
ELLIPTIC CURVES AND LENSTRA’S FACTORIZATION

ALGORITHM

DANIEL PARKER

Abstract. This paper provides a foundation for understanding Lenstra’s El-

liptic Curve Algorithm for factoring large numbers. We give a definition of
elliptic curves over fields of characteristic not 2 or 3, followed by a construc-

tion of the abelian group over the K-rational points of an elliptic curve. Next,

Pollard’s p− 1 algorithm is explained, as well as the Hasse-Weil Bound, after
which follows a discussion of how Lenstra’s Algorithm improves upon Pollard’s.

Then Lenstra’s Algorithm is explained in full, followed by a brief note on its

application.

Contents

1. Introduction 1
2. Elliptic Curves 2
3. The Group Law 2
4. Pollard’s p-1 Algorithm 5
5. The Hasse-Weil Bound 6
6. Lenstra’s Algorithm 6
7. Applications 8
Acknowledgments 8
References 8

1. Introduction

The study of elliptic curves encapsulates a unique intersection of algebra, geom-
etry, and number theory. This paper concerns Lenstra’s Algorithm for factoring
large numbers, which is a perfect example of how these fields intersect. Before
discussing the algorithm itself, we introduce elliptic curves and the group structure
on which Lenstra’s Algorithm depends, and also contextualize the algorithm with
its predecessor, Pollard’s p− 1 Algorithm.

We assume some background in projective geometry, but this is not essential to
understanding the paper holistically. Those interested in a good introduction to
the relevant parts of projective geometry, or who are seeking further information
about elliptic curves in general, are encouraged to consult [2].

Date: August 2014.

1

2 DANIEL PARKER

2. Elliptic Curves

Here we define elliptic curves over a field K such that K does not have char-
acteristic 2 or 3. Curves over fields with characteristic 2 or 3 have longer general
equations that complicate their eventual use in Lenstra’s Algorithm.

Definition 2.1. Let K be a field either of characteristic 0 or characteristic greater
than 3. Then we define an elliptic curve E over K to be the projective closure of a
nonsingular curve over K of the form

y2 = x3 +Ax+B

where A,B ∈ K.

To describe this projective closure, we set f(x, y) = y2 − x3 − Ax − B, then
consider the homogenization of f(x, y):

F (X,Y, Z) = Z3f(
X

Z
,
Y

Z
) = Y 2Z −X3 −AXZ2 −BZ3.

The projective closure is the set of solutions to F (X,Y, Z) = 0. Since in projec-
tive space any point (X : Y : Z) is equivalent to (λX : λY : λZ) where λ ∈ K is
nonzero, the solutions where Z 6= 0 are equivalent to the solutions where Z = 1:
the affine solutions f(x, y) = 0.

Now we consider when Z = 0. Plugging in, we get X3 = 0, indicating that the
only remaining solution is (0 : 1 : 0). We will call this the curve’s point at infinity,
referred to with the letter O, and the rest of the points will be referred to by their
corresponding affine point.

Before we move on, we give one more definition.

Definition 2.2. We define the set of K-rational points of an elliptic curve E as
the set of points on E whose coordinates all lie in K, as well as the point O, and
denote it E(K).

3. The Group Law

We now outline the construction of an abelian group structure on the K-rational
points of an elliptic curve E over a field K. To accomplish this, we first give such
an abelian group structure over the algebraic closure K. We then show that E(K)
is a subgroup of E(K), which implies that E(K) itself is an abelian group.

Let E be an elliptic curve over a field K of either characteristic 0 or characteristic
greater than 3, and let K be the algebraic closure of K. Since K ⊂ K, we can also
consider E over K. Let L be any line in projective space, let S be any K-rational
point, and let mS denote the multiplicity of the intersection of E and L at S. As
K is algebraically closed, and deg(E) = 3, the total multiplicity over all points
is 3, i.e.,

∑
S mS = 3. Without loss of generality, and bearing in mind that due

to multiplicity, any two or all three points could be equal, we refer to the three
points of intersection of L with E as P , Q, and R. Also, for any point S ∈ E(K)
with S = (XS : YS : ZS), we define −S to be the point (XS : −YS : ZS). Note
that by the definition of an elliptic curve, S ∈ E(K) implies that −S ∈ E(K).
Furthermore, since (0 : 1 : 0) = (0 : −1 : 0), we can see that −O = O. With these
facts in mind, we define addition over E(K) by saying that if P,Q,R ∈ E(K) are
collinear, then

ELLIPTIC CURVES AND LENSTRA’S FACTORIZATION ALGORITHM 3

Figure 1. Some potential intersections of a line with an elliptic curve.

P +Q = −R.

