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Introduction

There is general agreement on the rudiments of algebraic topology, the things
that every mathematician should know. This material might include the fun-
damental group; covering spaces; ordinary homology and cohomology in
its singular, cellular, axiomatic, and represented versions; higher homotopy
groups and the Hurewicz theorem; basic homotopy theory including fibra-
tions and cofibrations; Poincaré duality for manifolds and for manifolds with
boundary. The rudiments should also include a reasonable amount of cate-
gorical language and at least enough homological algebra for the universal
coefficient and Kiinneth theorems. This material is treated in such recent
books as[3, 34, 36,59, 93] and many earlier ones. What next? Possibly K-theory,
which is treated in [3] and, briefly, [93], and some idea of cobordism theory
[36,93]. None of the most recent texts goes much beyond the material just men-
tioned, all of which dates at latest from the early 1960s. Regrettably, only one of
these texts, [34], includes anything about spectral sequences, but [79, 98, 123]
help make up for that.

The subject of algebraic topology is very young. Despite many precursors
and earlier results, firm foundations only date from the landmark book of
Eilenberg and Steenrod [45], which appeared in 1952. Itis not an exaggeration
to say that even the most recent published texts do not go beyond the first
decade or so of the serious study of the subject. For that reason, people outside
the field very often know little or nothing about some of its fundamental
branches that have been developed over the past half century. A partial list of
areas a student should learn is given in the suggestions for further reading
of [93], and a helpful guide to further development of the subject (with few
proofs) has been given by Selick [123].

It seems to us that the disparity between the lack of accessibility of the pub-
lished sources and the fundamental importance of the material is nowhere
greater than in the theory of localization and completion of topological

xi
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xii / INTRODUCTION

spaces.! It makes little more sense to consider modern algebraic topology
without localization and completion of spaces than it does to consider modern
algebra without localization and completion of rings. These tools have been
in common use ever since they were introduced in the early 1970s. Many
papers in algebraic topology start with the blanket assumption that all spaces
are to be localized or completed at a given prime p. Readers of such papers are
expected to know what this means. Experts know that these constructions can
be found in such basic 1970s references as [21, 62, 133]. However, the stan-
dard approaches favored by the experts are not easily accessible to the novices,
especially in the case of completions. In fact, these notions can and should
be introduced at a much more elementary level. The notion of completion is
particularly important because it relates directly to mod p cohomology, which
is the invariant that algebraic topologists most frequently compute.

In the first half of this book, we set out the basic theory of localization
and completion of nilpotent spaces. We give the most elementary treatment
we know, making no use of simplicial techniques or model categories. We
assume only a little more than a first course in algebraic topology, such as can
be found in [3, 34, 36, 59, 93]. We require and provide more information about
some standard topics, such as fibration and cofibration sequences, Postnikov
towers, and homotopy limits and colimits, than appears in those books, but this
is fundamental material of independent interest. The only other preliminary
that we require and that cannot be found in most of the books cited above is
the Serre spectral sequence. There are several accessible sources for that, such
as [34, 79, 98, 123], but to help make this book more self-contained, we give
a concise primer on spectral sequences in Chapter 24; it is taken from 1960s
notes of the first author and makes no claim to originality.

The second half of the book is quite different and consists of two parts that
can be read independently of each other and of the first half. While written
with algebraic topologists in mind, both parts should be of more general inter-
est. They are devoted to topics in homotopical algebra and in pure algebra
that are needed by all algebraic topologists and many others. By far the longer
of these parts is an introduction to model category theory. This material can
easily be overemphasized, to the detriment of concrete results and the nu-
ances needed to prove them. For example, its use would in no way simplify
anything in the first half of the book. However, its use allows us to complete
the first half by giving a conceptual construction and characterization of local-
izations and completions of general, not necessarily nilpotent, spaces. More

1. These topics are not mentioned in [3, 36, 59).
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INTRODUCTION / xiii

fundamentally, model category theory has become the central organizational
principle of homotopical algebra, a subject that embraces algebraic topology,
homological algebra, and much modern algebraic geometry. Anybody inter-
ested in any of these fields needs to know model category theory. It plays a
role in homotopical algebra analogous to the role played by category theory in
mathematics. It gives a common language for the subject that greatly facilitates
comparisons, and it allows common proofs of seemingly disparate results.

The short last part of the book is something of a bonus track, in that it is
peripheral to the main thrust of the book. It develops the basic theory of bi-
algebras and Hopf algebras. Its main point is a redevelopment of the structure
theory of Hopf algebras, due originally to Milnor and Moore [104] but with an
addendum from [85]. Hopf algebras are used in several places in the first half
of the book, and they are fundamental to the algebra of algebraic topology.

We say a bit about how our treatments of these topics developed and how
they are organized. The starting point for our exposition of localization and
completion comes from unpublished lecture notes of the first author that date
from sometime in the early 1970s. That exposition attempted a synthesis in
which localization and completion were treated as special cases of a more
general elementary construction. The synthesis did not work well because it
obscured essential differences. Those notes were reworked to a more acces-
sible form by the second author and then polished to publishable form by
the authors working together. There are some new results, but we make little
claim to originality. Most of the results and many of the proofs are largely the
same as in one or another of Bousfield and Kan [21], Sullivan [133], and Hilton,
Mislin, and Roitberg [62].

However, a central feature of the subject is the fracture theorems for the
passage back and forth between local and global information. Itis here that the
treatments of localization and completion differ most from each other. The rel-
evant material has been reworked from scratch, and the treatment in the first
author’s 1970s notes has largely been jettisoned. In fact, the literature in this
arearequires considerable clarification, and we are especially concerned to give
coherent accounts of the most general and accurate versions of the fracture
theorems for nilpotent spaces. These results were not fully understood at the
time the primary sources [21, 62, 133] were written, and there are seriously
incorrect statements in some of the important early papers. Moreover, gener-
alizations of the versions of these results that appear in the primary sources
were proven after they were written and can only be found in relatively obscure
papers that are known just to a few experts. We have introduced several new
ideas that we think clarify the theorems, and we have proven some results that
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Xiv / INTRODUCTION

are essential for full generality and that we could not find anywhere in the
literature.

The first half of the book is divided into three parts: preliminaries, localiza-
tions, and completions. The reader may want to skim the first part, referring
back to it as needed. Many of the preliminaries are essential for the later parts,
but mastery of their details is not needed on a first reading. Specific indications
of material that can be skipped are given in the introductions to the first four
chapters. The first chapter is about cofibrations, fibrations, and actions by the
fundamental group. The second is about elementary homotopy colimits and
homotopy limits and lim" exact sequences. This both sets the stage for later
work and rounds out material that was omitted from [93] but that all algebraic
topologists should know. The third chapter deals with nilpotent spaces and
their approximation by Postnikov towers, giving a more thorough treatment
of the latter than can be found in existing expository texts. This is the most
essential preliminary to our treatment of localizations and completions.

The fourth chapter shows how to prove that various groups and spaces are
nilpotent and is more technical; although it is logically placed, the reader may
want to return to it later. The reader might be put off by nilpotent spaces and
groups at a first reading. After all, the vast majority of applications involve
simply connected or, more generally, simple spaces. However, the proofs of
some of the fracture theorems make heavy use of connected components of
function spaces F(X,Y). Even when X and Y are simply connected CW com-
plexes, these spaces are rarely simple, but they are nilpotent when X is finite.
Moreover, nilpotent spaces provide exactly the right level of generality for an
elementary exposition, and the techniques used to prove results for nilpotent
spaces are not very different from those used for simple spaces.

We say just a bit about the literature for spaces that are not nilpotent and
about alternative constructions. There are several constructions of localiza-
tions and completions of general spaces that agree when restricted to nilpotent
spaces. The most important of these is Bousfield localization, which we shall
construct model theoretically. These more general constructions are still not
well understood calculationally, and knowledge of them does not seem help-
ful for understanding the most calculationally important properties of locali-
zation and completion, such as their homotopical behavior and the fracture
theorems.

We construct localizations of abelian groups, nilpotent groups, and nilpo-
tent spaces in Chapter 5, and we construct completions of abelian groups,
nilpotent groups, and nilpotent spaces in the parallel Chapter 10. We char-
acterize localizations and describe their behavior under standard topological
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INTRODUCTION / XV

constructions in Chapter 6, and we do the same for completions in the paral-
lel Chapter 11. We prove the fracture theorems for localizations in Chapters 7
and 8 and the fracture theorems for completions in the parallel Chapters 12
and 13. In many cases, the same results, with a few words changed, are con-
sidered in the same order in the cases of localization and completion. This is
intentional, and it allows us to explain and emphasize both similarities and dif-
ferences. As we have already indicated, although these chapters are parallel, it
substantially clarifies the constructions and results not to subsume both under
a single general construction. We give a few results about rationalization of
spaces in Chapter 9.

We say a little here about our general philosophy and methodology, which
goes back to a paper of the first author [91] on “The dual Whitehead theorems”.
As is explained there and will be repeated here, we can dualize the proof of
the first theorem below (as given for example in [93]) to prove the second.

THEOREM 0.0.1. A weak homotopy equivalence e : Y —> Z between CW comp-
lexes is a homotopy equivalence.

THEOREM 0.0.2. An integral homology isomorphisme: Y —> Z between simple
spaces is a weak homotopy equivalence.

The argument is based on the dualization of cell complexes to cocell
complexes, of which Postnikov towers are examples, and of the Homotopy
Extension and Lifting Property (HELP) to co-HELP. Once this dualization is
understood, it becomes almost transparent how one can construct and study
the localizations and completions of nilpotent spaces simply by inductively
localizing or completing their Postnikov towers one cocell at a time. Our treat-
ment of localization and completion is characterized by a systematic use of
cocellular techniques dual to familiar cellular techniques. In the case of local-
ization, but not of completion, there is a dual cellular treatment applicable to
simply connected spaces.

