued and maps 

to  0, then .rr*M(G;Y) gives the cobordism groups of G-manifolds with a 

"Y-structure" on the i r  stable normal  bundles. In full generality, when G 

maps to  F ,  define a G-normal space to be a normal  space in the sense  of 

[63,1.1] with a reduction of the s t ruc tura l  monoid of i t s  spherical  fibration 

to G [47,10.4]; then n*M(G;Y) gives the cobordism groups of G-normal 

spaces with a "Y-structure" on the i r  spherical  fibrations. An intrinsic 

bundle o r  fibration theoretic interpretation of a Y-structure requires  an  

appropriate classification theorem, and general  resul ts  of this nature a r e  

given in [47,$ll]. When G maps to GI, a GI-structure i s  a GI-triviali- 

eation [47,10.3]. When H maps to  G, an H\G-structure i s  a reduction 

of the s t ruc tura l  monoid to H [47,10.4]. When Y = F M  i s  a s  i n  Definition 

2.4 and i s  regarded a s  z right *-functor over G via  composition of maps. 

FMV X GV + F (tV, TV) X F(tV, tV) + F (tV, TV) = FMV, 

a Y-structure i s  a n  M-orientation by 1115 2 and Remarks 3. 5 below. 

Note that the map of y - p r e s p e c t r a  I, : TG -. v Q ~ T G  = vMG 

defines explicit MG-orientations L : TGV + MGV of the universal  GV- 

bundle (via the equivalence of TFV and DFV/BFV when G = F) .  Thus 

any GV-bundle admits an MG-orientation. The following lemma reflects 

the fact that a G-normal space (o r  G-manifold) with an H\G-s t ructure  

admits an FMH-structure (that i s ,  an MH-orientation). - 
Lemma 2.6. Let H + G + F be morphisms of monoid-valued 

Y 

&-functors. Then there  i s  a morphism j: H \ G  + FMH of right J *- 
w 

functors over  G such that j coincides withthe given morphism G + F 

when H = e and the following diagram commutes: 

If G maps to F o r  SF then H \ G  maps to FMH o r  SFMH. 



Proof. H \G = B(*, H, G) and we have the commutative diagram - 

B(*, HV, GV) x t v r  B(*,Hv, GV x t v )  B(*,Hv,~v) + THV , 

where A i s  the evaluation map. j: HV\ GV F(tV, THV) = .$MH is defined 

to be the adjoint of the top composite. 

As will be discussed and interpreted geometrically in [66], the 

maps j: H\G + FMH induce the bordism J-homomorphisms. 

We record a number of natural  maps of J*-prefunctors in the 

following remarks .  The same  l e t t e r s  will be used for  the derived morphisms 

of 7 -prespect ra  and r - s p e c t r a .  The cobordism interpretations should 

be  c l ea r  f rom the discussion above. 

Remarks 2.7 ( i )  F o r  (G, Y) a s  in Construction 2.5, the morphism of 

J*-functors q: B(Y, G, t) -+ B(*, G, t) induces a morphisrn of $ o-p+efunctors 

q: T(G; Y) -+ TG. 

(ii) In the notation of the previous proof, the maps Bh induce a morphism 

of Q *-functors €. = E(Bh): B(H\G, G, t) + B(*, H, t) which in turn  induces 

a morphism of % *-prefunctors E : T(G; H\G) -. TH. 

(iii) If G maps to F and if T i s  an d *-prefunctor, then the evaluation 

maps  F(tV, TV) X tV + TV induce maps E : B(FMV, GV, tV) -+ TV which 

in tu rn  induce a morphism 8 : T(G,FM) -+ T of $*-prefunctors. 

The maps  of the previous l emma and r emarks  give considerable 

information about the s t ructure  of M(G; MG). 

Remarks 2.8. F o r  a n  x - s p e c t r u m  M derived f rom an *-prefunctor, 

wr i te  

M(G; M) = Q m ~ ( G ;  FM) and M(SG; M) = Q ~ T ( S G ;  SFM). 

Let  H -+ G + F be rnorphisms of monoid-valued Q*-functors. The 

following diagrams commute because they already do so  on the level of 

Q *-prefunctors: 

and MSH 

M(SG; MSH) 

When H r G, H\ G = B(*, G, G) i s  contractible and the upper maps € and q 

a r e  isorriorphisms in  H A  (because the maps t3 and q on the prespectrum 

level a r e  weak homotopy equivalences fo r  each V). We conclude that, i n  

1 H A ,  the lower maps q split off a d i rec t  factor MG o r  MSG (via Mj. E- ) 

such that the restriction to this factor of the lower map E i s  the identity. 

3. Orientation theory for  E ring spect ra  m 

Let  )j be an E operad with a given map to and consider 
m 

x - s p a c e s  a s  15 -spaces v ia  this map. We shall  write BX for  the 

f i r s t  de-looping of a grouplike 93-space X (~11 ,530r  [46]). This i s  a 

harmless  abuse of notation since BX i s  equivalent a s  an  infinite loop 

space to the usual classifying space of X if X happens to be a topo- 

logical monoid in  the category of Pf -spaces (by VII,3.6). 

Let E be a b -spectrum. By Lemma 1.7, e:S - E i s  a 

morphism of h - spec t r a  and thus e :F  + F E  i s  a morphism of 

h-spaces .  Let  R denote the commutative ring v0E. 

Let j: G * F  be a morphism of monoid-valued $* -functors, 

and le t  j also denote the derived map of &-spaces  (I. 1.9 and I. 1.6). 



Write e fo r  any of the composites GV - G A F ~ F E ,  V C  Rm. 

Consider the orientation diagram constructed in 111 fi 2 . It fea tures  

the classifying space B(GV; E) = B(FE, GV, *) fo r  E-oriented GV- 

bundles. Here F E  i s  identified a s  a subspace of $EV via the 

homeomorphism ;;! : E o  - nVEv and i s  a right GV-space by compo- 

sition of maps.  By the definition of a spectrum, 11~1.1, the following 

diagram i s  commutative if V and W a r e  orthogonal subspaces of Rm: 

,., 

Eo 
u - si"+w~(v+w) . 

Therefore the identification of F E  a s  a subspace of nVEv  i s  con- 

sistent a s  V var ies ,  and F E  inherits  a right action by G = G R ~  f rom 

the right actions by the GV. Moreover, the action F E  X G - F E  i s  

itself a morphism of b - spaces .  Indeed, a comparison of (e) of 

Definition 1.1 with I. 1.10 shows that this follows f rom the cancellation 

( x ~ - ' ) ( ~ ~ )  = xy for  g:V -V ' ,  x E nVEv , and y E nVtv = FV. Now 

recal l  the discussion of the two-sided geometric ba r  construction a s  a 

93 -space f rom I 5 2 (or [46,§3]). Recall too that an Abelian monoid i s  a 

8 -space fo r  any & and that the discretization d: X + ?r X of a fd -space 
0 

i s  always a map of b -spaces [45,§3]. By passage to l imi ts  f rom the 

m 
orientation diagrams for  V C R , we conclude the following result. 

The0re.m 3.1. All spaces a r e  grouplike h - s p a c e s  and a l l  maps 

a r e  f$-maps in the stable orientation diagram 

This diagram i s  therefore equivalent to the diagram obtained by 

application of the zeroth space functor to a diagram of connective 

spect ra  in which the rows a r e  fiberings (that i s ,  a r e  equivalent in the 

stable category to fibration sequences [48,XI). On the level of spaces,  

the stable E-orientation sequence now extends infinitely in both direc- 

tions: 

... - QB(G:E) - G ~ F E L B ( G : E ) - % B G - %  BFE-BB(G;E)-+. . .  

Given H - G, we also have the infinite sequence 

and a map of th is  sequence into the E-orientation sequence of H 

(because the maps of 111. 2.6 a r e  8 -maps when V = R ~ ) .  

Since B(G; E )  i s  equivalent to the f ibre  of Be: BG BFE, 

an  easy diagram chase shows that B(GV; E)  i s  equivalent to  the f ibre  

of the following composite, which we again denote by Be: 

BGV -+ BG BF Be' BFE. 

Definition 3.2. Let 5 be  a GV-bundle classified by 

a : X ' BGV. Define w(5: E )  to be  the element a*(Be) of the group 

[x', BFE]. w(g; E )  i s  called the E-theory Stiefel-Whitney c lass  of 6 

and i s  the obstruction to i t s  E-orientability. If F E  also denotes the 

(reduced) cohomology theory represented by the spectrum determined 

1 t  by  F E ,  then w(g; E )  can be regarded a s  an element of F E  (X ). 

Previously, the obstruction to E-orientability was studied by 

analysis of the Atiyah-Hirzebruch spect ra l  sequence. L a r r y  Taylor 

1741 has given a number of resul ts  so obtainable, and we a r e  indebted 

to  h im for  severa l  ve ry  helpful conversations. When E i s  an E ring 
m 

spectrum, these results  a r e  immediate consequences of the definition 
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and ordinary obstruction theory. To s e e  this,  assume that X is  a 

finite dimensional CW-complex. If w(5; E):X + BFE i s  null homotopic 

on the (n-1)-skeleton xn-', then we have an obstruction set  

w,(s; E) c H ~ ( x ;  T ~ B F E )  = $(x; T n - l ~ ~ )  

to the existence of a null homotopy of w(5; E) on xn. Clearly wl($; E) 

i s  the usual Stiefel-Whitney obstruction to the R-orientability of 5 of 

III. 2. 2. F o r  n >  0, 

T F E  = 71. SFE = T ( E ~ ,  1) rrn(E0, 0) = T E , n n n n 

where the isomorphism i s  given by translation f rom the 1 -component 

to the 0-component. Let 4 be a GW-bundle over Y classified by 

$: Y + BGW. Then $A* i s  classified by the composite of a X and 

w:BGV X BGW -c BG(V@ W). Take V and W to be orthogonal sub- 

m spaces of R . Then the diagram 

BGV X BGW a BG(V f W) 

I 
BGX BG BG 

i s  homotopy commutative, where (b i s  the product given by the 

b - space  structure.  Since Be: BG -. BFE i s  an  H-map, we conclude 

that w (5 A *; E )  i s  defined and contains w (5; E )  + w (*; E) if n n n 

wn(c; E)  and w (a; E )  a r e  defined. Clearly w i s  natural  in X, in n n 

the sense  that if f: XI -+ X i s  a map and if w (6; E )  i s  defined, then 
n 

* 
w ( f * ~ ;  E)  i s  defined and contains f w (5; E). similarly,  i f  8: E + E 1  

n 

i s  a morphism of E ring spectra,  then w (S; El)  contains fJ*wn(e; E). m 

Of course,  the E-orientability of 5 implies i t s  El-orientability under 

the much weaker assumption that 0 i s  a morphism of ring spect ra  

in  H A .  
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Since T*BF i s  finite in each degree and X i s  finite 

dimensional,. a(Bj.a) = 0 f o r  some positive integer a .  Therefore 

awn(S; E) C wn(aE; E)  = 0 if wn(S; E )  i s  defined. Thus, if 6 i s  

R-orientable and if H ? ( x ; T ~ - ~ E )  i s  torsion f r ee  for  n >  1 ,  then 

i s  E-orientable. F o r  example, if E = MU o r  if E i s  a ring spect rum 

into which MU maps (such a s  MO, MSO, KU, etc. ) and if H~~~~ (x; 2) 

i s  torsion f r ee  fo r  n2. 1 ,  then 5 i s  E-orientable if it i s  R-orientable. 

When X i s  finite, w(5; E)  will be null homotopic if and only 

if i t s  localizations a t  all pr imes ,  o r  at  and away f rom a se t  T of 

pr imes ,  a r e  null homotopic. Let E and E [ T - ~ ]  denote the localiza- 
T 

tion of E a t  and away f rom T. Suppose that G = 0. Then 45 

admits a symplectic s t ructure ,  hence i s  MSp-orientable. If w 1 5 = 0, 

i t  follows that 5 i s  MSp[l/2]-orientable and thus that 5 i s  MSp- 

orientable if and only if i t  i s  ( M S ~ ) ~ - o r i e n t a b l e .  Since the same  

statement holds fo r  ring spect ra  into which MSp maps and these  in- 

clude most  of the interesting Thom spect ra  MG and KO and XU, 

E-orientability of vector bundles i s  generally only a problem a t  the 

pr ime 2. 

By the definition of w(5; E) and the th i rd  author 's  resul t  [65] 

n 
that (ej)*:-r 0 -c T MSp i s  zero  fo r  n 2. 2, any vector bundle ove r  S , n n 

n 2 3,  i s  E-orientable fo r  any ring spect rum E into which MSp maps. 

Clear ly  applications like this can be multiplied ad  infinitum, 

and our  context gives a conceptually satisfactory and computationally 

efficient framework fo r  the analysis of E-orientability. 

Returning to the stable orientation diagram, we note that if 

E = M happens to be derived f rom an Q *-prefunctor, then, by I, § 2 

and use of the *-functor F M  of Definition 2.4, this diagram i s  

derived by passage to -spaces f rom a commutative diagram of 4 .- 



functors.  Analogously, although we cannot cons t ruc t  a n  j * - p r e f u n c t o r  

l ike  T(G;FM) f o r  a genera l  f.1 - spec t rum E,  we  can  cons t ruc t  a Thom 

p r e s p e c t r u m  T(G: E )  by d i r e c t  appeal  to  Definition 1.1. 

Construct ion 3 . 3 .  Define a k - s p e c t r u m  T(G; E )  a s  follows. 

T(G; E)(v) = B(FE, GV, ~v)/B(FE, GV, *) 

and, f o r  f : V + V 1 ,  T(G;E)(f) i s  i n d u c e d f r o m  B(l ,Gf, tf) .  e : tV4T(G;E)(V) 

i s  induced f r o m  T: tV + B(FE, GV,tV). F o r  V orthogonal to  W, 

u: T(G; E ) ( V ) A ~ W  -+ T(G; E)(V +W) is induced f r o m  the composite  

B(FE, GV, t v )  x t w  = B(FE, GV, t v  x t w )  B(l~i+"'t~(~~, G(v+w), t (v+w)),  

where  i: GV -*. G(v+w) is the  na tura l  inclusion. With these maps ,  

T(G;E) i s  a unital p respec t rum.  F o r  g 6 (j), t h e  m a p s  

t j (g):  T ( G ; E ) ( v ~ )  A . . . A T(G; E)(v.) -. T ( G : E ) ( ~ ( v ~  a+. . .@vj) )  
J 

a r e  induced f r o m  the composites 

The verif icat ion that  these  m a p s  a r e  well-defined and give T(G; E )  

a s t r u c t u r e  of &-prespec t rum i s  tedious, but quite s traightforward.  

Wri te  T(SG; E) f o r  the  b -prespec t rum defined s i m i l a r l y  but with 

G and F E  rep laced  b y  SG and SFE. Write M(G; E )  and M(SG; E )  

f o r  the  %-spec t ra  derived by application of the functor  om. 

BY [36 1, [63 1, and 1115 2 ,  T*M(G; E) gives the cobord ism groups 

of (normally)  E-or ien ted  G-manifolds when G maps  to  0 and of 

E-oriented G-normal spaces  in  general .  In  t h e  following r e m a r k s  we 

r e c o r d  c e r t a i n  m o r p h i s m s  of f(l - spec t ra ,  show t h e  consistency of o u r  

two definitions of M(G;E) when E is derived f r o m  a n  d*-prefunctor ,  

and d iscuss  the  s t r u c t u r e  of M(G;E) when MG maps  to E. 

R e m a r k s  3 . 4  (i). The m a p s  q: B(FE,  GV, tV) -. B(*, GV, tV) induce 

a m o r p h i s m  q: T(G; E )  + TG of - p r e s p e c t r a  and thus  a morphism 

q: M(G; E) -c MG of &-spec t ra .  

(5) If H m a p s  to  G, the  maps  Be: B(GV, HV,  tV) B(FE, H V ,  tV) 

induce a m o r p h i s m  Te: T(H: G) -+ T(H; E )  of 8 - p r e s p e c t r a  and thus 

a m o r p h i s m  Me: M(H; G) M(H; E) of h - s p e c t r a .  

5 x  1 
(iii) The evaluation m a p s  F E  X tV ----+- F(tV, EV) X tV + EV 

induce m a p s  E :  B(FE, GV, tV) EV which in  t u r n  induce a m o r p h i s m  

&:T(G;E) -t v E  of %-prespectra and thus,  by L e m m a  1.6, a 

morphism E: M(G; E )  E of )2j - spec t ra .  

R e m a r k s  3.5. Le t  E = M be derived f r o m  a n  *-prefunctor T. 

Then Mo = 1% P ~ T V  and the  na tura l  m a p s  S 2 v ~ ~  + Mo in- 

duce m a p s  B(FMV, GV, tV) -. B(FM, GV, tV) which in t u r n  induce a 

morphism of b - p r e s p e c t r a  f r o m  T(G:FM) of Construct ion 2.5 and 

L e m m a  2.2 to  T(G; M) of Construct ion 3.3. In view of the l i m i t s  used 

i n  the definition of am, the  induced m a p  of hJ-spectra is a n  identifica- 

tion. The m a p s  E and q on M(G; M) given in R e m a r k s  2.7 and the 

previous r e m a r k s  coincide. 



Remarks 3. 6. Let y: MG - E be a morphism of .kj -spectra. 

Then the following diagram is  commutative: 

We conclude f r o m  Remarks  2.8 that, in  H A  , q: M(G; E) -. MG 

splits off a direct factor MG (via MyoMj 0 &-I) such that 

&:M(q;E) -c E res t r i c t s  on this factor to the given map y. We have 

an analogous result  with G replaced by SG. 

\ 

V. On k0-o r i en ted  bund le  t h e o r i e s  

One purpose of this chapter i s  to lay the foundations for an  analysis of 

Adams' study of the groups J(X) and Sullivan's study of topological bundle 

theory from the point of view of infinite loop space theory. F o r  this purpose, 

i t  i s  essential  to understand which portions of their work depend on the geo- 

metry (and representation theory) and which portions follow by purely formal 

manipulations on the classifying space level. It turns out that substantial 

parts of their results can be obtained by elementary chases of a pair of large  

diagrams focusing on the classifying space B(SF; kO) for  kO-oriented 

spherical fibrations and on BTop. The functors and natural transformations 

represented on finite-dimensional CW-complexes by the spaces and maps in  

these diagrams a r e  easily described, and it i s  simple to interpret the informa- 

tion obtained on the classifying space level in  bundle-theoretic terms.  

F o r  the construction and analysis of both diagrams, we shall  take the 

following data a s  given.  o ore precise formulations of the data will be given 

later. ) 

(1) The Adams operations $r and their values on K0(sn) [i]. 

(2) The validity of the Adams conjecture [2,17,57,73]. 

(3) The splitting of BO when localized a t  an  odd prime [6,53]. 

F o r  the f i r s t  diagram, we shall  also take a s  given 

(4) The Atiyah-Bott-Shapiro kO-orientation of Spin bundles and the 

values of the derived cannibalistic c lasses  p r  on ~ s ~ i n [ i / r ] ( ~ ~ )  

[13,31. 

Note that these results do not depend on Adams' las t  two J(X) papers 

[4 and 51. 



F o r  the second diagram, we shall also take as  given 

(5) The Sullivan k0[1/2]-orientation of STop bundles, the fact that the 

induced map F / ~ o p [ l / 2 ]  + BoQ9[1/2] i s  an equivalence, and the values 

of the derived cannibalistic classes er  on KO[.t/2, l/r](Sn) [71,72]. 

After stabilizing the classification theory for oriented bundles and 

fibrations developed in [47], we explain what we mean by an orientation of a 

stable bundle theory with respect to a cohomology theory in section 1. We 

construct certain general diagrams which relate oriented bundle theories to 

cohomology operations and to larger bundle theories in section 2. 

We construct our first  main diagram in section 3. By chasing its 

localizations, we derive splittings at each prime p of various spaces in the 

diagram, such as B(SF; kO), SF/Spin, and SF, in section 4. These splittings, 

and chases, imply many of Adams' calculations in [5]. The splittings of SF 

and F/O were noted by Sullivan (unpublished), but the recognition of the role 

played by B(SF; kO) and, following from this, the recognition that the analysis 

at  the prime 2 i s  formally identical to that at the odd primes appear to be new. 

In section 5, we prove a version of the main theorem of [4] and so 

recalculate the groups J(X). We also introduce bundle theoretic analogs 

6 and E of the d and e invariants studied by Adams in [5]. 6 gives the 

obstruction to kO-orientability of stable spherical fibrations (and its form 

depends on application of IV53 to the E ring spectrum kO). & i s  defined 
m 

on the group Q(SFi kO)(X) of kO-orientable stable spherical fibrations over 

X and takes values in a certain group JSp%(X). Its restriction to JSpin(X) 

i s  an isomorphism. Therefore JSpin(X) i s  a direct summand of Q(SF; kO)(X); 

the complementary summand is the group of j-oriented stable spherical fibra- 

tions for a certain spectrum j. This analysis should be regarded as  a generali- 

zation of that carried out by Adams [5] for the case when X i s  an i-sphere with 

i >  2. 

In section 6, we construct our second main diagram. It looks just 

like the first  one, and its analysis i s  exactly the same; only the interpretation 

changes. Chases of i t s  localizations give Sullivan's splittings of BTop and 

T O ~ / O  at odd primes. These splittings, and chases, imply the odd primary 

part of Brumfiel's calculations [15]. Away from the prime 2, C2(SF; kO)(X) 

i s  isomorphic to JTop(X), the 6 invariant becomes the obstruction to the 

existence of a Top-structure on a stable spherical fibration, and the 

5 -invariant yields Sullivan's analysis of JTop(X). 

Very little of this theory depends on the use of infinite loop spaces. 

However, the machinery developed in this book shows that a l l  spaces in sight 

a re  infinite loop spaces. This extra structure i s  essential to the  applications. 

Characteristic classes for spherical fibrations, kO-oriented spherical fibra- 

tions, and topological bundles can only be described, at present, in terms of 

homology operations, and these operations a r e  invariants of the infinite loop 

space structure. Thus it  i s  important to know which of the splittings 

described here are  only homotopical and which a r e  as of infinite loop spaces. 

The problem, then, i s  to determine which of the maps displayed in our dia- 

grams are  infinite loop maps and which parts of the diagrams commute on 

the infinite loop space level. In section 7, by combining results of this 

book with recent results of Adams and Priddy [8] and still more recent re-  

sults of Madsen, Snaith, and Tornehave [42] and Ligaard [38], we shall 

nearly complete the infinite loop analysis of our diagrams. 

1. E-orientations of stable bundle theories 

F o r  the reader's convenience, we quickly summarize those notations 

from III to be used in this chapter. We then establish notations for stable 

bundle theories and explain what we mean by an orientation of such a theory 

with respect to a commutative ring spectrum E. 



Let  j: G - F be a morphism of grouplike monoid-valued j*-functors 

(I. 1.8,2.1, and 2.5) and l e t  V and W be orthogonal finite-dimensional sub- 

8 inner product spaces of R  . BGV and B(GV;E) classify GV-bundles and 

E-oriented GV-bundles over  CW-complexes, and o: BGV X BGW + BG(V + W) 

and B(o, $): B(GV; E)  X B(GW; E)  -+ B(G(V + W); E )  induce the (external) fibre- 

wise smash  product and (internal) Whitney sum (III § l ,2 .1 ,  and 2.8). There i s  

an explicit quasi-fibration sequence 

GV F E  -> B(GV; E) BGV , 

the bundle-theoretic interpretation of which i s  given in  m. 2.5. If i: H -r G 

i s  a morphism of grouplike monoid-valued functors, there i s  another J*- 

explicit quasi-fibration sequence 

Bi GV -L GV/W BHV - BGV 

and a map Be: GV/W + B(HV;E), interpreted in  III. 2.6, such that qBe = q . 
The maps T and  q of the two quasi-fibration sequences above a r e  defined in 

the same way in  t e r m s  of the  b a r  construction and have analogous interpretations 

i n  t e r m s  of transformations to and f rom bundles with additional structure,  

hence the duplicative notation. If G E -. E1 i s  a map of ring spectra,  there  

i s  a map BL: B(GV; E)  + B(Gv; E l ) ,  interpreted in  III. 2.9, such that qBt; = q. 

We write SG instead of G when all bundles a r e  given with a canonical inte- 

gra l  orientation, and then all E-orientations a r e  required to be consistent with 

the preassigned integral orientation. 

Write G, G/H, BG, and B(G; E)  for the spaces obtained by passage to 

l imits over V C R ~ .  The f i r s t  t h ree  a r e  infinite loop spaces (by I) and the 

l a s t  i s  a t  leas t  a grouplike H-space ( b y  ULI. 2.8) and i s  an  infinite loop space if 

E is an  E ring spectrum (by IY. 3.1). 
m 
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I .  

Henceforward, r e s t r i c t  attention to connected finite-dimensional CW- 

complexes X a s  base  spaces of GV-bundles. GV and GV' bundles 5 and 

5 over X a r e  said to  be stably equivalent if 5 8 EW i s  equivalent to 5 '8 EW1 

for some W I V  and W'_LV1 such tha t  V t W  = V 8 + W ' .  Write (5)  fo r  the 

stable equivalence c lass  of 6 and call  {g} a stable G-bundle. Let %G(x) 

denote the se t  of stable G-bundles over X. Then EG(x) i s  classified by BG, 

and the image of [Xt, BGV] in [x', BG] depends only on the dimension of V. 

The product on BG induces the external and internal operations A and Q 

on stable G-bundles described in terns  of the fibrewise smash product and 

Whitney s u m b y  ( 5 ) ~  {+I = { 5 ~ + )  and ($3 Q ($1 = I 5  Q $ 1 ,  where 5 

and + a r e  representative GV and GW bundles with V 1 W . 
Let KG(X) denote the Grothendieck group constructed f rom the G(n)- 

bundles for n 2 0 (or, with the additional relations EV = EV' when 

m  
dim V = dim V', f rom the GV-bundles for V C R ). We have identifications 

%G(x) = [x', BG] = [x', BG X {o}] C [x', BG X Z] = KG(X). 

Let JG(X) denote the image of ~ G ( x )  in  &(x) under neglect of 

G-reduction (or, equivalently if G i s  group-valued, passage to fibre homo- 

topy equivalence). Thus 

JG(X) = (B~)*[x+, BG] C [x', BF], Bj: BG + BF. 

Adams writes ?(x) for  JO(X) and J(X) for JO(X) X Z C KE'(X); his 

notation i s  more  logical, but l e s s  convenient since JO(X) X Z has no geometric 

ring structure and is  therefore uninteresting. Of course,  J = j*: n*SO + n*SF 

s 
= n* i s  the classical J-homomorphism, where n: denotes the stable s tems 

(i. e . ,  stable hornotopy groups of spheres).  

E-oriented GV and,GV'-bundles (5 ,  p) and (E', p') over X a r e  said to 

be stably equivalent if (5 8 EW, p (B pow) i s  equivalent to (5'6) EW1,p'87pOW') 

for some W ~ V  and W' IV '  such that V + W = V' t W'.  Write {E,p) for  the 



s tab le  equivalence c l a s s  of (5, p) and c a l l  { 5 ,  p} a n  E-oriented stable 

G-bundlk. L e t  %(G; E)(X) denote the  s e t  of E-oriented stable G-bundles 

o v e r  X. g ( ~ ;  E)(x) i s  classif ied by B (G; E) ,  the  image of [x', B(GV; E)] 

i n  [x', B(G: E)] depends only on the dimension of V, and the  product on  

B(G; E )  induces t h e  ex te rna l  and in te rna l  operat ions A and B) on E-or ien ted  

stable G-bundles given by the f ibrewise s m a s h  product and Whitney sum. 

A Grothendieck group K(G; E)(X) can  be defined, but i s  uninteresting. 

Le t  Q(G; E)(X) denote the image of Z(G; E)(X) in  ~ G ( x )  under neglect  of 

orientation. Thus 

Q(G,E)(X) = q*[xf, B(G; E)]  C [x', BG] , q: B(G; E )  -c BG . 

Definition 1.1. An E-orientat ion of G i s  an H-map g: BG -c B(G; E )  

such  that  qg i s  homotopic to the identity map. 

Given g, i t s  composite  with Bj: B(G; E )  + B (F; E )  will again be denoted 

by g and the  following d iagram will be homotopy commutative: 

In  par t icu la r ,  JG(X) C Q(F; E)(X) if G admi ts  a n  E-orientation. 

The proof that  B(GV; E )  c lass i f ies  E-or ien ted  GV-bundles gives an 

explicit un iversa l  E-or ien ted  GV-bundle (T, 8); in  a n  evident sense ,  the 

(T, 0)  a r e  compatible a s  V var ies .  Let  ( 5  } e ~ G X  be classif ied by 

a : X  -c BG. If ga f a c t o r s  (up to homotopy) through B(GV; E),  a s  necessar i ly  

holds f o r  s o m e  V by the finite dimensionality of X, then the element 

{(ga)*(n), (gn)*(0)] of E(G; E)(x) i s  independent of the  choice of V and pro-  

jects  to {e } i n  ZG(X). If we wr i te  p(g) for  a l l  orientat ions s o  determined 

by g, then the requi rement  that  g be an H-map ensures  the validity of the 

product formula  

( 5 ,  ~ ( g ) )  A dg)}  (5 A $# P(B) A ~ ( g ) }  = ( 5  A $. b'(g)} 

in 2 ( ~ ;  E)(X X Y )  f o r  a l l  (5) e ~ G ( x )  and ($1 E ZG(Y). 

We a r e  par t icu la r ly  in te res ted  in  the fine s t ruc ture  p r e s e r v e d  by 

infinite loop maps ,  by which we understand m a p s  i n  HT which a r e  equiva- 

lent  to the zeroth m a p s  of morphisms  in H A  ( s e e  I I , 9 2 ) .  The r e a d e r  who 

does not s h a r e  o u r  i n t e r e s t  m a y  skip to  t h e  next section. The discussion 

t h e r e  will proceed on two levels ,  one based on E-orientat ions and the o ther  

based  on the following notion. 

Definition l .  2. Le t  E be  an E r ing spectrum. An E-orientat ion 
m 

g : BG -t B(G; E)  i s  sa id  to be perfect  if g i s  a n  infinite loop m a p  and if 

qg = 1 a s  infinite loop maps.  

As  wil l  be d i scussed  in  § 7, t h e r e  now exis t  homotopical proofs in  

s e v e r a l  impor tan t  c a s e s  of the somewhat weaker asser t ion  that  the  composite  

of g and the na tura l  m a p  B(G; E) + B(F; E )  i s  a n  infinite loop m a p  whose com-  

posite with q: B ( F ; E )  e B F  i s  equal  a s  an infinite loop m a p  to Bj: BG + BF.  

An e a s y  Bar ra t t -Puppe  sequence argument in 8 (justified by [-La, I]) shows 

that G admi ts  a perfect  E-orientat ion if and only if e: G + F E  i s  the t r iv ia l  

infinite loop map.  

w 
When a n  E-orientat ion g of G i s  the l imi t  o v e r  V C R of m a p s  

gV: BGV -+ B(GV; E), the gV induce maps  TGV + T(GV; E )  A EV. In 

pract ice,  these maps  define a morphism of prespec t ra  TG - vE and t h e r e -  

fore  induce a morphism y: MG -.. E of spectra.  On the coordinatized leve l ,  

n 
appropriate compatibility of the gR , which destabil izes the statement that  

g i s  a n  H-map, will ensure  that  y i s  a morphism of r ing s p e c t r a  i n  

Whitehead's sense  and therefore ,  a s  explained in  and a f t e r  11.3.4, that  y i s  a 

morphism of (weak) r ing  s p e c t r a  in HA.  The verif icat ion that  y i s  



actually a morphism of E ring spectra l ies very much deeper and has not 
m 

yet been ca r r i ed  out in  the interesting cases.  

Conversely, let  y : MG - E be a morphism of ring spectra and consider 

the following homotopy commutative diagram: 

B GV BGV 

Here j: GV\GV -+ FMGV is  defined in IV. 2.6. E i s  a homotopy equiva- 

- 1 
lence (if GV E W ), and we define gV = By* Bjo E for some chosen homo- 

topy inverse & -'. Comparison of IV. 2.6 with the proof of [47, 11.11 

shows that gV classifies the E-oriented GV-bundle (T, p), where 

rr:DGV BGV i s  the universal GV-bundle and I( i s  i t s  E-orientation induced 

via y f rom the MG-orientation L : TGV -+ MGV. The gV define an 

E-orientation g of G by passage to l imits over V, and IV. 3 . 6  (with 

k - s t ruc tu re  ignored) shows how to recover y f rom the diagram of Thom 

spectra  over the displayed diagram of classifying spaces. By IV. 2.6, 

e:G + F E  factors through G\G. Since G \ G  i s  contractible through maps 

of X -spaces,  by [45,9.9 and 12.21, e i s  the trivial  infinite loop map and 

g i s  a perfect E-orientation of G when y i s  a morphism of &-spectra.  

2. Cannibalistic c lasses  and the comparison diagram 

We construct some key commutative diagrams and record a few 

(presumably well-known) technical lemmas here.  

We write @ for  the product on a l l  (multiplicative) H-spaces in sight, 

and all  H- spaces in  sight will have a homotopy inverse map X. Of course,  

@ and x induce addition and the additive inverse on homotopy groups. 

I 

Since the stable category i s  additive, @ and x on infinite loop spaces 

a r e  infinite loop maps. F o r  an H-space Y and two maps f, g: X + Y ,  

define f/g = @(f X xg)h .  (We shall write f - g instead of f /g when we 

choose to think of @ a s  additive. ) f/g i s  an H-map if f and g a r e  H-maps 

and Y i s  homotopy commutative (as  will always be the case).  If X and Y 

a r e  infinite loop spaces and f and g a r e  infinite loop maps, then f/g i s  an  

infinite loop map; in particular,  1/1 = 6(1 XX) A i s  the trivial  infinite loop map. 

We agree to abbreviate weak homotopy equivalence to equivalence. 

By an equivalence of infinite loop spaces,  we understand the zeroth map of a 

weak homotopy equivalence of spectra. The following result  i s  an immediate 

consequence of the quasifibration sequence 

Lemma 2.1. Let g be an E-orientation of G. Then the composite 

FE x BG .-L%L- B(G; E) x B(G: E) 2 B(G: E) 

i s  an equivalence of H-spaces. If g i s  perfect, then $(TX g) i s  an equivalence 

of infinite loop spaces. 

Our main concern in this section i s  with the comparison of different 

E-orientations of the same underlying stable G-bundle. Thus le t  (6, I() 

and 15,  v )  be E-oriented stable G-bundles over X classified by and F. 
- 

Since qE l! q p  :X -+ BG and since q: B(G;E) + BG commutes up to homo- 

topywith @ and X, 

q (Z /F)  = qe (.uxXSj)n - g(qaxXqSj)h r @ ( ~ X X ) A ~ F  = *. 

Since T : F E  -+ B(G; E)  i s  canonically equivalent to the fibre of q, this null 

homotopy determines a map 6 :X + FE such that 76 l! E / F .  Clearly 

O t  
@ ( ~ 6  X a) A - z .  Since 76 classifies { E ~ ,  6 )  , where the unit 6 E E (X ) 

i s  regarded as  an orientation of the trivial  G(0)-bundle cO:X X SO -+ X (with 

t 
Thom complex X ), and since, by the explicit definition of 6 9 v in  III. 1.5, 



{E0,6) @ {5,v] = { t o @  5 , 6  @ v) = { 5 , 6 v  v), 

we conclude that  ( 5 , ~ )  = { 5 , 6 y v ) .  

In o u r  applications of th i s  difference construct ion,  we sha l l  be given a 

classifying space  Y f o r  some c l a s s  of bundles with additional s t r u c t u r e  and 

we sha l l  be  given m a p s  a, b: Y -+ B(G; E )  such  that  q a  r qb.  The classifying 

m a p s  Z' and above wil l  be a y  and b y  f o r  a classifying m a p  y :X -+ Y 

and  6 wi l l  b e  d y  for  a m a p  d: Y -- F E  such  tha t  ~d " a/b. Note that  

the null  homotopy q(a/b) " * , hence a l so  d a n d  the homotopy ~d e a / b ,  

a r e  explicitly and canonically determined by the homotopies 

If a and b a r e  H-maps,  then s o  i s  d. If E i s  a n  E ring spec t rum,  
w 

a and b a r e  infinite loop m a p s ,  and qa = qb a s  infinite loop m a p s ,  then 

d i s  a n  infinite loop m a p  and ~d = a/b a s  infinite loop maps.  

The theory  of cannibalis t ic  c l a s s e s  f i t s  nicely into this  framework.  

Le t  + : E -. E be  a m a p  of r ing spectra.  Then qB+ = q, B+ B(G; E)  -, B(G: E),  

and t h e r e  resu l t s  a canonical H-map c(+): B(G; E )  -+ F E  such  that  

TC(+) e B+/l; if B+ i s  a n  infinite loop map, then s o  i s  c(+). We c a l l  c(+) 

the  universal  cannibalis t ic  c l a s s  determined by +. If {g. p) i s  a n  E-oriented 

stable G-bundle o v e r  X classif ied b y  c ,  wri te  

Define + on Z(G; E)(X) by +{$,p] = {5,+p) and note that +{5, i s  

classif ied by B+ i?. The discussion above shows that 

+IS, 1.1 = (5,  ~ ( $ 1  u ~1 E z ( ~ :  E)(X). 