To find the sum of two points, we examine the line L between them, find the
third point of intersection of L with E, and then invert that point. Now we show
that this definition of addition constitutes an abelian group.

First of all, consider the intersection of the line Z = 0 with an elliptic curve E
over K given by the equation Y 2Z = X3 + AXZ2 + BZ3. As touched on before,
the point of intersection O satisfies X3 = 0. But now notice that this intersection
has multiplicity 3. Therefore, O +O = −O, i.e., O +O = O.

Addition over E(K) must be closed, since we already determined that any P,Q,R
are all in E(K) and that S ∈ E(K) implies that −S ∈ E(K).

Note also that it must be the case that for any P,Q ∈ E(K), P + Q = Q + P ,
since P and Q determine exactly one line. Therefore, the operation is commutative.

Next, we show that for a point P ∈ E(K), the additive inverse is indeed −P .
Let P = (xP , yP) where xP , yP ∈ K. Then the only line intersecting both P
and −P is X = xPZ. The third point at which this line intersects E is O, so
P + (−P) = −O = O.

Now we show that O is the additive identity of addition over E(K). Suppose
we want to perform O + P . As determined earlier, the line between O and P is
the vertical line X = xPZ, making the third point of intersection −P . Therefore,
O + P = −(−P). From our definition of negation, −(−P) = P , and recalling
commutativity, we then see that O + P = P +O = P .

Thus, we have demonstrated all conditions for E(K) to be an abelian group
except for associativity. We will not prove associativity here, as the proof is lengthy
and is not constructive to understanding Lenstra’s Algorithm, but one can verify
associativity using the formulae given here and checking all possible cases.

4 DANIEL PARKER

From this characterization, we derive explicit formulae to calculate the sum of
any two points. Let P,Q ∈ E(K) such that P = (xP , yP) and Q = (xQ, yQ). First,
we assume that P 6= Q. If xP 6= xQ, then we can easily find λ, the slope of the line
between them:

λ =
yQ − yP
xQ − xP

Next, we calculate the y-intercept of the line, ν, as

ν = yP − λxP = yQ − λxQ.
Now that we have the equation for the line, we can substitute (λx+ ν) in for y

in our elliptic curve:

y2 = (λx+ ν)2 = x3 +Ax+B

0 = x3 − λ2x2 + (A− 2λν)x+ (B − ν2)

By the fundamental theorem of algebra, and since K is algebraically closed, this
cubic equation must have a third root (up to multiplicity), xR ∈ K, so

0 = x3 − λ2x2 + (A− 2λν)x+ (B − ν2) = (x− xP)(x− xQ)(x− xR).

When we expand the right-most expression, the coefficient of the x2 term is
−xP − xQ − xR. Therefore,

λ2 = xP + xQ + xR.

That means that we can isolate xR in the equation, and subsequently find yR:

xR = λ2 − xP − xQ
yR = λxR + ν.

As P,Q, and R are collinear, recall that for R = (xR, yR), we have that P +Q =
−R = (xR,−yR). If xP , xQ, xR are all distinct, the line connecting P,Q, and R
will resemble the red line in Figure 1. If xR = xP or xR = xQ, then the line will
resemble the turquoise line in Figure 1.

Now suppose, contrary to our earlier assumption, that xP = xQ. If P 6= Q,
yQ = −yP and the line connecting them is simply the vertical line x = xP , so
Q = −P , and P +Q = O. This case resembles the pink line in Figure 1.

If P = Q, then the line with multiplicity 2 at P is the tangent line to E at P ,
so to find the slope λ of the tangent line at P , we perform implicit differentiation:

y2 = x3 +Ax+B

2y
dy

dx
= 3x2 +A

dy

dx
=

3x2 +A

2y

λ =
3x2P +A

2yP
We then proceed as before with the prior formulae and arrive at the same equa-

tions for xR and yR, unless y = 0. If y = 0, we again have a vertical line, so the

ELLIPTIC CURVES AND LENSTRA’S FACTORIZATION ALGORITHM 5

third point of intersection is again O. Thus, P + P = O. Note that in this case,
P = −P . For y 6= 0, the P = Q case resembles the turquoise line in Figure 1. If
y = 0, the P = Q case resembles the orange line.

Suppose that P,Q ∈ E(K), and P +Q = −R. Assume R 6= O. Then using our
formulae for xR and yR, in all cases, xR and yR are equal to arithmetic expressions
of xP , xQ, yP , yQ, and A, all of which are in K, meaning that xR, yR ∈ K. If R = O,
then by definition R ∈ E(K). Since R ∈ E(K), −R ∈ E(K), so E(K) is closed
under addition of points. That makes E(K) a subgroup of E(K). Consequently,
E(K) is an abelian group.