We turn now to our treatment of model categories, and we first try to
answer an obvious question. There are several excellent introductory sources
for model category theory [43, 54, 65, 66, 113]. Why add another one? One
reason is that, for historical reasons, the literature of model category theory
focuses overwhelmingly on a simplicial point of view, and especially on model
categories enriched in simplicial sets. There is nothing wrong with that point
of view, but it obscures essential features that are present in the classical
contexts of algebraic topology and homological algebra and that are not present
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Xvi / INTRODUCTION

in the simplicial context. Another reason is that we feel that some of the
emphasis in the existing literature focuses on technicalities at the expense of
the essential conceptual simplicity of the ideas.

We present the basic general theory of model categories and their associated
homotopy categories in Chapter 14. For conceptual clarity, we offer a slight
reformulation of the original definition of a model category that focuses on
weak factorization systems (WFSs): a model category consists of a subcategory
of weak equivalences together with a pair of related WFSs. This point of view
separates out the main constituents of the definition in a way that we find illu-
minating. We discuss compactly generated and cofibrantly generated model
categories in Chapter 15; we shall describe the difference shortly. We also
describe proper model categories in Chapter 15. We give essential categorical
perspectives in Chapter 16.

To make the general theory flow smoothly, we have deferred examples to
the parallel Chapters 17 and 18. On a first reading, the reader may want to skip
directly from Chapter 14 to Chapters 17 and 18. These chapters treat model
structures on categories of spaces and on categories of chain complexes in
parallel. In both, there are three intertwined model structures, which we call
the h-model structure, the g-model structure, and the m-model structure.

The h stands for homotopy equivalence or Hurewicz. The weak equiva-
lences are the homotopy equivalences, and the cofibrations and fibrations are
defined by the HEP (Homotopy Extension Property) and the CHP (Covering
Homotopy Property). Such fibrations were first introduced by Hurewicz. The
g stands for Quillen or quasi-isomorphism. The weak equivalences are the
weak equivalences of spaces or the quasi-isomorphisms of chain complexes.
The fibrations are the Serre fibrations of spaces or the epimorphisms of chain
complexes, and the cofibrations in both cases are the retracts of cell complexes.

The m stands for mixed, and the m-model structures, due to Cole [33], com-
bine the good features of the h- and g-model structures. The weak equivalences
are the g-equivalences and the fibrations are the h-fibrations. The m-cofibrant
objects are the spaces of the homotopy types of CW complexes or the chain
complexes of the homotopy types of complexes of projective modules (at least
in the bounded below case). We argue that classical algebraic topology, over at
least the mathematical lifetime of the first author, has implicitly worked in the
m-model structure. For example, the first part of this book implicitly works
there. Modern approaches to classical homological algebra work similarly. We
believe that this trichotomy of model category structures, and especially the
precise analogy between these structures in topology and algebra, gives the best
possible material for an introduction to model category theory. We reiterate
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INTRODUCTION [ Xvii

that these features are not present in the simplicial world, which in any case
is less familiar to those just starting out.

The m-model structure can be viewed conceptually as a colocalization model
structure, which we rename a resolution model structure. In our examples,
it codifies CW approximation of spaces or projective resolutions of modules,
where these are explicitly understood as up to homotopy constructions. Colo-
calization is dual to Bousfield localization, and this brings us to another reason
for our introduction to model category theory, namely a perceived need for as
simple and accessible an approach to Bousfield localization as possible. This
is such a centrally important tool in modern algebraic topology (and algebraic
geometry) that every student should see it. We give a geodesic development
that emphasizes the conceptual idea and uses as little special language as
possible.

In particular, we make no use of simplicial theory and minimal use of
cofibrantly generated model categories, which were developed historically as a
codification of the methods Bousfield introduced in his original construction
of localizations [16]. An idiosyncratic feature of our presentation of model cat-
egory theory is that we emphasize a dichotomy between cofibrantly generated
model categories and compactly generated model categories. The small object
argument for constructing the WFSs in these model structures is presented in
general, but in the most basic examples it can be applied using only cell com-
plexes of the familiar form colim X,,, without use of cardinals bigger than w.
Transfinite techniques are essential to the theory of localization, but we feel
that the literature focuses on them to an inordinate extent. Disentangling the
optional from the essential use of such methods leads to a more user-friendly
introduction to model category theory.

Although we make no use of it, we do describe the standard model structure
on simplicial sets. In the literature, the proof of the model axioms is unpleas-
antly lengthy. We sketch a new proof, due to Bousfield and the first author,
that is shorter and focuses more on basic simplicial constructions and less on
the intertwining of simplicial and topological methods.

The last part of the book, on bialgebras and Hopf algebras, is again largely
based on unpublished notes of the first author that date from the 1970s. Since
we hope our treatment has something to offer to algebraists as well as topolo-
gists, one introductory remark is obligatory. In algebraic topology, algebras are
always graded and often connected, meaning that they are zero in negative
degrees and the ground field in degree zero. Under this assumption, bialge-
bras automatically have antipodes, so that there is no distinction between Hopf
algebras and bialgebras. For this reason, and for historical reasons, algebraic
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topologists generally use the term “Hopf algebra” for both notions, but we will
be careful about the distinction.

Chapter 20 gives the basic theory as used in all subjects and Chapter 21
gives features that are particularly relevant to the use of Hopf algebras in alge-
braic topology, together with quick applications to cobordism and K-theory.
Chapters 22 and 23 give the structure theory for Hopf algebras in characteristic
zero and in positive characteristic, respectively. The essential organizing prin-
ciple of these two chapters is that all of the main theorems on the structure of
connected Hopf algebras can be derived from the Poincaré-Birkhoff-Witt the-
orem on the structure of Lie algebras (in characteristic zero) and of restricted
Lie algebras (in positive characteristic). The point is that passage to associated
graded algebras from the augmentation ideal filtration gives a primitively gen-
erated Hopf algebra, and such Hopf algebras are universal enveloping Hopf
algebras of Lie algebras or of restricted Lie algebras. This point of view is due
to [104], but we will be a little more explicit.

Our point of view derives from the first author’s thesis, in which the cited
filtration was used to construct a spectral sequence for the computation of
the cohomology of Hopf algebras starting from the cohomology of (restricted)
Lie algebras [84], and from his short paper [85]. This point of view allows us
to simplify the proofs of some of the results in [104], and it shows that the
structure theorems are more widely applicable than seems to be known.

Precisely, the structure theorems apply to ungraded bialgebras and, more
generally, to nonconnected graded bialgebras whenever the augmentation
ideal filtration is complete. We emphasize this fact in view of the current
interest in more general Hopf algebras, especially the quantum groups. A
cocommutative Hopf algebra (over a field) is a group in the cartesian monoidal
category of coalgebras, the point being that the tensor product of cocommuta-
tive coalgebras is their categorical product. In algebraic topology, the Hopf alge-
bras that arise naturally are either commutative or cocommutative. By duality,
one may as well focus on the cocommutative case. It was a fundamental insight
of Drinfel’d that dropping cocommutativity allows very interesting examples
with “quantized” deviation from cocommutativity. These are the “quantum
groups”. Because we are writing from the point of view of algebraic topology,
we shall not say anything about them here, but the structure theorems are
written with a view to possible applications beyond algebraic topology.

Sample applications of the theory of Hopf algebras within algebraic topol-
ogy are given in several places in the book, and they pervade the subject as a
whole. In Chapter 9, the structure theory for rational Hopf algebras is used to
describe the category of rational H-spaces and to explain how this information
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is used to study H-spaces in general. In Chapter 22, we explain the Hopf alge-
bra proof of Thom’s calculation of the real cobordism ring and describe how
the method applies to other unoriented cobordism theories. We also give the
elementary calculational proof of complex Bott periodicity. Of course, there is
much more to be said here. Our goal is to highlight for the beginner important
sample results that show how directly the general algebraic theorems relate to
the concrete topological applications.
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Some conventions and notations

This book is perhaps best viewed as a sequel to [93], although we have tried
to make it reasonably self-contained. Aside from use of the Serre spectral
sequence, we assume no topological preliminaries that are not to be found in
[93], and we redo most of the algebra that we use.

To keep things familiar, elementary, and free of irrelevant pathology, we
work throughout the first halfin the category % of compactly generated spaces
(see [93, Ch.5]). It is by now a standard convention in algebraic topology that
spaces mean compactly generated spaces, and we adopt that convention. While
most results will not require this, we implicitly restrict to spaces of the homo-
topy types of CW complexes whenever we talk about passage to homotopy.
This allows us to define the homotopy category Ho% simply by identifying
homotopic maps; it is equivalent to the homotopy category of all spaces in %,
not necessarily CW homotopy types, that is formed by formally inverting the
weak homotopy equivalences.

We nearly always work with based spaces. To avoid pathology, we assume
once and for all that basepoints are nondegenerate, meaning that the inclusion
x —> X is a cofibration (see [93, p. 56]). We write .7 for the category of
nondegenerately based compactly generated spaces, that is, nondegenerately
based spaces in %.! Again, whenever we talk about passage to homotopy, we
implicitly restrict to spaces of the based homotopy type of CW complexes. This
allows us to define the homotopy category Ho.7 by identifying maps that are
homotopic in the based sense, that is, through homotopies h such that each
h; is a based map. The category .7, and its restriction to CW homotopy types,
has been the preferred working place of algebraic topologists for very many

1. This conflicts with [93], where .7 was defined to be the category of based spaces in % (denoted
U here). That choice had the result that the “nondegenerately based” hypothesis reappears with
monotonous regularity in [93].
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years; for example, the first author has worked explicitly in this category ever
since he wrote [87], around forty years ago.

We ask the reader to accept these conventions and not to quibble if we do
not repeat these standing assumptions in all of our statements of results. The
conventions mean that, when passing to homotopy categories, we implicitly
approximate all spaces by weakly homotopy equivalent CW complexes, as we
can do by [93, §10.5]. In particular, when we use Postnikov towers and pass to
limits, which are not of the homotopy types of CW complexes, we shall implic-
itly approximate them by CW complexes. We shall be alittle more explicit about
this in Chapters 1 and 2, but we shall take such CW approximation for granted
in later chapters.