Of course ,  given a n  E-orientat ion g of G, we can  define cannibalis t ic  

c l a s s e s  p = p{$] f o r  s table G-bundles 15) by p{e] = c(+){e, p(g)]. The 

fact  that  t h e s e  c l a s s e s  a r e  represen ted  by the composite  c(+)g on  the uni- 

versa1  level  will play a n  essen t ia l  ro le  in  o u r  theory. We note next that  +/1 

also fac tors  through c(+). 

Proposit ion 2.2. The following d iagram i s  homotopy commutative: 

If E i s  a n  E w r ing s p e c t r u m  and + on F E  and B+ on  B(G; E )  a r e  infinite 

loop m a p s ,  then t h e  d iagram de te rmines  a corresponding d iagram on  the  leve l  

of spectra.  

Proof.  B+/l c: T O  c(+) by the  definition of c(+), and ( B + / ~ ) T  r ~ ( + / l )  

s ince  B+o T = T O  +. By construct ion,  c ( + )  is na tura l  in  G. When G = e i s  

t r ivial ,  T = 1 and + = B+ on  F E  = B(e;E),  hence +/l r c(+). Now 

c(+)o T r $/1 follows by an obvious d iagram chase.  The l a s t  s tatement holds 

b y  the genera l  observations above. 

The main  i n t e r e s t  often l i e s  not  i n  a n  E-oriented bundle theory  but i n  

i t s  relat ionship to a l a r g e r  bundle theory.  Thus a s s u m e  given morphisms  

H G F of monoid-valued *-functors and a s s u m e  given a n  

E-orientat ion g of H. We a l s o  wri te  g for  i t s  composite  with 

Bi: B(H; E )  -c B(G; E). T h e r e  a r e  now two na tura l  E-orientat ions of G-tr ivial ized 

stable H-bundles in  sight ,  namely  those  given b y  the maps  

G/H BH & B(H; E) and G/H& B(H; E). 

The i r  quotient H-map g q / ~ e  f a c t o r s  a s  ~ f ,  where  f:G/H -+ F E  i s  an 

H-map by v i r tue  of L e m m a  2.1 and i s  a n  infinite loop m a p  if g i s  perfect .  

With these notations, we have the  following result .  

Proposit ion 2.3. The f i r s t  t h r e e  s q u a r e s  of the following "comparison 

diagram" a r e  homotopy commutative: 



If g i s  perfect, the diagram extends infinitely to the right and determines a 

corresponding diagram on the level of spectra. 

Proof. By 111.2.6 and the fact that q~ = *, we have - 

where the f i r s t  map T takes F E  to B(H;E) and i s  thus the  injection of a 

factor by Lemma 2.1. Therefore f~ -- ex. We have the commutative 

diagram 

in which G/G i s  contractible through infinite loop maps. Thus BiBe i s  the 

trivial  infinite loop map and (since Bi commutes with $ and X)  we have 

~f = ( B i ) ~ f  = (Bi) $(gq X xBe) A (Bi)gq = gq . 
The third square homotopy commutes by the definition of an orientation. 

The reader  familiar with Barratt-Puppe sequences will wonder why 

the sign given by x appears. If one writes down explicit equivalences of 

the two rows with honest fibration sequences, starting f rom BG and work- 

ing left, one produces two homotopy equivalences G - QBG. These turn  out 

to differ by X. Of course,  given g, Barratt-Puppe sequence arguments 

(e.g. [ 4 8 ,  1521 ) produce a map f, not uniquely determined, such that the 

two left squares homotopy commute. Conversely, given Bf such that the 

right square homotopy commutes, there exists g such that the r e s t  of the 

diagram homotopy commutes. These statements remain valid with H and G 

replaced by HV and GV, V finite dimensional, in which case  the explicit 

construction of f fails for  lack of an H-space structure on B(GV; E). 

We shall need some observations concerning localimations of the com- 

parison diagram at  a se t  of pr imes T. We res t r ic t  to the integrally oriented 

case in order  to deal with connected spaces. 

The localization ET i s  again a commutative ring spectrum, and 

SF(ET) e (SFE)T. I do not know if localizations of E a3 ring spectra  a r e  

Em ring spectra,  but any infinite loop space information derived f rom the 

Ew structure i s  preserved under localization. We write X genericall) 

for localization a t  T. 

Lemma 2.4. F o r  any G, the following composite i s  a localization 

1 
When G = F ,  BSF r (BSF)T X BSF[T- ] and the map 

i s  an equivalence (of infinite loop spaces if E .is an  E OD ring spectrum). 

Proof. In  view of the following homotopy commutative diagram, this - 
i s  immediate f rom the fact that localization preserves  fibrations of connected 

9 Be 
SG e SFE 7 B(SG; E)  - BSG BSFE 

SG - 
I' Be 

BSG - B(SG; ET) - I X  
BSFET 

I X  
SGT - SFET - I I 

B(SG; ET)T ----c BSGT - BSFET 



When G = F i n  the compar i son  d iagram (in which c a s e  we rename 

H = G), f can  somet imes  be intr insical ly c h a r a c t e r i z e d  i n  t e r m s  of g. 

L e m m a  2.5. Let  g be  a n  ET-orientat ion of G and a s s u m e  that  the 

following two conditions hold. 

(i) H,(SF/SG), H*(SFE), and  r*(SFE)  have no T-torsion.  

(ii) H*(SF/SG) and H,(SFE; Q) a r e  of f ini te  type (over Z and Q, respectively). 

Then f: sF/SG + S F E T  i s  the unique H-map such  that  the second square  of the 

compar i son  d iagram homotopy commutes.  

Proof. Given another such  H-map f l , f / f '  f a c t o r s  through S F  and 

therefore  induces the zero  map on  homotopy. Thus  f, = f; on  homotopy. 

As  pointed out to  m e  by F r a n k  Adams,  the  following pa i r  of l e m m a s  complete 

the  proof. I 

L e m m a  2.6. Le t  X and Y be  connected homotopy associat ive 

H-spaces,  with H*(X; Q) of finite type. If two H-maps X - Y induce 

the s a m e  homomorphism T*X@ Q-+ ~c*Y 8 Q, then they induce the s a m e  

homomorphism H,(X; Q) + H,(Y; Q). 

Proof.  By Milnor and Moore [ 5 0 ,  Appendix], the  Hurewicz homo- 

m o r p h i s m  h: T+X + H*X induces a monomorphism upon tensoring with Q, 

and the image  of t h i s  monomorphism genera tes  H*(X; Q) a s  a n  algebra.  

L e m m a  2.7. L e t  X be  a connnected CW-complex and l e t  Y be  a 

connected homotopy associat ive T-local H-space. Assume that  the follow- 

ing  two conditions hold. 

(i) H,X, H*Y, and T*Y have no T-torsion.  

(ii) H*X and H,(Y; Q) a r e  of f ini te  type (over Z and Q, respectively). 

Then two m a p s  f ,  f l :  X + Y a r e  homotopic if they induce the s a m e  homo- 

m o r p h i s m  H,(X; Q) -+ H,(Y; Q) . 

Proof.  The hypotheses imply that  f and f '  induce the s a m e  homo- - 
morphism on  in tegra l  hom ology. Suppose that  f and  f 1  a r e  homotopic 

on  the (n-l)-skeleton of X. If k e H ~ ( x ;  T,Y) i s  the  obstruct ion to  the 

extension of the res t r ic t ion  to the (n-2)-skeleton of a given homotopy, then 

h < k , x >  = f*(x) - f;(x) = 0 f o r  x E H*X, 

where < , > : H ~ ( x ;  n n y )  @ H ~ X  + vnY i s  the Kronecker product (the f i r s t  

equality holding by explicit chain level  calculat ion f r o m  the definitions). 

Since h: T*Y + H*Y i s  a monomorphism, < k, x >  = 0.  Since 

E x ~ ( H ~ - ~ X ,  vnY) = 0 (because H*X is of f ini te  type, H*X and T*Y have no 

T-torsion,  and T*Y i s  a ZT-module), k = 0 by the un iversa l  coefficient 

theorem. (See VIII. 1.1 f o r  a s i m p l e r  proof when Y = RZ.) 

The  following analog of L e m m a  2.7 was  also pointed out to m e  by 

F r a n k  Adams. 

L e m m a  2.8. L e t  X and Y be spaces  of the  homotopy type of BSOT , 

where  T is any  s e t  of p r imes .  Then  two maps  f , f l :X -f Y a r e  homotopic 

if they induce the s a m e  homomorphism H*(X; Q) * H*(Y; Q). 

Proof.  Let  A = l i m  BT(n), w h e r e  T(n) i s  a maximal  to rus  i n  SO(n), 

and l e t  i: A -t BSO be  the  evident inclusion. Consider the d iagram 

** - 
Clear ly  i , and ch o n  KU(A), a r e  monomorphisms.  By Atiyah and Segal  

[14] and a n  i n v e r s e  l imi t  argument,  i* i s  a monomorphism. Thus c h  on  

N 

KU(BS0) i s  a monomorphism. By Anderson [9, p. 381 o r  [14], c i s  a l so  a 

monomorphism (in fac t  a n  isomorphism).  These  s ta tements  r e m a i n  t r u e  



after localization of BSO and the representing spaces BO and BU at T. 

It follows that f and f '  induce the same map of localized real K-theory and 

* * 
therefore, since BO fc BSO X B0(1), that f = (f') : [Y, Y] -+. [X, Y]. 

In VIII, we shall use the fact that this result remains valid, by the same 

proof, for completions at T. The following observation explains why rational 

information determines the behavior with respect to self-maps of the 

2-torsion in T*BSO 
T ' 

Lemma 2.9. Let f: BSOT - BSOT be a map, where 2 s T. Let 

a. E ZT be such that f*(x) = a.x for all  x 6 a BSO G ZT . 
J J 4j T 

(i) If 0 # y E a2BSOT, then f * ( ~ )  = a y . 
1 

(ii) If 0 # y E s ~ ~ + ~ B S O ~ ,  j 2 1 and k = 1 or  k = 2, then f*(y) = a y . 
zj 

In both statements, the coefficients a r e  understood to be reduced mod 2. 

Proof. F o r  (i), let p 6 H (BSO; Z2) be the unique non-zero primi- 
n n 

tive element and recall that 

1 2 1 
Sq*p3=p2 ' S Q * P ~ = P ~  2 and S s  p 5 = p 4 .  

Clearly f*(y) = 0 if and only i f  f*(pZ) = 0, and the displayed equations show 

that f*(p2) = 0 if  and only i f  f*(p4) = 0. By an obvious argument with the 

cover BSpin * BSpinT of a, f (p ) = 0 if and only if a E 0 mod 2. F o r  
T * 4 1 

(ii), simply recall that if x: s8j  -+ BSOT generates ir BSOT, then y = xo q 
8 j  

2 
o r  y = x 0 q , where tlk: s8jtk + s8j  i s  the non-trivial map. 

Finally, the following result, which I learned from Anderson and Snaith, 

implies that Lemma 2.8 remains true when X t=i BSpin and Y BSO 
T T ' 

Lemma 2.10. The natural map T: BSpin 4 BSO induces isomorphisms 

on real and complex K-theory. Therefore T*: [BSO, BSO] + [BSpin, BSO] i s  

an isomorphism. 

Proof. There are  no phantom maps here (since K U - ~ ( B G )  = 0 and - 
KO-~(BG) is  finite for a compact Lie group G), and it suffices to consider 

the inverse systems of completed (real and complex) representation rings 

of Spin(n) and SO(n). We may a s  well consider only odd n, where 

RO(So(2m + 1)) = R(SO(Zm+l)) = P{kl, . . . , km) 

maps surjectively to R(SO(2m-1)) and injectively to 

RO(Spin(2m+l)) C R(~pin(2mi-1)) = P{kl, . . . ,Am. Am} . 

Since A m restricts to 2A m-1 in R(Spin(2m-1)) by a check of characters, 

the exceptional spinor representations make no contribution to the inverse 

limit. 

3. The kO-orientation of Spin and the J-theory diagram 

The main examples involve K-theory. I do not know if there exist 

* * 
Em ring spectra which represent KO and KU , but explicit E w ring 

spectra kO and kU which represent the associated connective theories 

a re  constructed in VII. Write BU €3- - SFkU and BO 63 = SFkO; informally, 

these infinite loop spaces a r e  the 1-components of BUX Z and BOX Z. 

Lemma 3.1. F o r  G = 0 and G = U, BG* i s  equivalent a s  an 

infinite loop space to BG(1) X BSG (8. 

Proof. BO(1) = K(ZZ, 1) and BU(I) = K(Z, 2) admit unique infinite - 
loop space structures, the natural map B% + BG(1) obtained by killing 

n l  o r  T 2 (i. e. ,,w o r  c ) i s  automatically an infinite loop map, and we, 1 1  

define BSG @ and T :  BSGQ9-t BC&, , a s  an infinite loop space and map, to be 

its fibre. By VI. 4.5, the natural inclusion q : B G(l) BG @ (which classifies 

the canonical line bundle) i s  an infinite loop map. The composite 



BG(I) x BSG B%X B%-L- B% @- 
i s  the d e s i r e d  equivalence. 

Atiyah, Bott, and Shapiro [13] have constructed a kO-orientation of Spin 

and a kU-orientation of spinc. Thus, if Spin m a p s  to G, we have well-defined 

H-maps 
g : BSpin -. B(G; kO) and f:  pin -. BO 

€3 * 

The f i b r e  of the  quasi-fibration B(S0, Spin, *) -c B(S0, SO, *) is prec ise ly  

BZ2 = ~ 0 ( 1 ) ,  and th i s  gives an explicit equivalence i: BO(1) -- SO/Spin. 

Similarly,  if spinC m a p s  to  G, we have H-maps 

g:  pin' - B(G; kO) and f:  pin' - BO 
@ '  

and we have a n  explicit equivilence i: BU(1) + sO/spinc 

Propos i t ion  3.2. The following composites a r e  equivalences: 

BSO X BSpin B(SO; k 0 )  X B(S0; kO) A B(SO; kO) €3 
and 

BSU X B S ~ ~ ~ ~ = B ( S O ;  k u )  X B(S0; kU) --?-I- B(S0; kU). 
€3 

Proof.  The resu l t  i s  proven by e a s y  chases  of the relevant  compar i -  

son  d iagram of Proposit ion 2.3. In the r e a l  case ,  the sal ient  fac t s  a r e  that  

BSpin i s  equivalent to the  f ib re  of w2: BSO - K(Z2, 2) and that  

e*: T ~ S O  -+ T~BO@ i s  a n  i somorphism (because the obstruct ion w ( 6  ; k 0 )  
2 

of I V ,  5 3 c a n  be  non-zero o r  by d i rec t  calculation o n  mod 2 homology). In 

the  complex case ,  the sal ient  fac t s  a r e  that   pin' i s  equivalent to the 

f ib re  of w3: BSO -. K(Z, 3 )  o r  (equivalently by a compar i son  of f ibrat ions)  

to  the  f ib re  of w2@ 1 + 1 €3 L : BSO X K(Z,2) + K(Z2, 2) and that  T  pin' = Z. 
2 

Coro l la ry  3.3; The composite  fi: BO(1) + sO/spin Bog i s  homo- 

topic to thena tura l  inclusion q : BO(1) - BO 
63. 

Proof.  Cons ider  the following d iagram,  where  I, : BO(1) - SO is any  

map which i s  non-tr ivial  on T 

T 5 f~ i and ex I, =I because  both composites induce i somorphisms  on  T 1 

and because the component of e in  BSO@ i s  null  homotopic by the  splitting 

of B(S0; kO). f-r = e x  b y  the  compar i son  diagram. 

The argument fai ls  i n  the ( l e s s  interest ing) complex case ,  and I have 

not verif ied whether o r  not f i  rz q i n  that  case.  

We t u r n  to  the  study of kO-oriented spher ica l  fibrations. The r e s t  of 

the sect ion will be concerned with the construct ion and analysis  of the 

"J-theory diagram",  which i s  obtained by superimposing d iagrams involving 

cannibalistic c l a s s e s  and the Adams conjecture on an elaborat ion of the 

comparison d iagram for  

g: BSpin - B(SF; kO) and f: SF/Spin ' ""€3 

Of course ,  th i s  m a p  f r e s t r i c t s  on SO/Spin to that  just  discussed,  and we 

have the  following observation.  

L e m m a  3.4. The na tura l  map ~ F / ~ p i n  - F/o and the  composite  of 

f and w :Bog+ BO(1) a r e  the  components of a n  equivalence 1 

s F / ~ p i n  -+ F/O X BO(1) of infinite loop spaces.  

Define 0 = R B S  and (SF;kO) = QB(SF;kO). By abuse,  wr i te  G 
@ 

and QBG interchangeably when G = Spin, SF,  etc. F o r  a m a p  8: X + Y, 

wr i te  T and L generical ly f o r  the  projection El3 - X f r o m  the (homotopy 

theoret ic)  f ib re  and f o r  the  inclusion RY -r F 8 .  Define ( ~ F : k ~ ) / ~ p i n  to b e  

the f ib re  of f (which i s  equivalent to the  f ib re  of g). This  space  c lass i f ies  

s table Spin-bundles with tr ivial izat ions a s  kO-oriented stable spher ica l  

f ibrat ions.  Jus t  a s  if Qg: Spin - (SF; kO) w e r e  derived f r o m  a morphism 
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of monoid-valued $*-functors, write 

q: (SF; kO)/Spin -. BSpin and T: (SF; kO) -. (SF; kO)/Spin 

for q a  and for  a map T (obtained by Barratt-Puppe sequence arguments) 

such that -irr a & q  and T S ~ T  a L in  the diagram on the following page. 

With these notations, the solid arrow portion of this diagram exists and i s  

homotopy commutative by Proposition 2.3. 

At the right of the diagram, BSp% i s  defined (as an infinite loop 

space) to be the fibre of w2: BSO@+ K(Z2, 2). 

We claim that, with dotted arrows inserted, this J-theory diagram 

exists and i s  homotopy commutative when r, 2 and all  spaces in  sight 

a r e  localized away from r .  To 'see  this, f i r s t  recall  the following calcula- 

tions of Adams [l ,5.1 and 5.2 1. (See also Lemma 2.9. ) 

Theorem 3 .  5. i/lr i s  a natural ring homomorphism on, KO(X) such 

that Jlr 5 = e r  on line bundles 5. Let x 6 %O(sl) = -ir.BO, i > 0. If i = 4j, 

' Jlrx = r2jx; if i e  1 o r  2 mod 8 and r i s  odd, i/lrx = x. 

It follows by 11.3.15 that i/lr determines a morphism of ring spectra 

k ~ [ l / r ]  -. k ~ [ l / r ]  and thus that c(+l): B(SF; kO) -+ BO i s  defined away 
@ 

f rom r. Since e*: -iriSF -+ a.BO@ i s  an  isomorphism for  i = 1 (by Corollary 

3.3) and for i = 2 (by translation f rom R ~ S O  -+ BO, where the -iris a r e  

generated by the smash and tensor  product squares of the generators of the 

a 's), B(SF; LO) i s  2-connected. Therefore c ( + ~ )  lifts uniquely to a map, 
1 

sti l l  denoted c(i/lr), into BSpin@. B C ~  i s  defined to be the fibre of this map, 

and Cr  i s  defined to be SZBC'. F o r  r even, BO a BSO BSpin localized 

away from r .  F o r  r odd, Theorem 3.5 implies that J l r / l r  Boa + Boa i s  

trivial  on BO(1) (because the square of a line bundle is trivial)  and annihi- 

lates nZBSO The splitting SO a Spin X RpCO determined by the fibration 
Q9' 

Spin -) SO + sO/Spin and any map 5: Rprn -- SO which i s  non-trivial on n 
1 



shows that q:  SO/Spin + BSpin i s  null homotopic. Therefore +r-l: BO BO 

lifts uniquely to a map +r-l: BO + BSpin. Similarly, gr/l :  BO B08 lifts 

uniquely to  a map br/l: B0@+ BSpin , and +r/l c ( + ~ )  T by Proposition 2.2. 8 
Define pr = c ( + ~ ) ~ ;  thus p r  i s  the Adams-Bott cannibalistic class.  

Recall the following calculations of Adams [3, p. 1661. (See also Lemma 2.9. ) 

Theorem 3. 6. Let x E -iri~Spin[l/r], i > 0. If i = 4j, 

prx = 1 + i ( r 2 j - 1 ) a  x :if i I  1 o r  2 mod 8, prx = 1 fo r  rss f 1 mod 8 
2 2j 

and prx = 1 + x fo r  r I _f 3 mod 8. 

Here  x -c 1 S x  denotes the translation isomorphism fro& ~ * B S p i n  to 

.rr*BSpi% (and similarly fo r  BO and BSO below). 
- 

The numbers a = ( - l ) j t 1 ~ j / 2 j  e z [ l / r ]  a r e  analyzed in 13, $21. 
2j 

The composite BO A  spin -%-+ BSF i s  null homotopic away 

f rom r ,  by Quillen [58], Sullivan [73], o r  Becker and Gottlieb [17], since 

this statement i s  just a reformulation of the Adams conjecture. Therefore 

there  exists yr: BO  pin such that qyrr +I-l. yr i s  not uniquely 

determined. In particular,  we can and do insist  that i t s  restrict ion to the 

translate of BO(1) be the tr ivial  map when r I f 1 mod 8 and the non-trivial 

map to SO/Spin C S ~ / S p i n  when r I f 3 mod 8. 

r r 
Define u = fy : BO + BO By Remarks 3.7 below, the fibres of d 

Q9 ' 

and of pr: BSpin -t B S p i b  a r e  equivalent; by abuse, we denote both by M~ . 
Define! J~ and J' to be the fibres of +I-l: BO + BSpin and of 

8 
4r/l : B08 -t BSpin8. Standard Barratt-Puppe sequence arguments then give 

r r r  r r  r r  
maps a! , $ , 6 , and such that (1 ,a  , y ), (1, $ , y ), (QC(+~) ,  1 )  and 

(GC(+'), Er, 1 )  a r e  maps of fibrations. This completes the construction of 

the diagram. 

Remarks 3.7 . Localize all  spaces i n  sight at  any se t  of primes T and con- 

s ider  the following diagram, where e i s  an H-map and e i s  any map: 

r 
BSO + - : BSO 

'1 ,r/l lo 
Bs0,- BSO 

Q9 

If 6 = 0, the diagram i s  homotopy commutative by Lemma 2.8 (or, i f  

2 / T, Lemma 2.7) since, regardless of what 0 does, ~ ( + ~ - l )  and 

9 (+r/l)f3 induce the same map on rational homology by Lemma 2.6 and 

Theorem 3.5. In particular, away f rom s ,  ~ ' ( + ~ - l )  r (t/~~/l)p'. Con- 

* versely, if the diagram i s  homotopy commutative, then e* = e* on 

q 
rational homology ( by the known behavior of +r-l and +r/l on 

rational homology) and thus LL. 9 by the cited lemmas. In particular, 
4.a - 

away f rom 2 and r ,  the maps ur and pr of the 3-theory diagram a r e  

9 
homotopic. Away f rom r,  Adams [3] has  constructed an H-map 

* 
pr: BSO LL. BSO@ which has the cannibalistic c lass  pr a s  2-connective 

* r o v e r ,  and the existence of such a map also follows directly f rom 

@ Lemma 2.10. Clearly Adams' map and the simply connected cover of ur in- 

td duce the samd homomorphism on rational homology and a r e  thus homotopic. 

! F o r  clarity, we shall  retain the now duplicative notations ur and 
d r .  

p r ,  since what i s  most important about u i s  not i t s  homotopy c lass  but 

9 
i ts  location in the 3-theory diagram. That diagram and the remarks  above 

give the following result ,  which should be compared with Proposition 2. 2. ' Proposition 3.8. Away f rom r,  the following diagram i s  homotopy commutative: 

BSpin 
g 

'? B (SF ; kO) 



Corollary 3.9. Let x E T T ~ B o [ ~ / ~ ] ~  i > 0. If i = 4j, 

arx = 1 + L ( r 2 j  - 1)a ..x ; if i I 1 o r  2 mod 8, urx = 1 for r e + 1 mod 8 2 23 

and d x  = 1 + x for r E + 3 mod 8. 

Proof. F o r  i 2 4, this is immediate from Theorem 3.6. F o r  i = 2 - .  
i t  follows from Lemma 2.9. F o r  i = 1, it.holds by our choice of yr and 

Corollary 3 . 3 .  

4. Local analysis of the J-theory diagram 

We shall analyze the localization of the J-theory diagram at each 

prime p, with r chosen so as  to yield maximum information. Let r (2)  = 3. 

F o r  p odd, let r(p) be any chosen prime power the image of which in the 

ring Z generates its group of units. This choice of r(p) i s  motivated 
P 

by the following facts [3, 5 21. Let Z denote the localization of the integers 
(PI 

at  p. 

Lemma 4.1. Let r = r(p). In Z , ( r 2 - 1  i s a u n i t i f  p = 2  
2j 

o r  if p > 2 and 2j 0 mod (p-1), while rZj-1 i s  a unit if p > 2 and 

Zj 0 mod (p-1). 

Throughout this section, unless otherwise specified, all  spaces in 

sight a r e  assumed to be localized at  p and r denotes r(p). We write 

BO, BSO, and BSpin interchangeably when p i s  odd. Recall from Adams 

[6, Lecture 41 o r  Peterson [53] that, at odd p, BO splits as  an infinite loop 

space as  W X wL , where niW = 0 unless i = 2j(p-1) when r.W = Z 
1 (PI' 

The letter W i s  chosen as  a reminder that W carr ies  the Wu classes 

* 
w. = Q - l ~ j Q ( l )  in  H (BO; Z ), where cP i s  the canonical mod p Thom 

J P 

isomorphism. Write v and vL for splitting maps from W and W' to 

I BO and write w and o1 for projections from BO to W and. W . 

Adams and Priddy [8], using Adams spectral sequence techniques, 

have recently proven thefollowing characterization of BSO as an infinite 

loop space. 

Theorem 4. 2. There exists one and, up to isomorphism in the stable 

category, only one connective spectrum the zeroth space of which is  equivalent 

to the localization (or completion) of BSO (or of BSU) at  any given prime. 

F o r  p odd, we again write v, vl, w, and w L  for infinite loop maps 

I 
which split X as W X W- for any (p-locd) infinite loop space X equivalent 

to BSO. (Examples include BO and F / ~ o p .  ) The requisite splitting 63 
exists by the theorem and the splitting of BSO. We shall need the following 

immediate consequence of Lemmas 2.6 and 2.7. 

Lemma 4.3. Let p > 2 and let 8:X + Y b e  an H-map between 

ti-spaces of the same homotopy type as  BO. Then 

Q v ~ v & v :  W-Y and Q v L e  v ~ ~ L Q v ' : ~ +  Y .  

The following basic result summarizes information contained in 

Theorems 3.5 and 3.6, Corollary 3.9 , and Lemma 4.1. 

Theorem 4.4. At p = 2, u3: BO -L BO and p3:  spin + BSpin a r e  
63 @ 

c quiyalences. At p > 2, the following composites a r e  equivdences: 

1 I L .  
w'B0-L 80 A W ,  W'V B o k B o ~ w  

63 

urx ( * r - ~ )  o x  W L  BOA B O X  BO LBO XBO-WXW, 1 
63 

and 

1 vxv-' w x w  'BOXBO m B 0  XBO LBO 
63 @ @ 63. 



It i s  unusual to  encounter pullbacks (as  opposed to weak  pullbacks, 

f o r  which the uniqueness c lause  in  t h e  un iversa l  p roper ty  is deleted) i n  the 

homotopy category. However, the equivalences of the  t h e o r e m  imply the  

following result .  

Coro l la ry  4.5. At p, the  following d iagram is a pullback i n  the homo- 

topy category: 

BO - Gr-1 
BSpin 

Write X f o r  the local izat ion a t  p of any space  X'(') which appears  e 
i n  the J - theory  d i a g r a m  and wr i te  f fo r  the  local izat ion a t  p of fr(@) when 

P 

f is one of the  f i r s t  f ive Greek le t te rs .  We thus have J M C and BC . 
P' P' P' P 

C o r o l l a r y  4.6. At p, the following composites a r e  equivalences: 

(Y E 6 
J S F  -&- J and M 

@P 
(SF; k o ) / ~ p i n  --% M . 

P P P 

Proof.  According to the J - theory  diagram, these  composites a r e  maps  - 
of f ib res  induced f r o m  the  pullback d iagram of the previous corollary.  It follows 

t r iv ia l ly  that  these  compos i tes  induce monomorphisms ,  and therefore  (by finite- 

n e s s )  i somorphisms ,  on homotopy groups. 

Now e lementary  chases  of the J - theory  d iagram yield the following in- 

t e rpre ta t ions  of Adams '  work, which a r e  based  on  ideas  and resu l t s  of Sullivan 

[72; unpublished]. 

Theorem 4. 7. At p = 2, the  following composites a r e  equivalences: 

i B C ~ X B S ~ ~ ~ - B ( S F ; ~ O ) X B ( S F ; ~ O )  B ( S F ; ~ O )  

l ) ~ ) ! l ~ i ~  ~ l l l i ! l l  
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TRT . - (SF; k0) /  Spin 

7~75;17F X y 
L s ~ / s ~ i n  x s ~ / s p i n  L s ~ / s p i n  

T h e o r e m  4. 8. At p > 2, the  following composites a r e  equivalences: 

(i) B C X W X W  BC XBSpinXBO B(SF; k013 A B ( S F ;  LO) 
P P - 09 

(ii) c xnwxnw'-Lc XSpinxsO 
nTXngXnT.. (SF; k013 2 (SF; k o  ) 

P P QD 

KlTTx p 
(iii) C XM -.& (SF; kO)/Spin X (SF; kO)/Spin --?-+ (SF;ko)/Spin 

P p 

@ -  The behavior of T :  BO @ -C B(SF: kO) and  g: BSpin + B(SF; kO) on 

those p a r t s  of the i r  domains which do not en te r  into the  splitting of B(SF:kO) 

i s  analyzed i n  the  following immedia te  consequences of L e m m a  4.3, Theorem 
k 

4.4, and the  J - theory  diagram. We a g r e e  to  wr i te  5-I for  any  chosen homo- 

i 
topy i n v e r s e  to a homotopy equivalence 5. 

CP 
Corol la ry  4.9. At 2, T: BO + B(SF; kO) i s  homotopic to  the composite  

Q9 
F 3 

BO (u3)'1 BO 2 BSpin --h B(SF:kO). 

I QD 

p_ Corol la ry  4.10. At p > 2, the  composite  T V :  W + BO + B(SF: k 0 )  i s  
@ 

F homotopic to  both of the  composites i n  the following d iagram : 

(ii) C X Spin 
2 

"" 
"g- (SF; k o )  x (SF; k o )  ---9- (SF; k o )  



Corollary 4.1 1. fit  p > 2, the composite vl: wL-+ B 0  - B(SF; k0) i s  

homotopic to both of the composites in the following diagram: 

L(ai(,,,r-l) v+-l 
J- v 

I 
W - BO - - L + B O  T -(SF; kO) 

V' L I I vJ- 

Here the lower routes a r e  relevant to the splitting of B(SF; kO), while 

the upper routes a re  more readily interpreted bundle theoretically. 

Define global spaces C = X C J = X J etc. The spaces J and 
p P' P* 

C a re  often called Im J and Coker J. J is  usually defined as  the fibre 
2 

3 
of $I -1: BSO -+ BSO localized at 2; this gives the same homotopy type as  

our J2, but with a different H-space structure. In view of the key role played 

by g in the results above and in the study of the groups JO(X), the present 

definition is  preferable. It i s  also preferable on categorical grounds, as was 

noted by Tornehave [unpublished] and will be explained in VIII §3. In terms of 

stable stems, we choose to ignore the anomalous fact that q i s  in the image 

2 .  of J (anomalous because q 1s not in the image of J), preferring instead to 

regard q as the f i rs t  element of the periodic family not in the image of J in 

the (8jfl)-stems (see Remarks 5.3). Sullivan first defined the spaces C 
P' 

Actually, his (unpublished) C is  the fibre of f: F/O + BS0@ localized at 2. 
2 

This definition i s  equivalent to ours by Theorem 4.7 and Lemma 3.4. The 

definition of BC2 given here i s  new. 

5. JSpin(X) and the 6 and E invariants 

In this section and the next, the base spaces X of bundles a r e  to 

be connected finite CW-complexes. To derive global bundle theoretic conse- 

following basic fact in the theory of localization [23,V Ii 6 ,  7 or  48,~11]. Let 

Y denote the localization of a connected H-space Y at Q . 
0 

Theorem 5.1. F o r  any set of primes T, the natural map 

i s  an injection and is  a bijection i f  f*Y is  of finite type. 

We shall generally be concerned with simply connected Y, when the 

I~rackets may be taken in the sense of unbased maps. When T i s  the set of 

. ~ 1 1  primes, Y = YT. The fact that (BF) 0 " * will allow us to ignore rational 

t oherence below. We shall write f P for the localization of a classifying map f at p 

*.tnd we shall use the same letter for an element of KG@) and for its classi- 

lying map; we drop the curly brackets used earlier to distinguish stable from 

t~nstable bundles o r  oriented bundles. 

We use Corollazy 4.5 as  a substitute for the main technical result of 

1.11 in the following mixed local and global version of Adams' analysis [2,3,4] 

t , f  the groups JO(X). Note that an F-trivial stable 0-bundle admits a reduc- 

I lvn to Spin (compare Lemma 3.4). 

Theorem 5. 2. The following a r e  equivalent for a stable Spin- 

l111ndle e over X. 

( 1 )  5 i s  trivial as  a stable spherical fibration. 

( 1 1 )  There exists a unit 5 t KO(X) such that prf ,  = $Irq~ in ~spin[l/r](X) 

for every integer r 2 2. 

( i i i )  For  each prime p, there exists a unit 5P e KO FJ (X) such that 



(iv) F o r  each prime p, there  exists an  element q E KO (X) such that 
P P  

E = $rq - in KSpin (X), r = r(p). 
P P P 

Proof. Regard 6 a s  a map X -+ BSpin. If Bjo E r *, there exisfs 

5 ' : X -+ SF/Spin such that q t '  " 5 .  Define I = fE', f: SF/Spin -+ BO 
@ '  

Then (ii) holds by the J-theory diagram. (ii) trivially implies (iii) and 

(iii) implies (iv) by Corollary 4.5. If (iv) holds, Bjo 9 i s  null homotopic 

because i t s  localization a t  each prime i s  null homotopic. 

Atiyah and Tall  [15] gave a purely algebraic analog of the local 

equivalence (iii) +> (iv). Key points in their  approach were  the extension 

by continuity of the Adams operations on p-adic y-rings to p-adic 

integers r and use of the fact that r(p) generates the topological group of 

units of the p-Bdic integers (if p > 2). These algebraic considerations 

gained geometric content with Sullivan's introduction of the p-adic comple- 

tions of spaces [72,73 1. In particular, he pointed out that the p-adic com- - 
pletion of BO can be split by use of the obvious algebraic splitting [15, p. 2841 

of the functor to p-adic y- rings obtained by p-adically completing i\io(x) 

for  X finite. Nevertheless, i t  does not seem to m e  that passage to p-adic 

completion would yield substantive additional information in the stable parts 

of Adams' and Sullivan's work discussed in this chapter. 

We also prefer not to use the cocycle condition emphasized by Bott 

and Sullivan [22,72] o r  the periodicity condition emphasized by Adams [4]. 

These conditions make sense  only when one conniders the cannibalistic 

c lasses  p r  for  general values of r ,  rather than just for the r(p). These 

c lasses  give no new information, and the cocycle and periodicity conditions 

can be viewed a s  formalizations of why they give no new information. 

The following three  results  analyze the kernels of the natural  t rans-  

formations represented by the maps q: B(SF; kO) + BSF, gt BSpin + B(SF: kO), 

~ ' 1 ~ ' / 1 1 1 1 / / 1 / 1  I / /  / 
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ibnd T: BO +B(SF; kO). Recall that $r was defined on the Abelian group 
8 

%(SF; k ~ ) [ l / r ] ( ~ )  by i t s  action on orientations. The difference qr - 1 i s  

fr 
. represented by the map ~ $ ~ / l  on the classifying space B(SF; k~)[l /r] .  

Theorem 5.3. Let (E , t ~ )  be a kO-oriented stable spherical  fibration 

over X and consider the following statements. 

(i) The underlying stable spherical  fibration i s  trivial. 

(ii)p F o r  the prime p, there exists an element (q ) E %SF; k0 )  (X) 
P' v~ P 

such tha t  (6 p, pp) = $r(q p, vp) - (q p, vp), r = r(p). 

Statement (i) implies statement (ii) f o r  each odd prime p and, provided 
P 

3 3 
that (+ - l)i\ispinZ(x) = ($ - 1)fio2(x) C EspinZ(x), fo r  the prime 2. Con- 

versely, statements (ii) for  a l l  primes p imply statement (i). 
P 

Proof. Assume (i). Then (e ,  p) i s  classified by T*( 5 ) for  some 

3 
map 5:X -t BO At p = 2, Im-r* C Irn (B+ /1)* under the stated 

8 - 
proviso by Corollary 4.9 and Proposition 3.8: note that the proviso ce r -  

2 
tainly holds if H (X; Z2) = 0. At p >2,  I m ( ~ v ) *  C I ~ ( B $ ~ / I ) *  by Corollary 

1 

1.10 and Proposition 3.8 while lm(-rvL)* C 1m(~++/1)*  by Lemma 4.3, 

Theorem 4.4 and Proposition 2.2. F o r  the converse, q ( ~ + ~ / 1 )  = * since 

q e ~ $ r  = q and therefore (ii) for  a l l  p implies (i) by Theorem 5.1. 
P 

Proposition 5.4. Let 5 be a stable Spin-bundle over X. Then 
t 

, ( 6 ,  p.(g)) i s  tr ivial  a s  a kO-oriented stable spherical  fibration if and only if 

pr(p)E, = 1 E KSpin (X) for each prime p. 
P P 

Proof. This i s  immediate f rom Theorems 4.4 and 5.1, Corollary 4.11, - 
and a chase of the J-theory diagram. 

