ASSOCIATED PRIME IDEALS

Let R be a commutative Noetherian ring and M a non-zero finitely generated R-module. Let I = Ann(M). The case M = R/I is of particular interest. We sketch the theory of associated prime ideals of M, following Matsumura (pp 39-40) and, in particular, of the height of ideals. The height of a prime ideal P is the Krull dimension of the localization R_P , that is the maximal length of a chain of prime ideals contained in P. The height of I is the minimum of the heights of P, where P ranges over the prime ideals that contain I (or, equivalently, are minimal among the prime ideals that contain I).

Definition 0.1. The support of M, Supp(M), is the set of prime ideals such that the localization M_P is non-zero.

A prime containing a prime in Supp(M) is also in Supp(M). For example, the support of R/I is V(I).

Definition 0.2. The associated primes of M are those primes P that coincide with the annihilator of some non-zero element $x \in M$. Observe that $I \subset P$ for any such P since $I = Ann(M) \subset Ann(x)$. The set of associated prime ideals of M is denoted Ass(M) or, when necessary for clarity, $Ass_R(M)$.

The definition of localization implies the following obervation.

Lemma 0.3. M_P is non-zero if and only if there is an element $x \neq 0$ in M such that $Ann(x) \subset P$. Therefore Ass(M) is contained in Supp(M).

Proposition 0.4. Let $\mathscr S$ be the set of ideals of the form Ann(x) for some $x \neq 0$ in M. An ideal P that is maximal in the set $\mathscr S$ is prime. In particular, Ass(M) is non-empty.

Proof. Let $rs \in P$, where P = Ann(x) and $s \notin P$. Then $r \in Ann(sx) \supset Ann(x)$. By the maximality of P, Ann(sx) = Ann(x) and therefore $r \in P$.

Corollary 0.5. The set of zero-divisors for M is the union of the primes in Ass(M).

Proof. Clearly, any element of an associated prime is a zero-divisor for M. If rx=0, then $(r) \subset Ann(x)$, and $Ann(x) \subset P$ for some $P \in Ass(M)$ by the proposition. \square

Proposition 0.6. If S is a multiplicative subset of R and N is a finitely generated R_S -module, then $Ass_R(N) = Ass_{R_S}(N)$, where we view $Spec(R_S)$ as contained in spec(R). Therefore $Ass_R(M_S) = Ass_{R_S}(M_S)$.

Proof. Inspection of the definitions. See Matsumura, p. 39.

Corollary 0.7. P is in $Ass_R(M)$ if and only if PR_P is in $Ass_{R_P}(M_P)$.

Proposition 0.8. If $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is exact, then

$$Ass(M) \subset Ass(M') \cup Ass(M'')$$

Proof. If P = Ann(x), then Rx is a copy N of R/P contained in M. Since P is prime Ann(y) = P for any non-zero $y \in N$. If $N \cap M' \neq 0$, this implies $P \in Ann(M')$. If $N \cap M' = 0$, then N is isomorphic to its image in M'' and $P \in Ann(M'')$.

Proposition 0.9. There is a chain of submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that $M_i/M_{i-1} \cong R/P_i$ for some prime ideal P_i .

Proof. Proceed inductively, starting with $M_1 = Rx$ where Ann(x) is prime. If $M_i \neq M$, choose $P_i \in Ass(M/M_{i-1})$ to obtain a copy of R/P_i in M/M_{i-1} .

Theorem 0.10. Ass(M) is a finite subset of Supp(M), and the minimal elements of Ass(M) and Supp(M) coincide.

Proof. The set of prime ideals containing any non-zero proper ideal in a commutative Noetherian ring is finite, by consideration of the topology on Spec(R). But we have a different proof here: the finiteness of Ass(M) follows inductively from the previous two propositions. Let P be a minimal element of Supp(M). Then $M_P \neq 0$ and, by minimality and results above,

$$\emptyset \neq Ass_R(M_P) = Ass_R(M) \cap Spec(R_P) \subset Supp(M) \cap Spec(R_P) = \{P\}.$$
 Therefore $P \in Ass(M)$.