The expert reader will want a model theoretic justification for working in .7.
First, as we explain in {17.1, the category %, of based spaces in % inherits
an h-model, or Hurewicz model, structure from %. In that model structure,
all objects are fibrant and the cofibrant objects are precisely the spaces in 7.
Second, as we explain in §17.4, %, also inherits an m-model, or mixed model,
structure from 7. In that model structure, all objects are again fibrant and the
cofibrant objects are precisely the spaces in .7 that have the homotopy types of
based CW complexes. Cofibrant approximation is precisely approximation of
spaces by weakly homotopy equivalent CW complexes in .7. This means that
working in .7 and implicitly approximating spaces by CW complexes is part
of the standard model-theoretic way of doing homotopy theory. The novice
will learn later in the book how very natural this language is, but it plays no
role in the first half. We believe that to appreciate model category theory, the
reader should first have seen some serious homotopical algebra, such as the
material in the first half of this book.

It is convenient to fix some notations that we shall use throughout.

NOTATIONS 0.0.3. We fix some notations concerning based spaces.

(i) Spaces are assumed to be path connected unless explicitly stated other-
wise, and we use the word connected to mean path connected from
now on. We also assume that all given spaces X have universal covers,
denoted X.

(ii) For based spaces X and Y, let [X, Y] denote the set of maps X — Y in
Ho.7; equivalently, after CW approximation of X if necessary, it is the
set of based homotopy classes of based maps X — Y.

(iii) Let F(X,Y) denote the space of based maps X — Y. It has a canonical
basepoint, namely the trivial map. We write F(X, Y); for the component
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of a map f and give it the basepoint . When using these notations, we
can allow Y to be a general space, but to have the right weak homotopy
type we must insist that X has the homotopy type of a CW complex.

(iv) The smash product X A'Y of based spaces X and Y is the quotient of
the product X x Y by the wedge (or one-point union) X v Y. We have
adjunction homeomorphisms

FIXAY,Z) = F(X,F(Y, Z))
and consequent bijections
[XAY,Z] = [X, E(Y, Z)].

(v) For an unbased space K, let K4 denote the union of K and a disjoint
basepoint. The based cylinder X A (L) is obtained from X x I by collaps-
ing the line through the basepoint of X to a point. Similarly, we have the
based cocylinder F(I4, Y). Itis the space of unbased maps I —> Y based
at the constant map to the basepoint. These specify the domain and, in
adjoint form, the codomain of based homotopies, that is, homotopies
that are given by based maps h;: X — Y fort € L.

We also fix some algebraic notations and point out right away some ways
thatalgebraic topologists think differently than algebraic geometers and others
about even very basic algebra.

NOTATIONS 0.04. Let T be a fixed set of primes and p a single prime.

(i) Let Zt denote the ring of integers localized at T, that s, the subring of Q
consisting of rationals expressible as fractions k/¢, where £ is a product
of primes not in T. We let Z[T~1] denote the subring of fractions k/¢,
where ¢ is a product of primes in T. In particular, Z[p~!] has only p
inverted. Let Z(y) denote the ring of integers localized at the prime ideal
(p) or, equivalently, at the singleton set {p}.

(ii) Let Z, denote the ring of p-adic integers. Illogically, but to avoid conflict
of notation, we write Zt for the product over p € T of the rings Zy. We
then write Q7 for the ring 21 ® Q;when T = {p}, this is the ring of p-adic
numbers.

(iii) Let I, denote the field with p elements and Fr denote the product over
p € T of the fields F,. Let Z/n denote the quotient group Z/nZ. We

sometimes consider the ring structure on Z/n, and then Z/p = F,, for a
prime p.
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(iv) We write A(p) and Ap for the localization at p and the p-adic completion
of an abelian group A. Thus Zp is the underlying abelian group of the
ring Zy.

(V) We write Ay and Ar for the localization and completion of A at T; the
latter is the product over p € T of the Ap.

(vi) Let ozb denote the category of abelian groups. We sometimes ignore the
maps and use the notation b for the collection of all abelian groups.
More generally, & will denote any collection of abelian groups that
contains 0.

(vii) We often write ®, Hom, Tor, and Ext for ®z, Homz, Tor%, and Ext%. We
assume familiarity with these functors.

WARNING 0.05. We warn the reader that algebraic notations in the literature
of algebraic topology have drifted over time and are quite inconsistent. The
reader may find Z, used for either our Zy) or for our Fy; the latter choice is
used ubiquitously in the “early” literature, including most of the first author’s
papers. In fact, regrettably, we must warn the reader that Z, means F, in
the book [93]. The p-adic integers only began to be used in algebraic topology
in the 1970s, and old habits die hard. In both the algebraic and topologi-
cal literature, the ring Z, is sometimes denoted Z,; we would prefer that
notation as a matter of logic, but the notation Z, has by now become quite
standard.

WARNING 0.0.6 (CONVENTIONS ON GRADED ALGEBRAIC STRUCTURES).
We think of homology and cohomology as graded abelian groups. For most
algebraists, a graded abelian group A is the direct sum over degrees of its homo-
geneous subgroups A,, or, with cohomological grading, A". In algebraic top-
ology, unless explicitly stated otherwise, when some such notation as H** is
often used, graded abelian groups mean sequences of abelian groups A,. That
is, algebraic topologists do not usually allow the addition of elements of differ-
ent degrees. To see just how much difference this makes, consider a Laurent
series algebra k[x, x 1] over a field k, where x has positive even degree. To an
algebraic topologist, this is a perfectly good graded field: every nonzero ele-
mentis a unit. To an algebraist, itis not. This is not an esoteric difference. With
k = F, such graded fields appear naturally in algebraic topology as the coeffi-
cients of certain generalized cohomology theories, called Morava K-theories,
and their homological algebra works exactly as for any other field, a fact that
has real calculational applications.
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The tensor product A ® B of graded abelian groups is specified by

(A®B)n= Y A,®By.
ptq=n

In categorical language, the category .«7b, of graded abelian groups is a sym-
metric monoidal category under ®, meaning that ® is unital (with unit Z
concentrated in degree 0), associative, and commutative up to coherent nat-
ural isomorphisms. Here again, there is a difference of conventions. For an
algebraic topologist, the commutativity isomorphism y: AQ B—> B®A is
specified by

y(@a®b) = (-1 ®a

where deg(a) = p and deg(b) = q. A graded k-algebra with product ¢ is com-
mutativeif ¢ o y = ¢; elementwise, this means thatab = (—1)P9ba. In the alge-
braicliterature, such an algebra is said to be graded commutative or sometimes
even supercommutative, butin algebraic topology this notion of commutativity
is and always has been the default (at least since the early 1960s). Again, this is
not an esoteric difference. To an algebraic topologist, a polynomial algebra k[x]
where x has odd degree is not a commutative k-algebra unless k has character-
istic 2. The homology H..(2S"; k), n even, is an example of such a noncommu-
tative algebra.

The algebraist must keep these conventions in mind when reading the
material about Hopf algebras in this book. To focus on commutativity in the al-
gebraist’s sense, one can double the degrees of all elements and so eliminate
the appearance of odd degree elements.
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1

COFIBRATIONS AND FIBRATIONS

We shall make constant use of the theory of fibration and cofibration
sequences, and this chapter can be viewed as a continuation of the basic the-
ory of such sequences as developed in [93, Ch. 6-8]. We urge the reader to
review that material, although we shall recall most of the basic definitions as
we go along. The material here leads naturally to such more advanced topics
as model category theory [65, 66, 97], which we turn to later, and triangulated
categories [94, 111, 138]. However, we prefer to work within the more elemen-
tary foundations of [93] in the first half of this book. We concentrate primarily
on just what we will use later, but we round out the general theory with sev-
eral related results that are of fundamental importance throughout algebraic
topology. The technical proofs in §3 and the details of §4 and §5 should not
detain the reader on a first reading.

1.1. Relations between cofibrations and fibrations

Remember that we are working in the category .7 of nondegenerately based
compactly generated spaces. Although the following folklore result was known
long ago, it is now viewed as part of Quillen model category theory, and its
importance can best be understood in that context. For the moment, we view
it as merely a convenient technical starting point.

LEMMA 1.1.1. Suppose that i is a cofibration and p is a fibration in the following
diagram of based spaces, in which pog = f oi.

A
l Py
. 7/
4 v
7/
X

lm

AN
o <— M=
S

-]
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If either i or p is a homotopy equivalence, then there exists a map A such that the
diagram commutes.

This result is a strengthened implication of the definitions of cofibrations
and fibrations. As in [93, p. 41], reinterpreted in the based context, a map i is
a (based) cofibration if there is a lift A in all such diagrams in which p is the
map po: F(I+,Y) — Y given by evaluation at 0 for some space Y. This is a
restatement of the homotopy extension property, or HEP. Dually, as in [93,
p-47], a map p is a (based) fibration if there is a lift A in all such diagrams
in which i is the inclusion ip: Y —> Y A I of the base of the cylinder. This
is the covering homotopy property, or CHP. These are often called Hurewicz
cofibrations and fibrations to distinguish them from other kinds of cofibra-
tions and fibrations (in particular Serre fibrations) that also appear in model
structures on spaces.

The unbased version of Lemma 1.1.1 is proven in Proposition 17.1.4, using
no intermediate theory, and the reader is invited to skip there to see it. The
based version follows, but rather technically, using Lemmas 1.3.3 and 1.3.4
below. The deduction is explained model theoretically in Corollary 17.1.2 and
Remark 17.1.3.

One can think of model category theory as, in part, a codification of the
notion of duality, called Eckmann-Hilton duality, that is displayed in the defi-
nitions of cofibrations and fibrations and in Lemma 1.1.1. We shall be making
concrete rather than abstract use of such duality for now, but it pervades our
point of view throughout. We leave the following dual pair of observations as
exercises. Their proofs are direct from the definitions of pushouts and cofi-
brations and of pullbacks and fibrations. In the first, the closed inclusion
hypothesis serves to ensure that we do not leave the category of compactly
generated spaces [93, p. 38].