Proposition 5. 5. Let p be a (special) unit in KO(X). Then (g , p) 

' i s  tr ivial  a s  a kO-oriented stable spherical  fibration if and only if 

i Ir(p)p = pp fo r  a l l  primes p. 
P 

." 



Proof. This i s  immediate f rom Theorems 4. 4 and 5.1, Corollaries - 
4.9 and 4.1 0, and a chase of the J-theory diagram. 

The analysis in  the r e s t  of this section elaborates and makes rigorous 

a speculative program proposed by Adams [4, $71 and am,plified by Sullivan 

[72, 5 61. It will emerge that the theoretical framework envisioned by Adams 

leads to new bundle theoretic analogs 6 and E of the d and e invariants 

used in  his computations of stable s tems in [5]. Of course,  the results of 

these computations a r e  visible in the J-theory diagram. 

Remarks 5.6. -ir*Jp can be read off f rom Theorem 3.5 and the hon?otopy 

.(P) 
exact sequence of the p-local fibration J - BO BSpinp. F o r  

P P 

i > 2, the image of J:-rr.SO = -rr.Spin -, -rr.SF can then be read off f rom the 

splitting of SF at  p. The map e*: r*SF - a*BOQp detects elements 

p. E v.SF of o rde r  2, where i m 1 o r  2 mod 8 and i > 0, such that p. 
I 1  

comes f rom an element of TT J which i s  not in  the image of -rr.Spin. 
i 2 

Clearly e* corresponds via adjunction to Adams' d-invariant (which 

assigns the induced homomorphism of reduced real  K-theory to a map 

sn+k 
+ sn). Delooping the map e (which i s  an infinite loop map) and 

generalizing to arbi t rary  X, we can reinterpret this invariant a s  follows 

(compare IV. 3.2 ). 

1 + 
Definition 5.7. F o r  5 E ~ s F ( x ) ,  define I(!$) = w(5; kO) E BO@@ ) 

to be the obstruction to the kO-orientability of g ; equivalently, fo r  

5 E [x', BSF], 6(5 ) = Be 0 5 e [x', BBO 1. 
B 

Adams' e-invariant i s  defined on (a subgroup of) the kernel of d, 

and our E-invariant will be defined on the  kernel  of 6. Of course, the 

la t ter  kernel i s  just the group Q(SF;kO)(X) of kO-orientable stable SF- 

bundles. Before defining E , we note that Theorems 5.1 and 5.2, together 

with Lemmas 3 .1  and 3.4, imply the following result. 

This suggests the following definition. 

Definition 5.9. F o r  G = Spin, SO, o r  0, define J%(X) to be  the 

Of course,  the groups JG(X) and J s ( X )  a r e  abstractly isomorphic. 

In the case  of Spin, the J-theory diagram yields a geometrically significant 

choice, of isomorphism . 

Definition 5.10. Define E : Q(SF;kO)(X) -+ JSp%(X) a s  follows. 

Given a kO-orientable stable SF-bundle e , choose a kO-orientation p, 

localize a t  p, and apply the cannibalistic c lass  c(+~(P)) .  The image of 

this c lass  in  the p-component of J S p s ( X )  i s  independent of the choice of p, 

~ n d  a ( $ ) =  ; ~ ( + ~ ( ~ ) ) ( 5 , p ) .  Equivalently, for  5 : X  -+ BSF such tha t  

Be. c *, choose r:X .+ B(SF; kO) such that q'l; c 5.  If also qr' r 6 ,  

then x1/F r 76 fo r  some 6:X -+ BO and thus, a t  each prime p, 
@ 

C ( # ' ) S ~ / C ( + ~ S ~  - c ( + ~ ) ( F ~ / Z J  = k r / 1 ) r p  , r = .(P). 

Therefore E (6 ) = ; c(+r(p))$ is a well-defined element of JSpi "(9 (X) . 
We need one more definition. 

Definition 5.11. Let  C(X) denote the se t  of stable kO-oriented 

SF-bundles (5 , p) over X with local cannibalistic c lasses  

c (kkr(')) = 1 E KSpin (X) for  each prime p. Equivalently, if (5 , p) i s  
P 

~:lassified by a , i t  i s  required that c (+~(@))  0 F : X - (BSpQp be n& 
P 



It i s  immediate from the form of the splittings of the B(SF; kO) that 
P 

C(X) i s  classified by the space BC. 

Theorem 5.12. The composite JSpin(X) C QSF; kO)(X) JSpin (X) 
Q9 

i s  an  isomorphism, C(X) maps monomorphically onto the kernel of E under 

neglect of orientation, and therefore 

Q(sF;~o)(x) = ~ s ~ i n ( x ) e  c(x). 

Proof. The f i r s t  clause holds by comparison of Corollary 5.8 and - 
Definition 5.9 with the equivalences of Theorem 4.4. The second clause 

holds since (qn)*: [X, BC] -t [X, BSF] i s  a monomorphism by the splitting 

of B(SF; $0) and Corollaries 4.9 and 4.10 (which show that n*[X, BC ] 
P P 

in tersec ts  T*[X, ( B o d p ]  trivially) and since C(X) clearly maps onto the 

kernel of E . 
Comparison of Theorems 5.3 and 5.12 may be illuminating, particularly 

a t  the prime 2. 

We discuss the relationship between Adams' e-invariant and our 

E -invariant in the following remarks .  

Remarks 5.13. Let E = X E :SF -c JeP= t Jap.  A straightforward 
P P 

chase of the J-theory diagram allows us to identify the E-invariant on 

Ker(Be)* C n*BSF with the induced homomorphism 

e* n * 
E * : K e r ( n * S F 4  n*BO )+ Ker(n*J*-- n*JQ2 -> n*B02) 

@ 

(the kernels being taken to avoid the elements p. of Remarks 5. 6 and their  

images in the 2-component of n J ). On the other hand, an inspection of 
* @  

[5,§ 7 and $91 will convince the reader  that Adams' rea l  e-invariant (denoted 

e k  o r  eR in [5]) admits precisely the same description. Indeed, i t  can be 

seen in re t rospect  that Adams' calculation of the e-invariant on the image of 

J in [5,§ 101 amounts to a direct  geometric comparison between the two invariants. 

1 ,  I l l  I / ' I  ~ l l / / l / l  
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We complete this section wi th the  development of a more  conceptual 

escription of the functor C(X) than that given by Definition 5.11. We re-  

uire some preliminaries. 

ons 5 1 4  Define bo, bso, and bspin to be the o-connected, 1-connected, 

and 2-connected covers of the spectrum kO; similarly,  define bu and bsu to be 

the 0-connected and 2-connected covers of kU. In each case,  the zeroth space 

Is the one suggested by the notation. (Warning: bo and bu a r e  usually taken 

ns  our kO and kU , this being a pointless waste of a useful notation. ) 

Lemma 5.15. F i x  r 2 2 and localize a l l  spect ra  away f rom r. 

Then @'-I: k 0  + k 0  lifts uniquely to $ir-1: k 0  -+ bspin. 

Proof. $ir-1 obviously lifts uniquely to a map into bo. Recall 

that Bott periodicity implies that if 7: R S 
0 ' -t RmS i s  the unique non- 

m 

trivial map, then 

i l h q : z ~ o  = KOAS 1 S K O A R  s 1 -+ K O A Q ~ S O  z KO 
m 

is equivalent to the fibre of c: KO + KU (where KO and KU denote the 

; periodic Bott spectra). Passage to associated connective spect ra  (LI $2)  

yields a map 5:;SkO kO with the same behavior on homotopy groups in 
1 

non-negative degrees a s  1 ~ 7 ,  and ;i obviously lifts uniquely to a map 

?: ZkO -c bo. Its adjoint 7: k 0  - Sl bo clearly maps T kO onto 
0 * 

n Slbo = ZZ . Write H fo r  cohomology with coefficients in ZZ and re-  
0 

1 2 
call that H*k0 = A / A S ~  t ASq , where A denotes the mqd 2 Steenrod 

0 
algebra (e. g., by [7, p. 3361). In particular,  H kO = Z2 and H1kO = 0 = HZlcO. 

The fibration bso - bo -). ' k ( Z  , I )  gives an exact sequence 
2 

0 
[kO,R bo] - H kO .+ [kO, bso] - [kO, bo] + 0 

in which the first  map i s  surjective by the properties of 7 .  The fibration 



bspin - bso - 'k (2 , 2 )  gives an isomorphism [kO, bspin] - [ k ~ ,  bso] and 
2 

the conclusion follows. 

Definition 5.16. Define j r HJ to be the completion at p of the 
P 

fibre of +'(~)-1: kO - bspin and define j = X j . Also, for use in VIII, 

p P  3 
define j02  to be t k  completion at 2 of the fibre of i j i  -1: kO - bso and 

define J 0 2  to be the fibre of +3-1: BO - BSO at 2. 

The use of completions i s  innocuous hem (since the homotopy groups 

are finite in positive degrees) and serves to ensure that j i s  a rzng spectrum. 

Indeed, we shall prove in VIII. 3. 2 that j i s  a ring spectrum such that the 
P 

natural map K : j - kO (completed at p) i s  a map of ring spectra. 
P 

Theorem 5.17. The spaces BC and B(SF; j) are equivalent. 

Therefore 
C(X) = %(SF; j ) ( ~ )  

i s  the group of j-oriented stable spherical fibrations. 

w. By 11 52, the zeroth space of j i s  equivalent to J X . 
P P (P) ' 

i t s  1-component is J as an H-space, by VIII 53. The 1 -component of the 
@P ' 

zeroth space of j i s  J = X J and the projections give a homotopy com- 
@ @P 

mutative diagram 

J 
7 - B(SF;j) 

9 
CD 

> BSF 

W e  conclude that B(SF; j) i s  equivalent to X B(SF; j ) 
P P P ; 

Lemma 2.4. Fix  r = r(p) and complete a l l  spaces at p. A j -oriented 
P 

stable spherical fibration clearly l ies  in C(X) when regarded via 

r :  j - kO as a kO-oriented stable spherical fibration. Since the homotopy 
P 

123 

~ r o u p s  of B(SF;j ) are  obvzously fmzte, there  a re  no i,rnl problems and 
P 

we conclude that the composxte 

c (  =) B(SF: jp) -..-EL B(SF; k o )  L ~ s ~ i n ~  

is null homotopic. There resul ts  a lift I: B(SF: j ) - BC . Consider the 
P P 

following diagram, in  which (SF: j ) = RB(SF;j ): 
P P 

W e  have that e*: T*SF - "*JBp i s  a split epimorphism by Corollary 4.6. 

i r v  Theorems 4 .7  and 4.8,  ( n c f Z ~ ) *  mape T*C monomorphically onto 
P 

iicr c*.  In the bottom row, maps "*(SF; j ) monomorphically onto 
P 

Ksr e * .  Therefore (ni)* i s  a monomorphism and thus an isomorphism. 

inoiooping, we conclude that <*:"*?(SF; j ) - "*BC is an isomorphism. 
P P 

11. bulltvan's analysis of topolog~cal bundle the or^ 

3 The followzng baszc theorem i s  due to Sulhvan. 

Theorem 6.1. There exists a kO[l/Z]-orientation g of STop. The 

- 
Ic~a;&lixation away from 2 of the H-map f :F/Tap - BOB[1/2] associated to 

ii llSTop - B(SF; kO[f/Z]) i s  an equivalence. 

The f i rs t  statement i s  proven in [72, 561. Actually, the proof that g 

irr nn H-map i s  omitted there.' It is easy to see that g is multiplicative 

tnodulo torsion, however, and this saffices for  the discussion of 7 as an  

I .  A proof will be given in Theorem I. 16 below. 
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Proposit ion 6.4. Away f rom 2 and r, the following diagram i s  homo- 

topy commutative: 

B 0 BTop - B (SF; kO) 

8 

- 
f 

BO Bi . - - . BTop L B(sF;ko) 

2j-1 . 
Since 1 - 2 1s a unit in Z i f  2j z 0 mod (p-l) ,  the following 

(P) 

local  theorems and corollaries,  i n  which r = r(p), result  f rom exactly 

the same,calculations and diagram chases that were  used to prove the i r  

analogs in section 4. 

Theorem 6.5. At p > 2, the following composites a r e  equivalences: 

8 w A' w 
W ~ B O - B O  -W , ~-LBO-F/T~~-W, 

'€3 

A I I 
BO- B O X  BO xrx (+r-')-. F/Top X BO O w x w- 

and 
v x v L  w x w l - ~ o x ~ o  c3 

Corollary 6. 6. At p > 2, the following diagram i s  a pullback in the 

homotopy category: 
- 

Define N to be  the localization of N~" )  at  p and define and d 
P P P 

to be the localizations of ;ijr(') and xr(') at  p. 

Corollary 6.7. At p > 2, the following composite i s '  an equivalence: 
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Theorem 6. 8. At p > 2, the following composites a r e  equivalences. 

i - -1 
(i)  BC XWXW'-BC X B O X F / T O ~  g 7rXBiXq . ( B T O ~ ) ~  BTop. 

P P 

( C x nw X m y l ~ n v i  
1 1 )  *C X S O X Q ( F / T o p ) ~ 1 7 r ) x i x n ~  ( S ~ o p ) ~  Stop. 

P 

(iii) C x N ' ~ ( g - ' " ) ~ %  - T O ~ O  x T O ~ / O  L T O ~ / O .  
P P 

The odd p r imary  par ts  of Brumfiel's calculations [24] of T*BTo~  and 

T : ~ T O ~ / O  can be read off f rom the theorem and the diagram. 

Corollary 6.9. At p > 2, the composite qv : W -+ F/Top -, BTop i s  

1tt)rnotopic to both of the composites in the following diagram: 

Corollary 6.10. At p > 2, the composite Bin vl: W1+ BO + BTop i s  

Itornotopic to both of the composites in the following diagram: 

The bundle theoretic interpretations of the resul ts  above a r e  evident f rom 

I Iic diagram and the arguments of the previous section. Consider all bundle 

t l~cor ies  in sight a s  localized away f rom 2. Corollary 6. 2 a s s e r t s  that every  

I* O[i/2]-oriented stable F-bundle has the fo rm (5 ,  y ( g ) )  fo r  some Top-bundle 

i and that two stable Top-bundles e and 5 ' a r e  equal if (g , y ( g ) )  and 

(t. ' , ti(?)) a r e  equal a s  kO[@.]-oriented stable F-bundles. (Here, away f rom 

.', we may write F and Top but think in t e r m s  of the integrally oriented case.  ) 



The Adams operation +r acts on MTO~(X) via i ts action on the Sullivan 

orientation (away from 2 and r). More precisely, the action of +r on 

N N 

K(SF; kO)(X) i s  to be transported to KTop(X) along the equivalence z*. 
4- 

Similarly, the action of +r on the group of (special) units [X , BOd in KO(X) 

may be transported to [X+,F/TO~] along f *. Then, with +r acting trivially 

on &(x), the transformations induced by the maps Bj: BTop - BE, 

Bi: BO -C BTop, and q: F/Top -F BTop commute with the +r (by Propositions 

6.4, 2.2, and 2.3 in  the las t  two cases).  The following three results analyze 

the kernels of these transformations. Again, the proofs a re  the same a s  for 

the analogous results of Section 5. 

Theorem 6.11. Away from 2, the following a r e  equivalent for a stable 

Top-bundle c over X. 

(i) 5 i s  tr ivial  a s  a stable spherical fibration. 

(ii) F o r  each odd prime p, there exists an element q E E T O ~  (X) such 
P P 

that = +rqp - 
P 

q p  * 3.. =  PI. 

Proposition 6.12. Let ( be a stable 0-bundle over X. Then, away from 

2, 5 i s  trivial  a s  a stable Top-bundle if and only if e r ( ~ ) e  = 1 E KO (X) for 
P - P 

each odd prime p. 

Proposition 6. 13. Let (5 , T )  be an F-trivialized stable Top-bundle 

monoid to Top) on a stable F-bundle. R(SF; kO)(X) may be interpreted as  

JTop(X), and the E -invariant may thus be regarded a s  defined on JTop(X). 

C(X) may be interpreted a s  the set of stable Top-bundles over X all  of whose 

[ 
5- local cannibalistic classes c(+ r p ) p  a r e  t r i v i a l  Theorem 5. 12 may then 
E 
1 be interpreted a s  follows. 

5 
i Theorem 6.14. Away from 2, the composite JO(X) C JTop(X) JO (X) 

i- 8 

[ 11 an isomorphism, C(X) maps monomorphically onto the kernel of E under 

passage to fibre homotopy equivalence, and therefore 
C 

Remark 6.15. F o r  what i t  i s  worth, we note that there i s  a precise analog 

i to Theorem 6.14 in which B(TO~/O)  plays the role of BE. The proof i s  slightly 
: 
- more complicated, because rational coherence must be taken into account, but 

i I the conclusion i s  again that, away from 2, the image of 

is a direct summand of the image of 

with complementary summand C(X). This remark also has an analog in the 

J-theory case  since the results of the next section imply that the J-theory 

over X. Then, away from 2, 6 i s  tr ivial  a s  a stable Top-bundle if and only diagram admits a lower right-hand corner. 

if +r(p)(c , T) = (5 ,-I-) for  each odd prime p (or, equivalently, J l r (p )~  = 5 f o r  
P P Remark 6.16. We have used Top and F instead of P L  and  G since the former  

each odd prime p, where 5 i s  that unit of KO[@](X) suchthat  the Sullivan - theories fit naturally into our general context. Stably and away from 2, there i s  

orientation of e i s  the cup product of S and the orientation induced by T from ; no distinction. Unstably, Sullivanls is the limit of kO[~~-or ien ta t ions  of 

the canonical orientation of the trivial stable F-bundle). ; SPL(n)-block bundles g(n): BSPL(n) B(sG(~); k0[@]), where the classifying 
r 

Away from 2, the 6-invariant may be interpreted a s  the obstruction to ! space on the right can be constructed either by the methods of [47] o r  by use of 

the existence of a topological structure (that i s ,  a reduction of the structural i Brown's theorem. Haefliger and Wall's result  [32] that G(n)/PL(n) - G/PL 
! 

r 
e 
i- 



i s  an equivalence for n 2 3, together with an unstable comparison diagram 

obtained by Barratt-Puppe sequence arguments and use of Lemmas 2.6 and 2.7, 

show that x(n)[1/2] is  an equivalence for  every n k  3. Note, however, that 

the block bundle version of PL(n) used in this remark is not the one most 

relevant to geometric work in piecewise-linear topology. 

5 7. Infinite loop analysis of the main diagrams 

In order to determine which of the various splittings we have ob- 

tained a re  actually splittings of infinite loop spaces, we must determine 

which maps in our main diagrams a re  infinite loop maps. It turns out that 

homotopy theoretic arguments, which can be thought of as  ultimately based 

on how tightly Bott periodicity ties together the p-local k-invariants of BO 

and BU, coupled with representation theoretical calculations, yield a great 

deal of information about this question. The relevant arguments a r e  due to 

Madsen, Snaith, and Tornehave [42] and will be outlined here. To begin 

with, these authors have proven the following analog for maps of the Adams- 

Priddy unique deloopability of spaces result, Theorem 4.2. Their proof is  

A A 
based on the fact that [K(Z n), BU ] = 0 for n 2 3. An alternative proof 

P' P 

based on the techniques of Adams and Priddy [8] i s  possible. Let T be any 

set of primes. In a l l  of the results of this section , our Theorems 11. 2.13 

and 11. 2.14 show that the result for localizations at T follows immediately 

from the result for completions at p for p e T. 

Theorem 7.1. Let D and E be T-local o r  T-complete connective 

spectra the zeroth spaces of which have completions at each P E T  equivalent to 

those of either BU o r  BSO. Then the natural homomorphism [D,E]-[D E ] is  
0' 0 

a monomorphism. 

The proof of Madsen, Snaith, and Tornehave (MST henceforward) 

equally well yields the following complement except in the real case at  p = 2 

where the result is  due to Ligaard [38]. 

Theorem 7. 2. Let D and E be T-local o r  T-complete connective 

!rpectra the zeroth spaces of which have completions at each p c T equivalent, 

respectively, to those of U and BU or SO and BO o r  Spin and BSO. Then 

1 I), E] = 0. 

h A'  
MST then proceed to an analysis of which H-maps f: BU -C BU o r  

P P 
A 

I :  BSO -C BSO are  in fact infinite loop maps. Such a map can be uniquely 
P P 

written in the form f = f 1 2  + f *', where f 1 and f2 are  H-maps and fl is  

ljrlme to +p (in a suitable sense), and their basic observation i s  that f i s  

. , ! I  infinite loop map if  and only if f2 = 0 (since f is  then essentially a 

Itnear combination of the i / ~ ~  with r prime to p). This assertion has the 

I~rllowing consequence. 

Theorem 7.3. Let X, Y ,  and Z be T-local o r  T-complete infinite 

I ~ > I J ~  spaces whose completions at each p 6 T a r e  equivalent to those of BSO. 

I . r : L  frX -c Y and gr Y -. Z be H-maps such that gf i s  an infinite loop map 

nltd either f o r  g is  both a 5  infinite loop map and a rational equivalence. 

I'hen the remaining map g or  f i s  an infinite loop map. 

Proof. By II. 2.13,II. 2.14, and Theorem 4.2, it  suffices to show - 
A 

I l l i s  when X , Y ,  and Z a r e  BSO as infinite loop spaces. F o r  definiteness, 
P 

1c.L f be an infinite loop map and a rational equivalence. Then f = f 1' 

I! = gl + g 2 ~ p ,  and fg = fg 1 2  S fg = fgl. But fg2 = 0 implies g2 = 0 by 

I .r.lnma 2.8. 
f i  f i  

The criterion above for determining whether an H-map BSO -r BSO 
P P 

In an infinite loop map will be interpreted representation theoretically at  

t llr: end of VIII 5 1. MST prove the following pair of results by representation 



r r 2 .  
theoretical calculations based on [3] for pr; the result for 8 r p (+ 0 2f +4) 

follows. 

Lemma 7.4. pr: BSO[~/~]  - BSO&/~] i s  an infinite loop map. 

Lemma 7. 5. er: BO[1/2,l/r] -r BO [1/2, l/r] i s  an infinite loop map. 60 

The following analog i s  simpler, requiring only Theorem 4. 2. 

Lemma 7.6. +I: BSO [l/r] -r BSO [l/r] i s  an infinite loop map. 
'8 '8 

Proof. At p prime to r, Theorem 4.2 gives an equivalence - 
5: BSO + BSO of infinite loop spaces. By the argument in Remarks 3.7, 

% 
r -1 +' i s  homotopic to the infinite loop map &I 5 . 

At this point, i t  i s  convenient to insert a remark relevant only a t  the 

prime 2. 

N* 
Remark 7.7. Recall from Anderson and Hodgkin [12] that KO ( ~ ( u , n ) )  = 0 

for  n 2 2 and al l  finite Abelian groups n. By use of II. 3.2,II. 2.10, and the 

non- s plittable fibrations 

bS0 + b0 K ( z 2 .  1) and bSph -t bS0 -C X ( z 2 ,  2) , 

it i s  easy t~ deduce that 

[1((z2, n), k ~ ]  = 0 for n 2 0 , [ X ( Z ~ ,  n), bo] = 0 for n 2 0, 

[X(Z2, n), bso] = 0 for n l i  . [ k ( z 2 , n ) ,  bspin] = 0 for n 2 2, 

[X(ZZ.O).bso] = Z2 and [ X ( ~ ~ , l ) , b s p i n ]  = Z 2 ' 

In the last two cases, both maps of spectra induce the trivial map 

K ( z ~ ,  0) - BSO and K(Z2, 1) - BSpin on zeroth spaces. 

In VEI  93, we shall prove that c($~): B(SF; kO) + BSpin@ i s  an infinite 

loop map at p, where r = r(p). Thus the fibre BC of c(+') and its loop 
P 

space C a r e  infinite loop spaces. Define clir/l = c(+') T: BO%+ BSpin 
P '8 

a s  an infinite loop map at p. On BSOw this delooping i s  the one coming 

from Lemma 7.6 in  view of Theorem 7.1. When p = 2, this definition fixes 

the non-trivial delooping. Define J @P a s  an infinite loop space to be the 

g 
f fibre of +'/I. We shall construct an infinite loop fibration C -, SF -t J 

P @P 

In VIII 53 and will show that it  splits when p> 2 in VIII $4. By the following 

basic result of Hodgkin and Snaith [33;70, $91, this shows that, to the eyes of 

[ K-theory, SF i s  equivalent to J 
c. N* 49P ' 
F- N * 
E. Theorem 7.8. K (C ) = 0 and KO (C ) = 0; there a r e  no non-trivial 
'g. P P 
C 
e- maps C -r BSO on either the space o r  the spectrum level. 

P 

We can now prove the following analog of Theorems 7.1 and 7.2, which 
L 

le  due to MST at p > 2 and to Ligaard at  p = 2. Their proofs a r e  somewhat t 
i 

1 more difficult, but give more precise information. 

1 Theorem 7.9. Let X be a T-local o r  T-complete infinite loop space 
I- 

whose completion at  each p E T i s  equivalent to that of BO Then an 
i a 
i= H-map f: J - X or  g:SF -* X is  the zeroth map of at most one map of spectra. 
I- % 
1- Proof. We may work at p, with X replaced by BSO, in  view of n. 2.13, 

11.2.14. Lemma 3.1, and Theorem 4.2. Clearly the result for g will follow 

! 
immediately from the result for f. With r = r(p), consider the following 

diagram, the rows of which a re  infinite loop fibrations: 

J-1 
spin -----3 - BSO - BSpin 

P 

The maps 5 are  infinite loop equivalences coming from Theorem 4.2, a, p, 



and the T a r e  the natural infinite loop maps, and 5' and c u t  a r e  infinite loop 

maps coming f rom Barratt-Puppe sequence arguments (e. g. [48, I]). Clearly 

5' i s  an equivalence. By Hodgkin and Snaith [33,4.7], the top fibration yields 

an  exact sequence 

o - PKo(Bspin) a PKo(Bso) 2 PKO(: ) -. o 
P 

of primitive elements in  p-complete K-theory. (They deal with KU, but the 

result for KO follows. ) Let f: J + BSO be an  infinite loop map which i s  
@P 

trivial a s  a map of spaces. We must show that f is trivial a s  an infinite loop 

map. By Theorem 7.2, f = % as  an infinite loop map for some infinite loop 

map 5 BO -+ BSO (because [spin, bso] = 0 and fibrations a r e  negatives of 
69 

cofibrations in  the stable category [48,X1]). By the exact sequence of primitive 

elements (i. e., H-maps) and, when p = 2, Lemma 2.10, there i s  an H-map 

A s  M 

f: BSO -t BSO such that y$e ($r-l) =Tag.  By Theorem 7.3, f i s  an infinite 8 
loop map. By Theorem 7.1, we conclude that fcr't' = %@5(41~- 1)lr i s  the trivial  

infinite loop map. Since (el)*: [b 2, bso] - [yQ2, bso] i s  a monomorphism by 

Remark 7.7, f i s  also the trivial  infinite loop map. 

These results allow infinite loop analysis of the comparison diagram parts 

of the J-theory diagram and of i t s  analog for topological bundle theory. The 

following result  was noted by Madsen, Snaith, and Tornehave [42]. 

Proposition 7.10. f: s F / ~ p i n  -c BSOQ i s  (globally) an infinite loop map. 

Proof. By 11.2.13 and II.2.24, i t  suffices to prove the result  with a l l  spaces 

completed a t  p. By Lemmas 3.1 and 3.4, it suffices to consider f: F/O + BSO 
@ 

(even a t  p = 2). Let B be the zeroth space of the cofibre in H A  of the compo- 

site infinite loop map L: C + (SF; kO) .+ SF - F/O and let  5 : F/O + BO be 
P P 

the natural map. By Theorems 4.7,4.8, and 4.2, B i s  equivalent to BSO a s  an 

infinite loop space. Consider the following part of the J-theory diagram 

with r = r(p) 

BSO y p  F,O 

By Theorem 4.2 and Theorem 7.8, p r q ~  : C + BSO i s  the trivial  infinite loop 
P C9 

map, hence there-is an infinite loop map q: B -+ BSO such that qL = prq a s  
@ P 

r r  
infinite loop maps. By Remarks 3.7, cr " p . Thus q(Lpyp) r;r ($r/l)pr. By 

Theorem 7.3 and Lemmas 7.4 and 7.6, 5 y i s  an infinite loop map. Clearly 
P P 

-1 

SPyP 
i s  a homotopy equivalence, and fy = pr(< y ) 5 y while f and 

P P P  P P  
1 

P r(b y ) -  5 both res t r ic t  to the trivial map on C It follows f rom the splitting 
1 1  P P' 

of E/O in Theorems 4.7 and 4.8 that f i s  homotopic to the infinite loop map 

Theorem 7.11. The following i s  (globally) a commutative diagram of 

infinite loop spaces and maps: 

9 
SF -2 sF/spin - BSpin Bj + BSF 

Proof. By Theorem 7.9 and the previous proposition, the left square i s  - 
a commutative diagram of infinite loop spaces and maps. As pointed out in 

section 2, a Barratt-Puppe sequence argument on the spectrum level gives an  

infinite loop map g': BSpin- B(SF; kO) which makes the right two squares com- 

mute on the infinite loop space level. On the space level, g - g' = r h  for  some 

h: BSpin -, BOW However, commutation of the middle square implies that 

g* = (gl)* on rational homology and thus that h* = 0. Therefore h 0 by Lemmas 

2.8,2.10, and 3. i and Theorem 4.2. Thus g = g'. 

Corollary 7.12. At p = 2, the following composite i s  an equivalence of 

infinite loop spaces: 

BC2 X BSpin %B(SF; k0)  X B(SF; kO) A B ( S F ;  kO). 



Corollary 7.13. At p> 2, the following composite i s  an equivalence of 

infinite loop spaces : 

I. i x v x v L  
BC X W X W - BCpX BSpinX BO 

P c3 
"' g X T > ~ ( ~ ~ ; k ~ ) 3  A B ( S F ;  kO). 

Those parts of the J-theory diagram related to the universal cannibalistic 

c lass  ~ ( 4 ~ )  will be analyzed on the infinite loop level in  VIII 5 3. 

All remaining parts of the J-theory diagram depend on the Adams 

conjecture and thus on yr: BO + sF/Spin. Madsen 1411 has shown 

that y3 cannot be so  chosen that i ts  localization a t  2, o r  that of 

a3, i s  even an H-map. (See also [26,11.12.2]). Nevertheless,it seems 

likely that, away from 2 and r ,  yr can be chosen as  an infinite loop 

map. The following conjecture is  even a bit stronger 

1 
Conjecture 7.14. The complex Adams conjecture holds on the 

infinite loop space level. That i s ,  for each r, the composite 

Bu  -LL BB BsF 

i s  trivial  a s  an infinite loop map when localized a k a y  f rom r. 

By 11.2.13, i t  suffices to work one prime at  a t ime. The proof 

in VIII $ 4  that SF splits a s  J X C as  an infinite loop space a t  each 
P P 

odd prime p will give explicit splitting maps J -+ SF, but i t  i s  not 
P 

known whether o r  not these maps a re  homotopic to (some choices of) 

a in  the J-theory diagram. 
P 

Turning to the analysis of BTop away from 2, we have the 

following analog of Proposition 7.10, which was also noted by Madsen, 

Snaith, and Tornehave [42]. 

- 
Proposition 7.15 . f : F / ~ o p [ l / 2 ]  -c BO [l/2] i s  an infinite 

@ 
loop map. 

1. See the discussion following Remarks VIIL 4. 6. 
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Proof. Again, by 11.2.13 and II. 2.14, we may work on the - 
()-complete level, p> 2. With Z, :F/O ' B a s  in  the proof of 

P 

oposition 7.10, consider the following part of the main diagram in 

oction 6, r = r(p): 

B 0 B 

B 0 €3 

13y Theorem 4. 2 and Theorem 7.8, B i o ~  : C F / ~ o p  i s  the trivial  
P 

Infinite loop map, hence there i s  an infinite loop map f : B ' F / T O ~  

auch that 6 Z, = Bi as  infinite loop maps. Now h -- 5 (Spyp) 
P 

is a n  infinite loop map, since 5 y i s  an infinite loop map by the 
P P - 

proof of Proposition 7.10, and thus f i s  an infinite loop map by 

Lemma 7.5 and Theorem 7.3. 

Theorem 7.16. Away from 2, the following i s  a commutative 

diagram of infinite loop spaces and maps: 

i 
? SF BOB -& B(SF; kO) ----r 9 BSF 

I 
1- Therefore 7 and 7 a r e  equivalences of infinite loop spaces.  

i. 
i 
i 



Proof. Again, the left square commutes on the infinite loop - 
level by Theorem 7.9,  hence Barratt-Puppe sequence arguments give 

- 
a map g ': BSTop ' B(SF; kO) which makes the right two squares com- 

mute on the infinite loop space level .  2-  2 = r h  for some map 

h: BSTop " BO@ , and the rationalization of h i s  null homotopic. It  

follows by use of the splitting of BSTop, the fact that [BC B o d  = 0, 
P' 

and Lemma 2.8 that h -- 0 and g r. g'. Note that, despite the 

role played by the product on BSTop in i ts splitting, this argument 

does not depend on h being an K-map (again, because [BC B O d  = 0) 
P' 

and therefore more than suffices to pr.ove Sullivan's unpublished a s s e r -  

tion that g i s  an H-map (a result  which has nowhere been used in 

our work above). 

By Corollary 7.13 and Theorem 7.16, BSTop splits at p a s  

BC X W X WL a s  an  infinite loop space. This fact, together with the 
P 

f i rm grasp on BC a s  an infinite loop space given by VIII 53,has been 
P 

used to obtain precise information on the characteristic c lasses  

(at p > 2) for stable topological bundles in [26,II]. 

V I .  E r i n g  spaces  and b i p e r m u t a t i v e  c a t e g o r i e s  
03 

An E space i s ,  essentially, an H-space which i s  commutative, 
a3 

. i~socia t ive ,  and unital up to a l l  possible higher coherence homotopies. An 

I.: ring space i s ,  essentially, an E space with respect to two products, 
I I )  a3 

~ ~ I I I .  additive and the other multiplicative, such that the distributive laws a r e  

.x.tl.isfied up to a l l  possible higher coherence homotopies. The precise defini- 

I ton will be given in  section i. Some consequences of the definition, and ele- 

881vntary examples, will be given in section 2. 

A symmetric monoidal category i s  a category with a product which i s  

< .*~~irnuta t ive ,  associative, and unital up to coherent natural isomorphism. It  

.It.f.a rmine s a n  equivalent permutative category, the classifying space d which 

11, , t n  En, space. A symmetric bimonoidal category i s  a symmetr ic  monoidal 

. .trcgory with respect to two products, one additive and the other multiplicative, 

-s~c.Ii that the distributive laws a r e  satisfied up to coherent natural isomorphism. 

1 1  rletermines an equivalent bipermutative category, the  classifying space of 

..:iiich i s  an  E ring space. The precise definitions, and proofs, will be given 
to 

8 , )  ~ o c t i o n s  3 and 4, and many examples of bipermutative categories will be 

altt~l~layed in section 5. 

The relationship between E ring spaces and E ring spectra  will be 
0 cn 

~i,.~t.rrnined in  chapter VII and applications will be given in  chapter VIE. The 

~ ~ ~ ~ t t t o l o g y  of E ring spaces has  been studied in [26,II]. 
a3 

\ I .  The definition of Em ring spaces 

As will be made precise below, an operad ti i s  a collection of suit- 

,t!bly interrelated spaces c(j) with actions by the symmetric group X.. 
J 



(= i s  an E operad if the I: actions a r e  f ree  and the spaces g (j) a r e  con- 
a, j 

tractible,  so that the orbit spaces &(j)/zj a r e  K(X 1)'s. An action FJ of 
j' 

& on a space X in 3 (our ground category of based spaces) i s  a morph- 

i s m  of operads + EX, where t&j) i s  the function space F(x',x) of 

5 

based maps and i s  given an operad structure in the evident way [45,1.2]. 

An E space (X, 9) i s  a space X together with a given action 8 by some w 

Ew operad 4 .  With product given by 8 (c):x2 ,X fo r  any c e &(2), 
2 

X i s  indeed an H-space which is  commutative, associative, and unital up to 

a l l  possible higher coherence homotopies [45, p. 41. 

An Em ring space will be an E space with respect to actions by two 
m 

interrelated E operads. These actions will satisfy the distributive laws up m 

to a l l  possible higher coherence homoto pies, although these implied homo- 

topies fortunately need not be made explicit. 