Thus, we have characterized the abelian group E(K) over a field K. We now
discuss a few more relevant topics, then proceed to Lenstra’s Algorithm.

4. Pollard’s p-1 Algorithm

First, we explain Pollard’s Algorithm, because Lenstra’s Algorithm is fundamen-
tally an improvement of Pollard’s. We begin with Fermat’s Little Theorem.

Theorem 4.1. Fermat’s Little Theorem: If p is a prime number and a ∈ N, then

ap ≡ a mod p.

Further, if p 6 |a,

ap−1 ≡ 1 mod p.

From this, we can see that raising both sides to some other power m preserves
this relationship:

a(p−1)m ≡ 1 mod p.

Suppose we have a composite number n, which we would like to factor. We
know by the fundamental theorem of arithmetic that n has a prime factor p ≤

√
n.

Thus, by Fermat’s Little Theorem, if a is any integer, ap−1 − 1 ≡ 0 mod p, so
p|(ap−1 − 1), and consequently, p|(a(p−1)m − 1). Therefore, p| gcd(a(p−1)m − 1, n).
If we could calculate gcd(a(p−1)m− 1, n), we could find either p or some multiple of
it. However, if we don’t know what p is, then of course we don’t know what p− 1
is either. But for some primes, this difficulty can be ameliorated.

Suppose that p− 1 is the product of small primes to small powers. If this is the
case, and we have some k that is the product of many small primes to small powers
such that k = (p− 1)m for some m, then when we calculate gcd(ak − 1, n), we will
find p.

Thus we have the beginnings of a procedure for looking for prime factors of n.
For k = lcm(1, · · · ,K),K ≤

√
n, and 1 < a < n, we can calculate gcd(ak − 1, n),

and if p− 1|k, we will find p. If we don’t find p, then we can increase K and keep
looking. We are guaranteed to find p eventually, since when K = 1

2 (p− 1), it must
be the case that p − 1|k. But one can see how Pollard’s Algorithm will do much
better if p− 1 is the product of small primes.

If p|a, we can’t use Fermat’s Little Theorem this way. For this reason, we first
check that gcd(a, n) = 1. If not, then we have already found a factor!

6 DANIEL PARKER

Having discussed the reasoning behind the algorithm, here is an explicit set of
steps.

• For some integer K ≤
√
n, let k = lcm(1, . . . ,K).

• Choose a so that 1 < a < n.
• If gcd(a, n) 6= 1, then stop, as gcd(a, n) is a factor of n. Otherwise, continue.
• Calculate D = gcd(ak − 1, n). If 1 < D < n, then D is a factor of n. If
D = n, then reselect a. If D = 1, then increase K.

The problem arises when n has no convenient factor p such that p − 1 is the
product of small primes to small powers. In this case, k will not help us find the
factor. Therefore, we have to continue increasing K until we reach, in the very
worst case, 1

2 (p − 1). We will see how this difficulty is resolved with Lenstra’s
Algorithm soon.

5. The Hasse-Weil Bound

Having discussed Pollard’s algorithm, we now consider the Hasse-Weil Bound.

Theorem 5.1. The Hasse-Weil Bound: Let p be prime, and #E(Fp) denote the
number of Fp-rational points of an elliptic curve E over Fp. Then

p+ 1− 2
√
p ≤ #E(FP) ≤ p+ 1 + 2

√
p.

The proof of the Hasse-Weil bound is long and incorporates topics outside the
scope of this paper, so it will not be covered. However, it will be useful in developing
an analogous form of Pollard’s algorithm for elliptic curves.

6. Lenstra’s Algorithm

We said before that the problem with Pollard’s Algorithm is that when there
are no “good” factors of n, the algorithm’s advantage fades considerably. Using
Pollard’s algorithm, the nonzero elements of Z/pZ form a group of cardinality
p − 1. If p − 1|k, then ak ≡ 1 mod p. If p − 1 6 |k then we have to increase k and
hope that p − 1|k the next time, and we have bad performance when no “good”
factors of n exist.

Using Lenstra’s Algorithm, we substitute the nonzero elements of Z/pZ with the
Fp-rational points of some elliptic curve E over Fp. Instead of raising a random
number a to a certain power k, we take a multiple kP of a point P ∈ E(Fp). Like
in Pollard’s Algorithm, when #E(Fp) divides k, then kP = O, which will provide a
factor of n. The difference is that when we “miss”, by not having #E(Fp) divide k,
instead of increasing k, we can pick a random different curve E′, so that #E′(Fp)
is different. We assume the conjecture (admittedly unproven, but very likely and
backed by strong evidence) that each different curve’s number of Fp-rational points
varies nearly randomly in the Hasse-Weil bound, so as we change the curve, it is
rather likely that we will find some value of #E(Fp) that divides k.