EXERCISE 1.1.2. Suppose given a commutative diagram

f i

Y <~— X — Z

d |

Y/%XHZ/

f/ i

in which i and i’ are closed inclusions and B and & are cofibrations. Prove that
the induced map of pushouts
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YUxZ — Y UxZ
is a cofibration. Exhibit an example to show that the conclusion does not hold

for a more general diagram of the same shape with the equality X = X replaced
by a cofibration X — X'. (Hint: interchange i’ and = in the diagram.)

EXERCISE 1.1.3. Suppose given a commutative diagram

f p

Y — X =— Z

4 |

Y — X ~— 7

f 4
in which B and & are fibrations. Prove that the induced map of pullbacks
YxxZ— Y xxZ

is a fibration. Again, the conclusion does not hold for a more general dia-
gram of the same shape with the equality X = X replaced by a fibration
X —X.

We shall often use the following pair of results about function spaces. The
first illustrates how to use the defining lifting properties to construct new
cofibrations and fibrations from given ones.

LEMMA 1.1.4. Leti: A —> X bea cofibration and Y be a space. Then the induced
map i*: F(X,Y) — F(A,Y) is a fibration and the fiber over the basepoint is
F(X/A, Y).

PROOF. To show that i*: F(X,Y) — F(A,Y) is a fibration it is enough to
show that there is a lift in any commutative square

f
Z — = F(X,Y)

7
X -
10 // \L i*
e

ZAl, —> F(AY).
h

By adjunction, we obtain the following diagram from that just given.
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Here h(a)(t)(z) = h(z, t)(a) and [ (x)(z) = f (2)(x) where a € A, z € Z, x € X,
and t € I. Since i: A —> X is a cofibration there exists a lift H. The map
H: ZAI. —s F(X,Y) specified by H(z,t)(x) = H(x)(t)(z) for x € X, z € Z,
andt € I givesaliftin the original diagram. Therefore i*: F(X,Y) — F(A,Y)
is a fibration. The basepoint of F(A, Y) sends A to the basepoint of Y, and its
inverse image in F(X,Y) consists of those maps X —> Y that send A to the
basepoint. These are the maps that factor through X/A, that is, the elements
of F(X/A, Y). o

For the second, we recall the following standard definitions from [93, pp.
57, 59]. They will be used repeatedly throughout the book. By Lemmas 1.3.3
and 1.3.4 below, our assumption that basepoints are nondegenerate ensures
that the terms “cofibration” and “fibration” in the following definition can be
understood in either the based or the unbased sense.

DEFINITION 1.1.5. Let f: X —> Y be a (based) map. The homotopy cofiber
Cf of f is the pushout Y Uy CX of f and ip: X —> CX. Here the cone CX
is X A I, where [ is given the basepoint 1. Since iy is a cofibration, so is its
pushout i: Y — Cf [93, p. 42]. The homotopy fiber Ff of f is the pullback
X xy PY of f and p1: PY —> Y. Here the path space PY is F(I, Y), where I is
given the basepoint 0; thus it consists of paths that start at the basepoint of Y.
Since p; is a fibration (by Lemma 1.1.4), so is its pullback 7 : Ff — X [93, p.
47].

We generally abbreviate “homotopy cofiber” to “cofiber”. This is unambigu-
ous since the word “cofiber” has no preassigned meaning. Whenf: X — Yis
a cofibration, the cofiber is canonically equivalent to the quotient Y /X. We also
generally abbreviate “homotopy fiber” to “fiber”. Here there is ambiguity when
the given based map is a fibration, in which case the actual fiber f () and
the homotopy fiber are canonically equivalent. By abuse, we then use which-
ever term seems more convenient.
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LEMMA 1.1.6. Let f: X —> Y be a map and Z be a space. Then the homo-
topy fiber Ff* of the induced map of function spaces f*: F(Y,Z) — F(X, Z)
is homeomorphic to F(Cf, Z), where Cf is the homotopy cofiber of f.

prRooOF. The fiber Ff* is F(Y, Z) xfx,z) PF(X, Z). Clearly PF(X, Z) is ho-
meomorphic to F(CX, Z). Technically, in view of the convention that I has
basepoint 0 when defining P and 1 when defining C, we must use the home-
omorphism I —» [ that sends ¢ to 1 — ¢ to see this. Since the functor F(—, Z)
converts pushouts to pullbacks, the conclusion follows. O

1.2. The fill-in and Verdier lemmas

In formal terms, the results of this section describe the homotopy category
Ho.7 as a “pretriangulated category”. However, we are more interested in de-
scribing precisely what is true before passage to the homotopy category, since
some easy but little known details of that will ease our later work.

The following dual pair of “fill-in lemmas” will be at the heart of our theories
of localization and completion. They play an important role throughout homo-
topy theory. They are usually stated entirely in terms of homotopy commutative
diagrams, but the greater precision that we describe will be helpful.

LEMMA 1.2.1. Consider the following diagram, in which the left square commutes
up to homotopy and the rows are canonical cofiber sequences.

f 1 T
X Y cf )3D¢
|
o l l B (4 l Ta
\
e Y’ cf’ ¢
f/ i T

There exists a map y such that the middle square commutes and the right square
commutes up to homotopy. If the left square commutes strictly, then there is a unique
y = C(a, B) such that both right squares commute, and then the cofiber sequence
construction gives a_functor from the category of maps and commutative squares to
the category of sequences of spaces and commutative ladders between them.

PROOF. Recall again that Cf = Y Ux CX, where the pushout is defined with
respectto f: X —> Y and the inclusion ip: X —> CX of the base of the cone.
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Let h: X xI —> Y’ be a (based) homotopy from Bof to f'ow. Define
y(y) = B(y) for y e Y C Cf, as required for commutativity of the middle
square, and define

h(x, 2t) ifo<t<1/2

v(x, 1) = )
(@(x),2t—1) if1/2<t<1

for (x,t) € CX. The homotopy commutativity of the right square is easily
checked. When the left square commutes, we can and must redefine y on
CX by y (x,t) = («(x), t) to make the right square commute. For functoriality,
we have in mind the infinite sequence of spaces extending to the right, as
displayed in [93, p. 57], and then the functoriality is clear. O

Exercise 1.1.2 gives the following addendum, which applies to the compar-
ison of cofiber sequences in which the left hand squares display composite
maps.

ADDENDUM 1.22. If X = X/, « is the identity map, the left square commutes,
and B is a cofibration, then the canonical map y: Cf — Cf” is a cofibration.

It is an essential feature of Lemma 1.2.1 that, when the left square only
commutes up to homotopy, the homotopy class of y depends on the choice of
the homotopy and is not uniquely determined.

The dual result admits a precisely dual proof, where now the functoriality
statement refers to the infinite sequence of spaces extending to the left, as dis-
played in [93, p. 59]. Recall that Ff = X xy PY, where the pullback is defined
with respect to f : X —> Y and the end-point evaluation p;: PY — Y.

LEMMA 1.2.3. Consider the following diagram, in which the right square commutes
up to homotopy and the rows are canonical fiber sequences.

L T f
QY Ff X Y

|
Qo (4 lﬁ la
Y
b

QY —— Ff —= X —— Y

L f/

There exists a map y such that the middle square commutes and the left square
commutes up to homotopy. If the right square commutes strictly, then there is a
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unique y = F(a, B) such that both left squares commute, hence the fiber sequence
construction gives a functor from the category of maps and commutative squares to
the category of sequences of spaces and commutative ladders between them.

ADDENDUM 124. If Y =Y/, « is the identity map, the right square com-
mutes, and g is a fibration, then the canonical map y: Ff — Ff’ is a fibra-
tion.

The addenda above deal with composites, and we have a dual pair of
“Verdier lemmas” that encode the relationship between composition and
cofiber and fiber sequences. We shall not make formal use of them, but every
reader should see them since they are precursors of the basic defining property,
Verdier’s axiom, in the theory of triangulated categories [94, 138].!

LEMMA 1.2.5. Leth be homotopicto g o f in the following braid of cofiber sequences
andletj” = Zi(f) o (g). There are mapsj andj’ such that the diagram commutes
up to homotopy, and there is a homotopy equivalence & : Cg —> Cj such that

Eoj ~i(j)andj = m(j)ok&.

The square and triangle to the left of j and j' commute; if h = gof, then there
are unique maps j and j' such that the triangle and square to the right of j and j'
commute.

1. In [138], diagrams like these are written as “octagons”, with identity maps inserted. For this
reason, Verdier’s axiom is often referred to in the literature of triangulated categories as the “octa-
hedral” axiom. In this form, the axiom is often viewed as mysterious and obscure. Lemmas 1.2.1
and 1.2.3 are precursors of another axiom used in the usual definition of triangulated categories,
but that axiom is shown to be redundant in [94].
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10 / COFIBRATIONS AND FIBRATIONS

PROOF. Let H: gof =~ h. The maps j and j' are obtained by application of
Lemma 1.2.1 to H regarded as a homotopy g o f >~ hoidx and the reverse of
H regarded as a homotopy idz oh >~ g o f. The square and triangle to the left
of j and " are center squares of fill-in diagrams and the triangle and square to
therightofjandj are right squares of fill-in diagrams. The diagram commutes
when h = gof and j and j’ are taken to be

Jj=gVid: YUr CX — ZU;, CX and j' =idUCf: ZU, CX — ZUg CY,
as in the last part of Lemma 1.2.1. Define £ to be the inclusion
Cg = ZU, CY — (Z U}, CX)U; C(Y Uy CX) = ChU; CCf = G

induced by i(h): Z —> Ch and the map CY — C(Cf) obtained by applying
the cone functor to i(f): Y —> Cf. Then j” = 7 (j) 0§ since n(g) collapses
Z to a point, m(j) collapses Ch = Z Uy, CX to a point, and both maps in-
duce Xi(f) on Cg/Z =3XY. Using mapping cylinders and noting that j
and j' are obtained by passage to quotients from maps j: Mf — Mg and
j': Mg —> Mh, we see by a diagram chase that & is an equivalence in general
if it is so when h = gof. In this case, we claim that there is a deformation
retraction r: Cj —> Cg so that ro& = id and roi(j) =j'. This means that
there is a homotopy k: Cj x I — (j relative to Cg from the identity to a map
into Cg. In effect, looking at the explicit description of Cj, k deforms CCX
to CX C CY. The details are fussy and left to the reader, but the intuition be-
comes clear from the observation that the quotient space Cj/&(Cg) is homeo-
morphic to the contractible space CXX. O

REMARK 1.2.6. There is areinterpretation that makes the intuition still clearer
and leads to an alternative proof. We can use mapping cylinders asin [93, p. 43]
to change the spaces and maps in our given diagram so as to obtain a homotopy
equivalent diagram in which f and g are cofibrations and h is the composite
cofibration g of. Asin [93, p. 58], the cofibers of f, g, and h are then equivalent
to Y/X, Z/Y, and Z/X, respectively, and the equivalence & just becomes the
evident homeomorphism Z/Y = (Z/X)/(Y/X).