Thus assume given two operads and 8 . Actions by will be 

thought of a s  additive and will always be denoted by 8. The corresponding 

basepoint will be denoted by zero and wedges and smash products will be 

taken with respect to this basepoint. Actions by h will be thought of a s  

multiplicative and will always be denoted by 6 . The corresponding base- 

point will be denoted by one. As in IV $1, i t  i s  convenient to insist  that .& - 
spaces have zeros.  Recall that 3 denotes the category of spaces X together 

with cofibrations er SO X and that 9 [gel denotes the category of 

/do-spaces (X, e). It i s  important to observe that, for non-triviality, 

zero  and one must l ie  in different components of X. Indeed, in the contrary 

case,  the left translations 6 (g)(O, x) and e2(g)(l ,  x) by zero and one would 
2 

be  homotopic (for any fixed g e )5 (2)). Since the f i r s t  map i s  trivial  and, 

if h ( 1 )  i s  connected (as  i s  always the case  in practice), the second map i s  

homotopic to the identity [45, p.41, it follows that X would be contractible. 

I l I , I  ~, 1 : '  I 
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As explainkd in  [45, $21, an  operad determines a monad (C, p, 7) 

3 such that the notion of a -space i s  equivalent to that of a ,C-algebra 

in 3 . We shall define a notion of an action of an operad b on an opelad 1 

in such a way that C res t r ic ts  to a monad in the category & [ 3 1. Thus 

for a -space X, the space CX will inherit  a structure of bo-space 
0 

auch that the unit q:X -) CX and product p: CCX -c CX will be morphisms E 
of bO-spaces. We shall  then define a ( t, h ) - s p a c e  to be an algebra over 

the monad C in b [ gel. The requirement that the additive action 

g 
FJr CX -) X be a morphism of ko-spaces will succinctly encode the distri-  

butive laws. An E ring space will be a ( c ,  f i  )-space where 6 and h. 
0 m 

k a re  E operads. 
m 

It i s  useful to think of the passage f rom &-spaces to ( 1 5 ,  kl )-spaces 

a s  resulting f rom a change of ground category f rom 3 to .b [gel. 

The details of the definitions a r e  necessary for rigor and useful in  

the study of homology operations [26] and homotopy operations (work in  

progress). F o r  our present theoretical purposes, i t  i s  the conceptual out- 

line above that i s  crucial. We f i rs t  recall  the definitions of operads and 

8 actions by operads, 
I 

Notations 1.1. Let j 2 0, 1 <_ r < k, and l e t  j = j1 t . . . t jk. F o r  ue Zk, 

define u(jl,. . , jk) E I: to be that permutation of j le t ters  which permutes 
j 

the k blocks of le t ters  determined by the  given partition of j a s  r permutes 

k letters.  F o r  T E I: define rlb . . . CB T~ E I:. to be the image of 
r jr ' J 

(T*, . . . , T ) under the evident inclusion of I:. X . . . X.X. in  I: 
k 1 J, j ' 

Definition 1.2. An operad i s  a collection of spaces k(j)  fo r  

j 2 0, with E(0) a single point * , together with maps 



~ ( ( ( O ( ' ( ( U < < W <  ( , ( (  0 ( i i 0 ( i ( ( j  \ ili . 
I 
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fo r  all k 2 0 and j 2 0, a unit element i E c ( i ) ,  and right actions of Z cally. This fixes an action of Z.  on S(ji , .  . . , j ), where j = ji- . jk' F o r  
J k j 

on Cf(j), a l l  subject to the following formulas. n E Xk, define 

(a) If c E c(k),  dr e &.ir) fo r  i 5 r 5 k, and e E (i ) for  u < j  ,.... ,lk>:S(ji , . . . . jk) + s(ju-i(i) ..... j 
u- (k) 

1 
i ( ~ 1 . j ~  S . . .  + j k ,  then by 

u < j i , .  . . , jk>{ii,. . . . ik) = {i u- i ( i )* - . .n i  1 -  
u- (k) 

Y(Y(C; di , .  . . , dk); e i , .  . . , e 
j +. . , +jk) = Y (c' f . . . . fk) . 
i Via the given isomorphisms of S(ji,. . . , jk) and ~ ( j  *... * j  

u- (k) 
) 

where f = y (dr; e 
jiS. . . ~ j ~ - ~ i - i ' * ' ' * ~ .  J S. . . Sjr ) (or * if j =O). 

i with { i ,  2, .  . . , j}, u < ji, . , . , jk> may be regarded as  an element of Z. . 
J 

k For T E 2. , define T~ @. . . @ T ~  E Z j  by . 
(b) If c E (k), then y(c ; i ) = c ; if d E C(j),  then y(i;  d) = d. Jr 

(T iQ9 . . .  @ ~ ~ ) { i ~ , . . . , i  1 = { - r i i i r . . . , ~  i 1 .  
(c) If c E &(k), dr E & (jr), u E Zk , and T 6 X , then k k k 

jr 

~ ( c u ;  di2. .  . , dk) = y(c; d u-i(i) , . . . ,du-i(k))di i , . .  . , jk)  
Notations i. 5. Given non-negative integers k, jr for i < r < k , and hri 

and 

~ ( c ;  di-ri,. . . , dk-rk) = y(c; di,  . . . , d )(T 6) . . . 6) T ~ )  . tor i ( r 5 k and i 2 i 5 jr , define v = v{k, j , h .} to be that permuta- 
k i r rl 

t ion of the set  of 

Definition 1.3. An action 8 of an operad on a space X con- k jr 

s is ts  of Z -equivariant maps 8 . (j) X xJ + X such that eO(*) i s  the 
j j ' 

X ( 6 hri ) = TT ( .C hri) 
r = i  r r = i  i= i  

I E  S(ji,. . . , jk) 

basepoint * e X, 8 ( i ;x)  = x, and, if c E c ( k ) ,  dr e (j,) for i < r ( k, i 

and x E X  for i ( s ( j  +... + j k =  j, letters which corresponds to the comparison of the two ordered sets (where 
i 

fi denotes the ordered disjoint union) 
gj(y(c; di , .  .. ,dk);xi,. . . ,x.) = Bk(c; yi.. . .. yk) . 

J 

where 
j t  jk 

S(hii ,..., \J and S( hii. ..., \ )  
i i= i i=  i 

yr = 8. (dr;x ) (or * if jr = 0). I ~ s ( j , .  . . . .jk) 
J r j iS. . .+jr~i+i"" 'Xj  i S... +jr 

th 
obtained by sending an element ( a  i ,  . . . , ak) with i < a, 5 hri of the I 

We require the multiplicative analog of Notations i. i, and distri- r 
summand of the f i rs t  set to that element {b 1'"" 

b ) of the second set k 
butivity permuations, to define actions of operads on operads and of operad 

5uch that br = hri + .. . + hri 
+ a  . 

pairs on spaces. r-i 

Definition 1.6. An action A of an operad k on an operad & con- 
Notations 1.4. F o r  j 2 i ,  let S(ji, . . . , jk) denote the set of a l l  sequences 

slsts of maps 
I = {i i , .  . . , ikJ such that i < i 5 jr , and order  S(ji,. . . , jk) lexicographi- 

A: B(k) X C(j i )  X ... X C(jk) + c ( j i * - * j k )  

[or dl k k  0 and j ) 0 subject to the following formulas: 



(a) If g E )d (k), gr E f i  (jr) fo r  i l r i k, and cs E &(is) fo r  

i 5 s 5 ji+ . . . + jk , then 

X(y(g; gi, . . . ' gk): c i s . . . ,  c 

where 

dr=  X(gr;c j +...+jr-l+l' '"'C 
) ( o r * i f  j = 0). 

1 jl+. . . +jr 

(a') If g E h (k), cr  e & (jr) fo r  i 5 r ( k, and dri E (hri) for  

i i i I . j r r  then 

where dI=?,(5; d , ; , ,  . . .> d k i J  
d = (diii,. . . ,\) and er = y(cr: dri. .  . . . 
I d 1 .  

r j r  

(b) If C E  c ( j ) . a n d  i~ k ( i )  i s t h e u n i t o f  b, then A ( l ; c ) = c .  

k 
(b') If g~ h(k) a d  i E e ( i )  i s t h e u n i t o f  , then X(g;i ) =  i. 

(c) If g E h (k), . cr E el), and u E Zk , then 

X ( ~ U ; C  i r . . . . ~ k )  = x ( ~ ; c  , q 1 )  p . . - * C  ) u < j  i , . . . , jk> .  
rr- (k) 

(c') If g e b(k), cr  6 (jr), and T E X , then 
r jr 

X(g; C l f i s  .. . 8 ~ ~ 7 ~ )  = A(g; c I r  .a. c ~ ) ( T ~ @ .  0 .  @ T ~ ) .  

Formulas (a), (b), and (c) relate the X to the internal structure of 

,& and formulas (a ' ) ,  (b'), and (c') relate the A to the internal structure 

of & . 
Definition 1.7. By an operad pair ( c ,  ki ) , we understand operads 

& and f d  together with a given action of 8 on & . (6 , & ) i s  said to 

be an E pair if and k are E operads. A rnorphism ( c  , 8 )  - (c', YJ') 
03 03 

of operad pairs is  a pair of morphisms of operads & c' and b+ b' 

which commute with the given actions. 

1 1 1  I I 1 
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Henceforward, assume given an operad pair ( c  , ). 

I Definition 1.8. Let (X,c) E 8 [je]. F o r  k 2 0 and j 1 0  define 

@ 
j r  . 

by the following formula for g E &(k), cr  e C(jr),  and y E X . 

E k 
where, if y = (xrI, .  . . , x ). then yI = (xli , . . . . xK5) E X . k< r j r  i 

?k 

Recall the construction of the monad C in 3 from [45,2.4]. 

Proposition i. 9. F o r  (X,{) E .Q [gel, the maps gk induce an action 

of h on CX such that p:CCX + CX and .Q:X + CX a r e  morphisms of 

bo-spaces. Therefore the monad C in 2 restricts to a monad in the 

category /.. [ 3 ,I. 

Proof. By (c') ahd (a') (applied to the degeneracies u. of [45, 2.3]), 

the ck respect the equivalence relation used to define CX. The resulting 

maps Ek: fi (k) X ( c x ) ~  + CX satisfy the associativity, unit, and equi- 

variance conditions required of an action by (a), (b), and (c). The map 

c: SO + cx is  the composite of .:SO + x and ?: X - CX. Now ccx E b [d  ,] 

by iteration, and the maps p and q commute with the actions E by 

(a1) and (b'). 

Definition 1.10. A ( c  . h)-space (X, 8,5) i s  a c - s p a c e  (X, @) 

and a fJO-space (X, 5) such that 8: CX + X i s  a morphism of -spaces. 
8 0  

Equivalently, i t  i s  required that the diagrams 

j i  jk 1 x 8 .  X...X8. 
/5(k)x C(j,) xx x . . .  x e c j k ) x x  J 1 Jk, h(k)  xxk 



commute. A map of ($ , )-spaces i s  a map which i s  both a map of 

-spaces and a map of ~ o - s p a c e s .  

Since the notions of -space and of C-algebra in 1 are  equivalent 

[45, 2.81, it follows immediately that the notions of (C , ?j )-space and of 

C-algebra in h [a 01 are  equivalent. 

Definition 1.11.. An Em ring space i s  a ( e ,  ,k$ )-space where 

( k ,  &) i s  some E operad pair. 
m 

We have not defined and do not need any notion of a morphism between 

Em ring spaces over different E operad pairs. 
m 

2. Units; examples of operad pairs 

We here point out a few consequences of the definitions and display 

some examples of actions by one operad on another; these should help to 

motivate our general theory. 

F o r  a space X, CX is  the free & -space generated by X. F o r  

the same categorical reason [45, 2.91, if X i s  a -space, then CX i s  BO 
the free ( c  , /$)-space generated by X. In other words, if ( k ,  iJ)f gel 

denotes the category of (c , f i  )-spaces, then the function 

Hom 
h [ gel ((X,5), (y ,  5)) + Horn ( c *  h )[Lfel 

((cx, CL, 5), (Y, er 5)) 

obtained by sending f: X - Y to the composite 

e 
CX Cf. . CY 'Y 

i s  a natural isomorphism with inverse g -c g 0 q for  g: CX -, Y. 

0 
Definition 2.1. As observed in N. 1. 5, (S ,5)  is  a b0-space with 

Ej(g)( Ei' .. ., E. )  = E,. -.. E. 
J J 

1 for g t h ( j )  and E i  = 0 o r  i (where the product i s  the ordinary one), and 

0 
c:S -. X i s  a morphism of ~ o - s p a c e s  for any k -space X. F o r  a 

0 

(G, &)-space X, let e also denote the induced map 

(cso, l l>5)  - ( x , e ,  5) 

of ( 6 ,  h )-spaces; e i s  called the unit of X. 

Of course, e i s  analogous to the unit Z + R of a ring R. 

If G denotes the monad associated to N , then GX i s  the free 

fJ -space generated by a space X. When 6 and b a r e  E operads, 
0 

the homology isomorphisms CX 6 (C X G)(X) - GX of [45,3.10 and 46, 

A. 21 show that C and G can be used interchangeably and can thus both 

I,e thought of a s  additive. The ./3 -action on a ( c  , !$ )-space gives r ise  

lo curious and useful exponential units. 

Definition 2. 2. Let (X, 5) be a kj -space. F o r  any given element 

r s %X, define a map e : SO - X by sending 0 to 1 and 1 to any chosen 

point in the component r. With SO regarded as  a based space with base- 

point 0, form GSO and let e also denote the induced map 

(GsO, ll) - (X, 5) 

,,I Fd -spaces; e i s  called an exponential unit of X. Up to homotopy 

LI~rough b -maps, e i s  independent of the choice of the point in the com- 

ponent r. 

Think of the set 2' of non-negative integers as the free monoid 

(under addition) generated by the element 1. The maps e for  a (C;' , )- 

f .  
Hpace a re  analogous to the maps of monoids from Z Into the underlying 

~nultiplicative monoid of a ring R. 

There a r e  several algebraic examples of operad pairs, for which 

tile component spaces c(j) and h( j )  a r e  discrete. Let an and f i  de- 



note the operads of [45,3.1] such that an  4r) -space i s  a topological monoid 

and an n - s p a c e  i s  a commutative topological monoid. Recall  that 

(j) = Bj with identity element e and that n ( j )  = {f.). 
j J 

Lemma 2.3. (a ,a)? ) i s  an  operad pair with respect to the maps 

A:ZkXB.X ... X Z .  -, B determined by 
J J~ j l - - - j k  

and the equivariance formulas (c) and (c l )  of Definition 1.3. 

Indeed, the equivariance formulas a r e  dictated by this lemma, which 

as se r t s  that these formulas a r e  compatible with the distributivity and unit 

formulas of Definition 1.6. An (m ,m )-space i s  a topological "pseudo 

semi-ring", "pseudo" meaning that the addition need not be commutative 

and "semi" meaning that there  need not be additive inverses. 

L e m n ~ a  2.4. F o r  any operad b , (n , ) i s  an operad pair with 

respect to the only possible maps A, namely 

A(g; f j  , . . . , f .  ) = f .  for all g o 8 (k). 
1 J~ ~ ~ . - - j ~  

An tn ,an )-space i s  a topological semi-ring and an (n  , n ) - s p a c e  

i s  a commutative topological semi-ring. The unique maps + n and 

f i  -*n define a morphism (c  , .b ) - (n ,n) of operad pairs for any 

operad pair (t , PJ ). Thus any commutative topological semi-ring R i s  

a ($  , & )-space. As soon as  we verify that E operad pairs  exist, i t  will 
w 

follow that any such R i s  an E ring space. Conversely, the se t  n X 
w 0 

of components of an  E ring space X will be a commutative semi-ring 
CO 

and the discretization map X -+ n X will be a map of E ring spaces. 
0 w 

Evidently, E semi-ring space would be a technically more accurate 
m 

t e r m  than E ring space. 
w 

pleted to a commutative ring by formation of the Grothendieck group with 

-. 
respect to addition, the multiplication being ca r r i ed  along automatically. 

Analogously, we shall s ee  in  chapter V1I that an E w ring space can be 

f completed to  an E w ring space which i s  grouplike with respect to addition, 
B 

the multiplicative Ew structure being carr ied along automatically. Indeed. 

this topological completion will induce the algebraic completion on noa 

h The definition of an E ring space implies the existence of consider- 
F w 

able s t ructure  on the higher homotopy groups of such a space. The follow- 
g 

Ing lemma displays the most obvious bit of structure.  
P - 
i' Lemma 2.5. Let (X, 6, c)  be a (C, f i  )-space, where and h- 
0 
k- are locally connected operads. Then the homotopy groups n*X defined 
L 

with respect to the basepoint zero form a commutative graded semi-ring; 
C / if n X i s  a group under addition, then T*X is a ring. 

0 
f- 
f Proof. Addition in n*X i s  induced by the additive product B2(c) 
[ 
b. [or any c o c (2 ) .  Since the multiplicative product $2(g) for  any go h ( 2 )  
E- 

l: factors through the smash product XAX, i t  induces pairings 
L 

i 
riX @njX + riijX for all i, j l 0  by letting the product of n : S - X and 

p : Sj -, X be the composite 
F 

! 
t The axioms for a commutative semi-ring follow directly f rom Definitions 

f 1.6 and 1.8 and the assumption that the &(j) and k ( j )  a r e  connected 

(compare [45, p. 41). L 
The simplest E m operad pair,  and the one suited to categorical 

L 
k- applications, i s  derived f rom (a'/i .a))) by application of the product- 
& 
b 

I- preserving functor ID*(?)] f rom spaces to contractible spaces given by 1, 
5 [45,10.2 and 11.11. Recall f rom [45,15.1 and 10.31 that application of this 
i 



functor to ')?') gives an E operad such'that Q(j)  i s  just the normalized 
m 

version of Milnor's universal Z. -bundle, 
J 

Lemma 2.6. (Q . & ) i s  an Em operad pair: the action 1 of on 

itself i s  obtained by application of the functor ID*(?) 1 to the action of 3-Q on 

itself. 

Proof. The formulas of Definition 1.6 can be written out a s  com- - 
mutative diagrams, hence, by functoriality, these formulas hold for 

since they do so for  an. 

A categorical description of (&, f& will be given in section 4. The 

following remarks will be needed in VII § 3. 

Remarks 2.7. (i) Zj  = Do(Zj), and there results an inclusion of operads 

m c fd. and an inclusion of operad pairs (a)l,m ) C (Q, Q. Thus a 

Q-space i s  also a topological monoid (with product CB) and a (Q, a - s p a c e  

i s  also a topological pseudo semi-ring (with second product 8). The pro- 

ducts CB and O coincide with those given in t e rms  of the actions as  

e2(e2) and 6 2 (e2). 

(ii) Ligaard and Madsen [39,2.2] have verified that any Q.-space Y 

i s  a strongly homotopy commutative H-space with respect to the pro- 

duct @. Therefore the classifying space BY i s  an H-space and the 

natural map 5 : Y .-+ OBY i s  a group completion in the sense of [46, 

2.11 (e.g., by [47,15.1]). 

(iii) It i s  sometimes convenient to replace general E spaces by 
m 

equivalent -spaces. This can be done a s  follows. Given the 

& -space (X, 81, where & i s  an E operad, construct the maps 
a, 

llcre the bar  constructions a r e  specified by [45,9.6 and 11.1 (see p. 126)], 

Il(D, C X D, X) i s  a -space and both maps a r e  morphisms of 

X Q-spaces by [45,12.2], &(e.rrl) i s  a strong deformation retraction 

with right inverse t(q ) by [45,9.8 and 11.10], and B(rr2, 1 , l )  i s  a 

l~omotopy equivalence by [46, A. 2 (ii) and A. 4(ii)]. 

( IV) F o r  X a s  in (iii), l e t  GX = OBB(D, C X D, X) and let  

fi = c0B(rrZ, 1, I )  0 T (q) : X .-+ GX. By (ii), g i s  a natural group com- 

pletion of the c - s p a c e  X. The existence of such a construction was 

:~sser ted in  [46, 2. I], but the argument given there was incomplete. 

(v) In the second result labelled Theorem 3.7 in  [46], I claimed that 

(It on DX was a morphism of f&-spaces. That assertion i s  clearly 

lirlse, as  it  would imply that CB i s  actually commutative. The mistake 

{kccurs in the formula for  y [46, p. 761, f rom which a factor 

r r ( j l , .  . . , j k ) was omitted (compare section 4). 

(v i )  Aside from use of (iv) in the proof of VLI. 3.1, we shall ignore the 

classifying spaces which result f rom the monoid structures on 6). -spaces 

et\d (Q, &)-spaces in  favor of the deloopings constructed by application 

the machinery of chapter VII. The lat ter  have numerous special 

properties essential to our theory, and I have not proven that the two a r e  
I 

n quivalent. 

5 3 .  Symmetric bimonoidal and bipermutative categories 

Categories with appropriate internal structure provide a very 

rich source of E a, spaces and E m ring spaces. Here all  categories 

with internal structure a r e  to be small  and topological, and all  functors 

icrid natural transformations a r e  to be continuous. F o r  a category a , 



@a and &@ denote the spaces of objects and morphisms of a and 

S, T, I, and C denote the source, target, identity, and composition func- 

tions, all  of which a re  required to be continuous. If no topology is  in 

sight, we can always impose the discrete topology. 

Recall that a symmetric monoidal category is  a category to- 

gether with a functor 0 : ~ x Q .  - & and an object * such that t] is 

associative, (right) unital, and commutative up to coherent natural iso- 

morphisms a, b, and c [40, VII, § 1 and 8 71. a i s  permutative if U is  

strictly associative and unital, with no isomorphisms required. Coherence 

with the remaining piece of structure, the commutativity isomorphism c, 

i s  then guaranteed by commutativity of the following diagrams for 

A, B, c E @a. : 

Symmetric monoidal categories can be replaced functorially by 

naturally equivalent permutative categories, but the relevant notions of 

morphism require explanation. This is  particularly so since the usual 

categorical definition of a coherent functor between symmetric 

monoidal categories would allow examples like the forgetful functor from 

modules over a commutative ring R under @JR to Abelian groups under 

aZ and is  too lax for our purposes. 

Definition 3.1. A morphism + 0' of symmetric monoidal 

categories is  a functor F: a + a' such that F * = * together with a 

natural isomorphism $:FAD F B  -, F(AoB) such that the following dia- 

grams are commutative: 

FA F A D E *  and F A n F B  F B n F A  

A morphism - CL' of permutative categories i s  a functor F: a -+ a' 
nuch that F* = * , FA o FB = F(A m B), and c = F c  on FA 0 FB = F(A u B). 

Note that a morphism of symmetric monoidal categories between per- 

mutative categories need not be a morphism of permutative categories. 

A slight elaboration of the proof of [46, 4. 21 gives the following 

Inore precise result. 

Proposition 3. 2. There i s  a functor @ from the category of 

uyrnmetric monoidal categories to the category of permutative categories 

irnd a natural equivalence n: QR - a of symmetric monoidal categories. 

I f  a is  permutative, then .rl is  a morphism of permutative categories. 

One often encounters categories with two symmetric monoidal 

ntructures, one additive and one multiplicative, which satisfy the (right) 

distributive and nullity of zero laws up to coherent natural isomorphisms 

d and n. We shall say that such a category is  symmetric bimonoidal. 

Laplaza [35] has made a careful study of such categories. In particular, 

he  has given a list  of diagrams the commutativity of which ensures that 

ti11 further coherence diagrams which can reasonably be expected to 

commute do in fact commute. Comparison of his List with the notion of 



Definition 3 . 3 .  A bipermutative category ( a, 8 , 0 ,  c,@ ,1 ,  ?) i s  

a pair of permutative categories ( a, CB , 0, c ) and (a ,  @, 1,  E) such 

that the following three conditions a r e  satisfied. 

(i) o @A = o = A @ O  for A E 64. and I ( o ) @ ~  = I(O) = ~ @ I ( o )  for 

f E JMCi ; that i s ,  0 i s  a s t r ic t  two-sided zero object for @. 

(ii) The right distributive law is  strictly satisfied by objects and morph- 

isms,  and the following diagram commutes for A, B,C e @LL : 

(iii) Define a natural left distributivity isomorphism 1 as the following 

composite 

then the following diagram commutes for A, B, C, D E : 

Laplazaas work [35,  p. 401 implies that a bipermutative category i s  

symmetric bimonoidal. In the absence of strict commutativity, it i s  clearly 

unreasonable to demand that both distributive laws hold strictly. The 

choice of which law to make s tr ic t  is  logically arbitrary, but our choice 

is  dictated by consistency with the lexicographic ordering used in 

Notations 1. 4. 
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Definition 3 . 4 .  A morphism (Z .-, @' of symmetric bimonoidal 

n degories i s  a functor F: &-- @ such that FO = 0 and F i  = 1 to- 

gether with natural isomorphisms $:FA CB FB - F(A fB B) and 

,It : FA @ F B  .-, F (A @ B) such that (F, $) and (F, + ) are  morphisrns of 

nymmetric monoidal categories and the following diagrams a re  commutative: 

d I i 0 " FA &FO and (FA CB FB)@FC - (FA @FC) CB (FB@FC) 

A morphism a -C Cc of bipermutative categories is  a functor F: k* I t a  

wl~ich i s  a morphism of permutative categories with respect to both the 

ntlditive and multiplicative structures. Again, a morphism of symmetric 

\~lnionoidal categories between bipermutative categories need not be a 

I I I I J  rphism of bipermutative categories. 

Proposition 3.  5. There i s  a functor rn from the category of 

myrnmetric bimonoidal categories to the category of bipermutative cate- 

gories and a natural equivalence r: GCL---t a of symmetric bimonoidal 

t .~tegories. If & i s  bipermutative, then r i s  a morphism of bipermu- 

tiltive categories. 

Proof. To avoid technical topological difficulties, assume either 

t l r i k t  i s  discrete (which i s  the case in practice) o r  that 0 and 1 a r e  

oon-degenerate basepoints such that 0 i s  a s t r ic t  unit for CB and i i s  a 

nlrict unit for  @ . The latter condition can always be arranged by growing 

whkskers on the given 0 and 1 (by adjoining copies of the category 3 with 

two objects and one non-identity morphism) so as  to obtain a new 0 and 1 



a s  requi red .  We cons t ruc t  = a s  follows. Le t  (Oa)' be  the f r e e  

topological  monoid, with product  denoted by W , genera ted  by (4-a 

modulo the  re la t ions  e = i and 0 B A = O =  A $i 0 f o r  all A E F &  . Let  

IS) a be t h e  f r e e  topological monoid,  with product  denoted by El , generated 

b y  ( @ a ) 1  modulo t h e  re la t ion  e = 0. Extend t h e  product  bil f r o m  

((Xi)' to  a l l  of (963 by the  formula  

( A i @  ." ' Am) Q (Bi El " ' Fl Bn) 

= ( A ~ H  B ~ )  e . . . e ( A ~ ~ I B , )  EB . . . EB ( A , z . I B ~ )  . . . a ( A ~ U B , )  

f o r  Ai. B. E ((SO-)' . Both products  o n  Cf@ a r e  assoc ia t ive ,  0 is a 
J 

s t r i c t  unit f o r  Ell and  z e r o  f o r  , i i s  a s t r i c t  unit f o r  a , 
and the  r igh t  distr ibutive l a w  holds. L e t  q : 6CL + 6% denote the  evident 

inclusion. Define T: 08 by n(0) = 0 ,  a ( i )  = i ,  

T ( A ~ ~ . .  . m~ n ) = A ~ @  & . @ ( A ~ @  ... ( A , - ~ @ A ~ )  ... )) 

f o r  Ai E 00- , Ai # 0 and Ai # i ,  and 

d A ; m  ... B A S )  n = T A ~ ~ O ( T A ~ O ( T A ; Q . . .  (BA;-~@TA;) ...)) 

f o r  Af E (U&)I,  Af # 0. Define aY16a by 

a ( B ,  B') = {B] X ~ ( T B ,  TB') X {B1] . 

The singleton s e t s  de te rmine  S and T f o r  dj , and I and C a r e  induced 

f r o m  the  cor responding  functions for  . h fi i s  topologized a s  a sub- 

s p a c e  of QRX 'maXQaj . The products  and @ on and the  s y m -  

m e t r i e s  c and 2' of 83 a r e  de te rmined  b y  the following a r r o w s  of : 

- - N - 
T(B C)  --=+ TB O TC vB1 O TCI - r ( B 1  C r )  

f o r  m o r p h i s m s  (B, f ,  B1)  and (C, g, C1)  of fi and 

I ~ l ~ ~ ~ ' l l l i ~ , , ~ ~ ~ 3 ! , ~  
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N r 
n ( B @ C ) L - r r B C e . r r C  TCCenB --=-n(C12/B) 

" C! 

T ( B ~ C )  - L ~ B @ ~ C  2 ~ C @ ? r ~ d n ( C [ i i ; l ~ )  

objects  B and C of ; the  unlabelled i s o m o r p h i s m s  a r e  uniquely 

a rmined  b y  the  monoidal  s t r u c t u r e s  of a . Define q : ma - m4 

zl(f) = (A, f, A') f o r  f: A -t A1 and define T :  3nbJ -t m& by 

tl, g, B') = g f o r  g: TB - r B r  . Then q and T a r e  functors,  

11 is  the identi ty functor ,  and t h e  m o r p h i s m s  (B, ITB, ~ T B )  of & 

fine a na tura l  i s o m o r p h i s m  between q r  and the  identi ty functor  of B .  

lo remaining verif icat ions a r e  equally s t ra igh t forward .  

, Bipermutat ive ca tegor ies  and E r ing  s p a c e s  
03 

We h e r e  descr ibe  the  E operad  pa i r  (Q  ,&) categorical ly,  
m 

iew the passage  f r o m  permutat ive ca tegor ies  to 4! - spaces  obtained 

[46 ,  $41, and cons t ruc t  a functor  f r o m  the  ca tegory  of bipermutat ive 

o r i e s  to t h e  ca tegory  of ((a, &)-spaces.  - 
Recal l  that  the  t rans la t ion  ca tegory  G of a monoid G h a s  objects  

I l r ~ !  elements of G a n d  m o r p h i s m s  f r o m  g' to  g" those  e lements  g E G 

uch that  g l g  = g". When G i s  a group, g i s  unique and a functor  with 

4 

rirnge G i s  therefore  uniquely de te rmined  by i t s  object  function. Note 

,., 
t11:rt G a c t s  f r o m  the  r igh t  on G v i a  the  product  of G. - .., 

~ e t  ~ : z ~ x z .  x . . .  xS. -2 be the  functor  defined 
;- J i J~ j i+. . .+jk 

[- 1111 objects by the  formula  

( 1 )  ?(n;-ri..  . . , r k )  = (7 @ . . .  @ T  ) r ( j i  ,..., j k ) .  
~ - ~ ( i )  u- (k) 

('f'he fac tor  u ( j i , .  . . , jk) was  inadvertently omi t ted  f r o m  t h e  definition 

of given i n  [46, p. 821. ) 



N -  - .., ,.d 

Let X:ZkXZ. X . . .  XZ.  + Z. be the functor defined on 
J i  Jk Jie"jk 

objects by the formula 

Let ~a denote the classifying space of a (small, topological) 

category @.. and recall that B i s  a product-preserving functor from 

categories to spaces (e. g. [46,4.6]). As observed in [46,4.7], BE coin- 

cides with JD*G] for any topological group G. By comparison of (1) to 

the equivariance formulas in Definition 1. 2, the structural maps y of the 

Em operad (r;! coincide with the maps 

By comparison of (2) to the equivariance formulas in  Definition 1.6, the 

maps X which give the action of '45. on itself coincide with the maps 

Alternatively, this description can be used to define the E operad pair 
OJ 

(Q,Q). 

Let (a, Cl , * , c) be a permutative category. As pointed out in 

146, p. 811, c determines Z.-equivariant functors 
J 

such that c restr ic ts  to the j-fold iterate of CJ on {e.} X aJ = aJ. 
j J 

Th: coherence diagrams of the previous section imply the following result. 

Indeed, by the very meaning of coherence, we need only observe that the 

diagram of the lemma makes sense on objects. 

Lemma 4. i .  The following diagram i s  commutative for all j 1 0, 

k 2 0, and j. 2 0 such that jl + . . . + jk = j : 

. ixc. x... xc .  

X.5. X dk 1 Jk - ~ X L L  k 
'k 

~ 1 1 ~ : r e  p is  the evident shuffle isomorphism of categories. 

Comparison of the lemma to Definition 1.3 gives the following 

I (ttiuequence. 

Proposition 4. Z .  Define 8. = BC.: 8 0 )  x = B(%.x 0-j) - BCL. 
J J  J 

lllrn the 8. define an action 8 of a on B a  , and B restr ic ts  to a 
J 

ittnctor from permutative categories to 'gL -spaces. 

Now let (a, CB, 0, c, @ ,  1, '6) be a bipermutative category. Then 

4 cbl~t.rence implies the following analog of Lemma 4. I. 

Lemma 4.3. The following diagram is  commutative for all j 2 0, 

I* '- 0,  and j. > 0 such that jl.. . jk = j: 
I - 

*hel.c w is  defined on objects and morphisms by the formula 

w ( r , ~ ~ ,  yi, .  . . , T ~ ~  yk) = ( U , T ~ ,  . . . , T  x Y ~ ) ) .  
k' T ~ s f i  . .... i \ 



i l l  1 1  I I I /  l l l 1 : ' i '  
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Comparison of the lemma to Definitions 1. 5 and 1 :7 gives the 

following consequence. 

Proposition 4.4. The actions 8 and g of a on B& specified 

by 8. = Bc. and 5 .  = Bz. give an action of the E operad pair (a ,a ) 
3 3 J J  m 

on B a  , and B restricts to a functor from bipermutative categories to 

(&,a) - spaces .  

The following addendum is  sometimes useful. 

Remarks 4.5. F o r  i e , let a. denote the subcategory of a 
which contains the unique object i and all morphisms from i to i; B ai 
is the ordinary classifying space of this monoid of morphisms. Clearly 

(B k0, 8) is  a sub I& -space of (BCL, 0) and (B ai, 5 )  is  a sub a - s p a c e  

of ( B R , 5 ) .  

There i s  a more general way of looking at the constructions above. 

One can think of {D*Xjlj > 0 1 as specifying an operad &* in the 

category of simplicial spaces (or sets, since the D X. are  discrete). The 
9 J  

actions of a on B& result by passage to geometric realization [45, $ i l l  

from actions of on the simplicial spaces B * a  [46,4.6]. Although 

no such examples will be studied in this volume, there exist simplicial 

spaces with actions by a* or  by the pair ( Q B_* a*) which are  not of 

the form B*& for any a ; clearly our theory will apply to their 

realizations. 

§ 5. Examples of bipermutative categories 

The seminal example, which will map into all others, is  the 

following one. 

' 1 1  I ' ,' 8 1  1 l , l , l ' l  
tbl 

Let 6 denote the category of finite sets n 2 0 and their 

rnorphisms. Think of n as {1,2,.  . . ,n)  and identify c'(n,n) with 

?- symmetric group 2 Then (6 , d, 0, c,@, 1, i s  a bipermutative E- n. 
d and @ 

and (5 fB 

and ( ~ 6 3  

are  defined are  defined on objects and morph- 

n t i  if l (  i s m  
c(i) = 

i-m i f  m < i ( m t n  

g 
L- p'or 8, mn should be thought of as {(I ,  l ) ,  . . . , (1, n), . . . , (m, 1), . . . , (m, n)] 
L 

f- and it is  this choice of order (required for consistency with Notations 1.4) 
a. 

! - which leads to the strict right, rather than left, distributive law. The I - r lipace DS' is  the disjoint union of the orbit spaces 9 G)/Z:~ [45,8.11], 

i 
S L I ~  the unit e: DS' -c BE of Definition 2.1 coincides with the disjoint 

!< union of the homeomorphisms 

k 
k 
i j /: ttpecified in [45,10.3]. (Alternatively, use EX = BZ..) We therefore 

j~ 

i~ogard e as an identification and conclude that B E  i s  the free (41, a)- 
ti 

C 0 
& space generated by S . e b 



F o r  a topological ring A, the groups K.A for i > 0 can be defined 

in terms of permutative categories @A o r  3.A of finitely generated 

projective o r  f ree left A-modules (as will be discussed in VIII 5 1). When A 

i s  commutative, PA and .3A can be taken as  bipermutative categories. 

In the case of YA, we can be more explicit. 

Example 5.2. Define . Q ~ A  as  follows. The objects of $ 7 ~  a r e  the 

n 
non-negative integers, each thought of as A together with its standard 

ordered basis {el , .  . . . en) . The morphisms of %XA a r e  the iso- 

n n 
morphisms A -. A . Thus J , x ~ ( m ,  n) i s  empty i f  m n and 

2 xA(n, n) = GL(n, A). Define a functor e: 6 -c /!.$A by e(n) = n on 

objects and e(u)(e.) = e on morphisms u e I: . Then 
' r - l ( i  ) n 

( /2J&l, CB, 0, c) is  a permutative category and, if A is commutative, 

( XA,@, 0, c,@ , l , q  i s  a bipermutative category, where CB,@ , c, and 2 

are  specified by the requirements that % and @ have their usual meanings 

(with respect to the isomorphisms Am CB - and A ~ @ A ~  -. Amn 

defined as usual on ordered bases) and that e: & + fJ $A be a morphism of 

permutative and, if A i s  commutative, bipermutative categories. Note that 

e factors through for any A. By the naturality of the unit of 

(&, Q)-spaces, Be: BE: -L B!J&'A coincides (under the identification 

0 
DS = B & ) with the unit of B b YA. We identify morphisms of 8 4 A  

with their matrices with respect to the standard bases. F o r  a morphism of 

rings a: A - ~ A :  define b q a :  ~ J X A  -. 9 XA' by applying a to al l  entries of 

matrices. Then hx i s  a functor from rings to perrnutative categories and 

from commutative rings to bipermutative categories. 