In order to see how this gives a factor of n, we must first discuss how we will
calculate multiples of P . In fact, we will be doing so as if Z/nZ were the field over
which we are working, which seems problematic. It is true that Z/nZ is not a field,
as those elements g ∈ Z/nZ where gcd(g, n) 6= 1 lack multiplicative inverses. But
when we are hunting for factors of n, this is just what we are looking for! Recall
the formulae for xR and yR when P +Q = −R, derived in Section 3:

ELLIPTIC CURVES AND LENSTRA’S FACTORIZATION ALGORITHM 7

xR = λ2 − xP − xQ
yR = λxR + ν

For xP 6= xQ, we had

λ = (yQ − yP)(xQ − xP)−1,

making xQ − xP the value that may not have an inverse. When xQ = xP , we
instead use the other formula for λ

λ = (3x2P +A)(2yP)−1

in the equations for xR and yR to find the sum of P and Q, and it will instead be
2yP that may lack an inverse. We will call this value, situationally either xQ − xP
or 2y, that may lack an inverse d.

When d lacks an inverse in Z/nZ, that means that D = gcd(d, n) > 1. If D < n,
then D|n. This is the mechanism by which we will find a factor of n. But when
will d lack an inverse?

When #E(Fp)|k, since every P ∈ E(Fp) has order dividing #E(Fp), kP = O for
any point on E when reduced mod p. This means that p divides the denominator
d of kP . So as p|d, and p divides n, then p| gcd(d, n). Therefore, we will have this
lack of an inverse exactly when #E(Fp)|k. Since k is a product of small primes to
small powers, we will still be better at finding low primes than higher ones.

Some restrictions exist that must be addressed. As discussed before, the char-
acteristic of the space over which we use our group formulae must not be 2 or 3, so
we need to check that 2, 3 6 |n before we begin. Also, if there exist m, r such that
mr = n, we will not find the factor m using this method, so we need to check that
the roots of n, starting from the square root and stopping once a root evaluates to
be less than 2, are not natural numbers.

With this explanation of the basic method done, now come the specific steps of
the algorithm.

We want to find a factor for the composite integer n ≥ 2.

• Check that 2, 3 6 |n and that there do not exist m, r such that mr = n.
• Choose random A, xP , yP such that 1 < A, xP , yP < n.
• Let B = y21 − x31 − bx1 mod n. Then E is the curve y2 = x3 + Ax + B.

Note that P = (xP , yP) is on E. We will think of E as being an elliptic
curve over Z/nZ, although Z/nZ is not a field.

• Ensure that the curve is nonsingular on Z/nZ by seeing that gcd(4A3 +
27B2, n) = 1. If it equals n, then choose a different b. If it is between 1
and n, then we are done.

• Choose a number K and let k be lcm(1, . . . ,K).
• Attempt to compute kP over Z/nZ. If the formula does not fail at any

point, then either try a new curve, or, after sufficient attempts with the
same k, increase k. If this does fail, then we will have found a d that lacks
an inverse in Z/nZ. If gcd(d, n) < n, then we have factored n. If d = n,
reduce k and try again.

The process of computing kP requires further explanation. To successively add
P to itself requires many computations. Instead, we can use repeated doubling and
k’s binary expansion to find kP with fewer additions.

8 DANIEL PARKER

First we find k0 through kr where ki ∈ {0, 1} such that

k = ko20 + k121 + k222 + · · ·+ kr2r.

Next, we find P1 = P + P , P2 = P1 + P1, P3 = P2 + P2, etc. Finally, we add

kP = k0P + k1P1 + · · ·+ krPr

to find kP .

7. Applications

Lenstra’s Elliptic Curve Algorithm, with optimizations, is the third fastest method
for factoring large numbers, and the best for finding low factors. Programs for fac-
toring large numbers will often begin with Lenstra’s Algorithm, eventually switching
to faster methods like the quadratic sieve. The continued use of this algorithm is a
testament to the surprising depth and power of elliptic curves.

Acknowledgments. I would like to sincerely thank my mentor, Drew Moore.
Drew was very willing to make himself available to meet with me throughout the
program and has provided excellent guidance and knew when to push me to explain
myself. He was also very patient with me, for which I am very grateful. I would
also like to thank everyone who helped organize and taught in the 2014 UChicago
Math REU, especially Laszlo Babai, who taught the Apprentice Program. Professor
Babai encouraged our mathematical curiousity and challenged us to engage fully
with the material. I would also like to thank my Mom and Dad for their support,
and for paying for my train tickets to and from Chicago!

References

[1] Bjorn Poonen. Elliptic Curves. http://www-math.mit.edu/ poonen/papers/elliptic.pdf

[2] Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves. Springer-Verlag New
York, Inc. 1992.