LEMMA 1.2.7. Let f be homotopic to h o g in the following braid of fiber sequences
and letj” = 1(g) o Qp(h). There are mapsj and j such that the diagram commutes
up to homotopy, and there is a homotopy equivalence § : Fj —> Fg such that

J'o& =p(j) andj’ =& ou(j).
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1.3. BASED AND FREE COFIBRATIONS AND FIBRATIONS / 11

J r(g) f

QY Ff Y
\ l(f)/4 N /
AN
AN
Qh N p(h)
QX Fh
uh)

If f = hog, then there are unique maps j andj’ such that the diagram commutes,
and then & can be so chosen thatj' o & = p(j) andj” = & o(j).

1.3. Based and free cofibrations and fibrations

So far, we have been working in the category .7 of based spaces, and we usually
continue to do so. However, we often must allow the basepoint to vary, and
we sometimes need to work without basepoints. Homotopies between maps
of unbased spaces, or homotopies between based maps that are not required
to satisfy (%) = x*, are often called free homotopies. In this section and the
next, we are concerned with the relationship between based homotopy theory
and free homotopy theory.

Much that we have done in the previous two sections works just as well in
the category % of unbased spaces as in the category 7. For example, using
unreduced cones and suspensions, cofiber sequences work the same way in
the two categories. However, the definition of the homotopy fiber Ff of a map
f: X —> Y requires the choice of a basepoint to define the path space PY. We
have both free and based notions of cofibrations and fibrations, and results
such as Lemma 1.1.1 apply to both. Itis important to keep track of which notion
is meant when interpreting homotopical results. For example, we understand
free cofibrations and free fibrations in the following useful result. It is the key
to our approach to the Serre spectral sequence, and we shall have other uses
for it. Recall that a homotopy h: X x I — X is said to be a deformation if hg
is the identity map of X.
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12 / COFIBRATIONS AND FIBRATIONS

LEMMA 13.1. Let p: E —> B be a fibration and i: A —> B a cofibration. Then
the inclusion D = p~!(A) — E is a cofibration.

PROOF. As in [93, p. 43], we can choose a deformation h of B and a map
u: B —> I that represent (B, A) as an NDR-pair. By the CHP, we can find
a deformation H of E that covers h, po H = ho (p x id). Define a new de-

formation J of E by
H(x, ) ift < u(p(x))
Jlxt) = ,
Hx,u(p(x))) ift = u(p(x)).
Then J and u o p represent (E, D) as an NDR-pair. O

One of the many motivations for our standing assumption that basepoints
are nondegenerate is that it ensures that based maps are cofibrations or fibra-
tions in the free sense if and only if they are cofibrations or fibrations in the
based sense. For fibrations, this is implied by the case (X, A) = (Y, %) of a
useful analogue of Lemma 1.1.1 called the Covering Homotopy and Extension
Property.

LEMMA 13.2 (CHEP). Leti: A — X be a free cofibration andp: E —> Bbea
free fibration. Let j: Mi =X x {0} UA x I —> X x I be the inclusion of the free
mapping cylinder Mi in the cylinder X x I. For any commutative square

fuh

Mi —— E

H 7
i Ve
J P p
Ve

Xx] —— B,
h

there is a homotopy H that makes the diagram commute.

PROOF. Here h: A x I —> E is a homotopy of the restrictionof f: X — E
to A, and h is a homotopy of pf whose restriction to A is covered by h. The
conclusion is a special case of the free version of Lemma 1.1.1 proven in Propo-
sition 17.1.4 sincej is a cofibration and a homotopy equivalence by [93, p. 43]. O

LEMMA 1.33. Let p: E —> B be a map between based spaces. If p is a based

fibration, then p is a free fibration. If p is a free fibration and Y is nondegenerately
based, then p satisfies the based CHP with respect to homotopies Y A (1) —> B.
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1.3. BASED AND FREE COFIBRATIONS AND FIBRATIONS / 13

PROOF. For the first statement, we apply the based CHP to based homotopies
(Y x I)+ = Y4 AL —> Bto obtain the free CHP. For the second statement,
we must obtain lifts in diagrams of based spaces

g
Y — E

A 7
i // p
/

Y/\I+ — B
f

when Y is nondegenerately based, and these are supplied by the case
(X, A) = (Y, %) of the CHEP, with h constant at the basepoint of E. O

The following result, like the previous one, was stated without proof in
[93, pp. 56, 59]. Since its proof is not obvious (as several readers of [93] have
complained), we give it in detail. Unfortunately, the argument is unpleasantly
technical.?

LEMMA 13.4. Leti: A —> X be a map between based spaces. If i is a free cofibra-
tion, then i is a based cofibration. If A and X are nondegenerately based and i is a
based cofibration, then i is a free cofibration.

PROOF. The first statement is clear: since the basepoint is in A, free lifts
in Lemma 1.1.1 are necessarily based when the given maps are based. Thus
assume that i is a based cofibration and A and X are nondegenerately based.
The problem here is that the maps in a given test diagram for the HEP (as
in [93, p. 41]) need not preserve basepoints, and the based HEP only gives
information when they do. One might try to deform the unbased data into new
based data to which the based HEP applies, but we shall instead check a slight
variant of the NDR-pair criterion for i to be a free cofibration [93, p. 43].

Just as for free cofibrations, the fact that we are working with compactly
generated spaces ensures that i is a closed inclusion since the based map-
ping cylinder Mi is a retract of X A L. It suffices to prove that (X, A) is an
NDR-pair. This means that there is a map u: X — I such that u=1(0) = A
and a deformation h of X relative to A, so that h(x,0) = x and h(a,t) = g,
such that h(x, 1) € A if u(x) < 1. Inspection of the proof of the theorem on
[93, p. 43] shows that if we start with a free cofibration i, then we obtain a

2. The proofs of Lemmas 1.3.3 and 1.3.4 are due to Strem [131, p. 14] and [132, p. 440].
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14 / COFIBRATIONS AND FIBRATIONS

pair (h, u) with the stronger property that h(x, t) € Aif u(x) < t. It follows that
the characterization theorem for free cofibrations remains true if we rede-
fine NDR-pairs by requiring this stronger condition, and we use the stronger
condition throughout the proof that follows. We proceed in three steps.

Step (i). Let w: X —> I be any map such that w=!(0) = *. Then there is a
deformation k': X x I — X relative to A and a map w': X — I such that
W (x) < w(x), A= (w)~1(0), and

13.5 K(x,t) € A if W (x) < min(t, w(x)).

PROOF. Let MTi = XUpx (A x I) C X x I be the free mapping cylinder of i,
where X is identified with X x {0}. Define

M(w) = XU {(a, t)|t < w(a)} C MTi.

The basepointof A C X gives M (w) a basepoint. The reduced mapping cylinder
Miis obtained from M i by collapsing the line {*} x I toapoint. Define a based
map f: Mi — M(w) by f(x) = x for x € X and f(a,t) = (a, min(t, w(a))).
Since i is a based cofibration, f extends to a based map g: X A I — M(w).
Define

K (x,t) = mg(x,t) and w'(x) = sup{min(t, w(x)) — m2g(x, 1) |t € I}

where 71 and 7, are the projections from M (w) to X and I. Clearly k'(x, 0) = x,
K(a,t)=a for ae A, w'(x) <w(x), and w'(a) =0 for a € A, so that
A C (w')~1(0). To see that this inclusion is an equality, suppose that w'(x) = 0.
Then min(t, w(x)) < mg(x,t) for all t e I. If k/(x,t) ¢ A for any ¢, then
mg(x,t) =0, so that t=0 or w(x)=0. If w(x)=0, then x = and
K (x,t) = * € A. We conclude thatif t > 0, then k/(x, t) € A. Since A is closed
in X, it follows that k’(x,0) = x is also in A. Finally, (1.3.5) holds since
K (x,t) ¢ Aimplies mg(x,t) = 0 and thus w'(x) > min(t, w(x)). O

Step (ii). There is a representation (¢, z) of (X, %) as an NDR-pair such that
LAXT) C A

PROOF. Let (kx,wx) and (ka, wa) represent (X, ) and (A, *) as NDR-pairs,

where kx(x,t) = x if wx(x) < t and ka(a,t) = xif wa(a) < t. Since i is a based

cofibration, we may regard k4 as taking values in X and extend it to a based

map
ka: XA — X
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1.4. ACTIONS OF FUNDAMENTAL GROUPS ON HOMOTOPY CLASSES OF MAPS / 15

such that ka(x, 0) = x. Construct (K, w') from wy as in step (i) and extend w
tows: X —> I by

Wa(x) = (1 ) ) wa(k (x, 1)) + ' (x).

wx (x)
We interpret this as w'(x) when w'(x) = wx(x); in particular, since wx(*) = 0,
Wa(*) = 0. The definition makes sense since k'(x,1) € A if w'(x) < wx(x),
by (1.3.5). We claim that i, '(0) = . Thus suppose that ws(x) = 0. Then
w'(x) = 0, so that x € A, and this implies that k(x, 1) = x and wa(x) = 0, so
that » = *. The required pair (¢, z) is now defined by

I%A(x, t/a(x)) ift < ()
£(x,t) = -
kx(kA(x, 1),t— ﬁ)A(x)) ift > ﬁ)A(x)
and

z(x) = min(1, A (x) + wx (ka(x, 1))).