Example 5.3. If A i s  commutative, define OA to be the sub bipermutative 

category of .uqA whose morphisms a re  the orthogonal matrices 

t 
(MM = I). Then a is  also a functor from commk ative rings to bipermuta- 

clcterminant one, since the permutation matrices required to define c and 

I would no longer be present, we can obtain a sub permutative category 

of & under CB by restricting objects to the even numbers and restr ic t-  

-f i t l ~  morphisms to the elements of SGL(Zn, A). Similarly, define 

J f '  = 0 n 4l-J.f. 

In the examples above, the set of n X n-matrices with entries in A 

- 0  be given the obvious product topology and GL(n, A) and O(n, A) a r e  

1 , .  I I L .  given the subspace topologies. We have insisted that rings be 

c.~l*~~logized in order  to treat algebraic and topological K-theory simul- 

I I I I I ~ ~ ~ u s ~ ~ .  

i.r.~mple 5. 4. Let IR, Q;, and H be the (topologized) real  numbers, 

f + tttriplex numbers, and quaternions. Define subcategories b = i? 6, % 

n t ~ l  JF of fi ZIR, fJ xa;, and b4Ii-I by restricting to orthogonal, unitary 

:f ~ n t l  sy-rnplectic linear transformations, respectively. Then @ and. 'u a re  

I~tp~.rrnutative categories, and complexification 0 -- IL i s  a morphism of 

-1 i~ii~vrmutative categories. 4 i s  an (additive) permutative category and 

r,y~r~plectification 21 + 4 is  a morphism of permutative categories. 

t'f111.1l appropriately specified on bases, the forgetful functors 4 -. -& 

J ~ I I I I  %L + 19- a r e  morphisms of (additive) perrnutative categories, with 

f I I ~ I J C - T ~  functions which send n to 2n. 

The following three examples, whose significance was f i rs t  under- 

sc6,ucl by Quillen [ 5 8 , 5 9 ]  and Tornehave [75,77], a r e  central to the interplay 

lintwcen algebraic and topological K-theory to be discussed in chapter VIII. 

. x n ~ , ~ p l e  5. 5. F o r  a perfect field k of characteristic q #  0, le t  

dq: &;ek -- MYk and , $$ &k+@k 

tlnnt~~e the morphisms of bipermutative categories derived from the Frobenius 



automorphism x - x q  of k . F o r  r = qa, let  ,dr be the a-fold i terate of 

$q. This example is  most interesting when k is  the algebraic closure of 

the field of q elements. 

Example 5.6. Let r = qa where q i s  a prime and a 2 1. Let k r  be 

a field with r elements. Define a forgetful functor f: & x k r - +  E by 

letting f(n) = m on objects and letting f ( ~ )  be T regarded a s  a permuta- 

tion of the se t  kn of r n  letters on morphisms T E G L ( ~ ,  k ). Of course, 

n f depends on the chosen isomorphism of se ts  from k: to 1 ,2 ,  . . . , r . 
With the obvious lexicographic choice, f gives an exponential morphism of 

permutative categories 

f: ( f i 4 k r ,  CB, 0, C)  + ( tr ,a I,%). 

Moreover, the composite morphism of @-spaces 

coincides with the exponential unit e defined in Definition 2.2 since B(fe) 

0 sends 0 to 1 and 1 to a point in the component &.(r)/Z of DS . This 

works equally well with fi.2;kr replaced by @'kr .  

Example 5.7. Let k be a field of characteristic # 2. O(n, k) consists 

of the isometr ies  with respect to the  bilinear form B associated to the 

2 
standard quadratic map C2: kn -, k , Q(xl,. . . , x J = Zx. [51, p. 841. n 

0 .  

Recall f rom [51, p. 1371 that the spinor norm v : O(n,k) -. k / (  k)' i s  

defined by 

V(T) = Q(zi) ... R(zr) if T = T  ... T E O(n, k ) .  
'1 'r 

n 
Here T (x) = x - [2B(x, Y ) / Q ( Y ) ] ~  for x, y E k with y # 0. Every T i s  

Y 

a product of such symmetries [51, p. 1021 and, modulo squares,  v (T) i s  

independent of the choice of factorization. If y = e. - e then T per- 
1 j' Y 

mutes e.  and e and V(T ) = 2. NOW specialize to k = k3. Then v 
j Y 

I l l I , !  

1 bz 

d u e s  in ZZ and v ( u ) det( u ) = 1 for  u E Z C O(n, k 3). The 
n 

egory 77- kg of @ k  whose morphisms n + n a r e  those 
3 

k i t  v ( ~ ) d e t ( r )  = 1 i s  a sub bipermutative category 

e v and det a r e  given by formulas of the same form on direct sums 

tensor products. Again, Example 5.6 works equally well with & X k  
3 

We have only listed examples to which we shall refer  in  chapter 

As pointed out by Swan [unpublished], a l l  o£ our examples, and many 

rs,  can be subsumed within a general framework of systems of groups 

for n 2 0 together with homomorphisms Zn - G(n), G(m) X G(n) + 

tn) ,  and, for the bipermutative case, G(m) X G(n) -+ G(rnn) subject 

he appropriate axioms. The following remarks ,  which apply to any 

h example, describe the action maps 

ep: p ( p )  X, BG(~) '  - BG(pn) and 6 p: Q ( p )  X Z  BG(~) '  -, BG(~') 
P P 

lely in  t e rms  of homomorphisms of groups. When .p i s  a prime, the 

uced maps of mod p homology determine operations on 

( fi BG(n): Z ) [26, I 1, and the computation of these operations i s  thus 
n 2 0  P 

educed to the homological analysis of appropriate representations. 

Let (&,@, 0, c) be a permutative category with objects 

I n 2 01 and with morphisms from n to n forming a topological group 

all  that the wreath product Z J G ( ~ )  i s  the 
P 

mi-direct product of Z and ~ ( n ) '  determined by the evident action of 
P 

on ~ (n ) ' .  If we regard Z ( ~ ( n )  a n d  G(n) a s  categories with a single 
P 

," 
rbit category X X ~ ( n ) '  of 2 X ~(n) ' .  

Z~ 
P 

he functor c : X X ~ ( n ) '  + G(pn) factors through the homomorphism 



Application of the classifying space functor B thus gives the commutative 

diagram 

If, further,  (a,%, 0, c,@, 1, F )  i s  bipermutative, then the functor 

: X ~ ( n ) '  - ~ ( n ) '  factors  through the homomorphism zpfG(n)  + G(np) 
P P 

specified by 

( ~ ; g ~ , ~ . . , g ~ )  + u < n  , . . . , n >  (g @gp) 

and application of B gives the commutative diagram 

We use these r emarks  to determine BEZ. The following observations 

a r e  due to Z. Fiedorowicz. 

Remarks  5.9. A moment 's reflection will convince the reader  that, for  an 

t 
integer valued matr ix  M, MM = I if and only if each row and column of M 

has precisely one non-zero entry and that entry i s  + 1. Indeed, the natural 

homomorphism T: (0 (1 ,  Z) -C O(p, Z) is  an isomorphism for a l l  p. Abbreviate 
P 

m 
IT = O(1, 2) and regard BIT', the union of BIT r R P  and a disjoint basepoint 
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t 
0 ,  to be the sub BO-space  BO(0, z ) A B o ( ~ ,  Z) of B b Z .  D(BT ) i s  the f r ee  

t t 
(Q , a ) - s p a c e  generated by BIT , and there resul ts  a map D(BT )-c B 6 Z  of 

(i)J , '&)-spaces. In fact, this map i s  just the identification (compare [45, 2.43 

t &. 8 : D(BT ) E .L!. a (p) Xz B0(1, z ) ~  ----z .L/. B O ( ~ ,  Z) = B@ Z. 

P 
t 

i'lhc functor e: $ + 8 2  gives r i se  under B to the injection DS' + D(Bv ) 

+ 
cintcrmined by the points 0 and 1 of BIT . 



I i l  I . i i  I l l !  

V I I .  The r e c o g n i t i o n  p r i n c i p l e  f o r  E r i n g  s p a c e s  
m 

The zeroth space of a spect rum i s  an E space,  and an E 
m m 

space determines a spect rum and therefore a cohomology theory. If 

I'X denotes the zeroth space of the spectrum associated to an E 
m 

space X, then there  i s  a map L : X -*- I'X which respects  the E 
m 

s t ructure  and i s  a group completion, in the sense  that 

L*: H*(X; Q) + H*(I'X; 9) i s  a localization of the (Pontryagin) ring 

H*(X; k) at i t s  submonoid n X fo r  every  commutative coefficient 
0 

ring X '. (See [46,fjl] f o r  a discussion of th is  definition; the le t te r  I' 

i s  chosen a s  a reminder of the group completion property and has  

nothing to do with the use  of this l e t t e r  in other theories of infinite 

loop spaces.  ) Here spect ra  a r e  to be understood in the coordinate-free 

sense  introduced in  chapter 11, and the resul ts  of [45 and461 just sum- 

mar ized will be  recas t  in t e r m s  of such spect ra  i n  section 3. 

In chapter IV, F r a n k  Ruinn, Nigel Ray, and I introduced the 

notion of an E ring spectrum. In section 2, the zeroth space of such a 
m 

spect rum wi l l  be shown to be an  E ring space. The proof requires use 
a 

of the l i t t le convex bodies operads X introduced in section 1; the 
v 

essential  feature of i s  that the orthogonal group OV acts  on it. 

In section 4, the spectrum determined by the additive E s t ructure  of 
cD 

an E ring space will be shown to be an E ring spect rum and i t  will be 
m m 

proven that, for  an  E ring space X, L : X  - I'X respects  both E 
m m 

space s t ruc tures .  In effect, th is  means that the multiplicative E 
m 

s t ruc tu re  i s  preserved on passage f rom the additive E s t ructure  to i t s  
m 

associated spectrum. As a special  ca se  of more  general  resul ts ,  we 

l l l , l ~ ~ l ~ l ~ , ~ ~ l '  
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rrlll see that if X i s  the disjoint union U K( X l ) ,  then r X  i s  equiva- 
j' 

0 
n t  as  an E ring space to  RS . This result  i s  a multiplicative elabora- 

m 

n of the B a r r a t t -  Ruillen theorem [16;68 746 $31. 

The component r X of the  identity element of I'X i s  a multipli- 
1 

e E space. We prove in section 5 that, under mild hypotheses, the 
m 

calization of I' X a t  any submonoid M of the positive integers i s  
1 

luivalent a s  a n  infinite loop space to the component of the identity element 

f the zeroth space of the spect rum derived f rom the multiplicative E 
a 

nce s t ruc ture  on a 

though I' x i s  con 
1 

cer ta in  subspace XM of X. In other words, 

.strutted by use of the additive E space s t ruc ture  
m 

I X, i ts  localizations depend only onthe multiplicative E space structure.  
m 

ear l ie r  approaches to  multiplicative s t ruc tures ,  only the localized 

>finite loop spaces were  visible because there  was no way to handle the 

tlditive and multiplicative s t ruc tures  in combination. In particular,  the 

nin  result  of Tornehave's paper [76], which descr ibes  localizations of 

in t e r m s  of the symmetr ic  groups, will drop out a s  a special  case  by 

IIIC of our vers ion of the Barratt-Quillen theorem. 

The essential  results  of this chapter were  obtained in 1972 and 

iwc!sented in lec tures  during the winter of 1973. I mention this since 

nt least  one other author has since announced his  intention of developing 

L :I similar theory. 
5- 
6- 

5 I .  The little convex bodies operads 

The little cubes operad cn of [45, $41 played a canonical role in 

tlie passage f rom E spaces to spectra.  Indeed, a s  explained in [45, 
m 

1'. 153-1551, the geometry given by the action of any E operad on a space 
m 

was automatically transformed into the little cubes geometry on the derived 



- 
infinite loop space. We need a canonical E operad pair in order to obtain 

m 

the analogous (but considerably more delicate) passage from E ring spaces 
m 

to E ring spectra. From the definition of E ring spectra in chapter IV, m m 

it  is  clear that the linear isometries operad of I. 1 .2  must be chosen as 

the canonical operad for the multiplicative structure. We require an operad 

ym on which 7 acts and which can be used interchangeably with &_ in 

the additive, o r  one operad, theory. 

Recall the definitions of $ and J* from 1 . 1 1  and I. 1.8. Let 4' 
and $ : denote their respective full subcategories of positive dimensional 

real inner product spaces. Ideally, we would like to construct a functor k 
from 9' to the category of operads such that application of x to R ~ ,  

1 2 n ( m ,  yields an operad Xn equivalent to . In fact, we shall have ' n 

to settle for a good deal less .  While Xm will be (weakly) equivalent to 
t m *  

the for n < m will not be (or at least will not be proven to be) 

e quivalent to the kn.  Moreover, in order to construct the functor X at all, 

we shall have to weaken the notion of operad and shall have to carefully 

examine the resulting geometric structures in order to make sure that 

the machinery of [45 and461 still applies. 

The difficulties can be explained quite simply. To car ry  out our 

original program, we would have to construct a space E V  of embedd- 

ings V + V for each finite dimensional real inner product space V 

such that the following properties were satisfied: 

(1) f c f - '  a EW if C E  C V  and f e  4 (V,W),  d i m V = d i m W .  

(2) c X d ~ & ( ~ € B ~ ) i f c e E V a n d d ~ & ~ .  

(3) c . c ' €  &V if c ,cIE ev. 

(4) The space of j-tuples of elements of & V with pairwise disjoint 

images has the Z.-equivariant homotopy type of the configuration 
J 

space F(V, j) of j-tuples of distinct points of V. 
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1 have been unable to construct such spaces &V, and there is  reason to 

I~vlieve that no such spaces of embeddings exist. We shall be iorced to re-  

place (4) by the following weaker condition 

( 4 ' )  CV i s  a contractible space. 

I.:ven then, the closure conditions ( l ) ,  (2) , and (3) appear to be incompatible, 

.trlcI we shall be forced to drop (3) altogether. However, we shall have to 

I1.1ve spaces of composable sequences of embeddings which satisfy analogs 

, , f  ( I ) ,  ( Z ) ,  and (4'). With these considerations in mind, we proceed to 

~ $ 1 1  r basic definitions. 

Definition 1 . l .  Let V be a finite dimensional real inner product 

ul1,tce. A little convex body in V i s  a topological embedding c: V -+ V 

o trr l i  that the maps ct: V V specified by 

ct(x) = tx f (1 - t)c(x) for x E V 

n r r  also embeddings for all  t E I. Since c = c it  follows that 
t ,s s t t -s t '  

at~~ch c is again a little convex body. A sequence (c1, . . . , c ) of little 
t q 

,  tiv vex bodies is  said to be composable if q =  1 or ,  inductively, i f  q > 1 

1111r1 

( c ~ , ~ ,  . . . , c ~ - ~  ,t, c ~ , ~ ~  c ~ ~ ~ , ~ ,  c ~ + ~ , ~ ,  . . . , c ~ , ~ ) ,  1 5 i < e 

i n  .I composable sequence of little convex bodies for all t E I. It follows 

I ~ I , I ~  each (clat, .  . . , c ) is  again composable and, by inductive use of the 
q, t 

c R ~ I V  t = 0, that all sequences obtained by composing some of the maps 

r (m ordered blocks, with t fixed) are com$osable. 

Although the definition evolved from convexity considerations, the 

(1,l.n~ convex body i s  a misnomer: the image of a little convex body need 

i u t r  I,c convex. 

-. 



Examples 1.2. (i) If c: R R i s  an embedding which i s  an  increasing 

function, then so i s  each ct. Any sequence ( c l , .  . . , c ) of increasing 

embeddings R -- R i s  composable. 

(ii) If c: V - V i s  a little convex body and f a Q (V, W), dim V = dim W, 

1 
then (f c f - l )  = f c f- . If ( c l  . . . , c ) i s  a composable sequence of 

t 9 

l i t t le convex bodies in V, then (f  elf-', . . . , f c f-') i s  a cornposable 
q 

sequence of l i t t le convex bodies in W. 

(iii) If c: V + V and d: W - W a r e  little convex bodies, then 

(c X d)t = c X dt. If ( c l , . .  . , C  ) and (d l , .  . . , d ) a r e  composable 
t 9 9 

sequences of l i t t le convex bodies in V and in W, then (c X d l , .  . . , c  X d ) 
1 9 9 

i s  a composable sequence of little convex bodies i n  V 8 W. 

F o r  rigor,  we should at  this point define the notion of a "partial  

operad". However, to avoid excess verbiage, we prefer  to be informal. 

We agree  to continue to use the t e r m  operad fo r  s t ruc tures  specified a s  in 

Definition VI. 1. 2, but with the s t ruc tura l  maps y defined only on 

specified subspaces of the spaces (k) X ,CZ ( j i )  X . . . X c ( jk ) ,  with the 

two-fold i te ra tes  of the y (as in VI. 1. Z(a)) defined only on specified 

subspaces of the spaces 

and so  forth. The only examples will be the little convex bodies operads 

(and the i r  products with honest operads),  where the y will be obtained by 

composition and the i r  domains will be  specified by allowing only com- 

posable sequences (in the sense of Definition i . i )  to be composed. 

Definition 1.3. Let V be a finite dimensional r ea l  inner pro- 

duct space. Define the little convex bodies operad xv  of V a s  

follows. Let )( (j) be the se t  of those j-tuples < c i ,  . . . , C. > of little 
v 3 

convex bodies such that the images of the c a r e  pairwise disjoint. 

l I l , ! ' J \ i ! ~  1 1 , ' )  
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disjoint union of j copies of V, regard  

a map J~ + V, and topologize v(j) a s  a subspace 

11 continuous functions 'V - V. (Regard JCv:(0) = < > 

edding" of the empty se t  in V.) The requisite data 

j i t . .  . t j  

) ~ ( c ; d ~  ,..., d ) = c o ( d t  . . .  +%): j i  j k 
k i 

k ~ =  V t .  . . +  V + V  

for  those c = < c i . .  . . , ck> E x v ( k )  and 

r , i ,  . . . , drIjr  > E )(, v(jr) such that each pair  (c d ) r '  r ,  s 

i s  a composable sequence; 

b) 1 E X v ( i )  i s  the identity function; and 

< c  i , . . . , C j >  u = <C r ( i ) '  ' ' ' "u(j) 
> fo r  u a  22 

j ' 

ar ly  the action of 22 on x v ( j )  i s  f ree .  F o r  f E $ (V, W), 
j 

im V = dim W, define a morphism of operads k f: J( -+ xw by 

f c f-i on l i t t le convex bodies. Then .hl i s  a functor f rom 4 
to the category of (partial) operads. F o r  finite dimensional inner product 

epaces V and W, define a morphism of operads r: xv - .7( v8w by 

c - c X i on l i t t le convex bodies. By passage to l imits,  precisely a s  in 

thc proof of I. 6 . 9 ,  extends to a functor f rom $ to the category of 

operads. F o r  i <_ n <_ m, define X = xv where V = R ~ .  

n 
Recall f rom [45, $41 that a l i t t le n-cube i s  a map c:  J - J ~ ,  

where J = (0, l ) ,  which i s  a l inear  embedding with parallel  axes (i. e . ,  

rr product of n increasing l inear  embeddings J + J) .  The l i t t le n-cubes 

operad rn i s  defined in precisely the same way that the were,  

but here the y a r e  everywhere defined. Exampies 1 . 2  imply the 

lollowing pair  of results .  

Lemma 1.4. Let a: J R be an  increasing homeomorphism and 

Ict f E ( R ~ ,  V), dim V = n. Then the maps g n ( j )  + 
(j) specified 

v 



-1 n -1 
by sending a little n-cube c to the little convex body f a n c  (a ) f 

define a morphism of operads en kv. Thus Xv contains a copy 

of en for each such pair (a, f). 

Lemma 1.5. F ix  an increasing homeomorphism 

a: J -C R and let i : en -C Xn be the morphism of operads specified by 
n 

n -1 n 
c -, a c (a ) on little n-cubes. Then i 0 cr = uoi : 

n t  i n E n *  X n t  i 

and the i induce a morphism of operads i : 
n + Xm by passage 

to limits. 

Assume that a(i/2) = 0 and let g: g n ( j )  1C F(rn,  j) and 

n 
f: 3 ,(j) + F(R , j) be the maps specified by sending a little cube c 

to its center point c (1/2,. . . , i /Z )  and a little convex body c to i ts  

center point c(0). Define a homeomorphism j : F(.Tn, j) + F ( R ~ ,  j) of 
n 

n n 
configuration spaces by x -. cr (x) on points x E J . Then the following 

I: .-equivariant diagram i s  commutative: 
J 

By [45,4.8], g i s  a X.-equivariant homotopy equivalence. Thus, up to 
J 

homotopy, e n ( j )  i s  a Xj-equivariant retract of Kn(j) .  I have not 

been able to prove that i i s  actually a I: -equivariant homotopy equiva- 
n j 

lence (although this could perhaps be arranged at  the price of a more 

complicated notion of little convex body). 

By the very definition of composable sequences of little convex 

bodies in V, the deformation specified by h (c) = c contracts the space 
t t 

of such sequences of length q to the identity sequence (1, .. . . , 1). In 

particular, it follows that cr: X v ( j )  + X (j) i s  null homotopic for 
v@ w 
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a l l  V and W. Indeed, the requisite deformation k i s  specified by 

choosing any point < dl, . . . , dj 3 t X w ( j )  and defining 

< c ~ X ~ ~ , ~ - ~ ~ ,  . . . ,cjXdj, l-2t> , 0 < - t <  i/Z 

k ( c  Xl ,  ..., c.Xl)  = 
L 1 J 

< c i ,  2tXdl , .  . . , C.  Xd.> , 1/2 s t 5 1 . 
J S Z ~  J 

'I'he point is  that the disjoint image requirement is  satisfied on the f i rs t  

It:tlf of the deformation because < c i , .  . . , C. > E )( ,(j) and on the second 
J 

l ~ i b l f  because < d l , .  . . , dj>  E & w(j). Therefore la X m ( j )  = 0. (1n the 

case of.little cubes, this argument is  due to Boardman and Vogt [20, p. 651.) 

IJy the same argument, the product of 5: x v ( k )  -, X vt8w(k) and the 

a :  X v ( j r )  (j  ) for  1 <- r ( k  restricts to a null homotopic map 
vt8w r 

from the domain of y (for K v ) to the domain of y (for Xvew),  hence 

1l1c domain of y for  Xm has trivial homotopy groups, and similarly for  

lllc domains of all  i terates of the maps y. '  It would follow that cl( w(j) 

wdts contractible i f  we knew either that X m(j) had the homotopy type of 

R CW-complex o r  that each cr: X n ( j )  -C X n+i(j) was a cofibration (and 

slrnilarly for the domains of the maps y and their iterates). I have not 

vorified either assertion. However, we need not let this difficulty detain 

\!n since the conclusions we wish to derive from E space structures can 
w 

I I ~  phrased homologically, so that it  i s  harmless to require of a partial 

li' operad only that the t(j) and the domains of the y ~ n d  their 

( to  rates have trivial homology groups. Thus im: + may 

I)o regarded as  a weak equivalence of (partial) E m operads. 



0 2. The canonical E operad pair 
m 

We first show that just as  cn acts naturally on n-fold loop 

spaces [45,5.1] so X acts naturally on "V-fold" loop spaces. We 

then discuss the "partial monads" K to which the partial operads 
v 

3( give rise. Finally, we show that acts on xm , SO that K m 

restricts to a (partial) monad in < [ye] (as in VI. 1.9), and prove that 

the zeroth space of any E ring spectrum is  an E ring space. 
m m 

We should begin by defining the notion of an action by a (partial) 

operad on a space, but shall instead leave the requisite modification of 

Definition VI. 1.3 to the reader. We continue to use the term E space 
w 

for a space with an action by a (partial) E operad. With the appropriate 
m 

definition, the following result i s  trivial to verify. We agree t o  f i x  t V  as 

the one-point compactification of V, so that 

nVx = F(~V,X) and .Zvx = X n  tV. 

We agree to identify tRn with t~~ = In/81n via the homeomorphism 

t ( i ~ - l ) ~ ,  where a: J -C R i s  a s  in Lemma 1.5 

Theorem 2.1. F o r  X E J and V 6 $1 , let 

ev,j: x ,(j) x ( nVxf * nVx be the map specified by 
/ 

t yr(a) if c (a) = b E V 

.(< c~,...,c.>,Y~,...,Y~)(~) = 
ev,J J * if b / o i j m c r  

r = l  

Then the 6 define an action 0 of xv on nVx. Under the natural 
v,j v 

identification aVSZWx = nvbWx, the action 9 coincides with the com- 
v 

posite of 0 .and a :  j( -, Xvbw. F o r  E E A , the actions 0 of 
v b  w v v 

Xv on E I S 2 v ~ ~  for V c RW define an action 8 of xm on E 
0 m 0' 

Under the identification Q% = aVx, V = R ~ ,  the action of gn on fi 

coincides with the composite of i : % * and the action 0 of 2 
n 

Define a space K X for each space X by letting 
v 

"X = fi Xv(j) X,  x'/(w), where 
j 

a c.>,xl ,..., x.) (<cl ,..., itla..., c.>,x l , . . . ,~i- l ,~i t ls- . . ,xj)  
J J J 

ronever x. = * (compare [45,2.4]). Define q :X * KvX by 

( x )  = [< 1 >, x]. We would like to define p : KvKVX KVX by 

P[C; [dl# ~ ~ 1 , .  . . t Edk* yk1l = [ Y (c; dl* - - Yit - .  > ykl 

jr 
r c E gC v(k), dr E KV(jr), and yr E X . We cannot do so since y i s  

t defined on all of "Kv(k) X &(jl) X . . . x K v ( j r ) .  We should there- 

[ore define the notion of a partial monad C, with structural maps 

1,: C(')X - GX for a suitable subspace G ( ~ ) X  of CCX. The various 

(n-l)-fold iterates of p would have to be defined (and equal) on specified 

aubspaces c ( ~ ) x  of c%. (More precisely, c ( ~ )  would be required 

n 
to be a subfunctor of C .) With the proper formal definitions, a partial 

aperad gives rise to a partial monad C in such a way that the notions 

of an action by and of an action by C a r e  equivalent. Here again, we 

luave the pedantic details to the reader and continue to use the terms monad 

hnd C-space for the more general concepts. The only examples will be the 

monads G derived from operads of the form & I  X (where $' is  an 

honest operad). Here the subs paces c ( ~ ) x  of C% are  obvious: all n-fold 

nequences of little convex bodies which would be composed under the iterates 

of p are  required to be composable in the sense of Definition 1.1. 

We have an action 6 : ~ ~ f i  + nVx for any space X. 
v 

f 
Theorem 2.2. F o r  X E and V E J* , define a : KvX - g x v x  to v 

I,. be the composite 
Kv" 

e 
K ~ X  - nVxVx , 



where q:X -* L?vZv~ i s  the natural inclusion, and define a : KmX - QX by 
m 

m 
passage to limits over V C R . Then aV: Kv + SZvZv and a ' + Q a r e  

co'Km 

morphisms of monads in 3- and the actions of K on SIvx and of v 

K on E for E E a r e  induced by pullback along av and a from the 
m 0 m 

actions of Q ~ X ~  and of Q. Moreover, a i s  a weak homotopy equivalence 
m 

i f  X i s  connected and i s  a group completion in genez al. 

v v 
Proof. The monads SZ X and Q a r e  defined a s  in [45, p. 17 and 

461, and the f i rs t  statement holds by slight elaborations of the purely 

formal diagram chases in the proof of [45,5.2]; moreover, with a = a 
n v 

n 
for  V = R , anin: Cn + nnxn coincides with the morphism of monads de- 

rived in the cited result. By [46, A. 2(i)], im: CmX -* KmX is  a homology 

isomorphism for any space X. Now the last statement for X connected 

i s  given by [45,6.1], while the general case i s  proven by explicit homo- 

logical calculation in [26, f§  51. 

We next exploit the fact that xm i s  obtained by use of the functor 

3 (from $' to operads) to specify an action of 2 on . Yet again, 
m 

we can and must f i rs t  generalize all  of fhe definitions and results VI. 1.6- 

1.11 so as  to allow the additive operad of an operad pair to be a partial 

operad. The multiplicative operad will be required to be honest. We omit 

the details, and we continue to use the term E ring space for a space with 
m 

an action by a (partial) E operad pair. 
m 

Lemma 2 . 3 .  ('& .q ) is  an E operad pair with respect to 
m m 

the action maps X specified on g E q ( k )  and cr  E ( j  ) by m r 

where, if c = < c r l ,  ..., c > and I = { il, . . . , h} , then cI i s  the little 
r j  

convex body c 
lil ... Ckjlc 

in  ( ~ ~ 1 ~ .  

_$ ol  R~ and i s  the identity on the orthogonal complement of gW whenever 

m k 
c I  i s  the identity on the orthogonal complement of W C (R ) . The veri- 

[tcations of the identities specified in VI. 1.6 a re  tedious, but elementary. 

p : + i s  a morphism of Em operads, then, by IV. 1.9, 

u is a monad in b [ Te]. As explained in VI 5 1, if fi acts on 9 then 

C is a (partial) monad in a 1 Te]. We have the following consistency 

~~catement, which implies that the zeroth space of any E ring spectrum 
m 

1 6  an E ring space. 
m 

Theorem 2 4. Let (a, p): ( & , ) -+ (Xm,  7) be a morphism of 

1.: operad pairs. Then the morphisms a: C -C K and a ' - Q of 
ln m m a  Km 

tnonads in 3 restr ic t  to morphisms of monads in b [ I  If E i s  a 

fJ -spectrum, then its zeroth space E is  a ($ ,& )-space by pullback 
0 

< t i  its Q-action QEo - Eo along a a . 
m 

Proof. By IV. 1.9, the second statement will follow from the - 
first.  Clearly & acts on xm via 

1 (g: C1, . . . ' ck) = X (pg; c1 ' . . . ' ck) 

ntrd (n, 1): ( &  , b ) -, (x ) is  a morphism of operad pairs. Let 

X r [ y e ] .  x:CX - K m X i s  a morphism of ~ O - s p a c e s  in view of 

V 1 .  1.8. Since K m q :KmX + K co QX is  a morphism of f$o-spaces, 

I,ccause q i s  so, a 03 :K m X -.. QX will b e a  morphism of !do-spaces 

111.ovided that em:KmQX + QX i s  so. Thus we must verify that the 

(1~1lowing diagrams commute: 

jk l X e m , j l  x...xem . j l  
H(k) X -KmCil)x(Qx) x . . . x ~ m ( j k ) ~ ( Q X )  

>Jk - B ( ~ ) x ( Q x ) ~  

e 
j l - . . jk  m,jl. - j k  

Km(j l - . - jk )  x (Qx) . ax 

- - 



6 on the left is  specified in VI. 1.8. Think of points of QX as maps 

w 
Sm + x n Sm, where S = tRW. F o r  c = < c l ,  . . . , c.> 6 (j) and 

J w 

y = (y,. . . . . y.) 6 (QX)', 9 ( c ,  y) is then the composite 
J W.J 

where 'Y denotes the wedge of j copies of Y, F is  the pinch map 

specified by F(b) = * unless b = c (a) for some r and a, when Z(b) = a 

in  the rth copy of SOD, and p is  the evident folding map. F o r  g G kJ (k) 

k 
and z = (el, . . . , zk) E (QX) , .$k(g. z) is that map which makes the follow- 

ing diagriim commute 
Z A . . . A Z  

a 1  k sm A S w &  ... AS - XAS? ... AXAS 
w 

and which, on the orthogonal complement of (pg)t(V1@ . . . @ V ) where 
k 

Vr C RW is  a finite-dimensional subspace such that z is in the image 
v v 

of R r~ r ~ ,  has constant coordinate in  X and the identity map as 

coordinate in SOD. Now the desired commutativity is  easily verified by 

direct computation, the point being that the smash products used in the 

definition of 5 distribute over the wedge sums used in the definition 
k 

of the 0 . 
w j  

$3. The one operad recognition principle. 

We translate the one operad, additive, recognition principle of 

[45,§ 14 and 46,s 21 into the language of coordinate-free spectra. It 

simplifies slightly in the process since the construction of a prespectrum 

and the passage from a prespectrum to a spectrum were awkwardly com- 

I l l , ) '  ! I i ~ l ; l l l i ]  
lo1 

ed in the earlier versions. It also complexifies slightly since we must 

ake account of the distinction between partial and honest operads and their 

actions. However, the basic constructions and the bulk of the proofs re- 

main unchanged and will not be repeated here. 

Let 6' be a locally contractible (honest) operad, for example 

n o r  an E operad. Define = c' x Xm [ 4 5  3.81 and observe that $ 
w 

ia  a (partial) E w operad (that is ,  Z.  J acts freely on 6 (j) and (j) and 

the domains of the structural maps y and their iterates have trivial homology 

groups). Let a: + xw and 6: C -. c1 be the projections. 

fk Let (X, 9) be a $-space. F o r  technical reasons, we assume 

once and for all  that X 'is of one of the following three types (which 

certainly include all examples of any interest). 

(1) The action of on X i s  obtained by pullback along $ : + c' 
from an action of & ' on X. 

( 2 )  X is  Eo regarded as  a C-space by pullback of its Q-space structure 

along u n, where E E . 
w 

(3) X i s  CY regarded as  a C-space via the structural map y of the 

& (partial) monad C, where Y e 3 . g 
z55 

In (i) and (2)' the domain of 0 i s  CX; in  (3), the domain of CI is  the 

domain C(')Y of p . 
F o r  each finite dimensional sub inner product space V of R ~ ,  

define ?$ = c1 X X and let C be the monad in associated to $ 
v v ' 

g- Recall, and generalize to the context of partial monads, the notion of a 
3.E 

(right) action of a monad.on a functor [45,9.4]. By [45,9. 51, the adjoint 

v 
ol  cr : Kv + RvZV gives an action of K on the functor zV. By v 

along a: C -.+ K we obtain an action ,f! of Cv on X" . 
v v' v 



182 

The basic geometric construction of [45] i s  the two-sided bar con- 

struction [45,9.6 and 11.11 

B(F, C,X) = J B*(F, C,X) 1 ,  

where C is  a monad, X i s  a C-space, and F is a C-functor. Here I I 
denotes the geometric realization functor from simplicia]. spaces to spaces, 

and the space B (F, C, X) of q-simplices i s  FC% where c denotes the 
'3 

q-fold iterate of C. This construction generalizes readily to the context of 

partial monads and their actions. In practice, due to X being of one of the 

three types specified above and to the definition of C and the C in terms 
v 

of q' , K m ,  and the 4( ,,, there will always be obvious subspaces 

B&F, C, X) of FC% in sight so that the appropriate faces and degeneracies 

a r e  defined. Indeed, this will simply amount to the requirement that 

precisely the composable sequences of little convex bodies (in the sense 

of Definition 1.1) a re  allowed to be composed. 

We may thus define a space (TX)(V) by 

(4) (TX)(V) = B ( z ~ ,  c V ,  X) I B*(z~. cV, X) I . 
v v 

By convention, when V = (03, Z ,a , Kv, and Cv a re  all  the identity 

functor on 3 and the a and p are  identity maps. Thus the zero 
th 

v v 

space T ~ X  = (TX){O] i s  just X. 

F o r  an orthogonal pair of finite dimensional subspaces V and W 

of Rm, the morphism of operads K v --Kv+w 
induces a morphism of 

operads -+ gvtW . With the first equality given by [45,9.7 and 12.11, 

we therefore obtain an inclusion 

(5) : Z~B(B', c V , x )  = B ( z ~ ~ ~ ,  c V , x )  .+ B ( Z ~ ' ~ ,  chW, X) . 

We would like to say that (TX, u) gives a prespectrum, as  defined 

in 11.1.1. For  this, T must be appropriately defined on isometries 
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f :  V -c V' for subspaces V and V' of Rm of the same finite dimension. 

It is  easily verified by separate arguments in the cases (I), (Z), and (3) that 

f v  
there a re  maps $(f):X + X such that if Z : Z  -+. ZV' i s  defined in the 

obvious way and if Cf = 1 X Xf: cV -C cvl , then maps (TX)(f) as  re- 

quired can be specified by 

(6) (TX)(~)  = B ( B ~ , c ~ .  E ~ ) ) : B ( B ~ , c ~ . x J  - ~(r lY ' ,  c v I . x )  . 

We omit the details since the requisite maps c(f) will appear most 

naturally in the two operad theory (as use of the letter 5 would suggest) 

and since, as explained in 11.1.10, the (TX)(f) in any case play no 

essential role. 

m 
Thus (TX, u) i s  a prespectrum. Consider the spectrum R TX 

m 
and the natural map L : TX -, R TX of prespectra given by 11.1.4 and 

II. 1.5. Let r X ,  o r  S(X, 8) when necessary for clarity, denote the 

zeroth space of Q ~ T X .  The crux of the recognition principle is  the 

th 
analysis of the zero map L :X - TX. 