To see that £(A x I) C A, recall that I~cA and wy extend ks and wy and let x € A.
Clearly l~cA(x, t) € Aforallt. Ift > wa(x), thenwy(x) < 1and thuska(x, 1) = *.
Therefore kx (ka(x,1),t —wa(x)) = * € A. Note that £(x,t) = xif z(x) < t. O

Step (iii). Completion of the proof. Constructh': X x [ —> X andz': X—>1
by applying step (i) to z: X —> I. Then define

(W (x,t), min(t, 2'(x)/z(x))) ifx # *

1) = * ifx =%
and
u(x) = 2 (x) — z(x) + sup{z(W (x, 1)) | t € I}.
Then (h, u) represents (X, A) as an NDR-pair (in the strong sense). O

1.4. Actions of fundamental groups on homotopy classes of maps

For based spaces X and Y, let [X, Y] denote the set of based homotopy classes
of based maps X — Y. For unbased spaces X and Y, let [X, Y]gee denote
the set of free homotopy classes of maps X — Y. If we choose basepoints
for X and Y and use them to define [X, Y], then we obtain a function
[X,Y] —> [X, Ylfee by forgetting the basepoints. There is a classical descrip-
tion of this function in terms of group actions, and we describe that and re-
lated material on group actions in homotopy theory in this section.
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16 / COFIBRATIONS AND FIBRATIONS

We later consider varying basepoints in a given space, and we want them all
to be nondegenerate. Therefore, we tacitly restrict attention to spaces that have
that property. This holds for locally contractible spaces, such as CW complexes.

DEFINITION 1.4.1. Let X and Y be spaces. As usual, we assume that they
are connected and nondegenerately based. Let i: x —> X be the inclusion
of the basepoint and p: Y —> x be the trivial map. A loop « based at x € Y
and abased map f: X — Y giveamap fUa: Mi=XUI — Y. Applying
Lemma 1.3.2 to i, p, and f U, we obtain a homotopy h: X x I — Y such
that ho = f and h(x,t) = «(t). Another use of Lemma 1.3.2 shows that the
(based) homotopy class of h; depends only on the path class [«] and the homo-
topy class [ f]. With the usual conventions on composition of loops [93, p. 6],
the definition [«][ f] = [h1] gives a left action of 71 (Y, *) on the set [X, Y] with
orbit set [X, Y]/m1(Y, *). It is clear that two based maps that are in the same
orbit under the action of 71 (Y, *) are freely homotopic.

LEMMA 1.4.2. The induced function [X, Y]/71(Y) —> [X, Yigee is a bijection.

PROOF. By HHEP,anymap X —> Y is freely homotopic to a based map. If two
based maps f and g are freely homotopic via a homotopy h, then the restriction
of hto {*} x I gives aloop , and [g] = [«][ f] by the definition of the action. OJ

An H-spaceis a based space Y witha product u: Y x Y — Y, written x - y
or by juxtaposition, whose basepoint is a two-sided unit up to based homotopy.
That is, the maps y + -y and y + y - * are both homotopic to the identity
map. Equivalently, the composite of the inclusion YVY — Y x Y and the
product is homotopic to the fold map V: Y v Y — Y, which restricts to the
identity map on each wedge summand Y. Using our standing assumption that
basepoints are nondegenerate, we see that the given product is homotopic to
a product for which the basepoint of Y is a strict unit. Therefore, we may as
well assume henceforward that H-spaces have strict units.

PROPOSITION 1.4.3. Foran H-space Y, the action of w1 (Y, *) on [X, Y] is trivial
and therefore [X, Y] = [X, Ygee-

PROOF. For a map f: X — Y and a loop « based at * € Y, the homo-
topy h(x,t) = «a(t) - f(x) satisfies hy = f. Using this choice of homotopy in
Definition 1.4.1, as we may, we see that [¢][f]1 = [f]. O

The following definition hides some elementary verifications that we leave
to the reader.
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1.4. ACTIONS OF FUNDAMENTAL GROUPS ON HOMOTOPY CLASSES OF MAPS / 17

DEFINITION 1.4.4. Take X = S" in Definition 1.4.1. The definition then spe-
cializes to define an action of the group 71 (Y, *) on the group m,(Y, *). When
n = 1, this is the conjugation action of 71 (Y, %) on itself. A (connected) space
Y is simple if 71 (Y, %) is abelian and acts trivially on 7, (Y, ) for all n > 2.

COROLLARY 14.5. Any H-space is a simple space.

In the rest of this section, we revert to the based context and consider
extra structure on the long exact sequences of sets of homotopy classes of
(based) maps that are induced by cofiber and fiber sequences. These long exact
sequences are displayed, for example, in [93, pp. 57, 59]. As observed there, the
sets [X, Y] are groups if X is a suspension or Y is a loop space and are abelian
groups if X is a double suspension or Y is a double loop space. However, there
is additional structure at the ends of these sequences that will play a role in our
work. Thus, for a based map f: X —> Y and a based space Z, consider the
exact sequence of pointed sets induced by the canonical cofiber sequence of f:

(Zf)* T i* I
(XY, Z]——=[2X, Z]——=[Cf, Z] Y, Z] [X, Z].

LEMMA 1.4.6. The following statements hold.

(i) The group [£X, Z] acts from the right on the set [Cf, Z].

(ii) 7*: [£X, Z] — [Cf, Z] is a map of right [XX, Z]-sets.
(iit) 7*(x) = n*(x') if and only if x = (Zf)*(y) - & for somey € [T, Z].
(w) i*(z) = i*(2) ifand only if z = 2’ - x for some x € [X, Z].

(v) The image of [£2X, Z] in [ Cf, Z] is a central subgroup.

(In (iii) and (iv), we have used the notation - to indicate the action.)

PROOF. In (i), the action is induced by applying the contravariant functor
[—, Z] to the “coaction” Cf —> Cf vV XX of £X on Cf that is specified by
pinching X x {1/2} C Cf to a point (and of course linearly expanding the half
intervals of the resulting wedge summands homeomorphic to Cf and XX to
full intervals). Then (ii) is clear since the quotient map Cf — XX commutes
with the pinch map. To show (iii), observe that since [£X, Z] is a group, (ii)
implies that 7*(x) = 7*(x’) if and only if 7*(x - (x')~!) = *. By exactness, this
holds if and only if x - (x) ™! = (Zf)*(y) and thus x = (Zf)*(y) - ¥’ for some
y € [2Y, Z]. For (iv), if i*(2) = i*(2'), then the HEP for the cofibration i implies
that the homotopy classes zand 2’ can be represented by maps ¢ and ¢’ from Cf
to Z thatrestrict to the same map on Y. Then z = 2’ - x, where x is represented
by the map £X — Z that is obtained by regarding ¥ X as the union of upper

“530-46909_Ch01_5P.tex” — 8/19/2011 — 11:24 — page 17



18 / COFIBRATIONS AND FIBRATIONS

and lower cones on X, using ¢’|cx with cone coordinate reversed on the lower
cone, and using ¢|cx on the upper cone.

Finally, for (v), let G = [ECf, Z] and let H C G be the image of [£2X, Z].
The suspension of the pinch map Cf — Cf v XX gives a right action * of
H on G, a priori different from the product in G. We may obtain the product,
gg’ say, on G from the pinch map defined using the suspension coordinate of
Y Cf. Then the usual proof of the commutativity of [£2X, Z] applies to show
that hg = gh for h € H and g € G. In detail, if 1 € H is the identity element,
then, forg,g’ € Gand h,h' € H,

1xh=h, gxl=g, and (g*h)(g k) = (gg') * (hh).
Therefore
gh = (gx1)(1xh) = (gl) % (1h) = g xh
= (1g) % (k1) = (L xh)(g* 1) = hg. O

Dually, consider the exact sequence of pointed sets induced by the canonical
fiber sequence of f: X — Y

(Qf)* Lk Px ﬂ
[Z, QX] [Z, QY] [Z, Ff] [Z,X] [Z,Y].

Thisis of greatestinterestwhen Z = SO. Since [—, —] refers to based homotopy
classes, [S%, X] = mo(X) and the sequence becomes

S Ly Px 2
m1(X) m1(Y) 7o (Ff) 7o (X) mo(Y).

LEMMA 1.4.7. The following statements hold.

(i) The group [Z, QY] acts from the right on the set [Z, Ff].

(it) 12 [Z,Q2Y] — [Z, Ff1is a map of right [Z, QY ]-sets.
(i) tx(y) = t(Y) if and only if y = (Qf )«(x) -y’ for some x € [Z, QX].
(iv) p«(2) = p«(2) ifand only if z = 2 -y for some y € [Z, QY].

(v) The image of [Z, Q*Y] in [Z, QFf] is a central subgroup.

1.5. Actions of fundamental groups in fibration sequences

It is more usual and more convenient to think of Lemma 1.4.7 in terms of
fibrations. That is, instead of starting with an arbitrary map f, in this section
we start with a fibration p: E — B. We give some perhaps well-known (but
hard to find) results about fundamental group actions in fibrations.
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Observe that a fibration p: E —> B need not be sur]'ective,3 but either
every point or no point of each component of B is in the image of E. For
nontriviality, we assume that p is surjective. We may as well assume that B
is connected, since otherwise we could restrict attention to the components
of E over a chosen component of B. If we were given a general surjective
map p: E — B, we would replace E by its mapping path fibration Np (which
depends on a choice of basepoint in B) to apply the results to follow. That
is, we can think of applying the results to the fibration Np — B as applying
them to the original map p “up to homotopy”.