Theorem 3.1. Consider the following diagram: 

(i) E (9) is  a strong deformation retraction with right inverse ~(q);  

(ii) B(a w, 1 , l )  is a group completion and is  therefore a weak homotopy 
m 

equivalence i f  X i s  grouplike (i. e., if n X i s  a group); 0 

(iii) ym i s  a weak homotopy equivalence; 

m 
(iv) L = y B(amw. 1, 1) 0-r (q), hence L is  a group completion. I 



Proof. Formal  results from [45] apply equally well in the con- - 
text of partial  monads a s  in that of monads, and [45,9.2,9.8 and 11.10] 

imply (i). Results in [45] which apply to general simplicia1 spaces also 

apply equally well here, and [45, 12.3 and 14.4 (iii)] imply (iii). The f i rs t  

part of (iv) i s  a trivial calculation (compare [45,14.4 (iv)]), and the las t  

statement i s  proven by a slight elaboration, necessitated by our partial 

structures,  of the proofs of [45,i2. 2 and 12.41. It remains to prove (ii). 

Here we shall have to use the infinite little cubes operad and we re- 
03' 

write C = C' X Kw and le t  C' X C be the monad associated to 
w 

6' X c,. By use of i : * 'K,, we obtain the commutative 
w 

diagram 

where X i s  regarded a s  a C' X C -space by pullback along i X i w .  By w 

the left triangle, B(i X i w ,  i X i  1) i s  a homotopy equivalence. By [46,2.3], 
w'  

but with VI. 2.7 (iv) substituted for [46., 2. i] in the proof given there, the 

top arrow ~ ( a  i T ,  i, 1) i s  a group completion. It therefore suffices to 
w 03 

prove that B(1, 1 Xiw, 1) induces an isomorphism on homology. By [46, A .  41, 

i t  suffices to show that each 

B (i,iXiw,i):~q(Q,C'~Cw,X) + B ~ ( Q , C ' X K ~ , X )  
q 

induces an isomorphism on homology. B ( Q , C ' X C ~ , X )  and 
9 

B (Q, ClX Kw,X) a r e  obtained by application of the functor Q to 
9 

(Cl x C _ ) ~ ( X )  and to (C' X Kw)[d(X), where the latter i s  the appropriate 

domain space, namely (C'XK )('(x) in cases ( i )  and (2) and 
m 

I l I . 1  ~ 1 1 ' 1  l l l l l  
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X K ) ( q t i ) ( ~ )  in case (3). By [26,1$4], i t  suffices to show that 

(C'X Cm)'(x) - (Ct X K_)['(x) 

duces an isomorphism on homology. Typical points of both sides have 

ordinates in various of the spaces of the relevant operads and in X o r  Y. 

may filter by the number of coordinates in X o r  Y. The successive 

tients may be thought of a s  generalized equivariant half-smash products 

,2.5], and the map induced on such spaces by any morphism of 

artial) E w operads i s  a homology isomorphism. Indeed, the shuffle 

p shows that the homology of such spaces depends only on the chains 

X o r  Y and the chains of the operad coordinate. The latter chains a r e  

yclic and free  over the appropriate configuration of symmetric groups, 

ce standard techniques of homological algebra apply to yield the con- 

m 
The following pair of results show ,that S2 TX gives the "right" 

ectrum in cases (2) and (3). 

Proljosition 3.2. Let E e .a. Then the maps 

e(PIv): (TE~) (v)  = B(X~,C,, E ~ )  EV , 
v v 

here bv: Z ~ E ~  Z Z S2 EV - EV i s  the evaluation map, define a natural 

w g. map w:  TED - V E  of prespectra. The unique map ;:a TEO - E of 

spectra such that ( v i j )  L = w induces an isomorphism on T .  for  a l l  i 1 0. 

Proof. &(bV) is defined in [45,9.2 and p. 1261, and the f i rs t  state- 

ment i s  an easy verification f rom (4) through (6) and the definition, II. 1.1, 

of prespectra. Since w :  Eo = (TEO){O} - E o  i s  the identity map and Eo 

is grouplike, (iv) of the theorem implies that .;,: f E o  - E o  i s  a weak homo- 

topy equivalence. The second statement follows. 

f 
The proposition implies that u becomes an isomorphism in the stable 

homotopy category H A  if E i s  connective. In other words, E (and thus 



the cohomology theory it  determines) can be recovered from the underlying 

C-space E 
0 ' 

Proposition 3.3.. F o r  Y e 5 , the composite map of spectra 

i s  a strong deformation retraction. 

Proof. Recall that (zmy)(v)  = zVy.  The maps 

a re  strong deformation retractions by [45, 9.9 and 11. lo]. With the evi- 

f dent maps cr = B(1, cr, c) and B(I3 , Cf, Cf) a s  in (5) and ( 6 ) ,  the 

B(zv, CV, CVY) a re  the spaces of a prespectrum TICY, and the maps 

E(PV ) define a strong deformation retraction of prespectra. There is  

an obvious inclusion of T'CY in TCY and, since passage to spectra i s  

a limit process over V C R ~ ,  this inclusion becomes an isomorphism 

upon application of the functor am. The resulting deformation retract- 

tion Q ~ T C Y  -- QmY is the specified composite since pv i s  the 

composite 

zvlr zVcuv 8, 
z V c v y  - I ~ ~ K ~ Y  - zvnVzvy - zVy.  

The proposition gives an equivalence of infinite loop spaces between 

I'CY and RY and i s  our preferred version of the Barratt-Ruillen 

theorem. 

[45, 8 14 and 151 and [46, 8 2 and 31 contain further discussion and 

various additional results about the coordinatized spectrum B X 
m 

specified by B.X = ( S Z m ~ ~ ) ( ~ l ) .  Of course, the little cubes operads used 

in those papers could be replaced by the little convex bodies operads 

introduced here without any change in the results o r  their proofs. In par- 

licular, we have the following consistency statement, which was used in 

llle discussion of Bott periodicity in chapter I. We give some details since 

the result needed there was more precise than the result proven in [45 and 

461. 

Proposition 3.4. Let X be a &'-space. Then there i s  a map 

& : R ~ T s ~ %  -CZdCZmT~ in H d such that the following diagram commutes 

Proof. [46,3. I ]  gives maps of & -spaces - 
6 x YdX - Bdn% 

d 
"ueh that 6 and E are  weak equivalences. Think of Bdn% as the 

.croth space of the coordinatized spectrum S Z - d ~  m S2% = {Bdlin%) . 
d 

Then application of the functor B m and use of Proposition 3.2 gives 

itlaps of coordinatired spectra 

the first two of which a re  weak equivalences. On the zerob" space level 

wc have the following commutative diagram of weak equivalences: 

Inspection of the explicit construction of the intermediate space Y d X 

i n  [45, p. 148-151 (especially the bottom diagram on p. 150)] and use of 



d d -1 
[45 ~ 4 . 9 1  demonst ra tes  that the composite ($2 E ) ( n  6) L i s  equal in 

H .? to the  identity map  of a%. Now application of the  functor 4 

(which commutes with $2) to  the maps  of (*) and use  of the equivalence 

JI$ ci 1 of 11.1.8 gives the required  map  f; of coordinate-free spectra.  

As explained in [46,3.7 (p. 75)], the  previous resul t  implies the 

following fur ther  consistency statement.  

Proposit ion 3.5. Let G be a monoid in tf'[$ 1. Then BG and 

the  delooping B G a r e  equivalent a s  infinite loop spaces.  
1 

fi 4. The two operad recognition principle 

Assume given a locally contractible operadpai r  ( G I ,  h' ), fo r  

example ( n ,  8 ' )  where ,& i s  locally contractible o r  any E operad 
03 

pair ,  and define ( 6 , $j ) to be the product (partial) operad pair  

(&"x K,. A ' x ~  ). Let (n, P): (C . t!j ) -+ (x , .X)  be  the projection 

and r ega rd  elements of b (j) a s  l inear  i some t r i e s  v ia  p. Recall  the 

definition, IV. 1.1,  of a kf -prespect rum.  

Theorem 4.1. Le t  (X, 8 , c )  be  a (I;, &)-space .  Then 

TX = T(X, 8) admits a na tura l  s t ruc ture  of !d -prespectrum, hence 

Q ~ T X  admits  a na tura l  s t ruc ture  of &-spect rum.  

Proof.  By IV. 2.3, the second clause will  follow f rom the first .  - 
00 

Let  Vi, 1 5  i (j ,  be  a finite dimensional sub inner  product of R and 

l e t  g c: .~ (j). We mus t  specify appropriate maps 

(*) j(g): (TX) (Vl )~ .  . . A  (TX)(V~) + (TX)(W), where  W = g(V1@. . .@V.). J 

R&O maps will be induced f rom composites 

&re the f i r s t  a r r o w  i s  the natural  homeomorphism of [45,11. 51, the 

icond a r row i s  derived by passage to smash  products in each simplicia1 

igree, and the  th i rd  a r row i s  the realization of a map Xj(g)* of 

tt~plicial spaces  s t i l l  to be constructed. It i s  apparent f r o m  Lemma 2 . 3  
"Li 3.- 
Bhl the maps 
* g- 
x+ h : X ( j )  X x m ( i l )  X . . .  X k (i.) -+ 1/( ( i  . - . i )  

m j  m 1  j 

?Q obtained by passage to adjoints and l imi ts  f rom maps  
& 
5 
3 r ( m ) : ? C ,  ( i l ) X  ... X x v . ( i j )  -. X W ( i l - . . i ) ,  W =  l ( V l @  ... @v.),  g- 

1 J j J 
-- 

r ( E (j). Therefore,  in view of VI. 1.8 and the product s t ruc ture  on 

U, 3J), t he re  a r e  unique dotted a r rows  5 .(g) such that the following dia- gf J 
3 
grams  commute (the solid ar rows c.(g) being given by VI. 1 .8  and 1.9): - J 

L 
Cv X X . . .  X C v X  : C X X . .  . XCX 

1 1 j 
e j(g) i I 5 j(g) 

G - 

&hls statement holds fo r  any /jO-space X and in  particular for  CX, 
F 
;"- 

~ C X ,  etc. In view of the ro le  played in  VI. 1 .8  by the original  map 



5 j ( g ) : ~ J  --+X, we see  that i terative application of the statement above 

yields unique dotted a r rows  5 .(g) q LO, such that the following dia- 
J S' 

g rams  commute: 

C c: x x . . .  xc; X - c q x x  ... XC9x 
1 I j I 

The 5 .(g) all pass to smash  products. If we collect the smash product 
J 9 

factors  tV1, . . . , tV. together and apply tg  to them, then we obtain f rom 
J 

the  5 .(g) the fur ther  maps 
J q 

B ~ ( x ~ , c ~ , x )  i s  a subspace of zVC 'x, and those maps res t r ic t  to the maps 
v 

on q-simplices of the required simplicial  map x.(g) *. The face and degen- 
J 

e racy  operators [45,9.6] a r e  respected because the maps e,p, and q a r e  maps 

%-spaces andofor  the zeroth f a ~ e  (obtained f rom the fl v : zVC v - z V )  be- 

cause u n:CX -. (1X i s  a map of ,Q ,,-spaces (by Theorem 2.4) and the 
m 

action of k on QX is  induced by passage to l imi ts  f rom maps 

The point i s  that a l l  requisite compatibility pulls back to the level  of finite 

dimensional inner product spaces f rom the compatibility statements (for K 
m 

and C) codified in VI. 1.6-1.9 and i n  section 2. It i s  easily verified that 

the maps 5 .(g) of (*) satisfy the  algebraic identities specified i n  IV. I .I (a)- 
3 

Indeed, these identities a r e  inherited f rom obvious identities fo r  l inear  iso-  

me t r i e s  and the identities given by the asser t ion that each C% i s  a 

fig-space. Condition IV. I. l(d) holds by the continuity of a l l  of the  
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functors employed in the definition of the 5 .(g). An easy diagram chase 
J 

rtl~ows that the compatibility condition IV. 1 .  l ( e )  between the 5 j(g) and 

(Irc maps cr of formula (3. 5) i s  satisfied. Finally, condition IV. 1. l(f) 

ol;viously holds if we define the map 5 (f):X * X required for  formula 

(1 .6 )  to be 5 (g) for  any g E & ( I )  such that g l ~  = f. 
1 

Thus Em ring spaces determine E ring spectra.  We know f r o m  
m 

i.lirorem 3.3 how the derived additive s t ructure  (that i s ,  the spectrum 

~ ~ r i ~ c t u r e )  i s  related to the given additive E space structure.  We next 
m 

pclate the derived multiplicative s t ructure  to the given multiplicative 

a t  ructure. 

Theorem 4.2. F o r  a ( &  , f$ )-space (X, 0, E), a l l  of the maps 

m 
t ( 0 ) ,  B(ums. 1, l ) ,  y , ~ ( q  ), and L specified i n  Theorem 3.1 a r e  maps 

o i  b O-spaces,  hence the f i r s t  three  of these maps a r e  maps of 

Proof. Inview of [45, 9.6 and 9.91, & (e), B(cuwn, 1,  l ) ,  and T ( ~  

1b1.1: geometric realizations of maps of simplicial  ~ O - s p a c e s  and a r e  

Ilsrrefore maps of 0 -spaces by [45,12.2]. The map ym i s  the l imi t  

wvr:  r V C R~ of the maps 

y: 1 B,($ zV, CV, X) I - nv] jB*(zV, Cv, X)] 

(ace  [45, 9.7,12.3, and 14.41) and i s  eas i ly  verified to be a map of 

!do-spaces by explicit calculation (compare [45, 12.41). It would be 

pointless to give the  details since we know independently, by IV. 1.6, 

I l i r ~ L  L i s  a map of -spaces. 
0 

As promised, we have thus "group completed" the additive 

olructure of an E rirg space while carrying along the multiplicative 
w 

ructure. Again, the obvious special cases  behave correctly.  



Proposition 4.3. Let E be a 8 -spectrum. Then w : TE -+ E 
0 

rV 
i s  a morphism of h -prespectra, hence w : Q ~ T E ~  -+ E is  a morphism 

of f i  -spectra. 

Proof. By IV. 1. l(e),  we have commutative diagrams 

v B)... Ov. 
v1 v. 

z l ' ( E ~ A . .  . hEO) Y z E ~ A . .  . A z J ~ O  C A . * - A u - ~ v l ~ .  . . ~ E V  

I 

for  g 6 b (j), Vi C RW, and W = g(V1 O . . . B) V.). In view of the role 
J 

played by the j(g) on Eo in the definition of, the e .(g) on TEO, it  
J 

follows readily that the diagrams 

a r e  commutative. This proves the f i rs t  part, and the second part follows 

by IV. 1.6. 

Propositions 4.3 and 3.3 imply the following result. 

Corollary 4.4. F o r  a $I0-space Y, the composite deformation 

retraction 
nWT(crw.) ,., 

Q ~ T C Y  
W - ~O'TQY - R ~ Y  

is  a morphism of &- -spectra. 

Indeed, even more is true. The inverse inclusion of R Y in 
w 

Q ~ T C Y  and each h of the deformation obtained from [45,9.9 and 11.101 
t 

/ ! l l l ! l ~ ! ~ / l l ~ l l  
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w 
plication of S2 a r e  also morphisms of 8 -spectra. This corollary 

sefully be combined with the following consequence of [46, A. 2( i ) ]  . 

Corollary 4.5. F o r  a ,b o-space Y, the projection 4 : CY -c C'Y 

map of ( k ,  k)-spaces and, if ' is  an E operad, the induced map 
.w 

JI : n m T C ~  -c Q ~ T G ' Y  of f i  -spectra i s  a weak homotopy equivalence. 

Consider, for example, the case (e:  &) = (Q Q). The 

oliaries and Proposition 3. 3 imply that, for any (multiplicative) 

-space Y, QY is  weakly homotopy equivalent a s  a ( W X ~  &xY)-  
00' 

0 
to rDY. When Y = S , DY = LI K(Z 1) as  a space. We have 

j' 

,us obtained a group completion of K(Z 1) which i s  equivalent a s  
j' 

I\ Em ring space to as0. This is  a'greatly strengthened version of the 

[rrratt- Quillen theorem. Note that we have made no use of the monoid 

rltructures on DSO and our discussion applies equally well to 

#so = K(Z 1) for any Em operad pair ( & I ,  f i  I ) .  The force of the 
j' 

particular example ( d p ,  Q) i s  the connection it  establishes, via VI. 5.1, 

batween the category of finite sets and the sphere spectrum and thus, 

?lo VI. 5. 2, between algebraic K-groups and the stable homotopy groups 

01 spheres (both with all  internal structure in sight). Similarly, VI. 5.9 

R a n d  the corollaries above imply the following result. 

Corollary 4.6. The Em ring spectrum S 2 w ~ ~ @ ~  determined by the 

bipermutative category @Z is  equivalent to Q w ( R P ~ ' )  and, under the 

r %SO, the morphism of E ring spectra induced 
w 

-. 6 Z coincides with the natural split injection 



8 5. The multiplicative E structure and localization 
m 

Consider a (c , f i  )-space (X, 8 , g )  where, a s  in the previous 

section, ( (? , # ) i s  a product operad pair ( X K &'x ) with C' 
m' 

and )5'locally contractible. We have a f i rm grasp on the h -spectrum 

m 
Q ~ T ( X ,  8) and its relationship to X. Clear ly  the spectrum S2 T(X, g ) 

i s  weakly contractible since i t s  zeroth space i s  a group completion of X 

in which the element 0 mr n X becomes invertible. Thus we must delete 
0 

components of X in  o rde r  to obtain interesting spectra  f rom its multi- 

plicative E structure.  
m 

We make a simplifying assumption. As a commutative semi-ring, 

n X admits a unit e: Z' + n X; indeed this morphism of semi-rings i s  
0 0 

obtained by application of T to the unit e: CS' .3 X. We assume hence- 
0 

forward that e: 2' + n X i s  an  inclusion (as i s  the case  in  practice). 0 

Let M be a (multiplicative) submonoid of Z' such that 0 i s  not in  M 

and M contains a t  l eas t  one element other than 1. Let ZM denote the 

localization of the integers a t  M (obtained by inverting the primes which 

divide elements of M). Define XM to be the union of those components 

Xm of X such that m mr M C n X and note that XM i s  a sub h -space 0 

of X. We shall prove that the unit component of r ( X  .c) i s  equivalent M 

a s  an  infinite loop space to the localization a t  M of the unit component of 

r ( x ,  0). 

F o r  an E space (Y,X) and an  element i of the group completion 
m 

of n Y, le t  ri(Y,y) denote the ith component of the zeroth space 
0 

~ ( Y , x )  of Q ~ T ( Y , x ) .  Let  L@:X + r ( x , e )  and L @ : X ~  + r ( x M , g )  

denote the group completions obtained by specialization of Theorem 3.1. 

We shall make one further simplifying assumption (although it could per- 

haps be avoided a t  the price of some extra  work). 

-1 prime p which does not divide any element of M there exists an eventually 

increasing sequence n.(p) such that ( L  ) :H.(Xi; Zp) + ~ . ( r . ( X , 0 ) ;  Z ) 
@ *  J J = P 

i n  an isomorphism for all j ( n.(p). Here we allow p = 0, when Z i s  to 
P 

11c interpreted a s  the rational numbers. 

This condition seems always to be satisfied in  practice. 

Examples 5.2. X i s  convergent a t  M in the  following cases.  

( I )  X i s  grouplike under 0, so that n 0 X i s  a ring; he re  L @:Xi - Ti(X,B) 

I "  a weak homotopy equivalence. - 
4 ( I t )  X = CY for  some 2 O-space Y; he re  the result  holds by inspection 

of the calculation of H*(CY; Z ) in [26, 1551. 
P 

(lii) F o r  p ,not dividing any element of M, the additive translations 

X i  + X induce isomorphisms Hj(Xi; Zp) + Hj(Xitl; Z ) fo r  j I ni(p), 
it 1 P 

where {ni(p)] i s  eventually increasing; here  the result  holds since, by 

(46 ,3 .9 ] ,  (L@)* induces an  isomorphism 

l im H*(Xi; Z ) + l ~ m  H*(ri(X, 8); Z j H * ( ~ ~ ( x ,  8); Z ). 
+ P P P 

The las t  example applies to X = B a  for  the interesting bipermutative 

categories a displayed in VI § 5. 

We shall  be  considering spaces obtained by application of the one operad 

recognition principle of Theorem 3.1 t o  id-spaces, hence all spaces i n  sight 

w i l l  be Fj X X'-spaces (where given &-spaces a r e  regarded a s  & X 3 m - 

slmces by pullback along the projection). 

We shall  allow ourselves to invert weak homotopy equivalences by work- 

ing in the category H g  (see II $2) .  

In the case  X = as0, the idea of the following resul t  is due to Sullivan. 

'Tomehave [76,5.8] proved this case  and also proved a somewhat weaker r e -  



sult  in the case  X = ~ 6 8  k [77,3.1]. 

Theorem 5.3. Consider the following commutative diagram, in which 

a l l  spaces a r e  ,fl X k - s p a c e s ,  a l l  maps a r e  composites of 8 X 'K - maps 
00 

and homotopy inverses  of kl X 'Xm-maps, and the maps i a r e  inclusions of 

components: 

(i) If n X i s  a ring, then ( r i ) ~ ~  : X1 -c rl (XM, 6 ) i s  a localization 
0 

of X1 a t  M. 

(ii) , If X i s  convergent, then r ~ ~ :  r(XM, 6 ) - l?(rM(X, B), 6 ) i s  a 

weak homotopy equivalence. 

Therefore,  if X i s  convergent, the composite of kl X 'Km-maps and 

inverses  of kJ X n m - m a p s  

B = (rLe)-l(ri)La 0) - rl(XM, 6 )  

i s  a localization of I? (X, 0) a t  M. 
1 

Proof.  The las t  statement will follow from (ii) and f rom (i) 

applied to r ( X ,  0). Write the se t  of elements of M in o r d e r  a s  

l , m l ,  m2 , .  . . and define n.  = m . . . m E M. Fix cn E $ (n) and wri te  
1 1  i 

n for  en(cn)(ln) E Xn for  any positive integer n. Consider the sequence 

of spaces  and maps  

d m l  d m 2 )  d m i )  
(*I x1 - Xn - Xn - ... -X - 

1 2 
n 
i- 1 

Xn. - ' 

r e  -r(m.) I means multiplicative right translation by m.1 thus,  f o r  m E M, 

)(x) = 6 2 ( g ) ( ~ ,  m)  fo r  any fixed g E b(2 ) .  By the definition of a group 

for any commutative ring & , where the l imi t  i s  taken over  - - 
~ ( m ) * :  H*(Xn; &) -+ HHB(X-:ld) , m,  n E M. 

mpare [46,1.2].) By cofinality, we see ' that  H*(r1(XM, 6) ;  a )  i s  

orphic to H*(TM;&), where xM denotes the mapping telescope 

he sequence (*). Moreover, by [46, 3.91, this isomorphism can be 

- 
lized naturally by a map -i @: XM + (X 1 Mag)  

in Ha such that the 

owing diagram commutes in H b  (where j i s  the natural  inclusion): 

ctually, the cited result  i s  stated under cellular res t r ic t ions  and with 

f r ee  on one generator,  but i t s  proof t ranscr ibes  tr ivially to the present 

w 

ntext.) We prove f i r s t  that H*(Z * Z ) = 0 if p divides some element 
M' P 

M. This will imply that multiplication by p i s  an  isomorphism on 

ce  that H*( ZM; Z) i s  a Z -module and r1 (XM, 6 ) i s  an  
M 

XM itself will be M-local if it i s  simple (or  a t  l ea s t  

ote the products on H*(X; Z ) coming f rom 0 and 6 by 
P 

[n] fo r  the homology c l a s s  corresponding to the 

t 
H (X; Z ), q > 0. We cla im that x- [p ] = 0 fo r  

9 P 

deed, by [26 ,II. 1. 51, 

x. [p] = x([l] * . . . * [I]) = ;53 x( l )  * . . . * x(p) = +PI, 

e r e  x x( l )@.  . . @x(P) gives the i tera ted  coproduct, y i s  the 



sum of the symmetric t e rms  (all p @-factors the same), and y[pl denotes 

the pth power of y under the %-product. Since deg y = q/p, our claim 

follows by iteration. In the sequence (*), p divides infinitely many of the - 
m and our claim therefore implies that H*( z . Z ) = 0. To  prove (i), 

i M' p 

choose points -n E X define p(n) to be the additive right translation 
-n' 

p(n)(x) = 8 (c )(x, n), A d  observe that the definition, VI. 1.8 and VI. 1.9, 
2 2 

of a ( &, )-space implies that the following ladder i s  homotopy 

commutative: 

The cited definitions also imply that ~ ( m )  is  homotopic to the mth power 

operation x ' ~ ~ ( c ~ ) ( x ~ ) .  Thus the bottom arrows -r(mi) induce 

multiplication by m. on homotopy groups, hence the mapping telescope of 

the bottom sequence i s  a localization of Xo at M. Since the vertical 

arrows a r e  homoto py equivalences and K M  i s  simple (as a limit of simple 

- - 
spaces), j:X + XM and L @ j  = ( r i ) ~  

1 
@:XI -. rl(XM, e )  a r e  also 

localizations at M. To prove (ii), note that the f i rs t  parts of the proof 

apply to r(X, 8) a s  well a s  to X and consider the commutative ladder 

- 
Since X is convergent a t  M, the induced map z -. rM(X, B) of 

M 

mapping telescopes induces isomorphisms on homology with coefficients 

in Z if p does not divide any element of M. Therefore the same state- 
P 

rnent holds for 

rL,:r1(xM,S) + r1 ( rM(x ,e ) ,5 ) .  

Since these spaces a r e  M-local, this proves (ii) on the 1 -component and 

therefore on all components. 

By application of the theorem in the situations of Corollaries 4.4 

and 4. 5, with an E operad, we obtain the following result. Recall 
m 

from [45,8.14] that T CY is the free commutative monoid generated by 
0 

the based set  T Y and that wOQY i s  the group completion of aOCY. 
0 

Let C Y, CLY, and Q Y denote the unions of the components correspond- 
M M 

ing to M in CY, C'Y and QY. 

Corollary 5.4. Let Y be a 93 -space and consider the following 
0 

commutative diagram in ~3 , in which al l  spaces a re  b X xm-spaces 

rknd all maps a r e  composites of )3 X Km-maps and inverses of b X 'K - 
m 

r a  a 
r l(cY.  8) 

m Y 
r1(c1y,  8) rl(QY,8) - QIY 

B pr pr ( r i ) ~ @  

r J, 
re ?t 

r l ( c y , t )  - - r 1 ( c ~ y , e ) ~  

1 

r l ( d M y ,  o = ~ , ( Q ~ Y ,  r )  

( I )  All horizontal arrows a r e  weak homotopy equivalences. 

( i i )  All vertical arrows a r e  localizations at M. 

0 
Consider the case ( k ' ,  / $ I )  = ( Q  , QZ ) and Y = S . Here 

0 0 
IIMS = U K(Zm, I)  and Q S = SF. Thus, as  an infinite loop space, 

m t M  
1 

lllc I-component r (D so, 5 ) of our group completion of U K(Zm, 1) i s  
I M meM 

equivalent to the localization of SF at M. This statement is  a version of 

-. 
7 - 
5- --- 



the main theorem of Tornehave's paper [76]. The force of the particular 

example ($, a) is the connection i t  establishes,  via VI. 5.1, between 

the category of finite se ts  under @ and the  theory of stable spherical 

fibrations. 

1 ! I l l  I !  I t / /  ! I  - .. 

V I I I  . Algebra ic  and t o p o l o g i c a l   theor or^* 

We here apply the machinery of the previous two chapters to 

btain E ring spectra  which represent various cohomology theories 
w 

f interest. The emphasis will be on the construction and analysis of 

pproximations derived f rom discrete categories for  spaces and spectra  

elevant to the J-thbory diagram studied in chapter V. 

In section 1, af ter  showing that the ordinary cohomology theories 

th coefficients in  commutative rings a r e  represented by E ring spectra,  
a, 

define higher K-groups of a permutative o r  bipermutative category a 
the homotopy groups of i t s  associated spectrum o r  E ring spectrum 

w 

T B ~  ; when a= b $ ~  for  a discrete ring A, our definition 

Ids Quillen's higher K-groups of A [59,61]. When A i s  commutative, 

u r  construction ra ther  trivially gives the ring s t ructure  on K*A. We have 

lready calculated KO*Z in  VII. 4.6, and, in  Remarks 3.6, we shall  

elate this to Quillen's results about K*Z [60]. Beyond these observa- 

ns, we have no new applications to d,gebraic K-theory. The calcula- 

nal power of infinite loop space theory l ies  primarily in connection 

with fine structure,  such a s  homology operations (and the arguments in 

4 will demonstrate how powerful this s t ructure  can be). It i s  not geared 

owards analysis of homotopy types (other than deloopings of known ones). 

In view of the present primitive state of calculations in algebraic K-theory, 

t i s  too ear ly  to  te l l  how useful the rich extra  structure which we shall  

obtain on the representing spectra for the relevant cohomology theories 

will turn out to be. We end section 1 with a discussion of the relationship 



between representation theory and the internal structure on the zero 
th 

spaces of spectra derived from bipermutative categories. 

In section 2, we prove that the real and complex (connective) topo- 

logical K-theories a re  represented by the E ring spectra kO = n m T ~ @  m 

and kU = nrnT~%. . We then use Brauer lifting to transport Bott perio- 

dicity from kO and kU to fZmT~LYk (q odd) and S ~ ~ T B  & x K  all 
9 q ' 

completed away from q. These results imply that Brauer lifting on the 

completed zeroth space level is  an infinite loop map, a result first proven 

by the second author [75], in the complex case, by different methods. We 

also use recent results of Adams and Priddy [8] and of Madsen, Snaith, 

and the second author [42], together with a representation theoretical 

calculation, to prove that Brauer lifting gives an infinite loop 

map on the multiplicative as  well as  on the additive infinite loop space level. 

One point of these results i s  that they allow us to study infinite loop 

properties of the Adams operations, and of maps derived from them, by 

use of the Frobenius automorphism in section 3. In Theorem 3.2, we obtain 

discrete models j for  the spectra j introduced in V55. These models 
P P 

result by completion of E ring spectra at p and, at p, the classifying 
m 

6 6 space B(SF; j ) for j -oriented spherical fibrations i s  B Coker J endowed 
P P 

with an infinite loop space structure. In Theorem 3.4, we use Brauer lifting 

to demonstrate that a large portion of the J-theory diagram, centering 

around B Coker J ,  i s  a commutative diagram of infinite loop spaces and 

maps ; 

In section 4, we construct an exponential infinite loop map 

roB Bd;  kr + I' B # x k  (away from r )  and prove that, with r = r(p), i t  1 

becomes an equivalence when localized at an odd prime p. The domain 

and range here a re  discrete models for J and J and the constructed 
P (29 e' 

map factors through the unit map e: SF + I'l B & X kr of j . It follows 
P 

that BSF splits as BJ X B Coker J as an infinite loop space at p. These 
P 

results were first proven, quite differently,by the second author [77]. The 

present proofs do not use Brauer lifting and illustrate the richnes.~ 

of structure of Em rlng spaces. All of the constructions we use work 

equally well at the prime 2, but the key calculation fails; here the orienta- 

tion sequence 

6 9 SEA J~ '82 L B ( s F ; ~ ~ ) -  BSF 

(where J~ i s  the 1-component of the zeroth space of j ) may be regarded 
€32 2 

as a codification of how the infinite loop space SF i s  built up from B Coker J 

and a discrete model for J 
632 ' 

We agree to replace any space not of the homotopy type of a CW- 

complex by a weakly equivalent CW-complex, without change of notation 

(so as  to allow the construction of inverse maps to weak equivalences without 

further verbiage). 

5 I .  Examples; algebraic K-theory 

Let A be a commutative topological semi-ring or ,  equivalently, 

.in($L,$)-space (seeVI.2.4). ByVII.4.1 andVII.2.4, n r n T ~  is  an 

E ring spectrum (in fact, since n x = R , an R-spectrum) and 
m 

its zeroth space I'A is  an E ring space. By VII. 4.2, L : A -c I'A 
m 

I s  a group completion of the additive structure of A which is  com- 

patible with its multiplicative structure. Of course, I'A i s  not a ring. 

'I'he original precise structure on A has been weakened to structure 

precise only up to all higher coherence homotopies. 

Now let A be discrete. Then r A  is  homologically discrete, 

In the sense that H.rA = 0 for  i > 0, and L* : A = T A n O r A  is  the 
0 

-- 
- - 



completion of A to a ring. If A i s  already a ring, then L :A -t r A  i s  

w 
a homotopy equivalence and the E ring spectrum R TA i s  thus an 

w 

Eilenberg-Mac Lane spectrum HA = X ( A ,  0). Therefore any ordinary 

cohomology theory with coefficients in  a commutative ring i s  represented 

by an  Ew ring spectrum. 

Less  trivial  examples a r i s e  f rom categories associated to com- 

mutative rings. We proceed f rom the general to the particular. 

If (a 83 , 0, c) i s  a permutative category, then BCC i s  a -space, 

by VI. 4.2, and VII. 3.1 gives an infinite loop space rBCL and a map 

L : BCL rC r B a  which i s  a group completion. We define the algebraic 

K-groups of by 

If ( a  ,$, 0, c,@, 1,;) i s  a bipermutative category, then B R  i s  a 

( @ , a ) - s p a c e ,  by VI.4.4, and VII. 2.4 andVII.4.2 give that I 'BU 

is a (a X Xm, Q X ~  )-space and that L i s  compatible with the multi- 

plicative a s  well a s  the additive structure. Moreover. VI. 2.5 gives that 

K *a i s  a commutative (in the graded sense) and associative ring with 

unit. Additive right translation by one defines a homotopy equivalence 

p ( l )  f rom the zero component I? BU to the 1-component BCL . 
0 1 

Since (roBCL, 8) and (rl B a ,  E ) a r e  Em spaces,  we therefore have two 

0-connected spectra,  one coming f rom 83 and the other f rom @ , both 

of which have the higher K-groups of a a s  homotopy groups. These 

spectra  will generally be ve ry  different, but Theorem 4.1 below will 

show that in certain interesting cases  they do become equivalent when 

localized a t  an appropriate prime. 

Now let the permutative category a be of the form specified in 

VI. 5.8, SO that a can be thought of a s  a disjoint union of topological 

/ l l l l  l I / 1 ~ 1 ~ l l l l l  . -. - 
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roups G(n) f o ~  n 2 0. Then B a  = BG(n). Define BG to be the 

limit of the translations p(1): BG(n) + BG(nt1). As explained in  146, 

3.91, there  i s  a well-defined natural homotopy c lass  

t : BG r O ~ a  

such that the restriction of 5 to BG(n) i s  homotopic to the composite 

of L : BG(n) -. r B a  and the translation r B a  - r o B R  ; the 
n n 

fact that L : B a  -) I'B& i s  a group completion implies that induces 

an isomorphism on homology (with any coefficients). Therefore I'BG 

is homologically equivalent to BG X 2. 

To re la te  the constructions above to Quillen's algebraic K-theory, 

e must review some of his results and definitions [59,61 ,621. Recall 

-that a group i s  said to be perfect if it i s  equal to i t s  commutator subgroup. 

Let X be a connected CW-complex and le t  N be a perfect normal sub- 

t 
group of T X. Then there i s  a map frX -+ X , unique up to homotopy, 

1 

such that the kernel  of -IT f i s  N and f induces an isomorphism on 1 

homology with any coefficients (see Wagoner [79]). If N i s  the com- 

t & rnutator subgroup of r 1 X, then X is  a simple space. If Y i s  a con- 

nected space such that -rlY contains no non-trivial perfect subgroup, 

* 
then f : [x', Y ]  + [X, Y] i s  an isomorphism. 

In this connection. we record the following useful triviality. 

Lemma 1.1. Let f:X - XI be a map of connected spaces which 

duces an isomorphism on integral homology. Then 

* 
f : [x t ,nz ]  - [ x , n z ]  

Is an isomorphism for any space 2. 

Proof. Zf: ZX + ZX' i s  an equivalence. 

Let A be a discrete ring (associative with unit). The 

ommutator subgroup EA of GLA is  perfect, and Quillen defined 



t 
KiA=rr i (BGLA) f o r  i z l .  

Consider the permutative category .fjXA of VI. 5.2. By the universal 

property of f (or the lemma),'T;: BGLA + rOBB$A induces a map 

?' : BGLA' + r 0 B  f i   PA such that 70 f i s  homotopic to 7. Since T 

and f a r e  homology isomorphisms, so i s  2 / .  Since BGLA' and 

r B h YA are '  simple, 7 i s  therefore a homotopy equivalence. Thus 
0 

K.A = K ~ ~ X A  for izl. 

Now let A be commutative. Then h d p ~  i s  bipermutative and 

K * B ~ A  i s  thus a ring. Here ~~b $A = 2. If instead of h r A  we 

use a bipermutative category A of finitely generated projective 

modules (as exists by VI. 3. 5), then we obtain a commutative graded 

ring K*$'A such that K.@A = KiA for  a l l  i 2 0 (by [46, p. 851). 

Alternative constructions of spectra  having the K.A a s  homotopy 

groups can be  obtained by use of the black boxes of Boardman and Vogt, 

Segal, Anderson,the second author, and Barra t t  and Eceles [20,68,10,76, 

161. It  seems likely that a l l  of these constructions yield spectra 

equivalent to ours ,  but a proof would be tedious and unrewarding, 

Gersten and Wagoner [30 and79 ] have constructed a spectrum having 

the K.A a s  homotopy groups by means of ring theoretic arguments within 
1 

algebraic K-theory. The relationship between thei r  spectrum and ours  

will be determined in  chapter IX. 

The discussion of sections 2 and 3 below suggests that the alge- 

bra ic  K-theory of discrete commutative rings can be  thought of a s  analo- 

gous to complex K-theory and that the appropriate analog of real  K-theory 

can be defined by 
KOiA = K ~ U A  for  i 2 1 ,  

where QA i s  the bipermutative cagegory of VI. 5.3. The ring homo- 

morphism 

K,DA - ~ , b  XA 

induced by t h e  inclusion of OA in % ZA can be thought of a s  analo- 

gous to complexification. This idea i s  presumably not new: i t  can be 

viewed a s  the starting point for  Karoubi's treatment of Hermitian 

K-theory b4]. (However, by VII. 4.6. KO*Z i s  not ve ry  interesting.) 

The following immediate consequence of VI. 5.8, VII. 3.1, and 

VII. 4. 2 plays a key role in many of the topological applications. It  

reduces to group theory the analysis of the action maps 0 and 6 on 

the Em ring space FB& derived f rom a bipermutative category 

0- = G(n). Let 

c : x p 1 G ( n )  - G(pn) and 'Tp: zpJ G(n) - G(pn) 
P 

be the homomorphisms of groups specified by 

c (a; g,, . . . , gp) = (g CB . . . CB g - I  )a(n,. . . , n )  
P w-l(l) 0. (PI 

- .  
and c (a;gl, ... ,gpJ = (g X... X g  )w<n ,..., n>. 

P u-I (1) 
(PI 

(See VI. 1.1 and 1 .4  for notations. ) Let + denote both projections 

x G- & and Q x ~  -n. 

Proposition 1.2. F o r  any permutative category a o f  the form 

U G(n), the following diagram i s  homotopy commutative: 

Bc 
xeKm(p)I x, B G ( ~ ) ~ ~ W Q )  x, BG(~) '  B ( E ~ S G ( ~ ) ) ~  B G ( Q ~ ) .  

P P 

X t p I  e 

(Ql(p) x Km(p)1 X, ( r n s a l p  
P 

lL 
3- r B d  

P 
P" 

I1  a i s  bipermutative, then the following diagram i s  commutative: 

- 



Let a = 6 4 ' ~  for  a commutative topological ring A and le t  

G be a compact topological group. F o r  a representation p: G - GL(n, A) 

and a subgroup n of Z define the additive and multiplicative wreath 
pa 

product representations n J p  and nsBp to be  the composites 

C 

and n l  c --&dGL(n, A) 2 GL(~', A) 

The proposition reduces analysis of 8 and gp on I ' B ~ ~ A  to analysis 
P 

of these wreath products. Pragmatically, however, there  i s  an essential  

difference. The operation nJ p i s  additive in p, hence passes to repre-  

sentation rings, and i s  trivially seen to satisfy the character  formula 

In contrast ,  a$@p i s  multiplicative but not additive in p,'and there i s  

no general formula for  the calculation of x(.rrJ p) in  t e rms  of ~ ( p ) .  @ 
Of course,  E maps a r e  structure-preserving before passage 

m 

to homotopy, whereas representation theoretic techniques apply only 

after passage to homotopy. This suggests use of the following (not quite 

standard) definition. 

'with k = p and jr = 2, the diagram of VI. 4 . 3  implies the formula 

l ! l , l  t l I / I , , , , !  
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Definition 1.3.. Let p be a prime, let  n be the cyclic group 

ol order  p embedded a s  usual in X and l e t  W be any contractible 
P' 

ace on which n acts  freely (for example C ( p )  for  any Em operad &). 

n H: -space (X, 8) i s  (homotopy associative) H-space X together 

with a map 8: W X n xP -- X such that for  each w E W the restriction of 

0 to xP w X xP i s  homotopic to the p-fold i terate of the product on X. 

An H:-map f: (X, 8) + (XI, 8') i s  a n  H-map f:X -* XI such that the 

lollowing diagram i s  homotopy commutative: 

Clearly an E map, and in particular an infinite loop map, i s  an 
w 

H' -map. Mod p homology operations a r e  defined in t e rms  of 8* [2b, I§ 11 
m 

nnd a r e  thus preserved by HP -maps. If X and X'' a r e  infinite loop spaces 
m 

derived f rom permutative categories (of the usual form) and if appropriate 

lirnl t e rms  vanish, then Proposition 1.2 reduces the determination of 

whether o r  not an H-map f:X -) X' i s  an  HP -map to representation theory. 
m 

he following remarks  give the details of this reduction. 

Remarks 1.4. Let Y be an infinite loop space with induced H' -structure m 

6: W xTyP + Y. (We use the le t ter  e since we choose to think of Y as  

multiplicative, that being appropriate to our applications of these remarks  

-1 
in the next section; ) Fix  points m and m in the components Ym and 

Y -1 of Y. Since the product # and inverse map x on Y a r e  infinite 
m 

oop maps and thus HP m -maps, the following diagrams a r e  homotopy com- 





When v is W X xP - W X xP and g: W X xP - X i e  the projection on  the l a s t  

coordinate. ( i x g P )  7 = 1. Therefore  an  H-map X - Y between HP -spaces i s  
m 

a n  H -map if and only if it commutes with t ransfer .  For examples such as m 

pr: BSO - BS08 [421. i t  is useful to  observe  that a simple d iagram chase  f rom 

the  definition, VI. 1.10, of an E ring space  impl ies  that  i f  (X,e,  5 )  is an E m m 

where  T and T denote the t r ans f e r s  associa ted  to 9 and 5 and + a n d  . de- 8 
note the products induced by 9 and 5 on the functor [?,XI. 

The  c r i t e r i on  (below Y.7.2) of Madsen, Snaith, and the second author [42] 

A A A A 
f o r  determining when an  H-map f: BU - BU or  f: BSO - BSO i s  an 

P P P P 

infinite loop map t rans la tes  to  the asser t ion  that  f i s  an infinite loop map if and 

only if i t  i s  an H P  -map. The Adams-Priddy theorem V.4.2, together with m 

11.2.13 and 2.14, yields the following ve ry  useful consequence. 

Theorem 1.6. Let  X and Y be infinite loop spaces  of the homotopy type 

of BSO o r  of BSU localized o r  completed a t  a s e t  of pr imes  T.  Then an H-map 

X - Y i s  an  infinite loop map if and only if i t s  completion a t  p i s  an H P  -map 
m 

f o r  a l l  pr imes  p r T. 

$2. Bott periodicity and Brauc r  lifting_ 

Write h f o r  e i ther  of the bipermutative ca tegor ies  @ or %! 

specified in VI. 5.4 and wr i te  G fo r  e i ther  0 o r  U. Define 

a3 
kG = f2 T B M  . The homology i somorphism ; : BG - T. Bid i s  a 

0 

homotopy equivalence, hence the zeroth space  T B ~  of kG i s  

equivalent to BGX Z. Since L : .Lt BG(n) - TBG i s  a map of H-spaces 

. r ' ( I"w. sw .rv2vwv .cw  

@3 and @, it follows that TBG rep re sen t s  the ring-v 

nctor KGX on finite dimensional CW-complexes X. The  externa l  

oneor KGXWKGY - KG(X X Y) is defined on maps  

xi - r B k  and g:yt - r B k  (where the  plus notation again denotes 

dition of a disjoint basepoint) as the composite 

Let d = 8 o r  d = 2 fo r  G = 0 o r  G = U. One formulatton of 

~ o t t  periodicity a s s e r t s  that  

d 
Q D : K G X W K G S ~  - KG(X x s  ) 

Lo ah lsomorphlsm or ,  equz~alent ly ,  that tensoring with a genera tor  

] r n BC = n r B b  defines an i somorphism 
d d 0 

,- 
KGX - XG(Z%). 

ott [Zl] deduced the l a t t e r  i somorphism by verifying that the adjoint 

d 
G - no BG of the composite 

B G ~ S ~  BG-BG --% BG 

18 homotopic to the i te ra ted  Bott m a p  d iscussed  in 15 1. unde r  the 

- 
: ~ q u i v ~ l e n c c  L : BG - r 0 BG, this adjoint cor responds  to the res t r ic t ion  

d 
l o  0-components of .emth spaces  of the adjoint @ : k c  - f 2  kG of the 

composite map in H 8 
d l h b  

A GAS - k ~ ~ f ~ ~ l )  A+ kG 

iven by  11. 2.9. in view of n. 3.10, we conclude that  f3 O : ~ ~ h  - 1 2 ~ r B . 8  

g iees  under the  equivalence S B . ~  = BG X Z with the Bott map 

G X Z - Sld(BG X Z). 

By 11.3. 2,II. 3.9, and  11.3.14, it follows immediately that  kO 

cnd kU are isomorphic in ~ . d  to  the  connective r ing spec t r a  obtained 

from the periodic Bott spec t r a  by killing the i r  homotopy groups in nega- 

ve degrees .  We have 'thus proven the following result .  
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Theorem 2.1. kO and kU represent r ea l  and complex con- following diagrams a r e  commutative: 

nective K-theory (as ring-valued cohomology theories). 
RkH X RkG 22L \(HXG) 

In particular, the diagrams of Proposition 1.2 now reduce the 

analysis of homology operations on BO and BU to  representation theory. A X A [  

Application of the additive diagram to BO and BU was f i r s t  justified RH X RG 
1. 

@ . R(H x G) 

by Boardman [unpublished] and has been exploited by Priddy [54] i n  

By Adams1 formula [1, 4.1(vi)], the following diagram also commutes, 
mod 2 homology and by Snaith [lo.] in K-theory. 

where, for r = qa, dr denotes the i terated Frobenius automorphism 
Remark 2.2. As proven by Bott [21], r ea l  periodicity factors a s  the 

composite of the two natural isomorphisms 
RkG 

* 
KOX @ %sps4 - Z S ~ ( X ~ X )  and @'%sps4 -., 

4 4 
KO@ Y). 

A full understanding of these transformations i n  our context would seem 
I A 

RG 

to require a theory of E module spectra  over E ring spectra. m m 'Thus ~ ( p )  = A(p) if p: G -c GL(n, k) factors thzough G L ( ~ ,  k ). 

We now turn to Brauer  lifting. Fix a prime q and let  k = 
9 'The analogs of the diagrams above also commute in the real  case  and 

be an  algebraic closure of the field of q elements. Let k denote the relate the orthogonal representation ring ROkG to ROG. r 

field with r = qa elements contained in k, so that k = l im  k F i x  an - r' Of course,  passage to classifying maps and then to Grothendieck 
* 

embedding p  : k* - cC of multiplicative groups. Recall f rom Green groups gives ring homomorphisms RG - KU(BG) and ROG - KO(BG), 

[31, Theorem 11 that if p: G - GL(n, k) i s  a representation of a finite and these become isomorphisms when the left sides a r e  completed. with 

group G and if p(g) has roots 5 .(g), then the complex-valued function respect to the IG-adic topology [14]. Moreover, by [14,4.2 and 7 .1  
n 

x,(P) = 22 y e  i(g) (and p. 13,17)], KU-'(BG) = 0 and KO-'(BG) i s  a finite dimensional 
i= l 

i s  the character  of a unique (virtual) representation E RG. vector space over Z Let A (n, r): BGL(~ ;  kr) -c BU represent the 
2.' 

Quillen [58, p. 791 proved that if q i s  odd and p takes values in  O(n, k), lication of to the 

then x i s  the character of a (necessarily unique) r e a l  representation GL(n, k) and the t r iv ia l  
P 

h(p) E ROG. If -n: H+GL(m,k)  i s  arepresenta t ionof  anotherfinite representation of degree n. Since A i s  natural in  G and additive, 

group H, then the maps h(n, r )  a r e  compatible (up to homotn py) a s  n and r increase. 

x , ~ ~ ( ~ *  g) = x,(~)  .I. xp(g) and ~ ~ ~ ( h ~  g) = x,(h)xp(g). Since the relevant %mi t e r m s  vanish, there  resul t  unique hornotopy 

Therefore, if RkG denotes the representation ring of G over k, the 



(*) A : BGLE -c BU and, if q i s  odd, A : BO -c BO 
9 q 

compatible with the A(n, r).  The main step in  Quillen's proof of the 

Adams conjecture was the following result [58,1.6]. 

Theorem 2.3. The maps A of (*) induce isomorphisms on 

cohomology with coefficients in Z for each prime p # q. 
P 

As we have explained in section 1, the group completion property of 

the recognition principle VII. 3. 1 gives homology isomorphisms 

- 
L : BGLk GB h x k  and 7 :  B0k -c r o B  6 k  

Invoking Lemma 1.1, we define 

,u 

(**) X : r o ~ h X f ;  -c BU and, if q is  odd, A : r 0 B K q  + BO 
9 .- - 

to be the unique homotopy classes such that A 0 C? X .  (Of course, we 

could also invoke the properties of the plus construction, but its use 

would add nothing to the discussion.) 

We shall need the following observation. 

Lemma 2.4. The following diagrams a r e  homotopy commutative: 

r o B k ; f k ~ ~ o ~ ~ X ' k  L r  0 B b y k  and r o ~ ~ ~ k n r o ~ b ~ k ~ r 0 B ~ ~ k ,  

4 @ 
BU XBU - + 

BU ABU 

and similarly with r B b  dPk and BU replaced by r O a  k and BO . 
0 

Proof. Since %U(XAY) -c ~ U ( X  X Y) is  a monomorphism for any 

X and Y, it suffices to consider the second diagram with smash products 

replaced by Cartesian products. F o r  both diagrams, it suffices to prove 

commutativity after composition with X 'T; and thus, since the rele- 

i I I 
, , l , , i ,  
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t lirnl terms vanish, after further composition with the inclusions 

BGL(m, kr) X BGL(n, ks). Now the conclusion is immediate from the 

Similarly, diagram (B) implies the following result: 

Lemma 2.5. The following diagrams a r e  homotopy commutative: 

6r * r 0 s l l P k  a d  r o ~ B k  '" * r 0 B @ k  

P 
: BU 

1 1  $r 
B 0 

I. - BO 

At this point, it will be convenient to introduce a generic (and 

cation of notation, to be used throughout the rest  of 

book . We shall write Y' fo r  specified "discrete models" for  

ologically significant spaces o r  spectra Y. In each case, y 6  will 

derived from the classifying spaces of discrete categories by means 

suitable topological constructions. In particular, we have the follow- 

6 
Definition 2.6. Define B U ~  and BO to be the completions 

y from q of the spaces roB b Xi; and (with q odd) . 
9 9 

e r t  to the convention that G = 0 o r  G = U and define 

h 4 
G~ B ~ [ l / d  to be the completion away from q of the map A of (** ). 

ne ko6  and ku6 to be the completions away from q of the E 
0 

w 
spectra Q T B B E  and Q W ~ B  b ~ f ;    hen B G ~  i s  the O-com- 

9 9 '  
6 

nt of the zeroth space of kG . 

The following result i s  immediate consequence of Theorem 2.3 

the homological characterization of completions (see T[ $2). 

A A 
Corollary 2.7. A :BG& + B ~ [ l / d  i s  a homotopy equivalence. 



This justifies our thinking of BG' as  a model for BG. Of course, 

the use of completions rather than localizations is  essential here since 

n Z i B G ~ ~ +  = 0 and n BGLE' = z[~-?z [59, p. 5851. We can now 
9 Z i + l  q 

6 verify that kG represents the completion away from q of real o r  

A 
complex connective K-theory and that the equivalence X i s  an infinite 

loop map. 

6 A  Theorem 2.8. There i s  a unique isomorphism &: kG -c kG[l/d 

of ring spectra in H A  such that the 0-component of the zeroth map of A 

A 
i s  equivalent to : BG' - BG[l/q], G = 0 o r  G = U. 

6 A 
Proof. no(kGo) and nO(kG[l/dO) a r e  both canonically iso- 

morphic to  the ring ;[l/dj = X 2 and there i s  a unique (continuous) 
P #  9 (P) ' 

isomorphism of rings fr,om one to the other. Denote this isomorphism 

by no? . By 11.3.10 and a trivial diagram chase from Lemma 2.4, n ?. 
0 

A 
and : BG6 6 BG[l/d together determine an equivalence 

A 6 A  
X : kGO - kG[l/d0 of r'ing spaces. Write b6 for the composite 

6 6 
Thus hh* [b6] = [b] . Let i3 : kG6 -ndkG be adjoint to the composite 

6 6 
Then (kG , P ), (&[l/d, p), and the map hX of zeroth spaces satisfy the 

hypotheses of 11.3.14 (and 11.3.9). The conclusion follows from those 

results and 11.3. 2. 

The following addendum i s  the reason that  this result i s  of topo- 

logical interest; it shows that the Frobenius automorphisms fir and 

Adams operations Jlr (both completed away from q) agree under A .  

Theorem 2.9. The following diagram commutes in H & ,  

G = O  or  G = U :  

Proof. fir i s  induced by passage from bipermutative categories - 
to Em ring spaces to E m ring spectra to completions away from q . 
Lemma 2.5 implies that the two composites induce the same map in h Y  

on zeroth spaces and that this map is  one of ring spaces. The conclusion 

follows by 11.3.15 and the uniqueness clause of 11.3.14. 

6 
Let BG6 @ denote the 1-component of the zeroth space of kG . 

Clearly ~ ( l ,  9 ) = Z2 . GL(I ,* 9 ) = L 9 * , and the completion away from 

q of the infinite loop map B p : BX* 9 -) BC* i s  an equivalence by a simple 

6 
homological calculation. Let BSG* denote the simply connected cover 

of BG6 @'  The same proof as  that of V. 3.1 yields the following observation. 

6 6 
Lemma 2.10. BO@ and BU* a r e  equivalent as infinite loop 

A 
spaces to BO(1) X B S O ~  @ and to ~ ~ ( 1 ) [ 1 / 6 1  X B S U ~  8. 

The 1 -component BG - BGg of the zeroth map of 

6 A 
A:  kG 6 kG[l/d is  clearly compatible with the splittings given by the 

lemma and V. 3.1. It i s  therefore an infinite loop map by the following 

theorem. 

A 
Theorem 2.11. A: BSG @ -+ BSG[l/d i s  an infinite loop map, 

G = O  or  G = U .  

Proof. By Theorem 1.6, it suffices to prove that the completion 

of A at  each prime p # q i s  an HL-map, and this will hold if i t  does so 

on the localized level with SG replaced by G. F o r  clarity of notation, 

we treat the case G = U. The only additional point needed in the real case 

s that the relevant representation theoretical constructs, in particular 
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the decomposition homomorphism, r e s t r i c t  appropriately, andthe requi- an obvious l imit argument, i t  suffices to prove this with r; replaced 
9 

s i te  information i s  contained in the appendix of &illen1s paper [58]. Let M k (for each r = qa) in the top row. By Lemma 1.1 and a t ransfer  argument, 

be the  the monoid of positive integers pr ime to p, le t  X = B q F  tile resulting diagram will homotopy commute if i t  does so with domain 
M q '  

l e t  Y = F(x, 4, ), let  L :X * Y be the natural  Em map, and let  restricted to W x ~ ( B H ) ~  for  a p-Sylow subgroup H of G L ( ~ ,  kr) (since 

Z = ~(B,#xc, 5 ). Of course,  BXG and U. can be used interchangeably [he index of T ~ H  in  .rrJGL(m, k ) i s  pr ime to p a n d  since Z i s  a 
me 

here ,  b x C  being given i ts  usual topology. By VII. 5 .3  (and the diagram p-local space). Let P be  a finite field between k and . By a 
9 

in  i t s  statement), we have infinite loop maps -trivial diagram chase, i t  suffices to prove that the diagram above homo- 

$: rM(B 4XHq,e) + Y and $:rM(B k<a;,e) - z lopy commutes after replacement of by 1 i n  the top row and res t r ic-  
9 

which re s t r i c t  on components to localizations a t  p. We agree  to write n of the domain to W x~(BH)'. Let pe be the maximal o rde r  of an 

e fi 
BU X ,  {m ) = r,(~kXc, 8) for  m E M; thus Zm i s  the localization of ment of nS H. Construct a field K C wliich contains a l l  (p ) 

BU ~ { m )  a t  p. There i s  a unique map f: Y * Z1 such that 
1 

ots of unity and has  a discrete valuation whose valuation ring A has 

N 

f a $  " $ 0  (? * l ) ,  where A * 1 is the translation to 1 -components of otient field P , krC I C Fq. Consider the following diagram, where 
.4 .- 

the map X of (**); f i s  an  H-map since A * 1 i s  so  by the second is the inclusion of H in GL(m, 1 ), r :  k XA + 8 XI  i s  induced by 

6 
diagram of (A). Since the map A : BUQ9 -+ BU "&/I  1 q i s  the completion e quotient map A -+ P , and i :  f j  ,$'A -+ f i  i s  induced by the inclusion 

of * 1 away from q, it c lear ly  suffices to proGe that f:  Y -+ 
1 z1 

i s  an He -map. By Remarks 1 .4 ,  f extends to an  H-map Y - Z and BF a '(lSp) , BBJ G L ( ~ .  1)) ------+ P B G L ( ~ ~ ,  I) 

i t  suffices to prove that the composite fo c :X * Z i s  an HP -map. 
m 

The Brauer  l ifts of the inclusions GL(m, k ) -+ G L ( ~ , F  ) fit together to 
9 

give a unique map p : BGL(rn,K ) -+ BU X {m} , and we also writd for  9 

i t s  composite with the classifying map of any representation H * ~ L ( r n , k  ). 
9 

It follows eas i ly  f rom the definition of 'x and the proof of ~ 1 1 .  5 . 3  that f . ,, $. p: 
Xm * Zm. Thus we must prove that the following diagram i s  homotopy commutativr 

B? two interior parallelograms obviously commute. Let be  the corn- 
W X ~ B G L ( ~ ,  k )' = B ( T ~  G L ( ~ ,  9) 

9 * BGL(mp,E 9 ) 

1 x la 
W x ~ ( B u x . { ~ ) ) ~  BU x {me) isomorphism, and ,  since d maps R'H onto K 

l x $ ~ I  I ?  , any representation p: H - F G L ( ~ , ~  ) lifts to a representation 

w ~ ~ ( z ~ ) ~  5 Z -+ G L ( ~ , A )  [69, especially the r emarks  on pp. 136,139,1411- This 
me 



lifting to an honenst rather than virtual representation is  crucial. By 

Proposition 1.2 (applied to f C under a), the fact that $ is  an infinite 

loop map,and a trivial diagram chase, it  suffices to prove that the com- 

posite B H ~  BGL(m. a )  -!h BU X {m) i s  homotopic to fl and that 

the outer rectangle of the diagram is  homotopy commutative. Actually, 

* * 
because of the homomorphism p: kq - 0; in  our definition of Brauer lift- 

ing, these assertions will in general be off by certain Adams operations. 

To rectify this, we need only choose p consistently with the requisite 

decomposition homomorphism (in a manner independent of p). We do 

this as  follows. Let 620 = (q) in B0 = Z and let A. = Z(d. Inductively, 

given 2 j-l, B ~ - ~ .  and Aj-l, le t  A. be the localization of the ring of 
J 

cyclotomic integers B = ~[exp(2.rri/(qj-l)(~'-~ - 1)- (q-I)] at a chosen 
j 

prime ideal a which contains C Bj-l. Let K. C a be the field 
j J 

of fractions of A let 1. be the quotient of A by its maximal ideal, let 
j' J j 

i: A + be the inclusion, and let r :  A + I be the quotient map. 
j j j - 

Obviously char l = q and lim I = k Moreover, A contains a group 
j - j s' j 

v of (qJ-I). . . ( q - ~ ) ~ ~  roots of unity which r maps isomorphically onto 
j * 

the corresponding subgroup V of I , these isomorphisms being com- 
j j 

patible a s  j varies. We specify p : ~ *  5* by letting its restriction to i? 
q j - 1 

be io r . In the construction of our last diagram, we agree to choose 

A = A. and 1 = l. for j sufficiently large. It i s  then obvious that the charac- 
J J 

t e r  of i5: H + GL(m. 5 )  is  x so that ~oB(i$)  =+ p. Similarly,if G i s  a 
P' 

finite p-group with no elements of order greater than pe and if 

u: G + G L ( ~ ' ,  A) is  a representation, then the character of 

i w :  G + G L ( ~ ~ ,  C )  is  xr, and 6 0 B(iu): BG + BU x{mp) i s  therefore 

homotopic to p . With u = ? 0 ( 1 1 ~ ) :  H + G L ( ~ ' ,  A), i t  follows that 
P 

the outer rectangle of our diagram is  indeed homotopy commutative. 

Throughout this section, all spaces and spectra a re  to be com- 

pleted at a fixed prime p and r = qa (q odd) i s  to be r(p). Thus r = 3 

~f p = 2 and r reduces mod p2 to a generator of the group of units of 

Z if p > 2. We retain the notations of the previous section and con- 
p2 

llnue with the discussion of discrete models for various of the spaces 

.~nd maps in the J-theory diagram of V $ 3 .  

We have an equivalence of orientation sequences 

* BSF SF ~ B O ~  L B ( S F ; ~ O  ) 

I I 1: 7 

8 

1 B A 
SF A B O  -B(SF:kO) 

II - BSF 

f (compare V. 2.4) and an equivalence of fibration sequences 

6 - BC' - B ( s F ; ~ o ~ )  cur)  BSpin 6 
spin@ € 3 -  

P 
spin@- BC - 

6 
liere BSpinO is  the 2-connected cover of BSO and spin6 . . 8 €3 ls ltS 

loop space. c u r )  is  the universal cannibalistic class (defined above 

V. 2.2) determined by ffr : ko6 -c ko6 and is  an infinite loop map because 

f i r  i s  the completion of a map of E ring spectra. The fibre BC6 of 
m P 

c(br) is  thus an infinite loop space, and we think of it as  BC endowed 
P 

with an infinite loop space structure. We shall prove in Theorem 3.4 

that both diagrams above a r e  commutative diagrams of infinite loop 

"paces and maps 

8 In order to obtain a better understanding of the infinite loop space 

BC: , we construct discrete models for the spectra j and j02  of V. 5.16. 
P 

w 
Recall the functor $2 T from Em ring spaces to E w ring spectra of VII.4.1. 



6 
Definition 3.1. Define j = SlrnTBnk and jQ2 = S l w ~ ~ ~ k 3 .  

2 3 

F o r  p > 2, define j = S l W T B b ~ k r .  The bipermutative categories 
P 

n k 3 ,  @kg, and b x k r  a re  specified i n  VI. 5.7,5.3, and 5.2 (and the 

specified E ring spectra a r e  understood to be completed a t  p). Let 
w 

6 
J and J denote the 0-component and 1-component of the zero 

th 

P @ P  
A 6 

space of j (which i s  equivalent to J 6  X Z and let  J02 and 
P P (PI)* 

6 6 
SOQg 

denote the 0-component and 1 -component of (jO ) 
2 0 '  

I 
The following theorem is  based on ideas and results of Quillen 

[57, 591 and Findorowicz and Priddy [28]. 

Theorem 3.2. There a r e  equivalences v : j 6 
P - jP  

and 

- 6 v:  j02 A j02  such that the following diagrams commute in HS : 

6 
6 i 6 K k ~ 6  and j,-; 

1 

where the K6 a r e  induced by inclusions of bipermutative categories 
6 6 

(when p > 2, in the sense that j ko6 + kU i s  induced by 
P 

Proof. It will be convenient to treat the cases p > 2 and p = 2 - 
separately. We adopt the obvious discrete models analog of the notations 

in  V. 5.14. 

(i) p > 2. In view of Theorem 2.9 (and [48, I(2.1 2)]) , we have the 

following comparisons of fibration sequences in H &  , where F(jr and 

Ffir denote the relevant fibres: 

Since p > 2, bo tx bspin. The arrows labelled c0 a r e  induced by passage 

h ;f Kq of bipermutative to completed spectra from the inclusion 

ategories. By [l, 5.11 and Theorem 2.8, the dotted arrows a r e  al l  

quivalences in H d . On the level of bipermutative categories, 

ax%- & X K  restricts to the identity on kj Xkr .  By passage to 
q 

completed spectra, we conclude that the composite of $r-l with the 

map j: - ku6  induced by the inclusion of r k r  in  $$ qt is  trivial. 
q .-- 

6 
There results a lift p: j 4 F br , and p obviously induces an iso- 

P 
- 1 

morphism on To. Since KU BG = 0 for a finite group G [14,4.2] 

and since the zeroth space functor commutes with fibres [48,~111], the 

0-component of the zeroth map of p is  determined by the hnmotopy 

commutative diagram 

/' 
fibre (fir-1) B U ~  A B u6 

Quillen [59, p. 5761 proved that pO induces an isomorphism on mod p 

homology andis therefore a homotopy equivalence (since J and the 
P 

ibre of fir-1 a r e  p-complete simple spaces). It follows that p 

nduces isomorphisms on T. for all  i and i s  thus an equivalence. 
I 

- 1 
he desired equivalence V :  j: + j p i s  c .A-p .  



(ii) p = 2. 
3 3 3 

Let  FO$ and F$ denote the fibres of -1: ko6  -+ bso 
6 

3 6 
and of $ -1: ko6  + bspin . By V. 5.15 and Theorems 2.8 and 2.9, 

comparisons of fibrations yield acommutative diagram 

3 in which the maps A a r e  equivalences. The composite of $ -1: k o 6  -r bso6 

6 
with K ~ :  j ~ 2  -r k o 6  i s  trivial  since b3: @K3 - e K 3  res t r ic ts  to the 

identity on 0 kg and since [j0: , bso6] I [jo6, bo6] by the proof of 
2 

0 0 6 
V. 5. 15 and the £act that H j ~ ;  = H kO (where H denotes mod 2 

cohomology). There resul ts  a lift )I: j06 + F O $ ~ ,  and 7 obviously 
2 

induces an isomorphism on rr0. Restriction to the 0-component of 

zeroth spaces gives a homotopy commutative diagram 

Here ii[0 i s  not determined by the diagram, but Fiedorowicz and Priddy 

[28] have proven that any H-map & which makes the triangle homotopy 

commute induces an isomorphism on mod 2 homology and i s  therefore a 

homotopy equivalence. (Friedlander [29], following up Quillen's ideas 

about dtale cohomology [57], ea r l i e r  obtained a particular equivalence 

- 
pO , not necessarily an infinite loop map.) Thus i s  an  equivalence 

in H & . Next, consider the following diagram in H & : 

The right triangle commutes and induces 8 i n  such a manner that F$ 
3 

is canonically equivalent to the fibre of 8 and the solid arrow diagram i s  

a braid of fibrations (by [48, I (2.13)]. 9 r e s t r i c t s  non-trivially to Slbso6, 

and we define 5 = 9F. We need a slight calculation to construct p. Re- 

2 3 2 6 
call that ~ * b s o  Z1 ( A / A S ~  ) (e. g., by [8]). Since H kO = 0, 

3 6 * $ -1: kO -. bso6 induces the trivial  map on H and we have an exact 

8 equence 

1 
0 -.. A/ASq + ASq2 - EI*FW3 -c Z(A/AS$) -c 0 . 

1 3  Thus H Fo$ = Z2 and its unique non-zero c lass  8 res t r ic ts  to the 

* 6 
generator of H Slbso . By inspection of the fibration 

* K(P(2).  0) with 0-connected fibre,  we see  that this i s  FTF+ j02- 

1 6  1 
consistent with the known fact (e. g. [28]) that H J02 = H BOk3 i s  

with non-zero c lasses  corresponding to the determinant, the 

spinor norm, and thei r  product; we denote the l a s t  of these c lasses  

by 5,. In view of VI. 5.3 and VI. 5.7, J: i s  equivalent to the fibre 

6 6 6 
of SO: J02 + K(Z2, 1) (see [28]). Thus the cofibre of jZ + j 02  i s  

) by the long exact homotopy sequence. Clearly,  the cofibre 



6 
map j02 + X(Z $1) must be the non-trivial map e , hence j 

6 
2 2 

rrlust be equivalent to the fibre of e .  We conclude (by [48,1 (2.12)] 

6 
that there exists p : j2 - F d3 which makes the diagram above commute 

in HB , and p is  an equivalence by the five lemma. The desired 

6 - 6 - 
equivalences v: j * jZ and v : j02 * j02  a r e  A. p and A p. 

Since K~ = K': j6 + ka6,  it  follows from the definition of 
P 

6 6 
cur ) :  B(SF: kO ) - BSpin@ (in V § 2) that the restriction of c(Br) to 

B(SF; j 6, i s  the trivial infinite loop map. There results a lift 
P 

6 6 5 : B(SF; j ) -) B c 6  and the proof of V. 5.17 yields the following 
P P ' 

corollary. 

Corollary 3.3. c6: B(SF; j6) - B c 6  i s  an equivalence of infinite 
P P 

loop spaces. 

In V. 5, j was regarded as  a ring spectrum by pullback along v-' 
P - 

On l-components of zeroth spaces, v and v restr ic t  to composite 

equivalences - 

6 6 
where F$@ and F o b 6  denote the fibres of $'/I: BOB- Bsph6 and 

Q3 @ 
3 of $ /1: Bo6  .4. B S O ~  We shall see  in the following theorem that the 

e9 '8' 
maps A may be regarded as  infinite loop maps in view of Theorem 2.11. 

When p > 2, PO is easily seen to be an H-map; when p = 2, not even 

this much i s  clear in view of the non-uniqueness of FoFiO. However, the 

proof of the following theorem will yield a possibly different (when p = 2) 

6 
map P@ J8 * F $& which is  an equivalence of infinite loop spaces, 

and an analogous argument gives an equivalence F J 0 6  + F o a 3  of ~ b :  @2 Q3 
infinite loop spaces. The composite ApB plays a central role in the 

"multiplicative Brauer lift diagram" displayed on the following page. 



The dotted arrow portion of the diagram i s  an elaboration of part of the 

J-theory diagram of V 8 3 (completed at  p, with r = r(p)). The follow- 

ing result asser ts  that discrete models yield an approximation to this part 

of the J-theory diagram by a commutative diagram of infinite loop spaces 

and maps and that this approximation is in fact consistent with all  pre- 

assigned geometric infinite loop space structures in sight. In other words, 

our ad hoc discrete models notation behaves a s  if i t  were a functor naturally 

equivalent to the identity. 

Theorem 3.4. The solid arrow (-) and dotted arrow (--3) 

portions of the multiplicative Brauer lift diagram a r e  braids of fibra- 

tions, the horizontal ( t-, ) arrows a r e  all equivalences, and the 

entire diagram i s  a commutative diagram of infinite loop spaces and 

infinite loop maps. 

Proof. F i r s t  focus attention on the solid arrow portion of the - 
6 diagram. It features two orientation sequences (for j ' and kO ) and 

P 

the obvious comparison between them. We must construct an infinite 

loop map 
6 .  6 - p  

6 .spinQp 

such that I,' i s  equivalent to the fibre TF: F 2 - J' of K6  and 
QPe 

6 6 
76': Spin* - B(SF; j ') i s  equivalent to the fibre a F B  r6 - B(SF; j ) 

P P 

of B K6, these equivalences being compatible with infinite loop 

J' - F$&. ~ h u s  con- equivalences r6: B(SF; j ') - BC ' and p @: 
P P 

sider the follow+g diagram (in which, a s  i n  V $3, the letters n and L 

a r e  used generically for the natural maps of fibration sequences): 

T: J&- B(SF: j P ') i s  equivalent to the fibre of q: B(SF; j P ') - BSF. 

5 
and ~ : B ( s F ; ~ o ' ) - B S F  induces <:FBIC'+J @P (bybasechange). 

By [48,f.(Z. 13)], (which i s  a precise form of Verdier's axiom for fibrations), 

there is  a canonical equivalence ~ : F K '  -+ FBK' such that 

{ O L ~ L O Q T  and e r r .  

Clearly, 5 ' induces an equivelence t' : FBK' + Spin such that 

-6 -6 5 ' 0 ~  = L O G  and r ti= nc(plr). 

Define 6 ' = q ( ~ ' ) - ~ : ~ ~ i n &  - J' @P ' It remains to construct 

pp: J;, - F $&, and we note that 

(i60g)ot. "i' Z6oL0n7 = ~ c ( g ~ ) a n r  r;. ngr/l: O' -Spin 
6 

Qd *' 
The constructions so fa r  a l l  result by passage to zeroth spaces from the 

nnalogous constructions on spectra, hence we may regard the diagram 

ns one of connective spectra in H . By abuse, we retain the notations 

of the diagram on the spectrum level. Here cofibrations and fibrations 

/ -- 



I I '  
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agree up to sign, by [48,X1], hence standard arguments with cofibrations 

show that T6o 6 induces ti F @& such that 
p@ P 

6 
= 

and p@T = 6 0 5  J 6  5 in  HA , 

and p@ i s  an equivalence by the five lemma. Now passage back to zero 
th  

spaces and comparison of the diagram above to the multiplicative Brauer 

lift diagram complete the proof that the solid arrow portion of the la t ter  

i s  a commutative diagram of infinite loop spaces and maps and a braid 

of fibrations. On the space level, we have already constructed al l  of the 

horizontal equivalences, and we could of course assign infinite loop space 

s t ructures  to their ranges by requiring them to be infinite loop maps. 