Although we have been working in the based context, we now think of p as
a free fibration and let the basepoint b € B vary. We choose a point ¢ € E
such that p(e) = b and we let F, = p~!(b). Also let E, be the component of E
that contains e and F, be the component of Fj, that contains e. We view these
as based spaces with basepoint e (as recorded in the notation), retaining our
standing assumption that basepoints are nondegenerate. As in [93, p. 64], we
then have the exact sequence

1.5.1
Use Dx d

c ﬂn(Feye) —— ﬂn(Eeye) I ﬂn(B,b) — 7Tn71(Fe,6) ——

P+ d [
- — mi(E,e) —— mi(B,b) —— mo(Fy,e) — mo(E,e).

Notice that we have replaced E and Fj, by E, and F, in the higher homotopy
groups. Since the higher homotopy groups only depend on the component of
the basepoint this doesn’t change the exact sequence.

By [93, p. 52], there is a functor A = A(py): [IB —> Ho% that sends a
point b of the fundamental groupoid I1B to the fiber Fj,. This specializes to
give a group homomorphism 1 (B, b) —> 7o(Aut (Fp)). Here Aut (Fp) is the
topological monoid of (unbased) homotopy equivalences of F;,. We think of
71(B, b) as acting “up to homotopy” on the space F;, meaning that an element
B € m1(B, b) determines a well-defined homotopy class of homotopy equiva-
lences F,, — F,. (If p is a covering space, the action is by homeomorphisms,
asin[93, p. 29].) As we shall use later, it follows that 1 (B) acts on the homology
and cohomology groups of Fj.

Observe that we can apply this to the path space fibration QY — PY — Y
of a based space Y. We thus obtain an action of m1(Y,*) on QY. Since
QY is simple, by Proposition 1.4.3, [QY,QY] = [QY, QY]fee and we can

3.1n [93, p. 47), fibrations were incorrectly required to be surjective maps.
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view 71(Y, %) as acting through basepoint-preserving homotopy equivalences
of the fiber QY. There results another action of 71(Y,*) on m,(Y,*). We
leave it to the reader to check that this action agrees with that defined in
Definition 1.4.4.

We will need a more elaborate variant of the functor A = A (g ) : T1B — Ho% .
Here, instead of starting with paths in B, we start with paths in E and work
with components of the fibers and the total space, regarded as based spaces.
Thus let: I —> E be a path from e to ¢'. Let b = p(e) and b’ = p(€/), and let
B = poa be the resulting path from b to b'. Consider the following diagram,
in which F = F, and «: F — E is the inclusion.

Ua
Fx{0}U{e} xI ————= E

—

@ -
~
- p
—
—
—
—

FxI I B

The CHEP, Lemma 1.3.2, gives a homotopy & that makes the diagram com-
mute. At the end of this homotopy, we have a map &;: F, —> F, such that
@1(e) = €. By a slight variant of the argument of [93, p. 51], which again uses
the CHEP, the based homotopy class of maps @; : (Fe, ) —> (Fg, €') such that
@1(e) = ¢ that are obtained in this way depends only on the path class [«].
That is, homotopic paths e —> ¢’ give homotopic maps &; for any choices of
lifts &@. We define A[a] = [@1]. These arguments prove the first statement of
the following result.

THEOREM 1.5.2. There is a functor A = A(gp): [IE —> Ho.7 that assigns the
(based) component F, of the fiber Fy, to a point e € E with p(e) = b. The functor A
restricts to give a homomorphism w1(E, €) —> mo(Aut (Fp)) and thus an action
of m1(E,€) on m,(Fp,€). The following diagram commutes up to the natural
transformation UA(gp) —> A(B,p)Px given by the inclusions F; —> Fy,.

Px
[NE —— IIB

MEp) i i MBp)

Hos — Ho%
U

Here U is the functor obtained by forgetting basepoints.
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PROOF. It remains to prove the last statement.
By definition, forapath 8: b — V', Az p)[8] = [B1], where Bisa homotopy
that makes the following diagram commute.

c
Fy x {0} — = E

B P
ml -7 p

FypxI — [ —— B

2 B

If b = p(e), we may restrict F}, to its components F,. Letting ¢ = (e, 1), B
restricts on {e} x I to a path a: e — €. Then f; is a homotopy of the sort
used to define A(gp)[a]. Turning the argument around, if we start with a
given path & and define B = p o «, then the map & used in the specification of
Agpla] = [@1] serves as a choice for the restriction to F, x I of a lift ,3 in the
diagram above. This says that the restriction of A(gy to the component F, is
A plal, which is the claimed naturality statement. a

REMARK 15.3. In the argument just given, if 8 is a loop there need be no
choice of B such that f;(e) = e unless n1 : 71 (E, ) —> m1(B, b) is surjective.
Similarly, unless 71 : 71 (E,, €) —> m1(B, b) is injective, loops « in E, can give
non-homotopic action maps [«]: F, —> F, even though they have the same
image under p.

The naturality and homotopy invariance statements proven for A(p 5 in [93,
pp- 52-53] apply with obvious changes of statement to A(g ). We write r for the
trivial fibration r : Y — « for any space Y. When p = r in the construction
above, the resulting action of 71 (Y, *) on 7, (Y, ) agrees with that discussed
earlier. In effect, in the based context, taking X = Y in Definition 1.4.1 we see
that we used this construction to give our original definition of fundamental
group actions. The more concrete construction in Definition 1.4.4 is then
obtained via maps S — Y.

PROPOSITION 1.5.4. The long exact sequence (1.5.1), ending at 7w1(B, b), is an
exact sequence of w1 (E, €)-groups and therefore of 71 (F, €)-groups. In more detail,
the following statements hold.

(i) Forj € m1(Fy, €) and x € mu(Fy, €), jx = t(j)x.
(ii) Forg € m1(E, €) and z € m,(B, b), gz = p«(g)z.
(iii) Forg € m1(E, ¢) and x € mw,(Fyp, €), t«(gx) = g«(x).

“530-46909_Ch01_5P.tex” — 8/19/2011 — 11:24 — page 21



22 /| COFIBRATIONS AND FIBRATIONS

(iv) Forg € m(E,€) andy € wy(E, €), p«(gx) = gp«(%).
(v) Forg € m(E, e) and z € m,(B,b), 9(gz) = gd(2).

PROOF. We define the actions of 71 (E, €) on 7w, (Fy, €), wu(E, €) and 7, (B, b) to
be those given by A(g ), A(g,r) and A (g o p«, respectively. We let 1 (F, e) act
on these groups by pullback along v, : 71(F,, ¢) —> m1(E, €). By (i) and inspec-
tion, this implies that its actions are given by A, r), A(E ) © L, and the trivial
action, respectively. The maps in the exact sequence are maps of m(E, €)-
groups by (iii), (iv), and (v).

By restricting the construction of Ag ) to loops a: I —> F,, we see that
A(Fy o] = A(gp)lt o @]. This implies part (i), and part (ii) is immediate from
the definition of the action of 71 (E, €) on 71 (B, b). Part (iv) holds by the natu-
rality of the action of 1 on 7y, which applies to any map, not just a fibration
such as p.

To prove (iii), we use the notations of the diagram on the previous page.
Since ¢: F — E is a cofibration, by Lemma 1.3.1, we can apply the CHEP to
the diagram

idug
M ——— E

/7
k —~
-7 p

Ex] —— 1 —— B
E193 B

to obtain a deformation k: E x I —> E. Since 1: F, — F, C E represents
t+ 0 M(E,p) ([]) and this mapis k; o, italso represents A (g r) o t. This implies (iii).

To prove (v), recall from [93, p. 64] that 3: m,(B,b) —> m,_1(F, €) is the
composite of the inverse of the isomorphism py: 7u(E, F, e) —> (B, b) and
the boundary map of the pair (E, F), which is obtained by restricting represen-
tative maps (D", S"~!) — (E, F) to S"! — F. Leta be aloop at ¢ in E that
represents g and let p(e) = band poa = 8. Let h: Bx I —> B be a deforma-
tion (ho = id) such that h(b, t) = B(t). As in Definition 1.4.1, for a based map
f:X — B, [Bllf]= [Mm]. To describe this action in terms of the pair (E, F),
use the CHEP to obtain lifts j and k in the following diagrams.

Ua idyj
F,x{0}U{e} x I —} E and M. —Z E
i - ko -
-7 p - p
FxI - I B Ex] —> BxI —> B 0
T2 B pxid h +1
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Then (k,j): (E,F) x I — (E, F) is a relative homotopy that restricts to j and
covers h. Precomposing with a map z: (D", S"~!) — (E, F) that represents
z € m1(B, b), the composite hqz represents [B]z, which is gz = p.(g)z. Its res-
triction to S"~! represents d(gz) and, by the first of the above pair of diagrams,
it also represents gd(z). g

REMARK 15.5. Consider (1.5.1). Lemma 1.4.7 implies that o (Fp, €) is a right
71(B, b)-setand d: 71 (B, b) —> mo(Fp, €) is a map of 1 (B, b)-sets and therefore
of 71 (E, e)-sets. However, we are especially interested in the next step to the
left. Assume that the image of p,.: m1(E, ¢) —> m1(B, b) is a normal subgroup.
Then coker p, is a group contained in the based set 7 (Fp, €) of components
of Fy, with base component F, (later sometimes denoted [e]). We denote this
group by 77o(F}, €) and have the exact sequence
1 9 e
1 (E, e)—m1(B, b)——=1¢(F}, &) —x*.

It is an exact sequence of 71 (E, €)-groups and thus of 71 (Fy, €)-groups, where
71 (Fp, €) acts trivially on the last two groups.
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HOMOTOPY COLIMITS AND
HOMOTOPY LIMITS; lim!

The material of this chapter is again of general interest. We describe the
most basic homotopy colimits and limits, with focus on their precise algebraic
behavior. In particular, we develop the dual homotopical lim' exact sequences.
We shall not go into the general theory of homotopy colimits, but the material
here can serve as an introduction to such more advanced sources as [42, 65,
128]. In this book, homotopy limits, and especially homotopy pullbacks, will
play a central role in the fracture theorems of Chapters 8 and 13.

In §3 and §4, we describe the algebraic properties of the functor lim! and
give a concrete topological example where nontrivial lim! terms appear. In §5
and §6, we give some observations about the homology of filtered colimits and
sequential limits and advertise a kind of universal coefficient theorem for profi-
nite abelian groups. While {1 and §2 are vital to all of our work, the later sections
play a more peripheral role and need only be skimmed on a first reading.