The problem that remains i s  to check the consistency of the resulting new 

infinite loop space structures with the geometrically constructed infinite 

loop space structures already existing on BOW BSpin@, B(SF; kO), and 

their loop spaces. By V.3.1, Lemma 2.10, and Theorem 2.11, we have that 

6 
A: Boa + Boa and A: ~ S p i n l  - BSpin 

'8 63 

a r e  both infinite loop maps. We may therefore specify +'/ 1 a s  an 

infinite loop map by +I/l = An gr/l0 A-' (compare V. 7.6 ). The 

equivalence A: F$' - J obtained by comparison of fibrations cLa QPP 

i s  then an infinite loop map if J i s  given an infinite loop space 
Q D P  

structure a s  the fibre of +l/l. Next, specify E 
P 

= A % x e : S F - J  
@P 

a s  an infinite loop map. On the space level, parts of the multiplicative 

Brauer lift diagram already known to commute then imply that 

~ ~ 0 C 2 q r  L ~S2c(+'): (SF;kO) -. J and 10 E r xe:SF 
€ 3 ~  P 

These were the defining conditions for  the map labelled € in  V 8 3. 
P 

We have that -rr& = Xe = Axe:SF BOB as infinite loop maps in view of 
P 

V. 7.9. Delooping once, we conclude (by [48, I(Z.12)]) 

, j ,  I , I 8 i 1 ,  I 
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6 
t there i s  an infinite loop map B'lk B(SF; kO ) -.. B(SFr kO) such that 

6 
q ~ B ' A  = q:B(SF;kO ) -- BSF and r o A  = B ' A ~ T : B O ~  *B(SF;kO) 63' 

infinite loop maps. We must verify that B'A is  homotopic to BA, 

of course qo B A r  q and T O  A r BAo T on the space level. Thus 

6 
/B'A factors a s  r w  for  some map w : B(SF; kO ) +B% . and 

6 
T * . Since B(SF; kO ) has the homotopy type of BSpin X BC 

P' 

y V.4.7and V.4.8, and since [BCp,BC@ = 0, by V.7.8, w m a y b e  

egarded a s  a map BSpin - BO@ . It clearly induces the trivial homo- 

orphism on rational (indeed, on integral) cohomology, and V. 2.8 and 

10 imply that i t  i s  null homotopic. Thus BA r BIA. We may now specify 

r, a s  an infinite loop map by c ( + ~ )  = Ae c(gr) o (BA)-'. Similarly, 

specify B(SF: j ) as an infinite loop space by requiring Bv to be 
P 

6 -1 
infinite loop map and we specify BK = B A ~ B K  (Bv) : B(SF; jp) + 

(SF; kO) and r =. Bv 0 T -(&d-': J@ - B(SF; j ) a s  infinite loop 
P P 

maps. The remaining verifications a r e  trivial. 

We single out the followiilg part of the theorem for emphasis 

(compare V. 5.13). 

Corollary 3.5. The composite SF J 
6 %  r A  

@ P  F@@- b p  

may be taken a s  the map & :SF -c J of the 3-theory diagram. 
P @ P  

The force of this assertion lies mainly at  the prime 2. At odd 

primes it  i s  almost trivial, since there we have 

0 
[SF, SO ] r [ Q ~ S  .sod s [ B Z ~ ,  SO '1 = 0, 

QD '8 

by VLI.3.4 and [14], so  that 
p 

i s  uniquely determined by the fact 

its composite with T: J -c BO i s  homotopic to xe: SF -c BO 
6 3 ' ~  QD 63- 

We digress to give the following application of the corollary, 

hich summarizes Q uillen' s results [60] about K*Z. 

that 



Remarks 3.6.  F o r  any commutative topological ring A, we have a 

commutative diagram of bipermutative categories 

and a derived commutative diagram of K-groups in  positive degrees 

where the second diagram results f rom the f i r s t  by translation f rom 

0-components to 1-components of zeroth spaces of spectra  and where 

r l B &  i s  identified with SF  via VII. 3.4,4.4, and 4.5. By VII. 4.6, 

K e = T: maps monomorphically onto a direct summand of KO+Z, the * 
s m 

complementary summand being isomorphic to T*(RP ). When A = IR, 

KO*A = K*A = T*BO and V. 5.6 shows that the element k. e T.SF, i 5 1 @ 1 1  

o r  2 mod 8, defines a direct summand Z2 in  K.Z. Let J. denote the 
P '  

p-torsion in  the image of j*:~.Spin + T ~ S F .  When p > 2 and A = k 
r(p)' 

the p-torsion subgroup of K*A i s  isomorphic to J* and, by Corollary 
P 

3.5 and V. 4.6, J* i s  a direct summand of K*Z. Finally, consider 
P zJi' 

The image of J. = Z i n  K.Z i s  unknown, i 5 0 o r  1 mod 8 (and i 2 8). 
2 1  2 

Let A = k3. The 2-torsion subgroup of KO k = Kqi-*'n k3 i s  2J4i-1. 4i-1  3 

6 Write JU2 and JU2 fo r  the fibre of U13-~: BU - BU and for  rOs /i d~ k3 

(completed a t  2). By the proof of Theorem 3. 2, there  i s  an equivalence 

- 6 
vo: JU2 + JU2 under which the natural map J O  6 

* XU2 corresponds to the 

map c: SO2 + JU2 induced by complexification. By [1,5.2], -r4i-1J0 and 
2 

-r4i-1JU a r e  the same group and c i s  the identity i f  i i s  even and 2 4i-1 

multiplication by 2 if i i s  odd. Therefore, by Corollary 3.5 and V. 4.6, 

zJ8i-1 
i s  a d i rect  summand of K *Z and the image in  K*Z of the element 

of o rde r  2 i n  2J8i-5 maps to xero in  K*k3. Quillen [60] proved that 

J maps monomorphically to K Z by noting that Adams' e-invariant 
2 4i-1 4i-1 

can be identified with the map -r4i-1SF T 4i-1 X induced by the unique lift 

5 :  SF - X of Xe: SF -, BO to  the fibre X of the Pontryagin character  
(23 

X K(Q, 4i) and observing that 5 necessar i ly  factors through 
B 0 ~ 4  ir* 
r 1 B / Y ~ z  because the Chern c lasses  of representations of discrete groups 

a r e  torsion classes.  Karoubi [34] found that 2J3 i s  not a direct sum- 

mand of K Z , and Lee and Sczcarba [37] proved the deep resul t  that K Z 
3 3 

is exactly Z 48 ' 

54. The splitting of SF at odd primes 

Again, a l l  spaces and spectra  a r e  to be completed a t  a fixed 

a .  prime p f q and r = q 1s to be r(p). Actually, almost a l l  spaces 

t n  sight will have finite homotopy groups, hence localization will 

agree with completion. 

Theorem 3.4 focuses attention on the orientation sequence 

ti LBSF. SF L s6 @P A B(SF; jp ) 

The map T i s  null homotopic by the splitting of SF  in  V. 4.6-4.8 

(and Corollary 3.5). When p = 2, [70,9.11 o r  26 11.12.21 show that 

there i s  no splitting SF = C2 X J 2 a s  H-spaces, and presumably the 

h r s t  delooping of T already fails to be null homotopic. When p > 2. 

we shall prove an exponential law for h. J k r  and shall use i t  to split 

6 
SF and B(SF; kO ) a s  infinite loop spaces; i t  will follow that T i s  

trivial a s  a n  infinite loop map. 

- 



n 
Let M denote the monoid {r  ] n 1 0 )  . Subscripts M will 

denote unions of components indexed on M. Since Q,S' i s  the free 

0 
spectrum generated by S (by 11.1.6) and also the f ree  Q x ~  - 

spectrum generated by SO (by IV. 2.4 and 2.5), there i s  an exponential 

unit map of spectra er: QmS 
0 + f i r n ~ ( a M s  0 , 6 )  specified on S 0 by 

0 * 1 and 1 -c x for  any chosen point x E Q S o  and also a unit map 

0 co 
of Q X -spectra e: QmS *fi T(B h;C'kr, 8). By VI. 5.2 and 5.6, 

we have a unit functor e: + bJ'kr and a forgetful functor 

f: !& X kr + $ . Let er  = fe: 
+ 6 (which is  an exponential map of 

permutative categories) and let g = ef: b q k r  + b$kr. Recall from 

0 
VI. 5.1 that B $ = DS . With these notations, freeness and VII. 4.4,4.5, 

5.3, and 5.4 yield the following homotopy commutative diagram in which 

a l l  maps indicated by " are homotopy equivalences and a 6  : J6 + SF 
P P 

i s  defined to be the composite from the lower left to the upper right corner: 

Here ( r i )  L and the maps $ a r e  equivalences since they a r e  localizations 
€3 

a t  M and we a r e  further localizing o r  completing all  spaces at  p. The 

1 I I 
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aps e: Q S O &  J and e: SF -c J6 a r e  the restrictions to the 0 and 1 
0 P @ P  

components of the zeroth map of the unit of j6 . Of course, the 
P 

equalities which involve r6 and J~ require p to be odd, but we 
P @ P  

can construct a precisely analogous diagram 

6 
a e 

2 

ej: A* s[ 

J2 ecy 
6 
2 

J@2 

by use ~f n k 3  rather than & x k r .  An analogous diagram can also 

be constructed by use of 0 kr. Henceforward, we assume that p 

is  odd. 

By the results of VII $ 4  and 5 cited above, a l l  maps in our dia- 

gram a r e  composites of maps of 6;1 X X X Km-spaces and homotopy 

' inverses of maps of a: X k ,-spaces, and the diagram induces a 

similar commutative diagram in H A .  Clearly al l  three operads a r e  

0 
required: i t  i s  Urn which acts naturally on Q 0 S , Y on SF, and 

on B k X kr (in two ways). Because of the different geometric sources 

of the actions, the statement that all of our maps preserve them i s  highly 

non-trivial. 
a 

6 

Theorem 4.1. The composite J A SF ; J6 i s  
P @ P  

a homotopy equivalence. 

Proof. By our diagram, the specified composite may also be - 
described a s  

6 6 J = r 0 ( e h  $kr, 8) a r l ( ~ M ~ l k r .  5) & r l (B.ulkr ,  8) = & p- 
P 

-1 
It clearly suffices to prove that .I'g induces an isomorphism on 
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mod p homology H*. By Quillen [59,5 81, there exist elements y. of 

degree 2i(p-1) and zi of degree 2i(p-1)-1, i 2 1 ,  such that 

6 
H*J H*BGL(m, kp) = P{ yi} (E3 E{zi} . 

P 

Actually, we shall  only need that H J i s  additively no larger  than * P 

stated. This i s  the easy part  of Quillen's work and depends only on 

the form of the p-Sylow subgroups of the GL(n; kr) [59, p. 573-5741. 

The re s t  of the computation of H Ji will fall  out of the argument to 

follow (and i s  thus independent of Brauer  lifting). The remainder of 

the proof depends solely on general properties of the Pontryagin pro- 

ducts * and # and the homology operations QS and 6' determined 

on E ring spaces by 9 and 6 respectively [26, I1 $ l ,2 ] ,  together with 
m 

0 
particular properties of H+QS [26;154,11$53. Write # by juxta- 

position on elements, and write [n] f o r  the homology class of a com- 

ponent n. By [26, II.Z.8],modulo linear combinations of *-products 

between positive degree elements, 

-' S 1 
(a) Q [ r ]  E - (rP- r )QS[l]  * [rP- p] . 

P 

The coefficient i s  non-zero because r reduces mod p2 to a generator 

0 
of the group of units of Z . By [26,11.2.8],for x e H*QmS o r  

P 
x c H*T,(B bzk, ,  e ) ,  

(b) mx E (x*[l - m])[m]. 

Let  k = r - p b ( r P  - r): then (a) and (b) imply 

( 4  
'- S 
Q [r ]  E k(QS[l] *[1 - p])[rP]. 

0 
Since e : US' - r (QMS , .Z) and r g  a r e  exponential, they send 

S 
~ " [ l ]  + [-p] to Q [r] [ T - ~ ] .  

In view of (c), i t  follows that (ria t d - l e  and $-IFg send 

239 

Qs[l]*[-p] to k QS[l]+[l-p], 

modulo elements decomposable under the translate 5 of the *-product 

from the zero component to the one component. By the multiplication 

table for # on H*SF [2&,11.5.6], i t  follows immediately that the 

composite - 1 
(ri"")* (er)* 

P{ QS[l]*[-p] 10 E {p  QS[l]*[-p]} C HASO I %SF 

is a monomorphism (this being the step which would fail if p = 2). 

Since ( r i o ~  )-'e factors through e: Q SO - J6 we conclude by 
€3 r o P ' 

a count of dimensions that 

H*J: = P 1 ~ ~ [ 1 ] *  [-PI} b E{ p Qs[l1 *[-PI } 

as a Hopf algebra (under *) over the Steenrod algebra A. Moreover, 

by translation x * x*[l], we now have a basis  in which we know 

6 
H.JB a s  a coalgebra over A (because J 6  P and J6 @ P  a r e  the 0 and 

1 components of r ~ h  kr). We already know that 

1 
$:(rg)* (Q 111 *[-PI) = k Q1[1l* [l -PI # 0 

- 1 
and it  follows by standard techniques that j% (Tg) is  an isomorphism. * * - 1 
In detail, $* (rg)* i s  a morphism of connected Hopf algebras of the  

same finite dimension in  each degree and will be an isomorphism if it i s  

a monomorphism on primitive elements. Let ps, of degree 2s(p-l) ,  

be the s th even degree basic primitive element of H J 6  namely the * P '  

sth Newton polynomial in the ~ ~ [ 1 ] * [ - ~ ] .  Since, by [26 ,I. 1.11, 

p,fQS[l] a ( - i ) r ( r ,  s(p-l)  - Pr) ~ ' - ~ [ l ] ,  a standard calculation gives 

P*~ Ps = ( - l l r ( r ,  s(p-1) - Pr - l)ps-, - 
Therefore some P: p # 0, r > 0, unless s = pk for some k 2 0 when 

1 if k 2 2  



and 
P 

prP-l P ~ + ~ - ~  = ps and pi pstp-l = 2psml if k = 1. 

Thus, by induction on s ,  $; ' (~~)*(p,)  # 0 for  all s 2 1. Let bs. 

of degree 2s(p-1) - 1, be the sth odd degree basic primitive element 

of H , J , so  that bs - p QS[1] *[-p] modulo elements decompos- 
4. P 

sf 1 
able under * (and Bps = (-1) sbs). Since, again by [26,I. 1.11, 

P: pQs[1] = (-l)r(r,  s(p-1) - pr - l ) i 3 ~ ~ - ~ [ 1 ] ,  another calculation gives 

The coefficient here i s  the same a s  that in  the even degree case, hence 

- 1 
the same special cases  show that $* (rg)*(b ) f 0 for  al l  s since 

t - ' ( rg)* (bl) # 0. The proof i s  complete. 

In the following corollaries, we write * o r  # for the product 

on infinite loop spaces according to whether we choose to think of them 

a s  additive o r  multiplicative. Recall from Corollary 3.3 that 

(SF; j i )  = LIB(SF; j 6, i s  equivalent as  an infinite loop space to 
P 

6 
C' = OBC . 

P P 

Corollary 4.2. The  composite.^ 
6 

6 
ff XOq 

J x (SF; j 6, * SF x SF #--) SF 
P P 

and 

a r e  equivalences of infinite loop spaces. 

E. LIq i s  equivalent to the fibre of e: SF - J~ hence 
@ P  ' 

the theorem implies that the f i rs t  composite, and thus also the second, 

induces an isomorphism on homotopy groups. 

Choose an infinite loop map w: BSF -+ B(SF; j ') such that 
P 

wq = 1 a s  infinite loop maps. 

' 1 1  I ' , \ , I , ;  1 1 ' 1 )  
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Corollary 4.3. The map 

B(SF~ LO ) ( c D ~ ) '  W' + BO X B(SF: j 6, 
QD P 

s an equivalence of infinite loop spaces. 

Proof. Since q: B(SF; j6) -. BSF factors through 
P 

6 
q: B(SF; kO ) - BSF, this follows from V. 4.4 (last line), V. 4.8 (i), 

and the J-theory diagram of V $3  together with the multiplicative 

Brauer lift diagram of Theorem 3.4. 

6 6 
The original diagram of this section suggests that (SF;j ) -- Cp 

P 

the multiplicative analog of the additive infinite loop space C6 de- 
@P 

ed a s  the fibre of e: QOSO -+ J' . Of course, we lulow that J and 
P P 

a r e  equivalent infinite loop spaces. In contrast, although C6 
P Q'P 

d c6 a r e  evidently homotopy equivalent, there i s  no equivalence of 
P 

infinite loop spaces between them because their homology operations 

differ [26;I 54, I1 $61. 

Corollary 4.4. The composite 

is a homotopy equivalence (but T-' m6 i s  not an infinite loop map), 
P 

where T :  Q So -C SF i s  the translation x x*l .  
0 

In fact, by [26,I§ 41 and our proof of Theorem 4.1, the image 

-la' 
0 ( )* generates H*Q~SO a s  an algebra over the Dyer- 

Lashof algebra (under * and the as),  and this statement even re-  

mains true a t  the prime 2. By [26, II$l],  we also have the following 

technical consequence of our proof which has been used in the homolo- 

gical study of BF and BTop in [26,11]. Conceptually, we have here 

used crude information on homology operations to obtain the geometric 



splitting of SF, and we there used the geometric splitting to ob- 

tain more subtle information. 

6 
Corollary 4.5. (n ) : H . J ~  + H*SF takes the elements 

P *  * P  

QS[l]* [-p] and i3QS[1] *[-p] to generators of the subalgebra 

of H*SF considered as  an algebra under the 5 product. 

I The point is  that no higher operations Q [1], l(1) > 1, con- 

6 tribute to the image of (a )* on the specified generators. Since 
P 

6 
(%)* i s  multiplicative with respect to # , rather than 2 ,  on HGF, 

6 such operations can contribute to the image of (a  ). on decomposable 
P * 

elements. 

Remarks 4.6. The second author's original proof of Theorem 4.1 gave 

different information. Since p i s  odd, we may think of J and 
P 

J as  the fibres of. Jtr-1 and Jtr/l on BU and BU 
@Q 

QD . Since 

1 
[ J  , U] = KU- BGL(m, kr) = 0 (by Theorem 3; 2 and [14]), the com- 

P 

posite equivalence & a of V. 4.6 is  characterized by homotopy com- 
P P 

mutativity of the diagram 

where pr is  the cannibalistic class determined by +r and the standard 

orientation BU -c B(U; kU). A representation theoretical calculation 

([77,4.1]) shows that the diagram 

' 3  is homotopy commutative, where the maps v a r e  the 0 and 1 com- 

th 
ponents of the zero map of the equivalence v : J 

6 - jp of Theorem 

6 -1 
3 .2 .  Thus E n vea v and ecr6 i s  an equivalence. 

P P P P 

n v-': J - SF i s  an infinite loop map while a . J -" SF makes 
P P P' P 

the J-theory diagram homotopy commutative and, in particular, is  such 

that j: Spin + SF factors through it. In view of Corollary 3 .  5 and the 

previous remarks, it i s  natural to hope that these two maps are  homo- 

topic or ,  at least,  that a can be chosen as  an infinite loop map. This 
P 

would certainly hold i f  V.7.14 (the complex Adams conjecture on the 

infinite loop level) were satisfied. 

Very recently, Friedlander [Stable Adams' conjecture.  reprint] 

and Seymour have announced proofs of Conjecture V. 7.14. Unfortunately, 

Segal's machinery [68] seems essential to Friedlander's proof, hence 

it is not yet known that his infNite loop structure on SF agrees with ours 

(and ours is  essential to such basic facets of the theory as  the orientation 

sequences). We have not seen the details of Seymour's argument. 



I I I , I 

I X .  P a i r i n g s  i n  i n f i n i t e  loop  space  t h e o r y  

Maps of spectra of the general form D r E -c F a r e  central to 

stable homotopy theory. The purpose of this chapter i s  to develop a 

theory of pairings that allows one to recognize such maps in the guise 

of appropriate space level maps XhY + Z, where X,Y, and Z a r e  

Em spaces. Since X.AY will not itself be an Em space, such a theory 

i s  certainly not implicit in the recognition principle already obtained 

in chapter VII. It will be convenient to work with (weak) prespectra 

and their pairings in the sense of Whitehead [80] throughout this 

chapter. The relationship between these notions and the stable cate- 

gory has been explained in I1 53. 

While a theory of pairings i s  an obvious desideratum of any com- 

plete treatment of infinite loop space theory and should have many other 

applications, the need for it emerged in attempts to compare our 

m 
machine-built spectra R TBpA,where $'A i s  the category of finitely 

generated projective modules over a ring A, to the Gersten-Wagoner 

spectra [30,79]. Let CA be the ring of infinite, but row and column 

finite, matr ices  with entries in A and let SA be the quotient of CA by 

the ideal generated by the finite matrices. Gersten and Wagoner 

+ 
showed that QKSA i s  equivalent to KA, where KA denotes BGL(m, A) X KOA. 

i 
and thus produced an 52-prespectrum GWA = {KS A I i 2 0). 

Since f ree  modules a r e  cofinal among projective modules, BGL(w. A) 

may be regarded a s  l imBAut P, P E P A  (up to homotopy type; compare * 

[46, p. 851). By the universal property of the plus construction (above VUI.l.l), 

the tensor product functor F A  X P B  + (A QZB) induces a map 

, i ', 1 ; I , ~ I I  I I 
I 
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: KA A KB -c K(ABZ B). Suppose given a functor E from rings to 

-prespectra, written EA = {E.A I i 2 0), such that E A = KA and suppose 
0 

t E admits an external tensor product, by which we understand a natural 

iring (EA, EB) + E(A @i B) which extends the map p of zeroth spaces. 

th these data, Fiedorowicz [27] has proven that there i s  a natural map 

EA -c GWA of R-prespectra such that fo: E A = KA -0 KA i s  the identity. 
0 

follows (by 11.2.10 and 2.11) that the associated connective spectra of EA 

d GWA a r e  equivalent. 

m 
Now let EA denote S2 TB PA regarded as  an R-prespectrum. 

rtainly EOA i s  KA (up to homotopy type). The results of this chapter 

11 imply that E admits an external tensor product and thus that EA i s  

e associated connective spectrum of GWA. 

We develop suitably related notions of pairings of symmetric monoidal 

ategories, of permutative categories, and of 62.-spaces in section 1. We 

rove that pairings of %t.-spaces induce pairings of Q-prespectra in section 2. 

chernatically, our results can be summarized a s  follows: 

Pairings of symmetric monoidal categories 

U blow up 

pairings of permutative categories 

C 
pairings of 'Q-spaces 

II RwT 
pairings of $2-prespectra 

While there i s  an evident intuitive relationship between the present 

eory and the E ring theory of the ear l ier  chapters, I have not attempted 
03 

combine the two lines of thought into a single more general theory. 



1. Pairings of categories and of ?&spaces 

Let a, 8 , and be symmetric monoidal categories with products 

€D and units 0. A pairing @ : a X is  a functor @ such that 

A dg 0 = 0 and 0 @J B = 0 together with a coherent natural bidistributivity 

isomorphism 

(*) d: (A e A')@(B o B') s ((A@ B) 61 (A@ B')) @ ((A'@ B) B) (A'@ B')) 

for A,  A' E o& and B, B '  E 663 ; the extra parentheses a re  needed since 

8 on i s  not assumed to be associative. 

The category theorist will recognize that this i s  not really a definition. 

Precision would require elucidation of the meaning of coherence, via a 

specification of just which diagrams involving d and the associativity, unity, 

and commutativity isomorphisms a, b, and c a re  required to commute. 

The details would be analogous to those in  La Plaza [35]. We prefer to be 

informal since the intuition should be clear. Of course, the example to 

keep i n m i n d i s  8: P A X W - ,  il](A@ZB). 

We would like to define a pairing of permutative categories by requiring 

the isomorphisms d to be identity maps. However, expansion of the right 

sides of (*) when the left sides.are 

( (A61A1)@AS1)@(BCeB()  and ( A C B ( A ' ~ J A ~ ~ ) ) @ ( B @ B ~ )  

demonstrates that, in the absence of strict commutativity, this requirement 

would be unreasonable. We a r e  led to the following definition. 

Definition 1 .l. Let , 83 , and be permutative categories, with 

products @ and units 0, and assume given subsets .ba of Da and 

of 063 which generate and C n  under @. A pairing 8: a X ..I 

is  a functor 8 such that A@O = 0, 0 @ B  = 0, and for all  sequences 

{A1,. . . , A.) of objects in B(X and all sequences {B , B 1 of objects 
3 k 

in h a  

and the following diagram commutes for all permutations cr E 2. and T E 2 
3 k' 

where the unlabelled isomorphisms a r e  given by the commutativity iso- 

morphisms of , 63 , and : 

By use of the commutativity isomorphism of , (**) determines a 

natural bidistributivity isomorphism d as in (*). The commutative diagrams 

above give coherence. Thus a pairing of permutative categories i s  also a 

pairing of symmetric monoidal categories. It i s  an instructive exercise to 

verify that @: MZ'A X HZB -C B ~ ( A  BZ B) is  a pairing of permutative 

categories. In this case, the generating sets of objects have the single 

element 1, (**) is  trivial, and only the diagrammatic relationship between 

the commutativity isomorphisms need be checked. 

Recall the functor Q of VI. 3.2 from symmetric monoidal categories 

to permutative categories. 

Proposition 1.2. A pairing 8: CL X 8-r of symmetric monoidal 

categories naturally determines a pairing @: X 1Pf3 - Q C: of per- 

mutative categories such that the diagram 

Q a x m n  @ *.c~r 
7,- x.2 1. 

& x J J  @ * c  
commutes up to coherent natural isomorphism. 



Proof. The space of objects of (Pa is  the free monoid with unit 0 

generated by , hence we take Oa a s  the generating set  in e'4 a and 

similarly for  8 . Recall that, with the product on pra again written a s  8, 

n i s  specified on objects by 

=(A1@. . .8 A.) = Al 8 (A2@ (A3 8.. . (Aj-l 8 A.).. .)) . 
J J 

As in [46,4.2] o r  VI. 3.5, the morphisms from-A to A' i n  QJ-. a r e  the 

morphisms from nA to ~TA' in  & , with composition and the commutativity 

isomorphism c determined in an evident way from these data on @ . 
Define @: Q a x  @'a + @; by (**) on objects. On morphisms f: A -c A' 

and g: B + B' in  QCL and Qd% , the morphism f @g: A @ B  A' @B' 

in  Pj G is specified by tlie composite 

in & , where the unlabelled isomorphisms a r e  uniquely determined by the 

coherent natural isomorphisms a, c, and d of and a r e  the isomorphisms 

required for  the diagram in the statement of the proposition. The commuta- 

tivity of the diagram in Definition 1 .I follows from the coherence of the 

given pairing @: X 83 -, . Indeed, the omitted formal definition of 

coherence here  can be specified simply by listing those diagrams which 

suffice for the present proof. 

Now recal l  the categorical E operad of ~ 1 5 4 .  The tensor pro- 
m 

duct Z . X Z k  + Z. (of Notations VI. 1.4) induces a functor 
J Jk 

5. X zk -.. and thus, by application of the classifying space functor B, 
J jk 

a map @: kj (j) x Q(k) --, Q(jk). 

Definition 1.3. Let X, Y, and Z be -spaces. A pairing f:X X Y  -, Z 

i s  a map f which factors through X h  Y  and i s  such that the following diagram 

commutes: 

> ! / I  i i , i t ~ i  
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y x x y \  z 

.- ?Q (jk) X 2jk 

, A k  

(xl, ... *xjs  Y1* "', yk) = Y1' ..., Xlb  Yk' ..., X." y1 ".., X j A  Yk ) . 
J 

I do not have a definition (or any prospective applications) fo r  a notion 

pairing of F -spaces for a general E operad & . One could, of course, 
m 

imply appeal to VI. 2.7 (iii), which shows that & -spaces can be replaced 

y equivalent &!-spaces. 

Proposition 1.4. If @: (1. X iB .-, F i s  a pairing of permutative 

ategories, then f = B @: B a  X B'G -L. B& i s  a pairing of Q -spaces. 

Proof. The basepoint of B a  i s  given by the object 0 (regarded 

s a 0-simplex), and f factors through B a  A B n  by the nullity of zero. 

The diagram of Definition 1.1 implies the commutativity of the following 

coherence diagram: 

e r e  the functor v i s  defined just a s  was the map v in the previous 

efinition. The conclusion follows upon application of B. 



2. The recognition principle for pairings 

We here extend the one operad recognition principle of VII $ 3  to a 

recognition principle for pairings. Although the present theory i s  basically 

an elaboration of the additive theory, it  will still be necessary, for techni- 

cal reasons, to work with the little convex bodies operads -fi. 
n 

rather than with the little cubes operads n. Defir: 

63: Xm(j )  x )Cn(k) + )Cm+,(jk) by 

c c  c.>dD<c; ,..., c1 > = < c  x c; ,..., c x cl; ,..., c. xc; ,..., c.  x c '  > . 
1 '"" J k 1 1 J J k 

Let a n  denote X kn for  n 2 1. The maps @: Q(j) X Q (k) & (jk) 

and the maps just defined together determine maps 

Q9: @ ,(j) X (an(k) -r Qm+n(jk). Let D denote the (partial) monad 
n 

associated to Q We begin by using the maps @ to define a "pairing of 
n' 

monads1' DmA Dn -. D 
q + n  ' 

Proposition 2.1. F o r  based spaces X and Y, the composite maps 

where v i s  as  specified in  Definition 1 . 3 ,  induce maps 

h -: DmXhDnY D m + n ( ~  A Y) 

such that the following diagrams commute: 

and 

Prodf. D X is  constructed from 1L Qm(j) X X ~  by use of appropri- 
m 

ate equivariance and basepoint identifications, and i ts  product p and unit rl 

are induced from the structural maps y and unit 1 for the operads Q and 

j j m  (see VI. 1.2 and [45, 2.41) . The proof consists of a check, in principle 

for Q, and the Xm separately, of the commutation relations between @ 

and the defining data of the specified operads. The details a re  closely 

analogous to those already formulated in VI. 1.6-1.10 (specialized to the case 

k = 2) and will therefore be omitted. The top row of the f i rs t  diagram must 

be interpreted in the sense of partial monads, the superscripts indicating 

restrictions of powers such that only composable pairs of little convex bodies 

are in sight (see VII. 1.1 and the discussion following VII. 2.1). F o r  

D(') (D XAD Y), composability is  to be interpreted in terms of @ on the x ' s .  
m+n m n 

Indeed, we may specify this space to be the inverse image of D(') (XAY) 
mSn 

under D m+n( 'mn) and then check that i t  contains the image of D (2)XADi2)Y 
m 

under the map 

h -: DmDmXn DnDnY + Dm+n(Dmxn DnY). 

Let pn: Z ~ D ~  -* Dn be the adjoint of the composite of the projection 

a: D + K and the morphism of monads a;l: Kn -c #.Zn of VII. 2.2. 
n n 

Recall (for twisting maps) that we a r e  writing suspension coordinates on the 

right. 

Proposition 2.2. The following diagrams commute for  all  X and Y 

- 



/ I t /  i 1 1 I I I l l  i I I I I / I l l  I ' 
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,m+n 
,G e required homotopy is given on little convex bodies c by conjugation 

.m~mxA xnDny '7.1 zmin 'mn. .m+n 
(DmX~DnY) Dm+&X A Y) 

ul(c) with the orthogonal transformations h 
t ' 

pmA pnI 1 L + n  
It is not just the existence but the form of the homotopies that i s  

Z ~ X  A Z ~ Y  
l h 7 h l  * z ~ ' ~ ( x  A y ) 

ssential for  our purposes. F o r  example, the following result i s  immediate 

Proof. We may define X-: KmXI\KnY -, Km+n(X~Y) just a s  in the t f r D m  the previous proof. 

- 
previous proposition, and then a h  mn = krnn(~f i " r ) .  Moreover, a s  was Proposition 2.4. The bottom part of the following diagram commutes 

pointed out in [45,8.3] in the case of lit t le cubes, the following diagram is and the top part commutes up to homotopy for al l  X and Y: 

commutative: 

The conclusion follows by passage to adjoints. 

Recall that u : h -r n+ i s  the morphism of operads specified 

by c -. c X 1 on little convex bodies, and also write u fo r  

1 X u : 5;1 
-c :+ n+l. 

We need to know that, up to homotopy, v i s  inde- '- n 

pendent of the choice of privileged coordinate. The following analog of 

+ ;. be specified [45,4.9] for little cubes will give the idea. Let u': r in  
. L ~ + ~  

by c -C 1 X c on little convex bodies. 

L e m a  2.3. The maps u and u1 from *kn( j )  to ' ; ~ : ~ + ~ ( j )  a r e  

Z;-equivariantly homotopic. 
J 

Proof. Define orthogonal transformations g, gl: R ~ + '  - Itnf1 by - 

i (s, x) if n i s  even 
g(s, x) = (x, s)  and gl(s,  x) = 

(1-s,x) if n is odd 

n n 
for  x e R and s E R. Since g and g' both have degree (-1) , there i s  a 

n n 
path h: I -9 O(n) from g to g'. F o r  a little convex body c: R -+ R , we have 

D m XhDnflY / 'm, n + ~  

At this point, we recall Whitehead's definition [80] of a pairing. 

Definition 2.5. A pairing $: (TI, T") -+ T of prespectra consists of 

aps Id-: T;A T l  * T f o r  m, n 2 0 such that, up to homotopy, the 
mf n 

ttom part of the following diagram commutes and the top part of the dia- 

commutes up to the sign (-1)": 

F o r  a ,@ -space X, we have the prespectrum TX specified 

gcr'(c)g-l = u(c) and g'u'(c)(g')-l = ul(c). 



where T X = X, with structural maps 
0 

i f  1 .. = B(I.U,I):ZT~X = a ( a  , p . x )  + B(~~~~,JJ~~~.x)=T~.~x . 
We have the following recognition principle for pairings. 

Theorem 2.6. A pairing f:X&Y -c Z of -spaces naturally 

induces a pairing 8: (TX, TY) + TZ of prespectra such that $ = f. 
0,o 

Proof. As i n t h e  f i rs t  diagram of Proposition 2.1, the maps - 
can be iterated to yield 

( 4  m 
By composing with D f, smashing with spheres S A Sn = Smin (wpich 

m i n  

a re  taken as  one-point compactifications of Euclidean spaces here), and 

using a twist map 7, we obtain maps 

By the definition of a pairing of -spaces, we have the commutative 

diagrams 'mn 
D XhDnY- 

Dminf 
m Dmin(X"Y) - 

where the 9 are  composites of projections and the given actions of D on 

X, Y, and Z. In view of the definition of the face and degeneracy operators 

[45,9.6] and the commutative diagrams of Propositions 2.1 and 2.2, i t  

follows that Bmn* i s  a map of simplicia1 spaces. F o r  any simplicial 

based spaces U and V, the natural homeomorphism 

Iu]  X Iv] 1 U X V] induces a map I u I  A Iv] -.L I U *V I ,  and we therefore 

obtain a map $ 8 TmXATnY + TminZ on passage to geometric realiza- 
mn 

tion. Certainly $ = f. On the level of q-simplices. the diagram of 
0,o 

( 4  ( 4  
u h l  

om x*srnt,s1A Dn y n s n  mq a d 4  m f  1 X*Smi1*(4ynSn 

1A-T 1 'mil, n, q \ 1 
( 4  (4) n 1 $ \ mnq ,,,(4 ZnSminAS1 umin,q_D(q) ZnSmini l  D X A S ~ A D ~  YnS A S  
m m i n  m i n i l  

b /' 

The bottom part commutes by Proposition 2.4. Provided that we first twist 

5" past S1, application of the homotopy of Proposition 2.4 to D(%nD('Y 
m n 

m i l i n  
and of the orthogonal transformations which give that homotopy to S 

yields a homotopy for the top part of the diagram. These homotopies a s  q 

i( varies a r e  compatible with the face and degeneracy operators (for each 

parameter t E I) and so determine the required homotopy on passage to 

geometric realization. It i s  for this compatibility with face operators 

that use of little convex bodies rather than little cubes i s  essential. 

w 
While the passage via $2 from pairings of prespectra to maps in 

the stable category has already been discussed in II. 3 . 3  and 3.4, we 

should perhaps say a bit about the more elementary passage from pairings 

of prespectra to pairings of SZ-prespactra. Provided that we a re  willing 

to neglect phantom maps, the functor SZw can be redefined homotopically 

( n w ~ ) .  = Tal d~~~~ , 

with r : T f (S2w~) i  being given by the oth t e rm of the limit system. 

Given a pairing $: (TI, T") -+ T, the maps 

the previous definition can be written as  follows: 



.. 
n ;I 'ij nm+n "i+j+m+n nm+n+l si"~;+~^ Q T +n- Ti+jtm+n 

there being a permutation of loop coordinates in  the upper part which can- 

cels  the sign inserted in  the  definition of a pairing. Still neglecting 

phantom maps, there result maps 

OD 87.: ( Q ~ T ' ) ~ A ( S ~ ~ T " ) .  = ~ e l ( G ? ~ T ~ + ~ t _ n  nnT:' ) - (a T)i+j 
9 J J+n 

.- 
which give a pairing $: (SlmT',CZmT") - nmT. The following diagrams 

a r e  clearly homotopy commutative: 

In the context of Theorem 2.5, the group completion property of the 

recognition principle implies that the map fiOO i s  characterized by the 

case i = j = 0 of this diagram (compare [46,3.9], VII. 1.1, and the para- 

graphs above the la t ter  result). 
-4 

One could obtain a genuine pairing $ , without neglect of phantom 

maps, by an elaboration of the discussion just given in te rms  of the mapping 

cylinder techniques of [43, Theorem 41. However, the extra precision 

would be insignificant i n  view of II. 3.4. 

J. F. Adams. 
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