2.1. Some basic homotopy colimits

Intuitively, homotopy colimits are constructed from ordinary categorical col-
imits by gluing in cylinders. These give domains for homotopies that allow us
to replace equalities between maps that appear in the specification of ordinary
colimits by homotopies between maps. There is always a natural map from
a homotopy colimit to the corresponding ordinary colimit, and in some but
not all cases there is a convenient criterion for determining whether or not
that natural map is a homotopy equivalence. Since homotopies between given
maps are not unique, not even up to homotopy, homotopy colimits give weak
colimits in the homotopy category in the sense that they satisfy the existence
but not the uniqueness property of ordinary colimits. We shall spell out the
relevant algebraic property quite precisely for homotopy pushouts (or double
mapping cylinders), homotopy coequalizers (or mapping tori), and sequential
homotopy colimits (or telescopes). We record the analogous results for the
24
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constructions Eckmann-Hilton dual to these in the next section. We work in
the based context, but the unbased analogues should be clear.

DEFINITION 21.1. The homotopy pushout (or double mapping cylinder)
M(f,g) of a pair of maps f: A—> X and g: A —> Y is the pushout written
in alternative notations as

(XVY)UpvaAALy or XU (AAL)U, Y.

It is the pushout defined with respect to f vg: AVA— X VY and the
cofibration (ip,i1): AVA — AN

Explicitly, with the alternative notation, we start with X vV (AA L) vV Y and
then identify (a,0) with f(a) and (a, 1) with g(a). In comparision with the
ordinary pushout X U Y, we are replacing A by the cylinder A A L. Except
that the line * x I through the basepoint should be collapsed to a point, the
following picture should give the idea.

/N

| AxI

\

\__% ,,_,/

PROPOSITION 2.1.2. Forany space Z, the natural map of pointed sets
[M(f,g), Z] — [X,Z] x(a, 7Y, Z]

is a surjection. Its kernel is isomorphic to the set of orbits of [ A, Z] under the right
action of the group [EX, Z] x [XY, Z] specified by

*(%,y) = (Bf)*(x) " -a- (Zg)*(y)

forae[XA Z],x € [EX,Z],andy € [XY, Z].

pROOF. The pullbackin the statement is the set of homotopy classes ([«], [8])
in [X, Z] x [Y, Z] such that [«] and [B] have the same image in [A, Z], which
means that o o f is homotopicto fog.
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We have an evident cofibration j: X VY — M(f,g). As in [93, p. 57], it
gives rise to an exact sequence of pointed sets

3
* .
i*

[EX,Z]x [2Y, Z] [C), Z] [M(f.g), ZI—=IX, Z] x [Y, Z].

Ifw: X — Z and B: Y —> Z are such that of ~ g, then any choice of
homotopy AA I} —> Z determines a map y: M(f,g) — Z that restricts
to o and B on X and Y. Thus j* induces a surjection onto the pullback in
the statement of the result. That is, for homotopy classes [«] and [B] such
that f*[e] = g*[B], there is a homotopy class [y], not uniquely determined,
such thatj*[y] = ([«], [8]). This is what we mean by saying that the homotopy
colimit M(f, g) is a weak pushout of f and g in Ho.7.

By Lemma 1.4.6(iv), ker j* = im i* is the set of orbits of [£ A, Z] under the
action of [£X, Z] x [ZY, Z] specified there. Sincej is a cofibration, the canon-
ical quotient map ¢ : Cj —> X A is an equivalence ([93, p. 58]). A homotopy
inverse & to ¥ can be specified by

(f(a),1-3t)e CX if0<t<1/3
Eat)=1(a,3t—-1) e ANl if1/3<t<2/3
(g(a),3t—2) e CY if2/3<t<1.

The pinch map on Cj used to define the action in Lemma 1.4.6 pinches the
equators X x {1/2} and Y x {1/2} of CX and CY to the basepoint, so mapping
CitoXX Vv CjVv LY. If we firstapply £ and then this pinch map on Cj, we obtain
the same result as if we first apply the pinchmap XA — YAV XAV T Athat
pinches A x {1/6} and A x {5/6} to a point and then apply &. Up to homotopy,
& restricts on the three copies of £A to —Xf, the identity, and Xg. There-
fore the action defined in Lemma 1.4.6 agrees with the action specified in the
statement. O

The following result is often called the “gluing lemma”.

LEMMA 2.1.3. Assume given a commutative diagram

f g
X A Y

X/%A/HY/

f g
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in which  and ' are cofibrations. If «, B, and y are homotopy equivalences, then
so is their pushout

XUpaY — X' Uy Y.

PROOF. One can prove this directly by expanding on arguments about cofiber
equivalence given in [93, {4.5]. However, that would be fairly lengthy and
digressive. Instead we take the opportunity to advertise the model category
theory that appears later in the book, specifically in §15.4. The notion of a left
proper model category is specified in Definition 15.4.1, and it is proven in
Proposition 15.4.4 that a model category is left proper if and only if the conclu-
sion of the gluing lemma holds. This applies to a verylarge class of categories in
which one can do homotopy theory. By Theorem 17.1.1 and Corollary 17.1.2,
it applies in particular to the category of spaces and the category of based
spaces. g

COROLLARY 2.1.4. If f isacofibration and g is any map, then the natural quotient
map M(f,g) —> X Ua Y is a homotopy equivalence.

PROOF. An explicit proof of the unbased version is given in [93, p. 78], but
the conclusion is also a direct consequence of the previous result. To see that,
let Mf be the mapping cylinder of f and observe that M(f, g) is the pushout
of the canonical cofibration A — Mf and g: A — Y. Taking « and y to be
identity maps and B to be the canonical homotopy equivalence Mf — X, the
previous result applies. O

Observe that the fold map V: X vX — X is conceptually dual to the
diagonal map A: X — X x X.

DEFINITION 2.1.5. The homotopy coequalizer (or mapping torus) T(f,f’) of
apairofmapsf,f’: X —> Yisthehomotopy pushoutof (f,f’): XVX — Y
and V: XvX — X.

We have written the definition in a way that mimics the construction of
coequalizers from pushouts and coproducts in any category (see below). How-
ever, unravelling the definition, we see that (X A X) A I can be identified with
(X A14) Vv (X A Ly). The identification along V has the effect of gluing these
two cylinders into a single cylinder of twice the length. Therefore T(f,f”) is
homeomorphic to the quotient of Y v (X A L) obtained by identifying (x, 0)
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with f(x) and (x, 1) with f”(x). This gives the source of the alternative name.
We urge the reader to draw a picture.

The categorical coequalizer of f and f’ can be constructed as Y/~, where
f(x) ~ f'(x) for x in X. The required universal property ([93, p. 16]) clearly
holds. Equivalently, the coequalizer is the pushout of (f,f"): X VX — Y
and V: X v X — X. In principle, the map (f,f’) might be a cofibration, but
that almostnever happens in practice. Since cofibrations must be inclusions, it
can only happen if the intersection of the images of f and f” is just the base-
point of Y, and that does not generally hold. The gluing lemma applies to
categorical coequalizers when it does hold, but there is no convenient generally
applicable analogue of the gluing lemma. For that reason, there is no conve-
nient general criterion that ensures that the natural map from the homotopy
coequalizer to the categorical coequalizer is a homotopy equivalence.

The equalizer E(«, 8) of functions «, 8: S —> U is {s|lx(s) = B(s)} C S, as
we see by checking the universal property ([93, p. 16]). Equivalently, it is the
pullback of (¢, 8): S— Ux Uand A: U — U x U.

PROPOSITION 2.1.6. For any space Z, the natural map of pointed sets

[T(f.f), 21 — E(f*".f")

is a surjection, where f*, f'*: [Y, Z] —> [X, Z]. Its kernel is isomorphic to the set
of orbits of [ X, Z] under the right action of the group [EY, Z] specified by

xxy = (Z) )" % (ZF) ()
forx e [EX,Z]andy € [ZY, Z].

PROOF. Abbreviate G =[XX,Z] and H =[XY, Z] and let 6 = (2f)* and
6" = (Xf')*. By Proposition 2.1.2 and the definition of T'(f,f’),

[T(f.f), 2] — E(f*.f")

is a surjection with kernel the set of orbits of G x G under the right action of
H x G specified by

(w, %) * (y,2) = ((0y) ", (0'y)) " (w, %)(z, 2) = ((Oy) 'wz, (0'y)'x2)

for w,x,z€ G and y € H. Define u: Gx G —> G by u(w,x) = wx~! and

define v: Hx G — H by v(y,2) = y. With H acting on G as in the state-
ment, p is v-equivariant and induces a bijection on orbits by an easy algebraic
verification. U
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DEFINITION 2.1.7. The homotopy colimit (or mapping telescope) tel X; of a
sequence of maps f;: X; —> X1 is the homotopy coequalizer of the iden-
tity map of Y = v;X; and v;f;: Y — Y. It is homeomorphic to the union
of mapping cylinders described in [93, p. 113], which gives the more usual
description.

The definition of lim! G; for an inverse sequence of abelian groups is given,
for example, in [93, p. 146]. It generalizes to give a definition for not nec-
essarily abelian groups. However, the result is only a set in general, not a

group.

DEFINITION 2.18. Let y;: Gj;1 —> G;, i>0, be homomorphisms of

groups. Define a right action of the group G = x;G; on the set S = x;G; by

(si) * (81) = (g; "sivi(8iv1)):

The set of orbits of S under this action is called lim! G;. Observe that lim G; is
the set of elements of G that fix the element (1) € S whose coordinates are the
identity elements of the G;. Equivalently, lim G; is the equalizer of the identity
map of Sand x;y;: S — S.

PROPOSITION 2.1.9. For any space Z, the natural map of pointed sets
[tel Xi’ Z] —> lim[Xi, Z]

is a surjection with kernel isomorphic to im'[2X;, Z].

PROOF. With our definition of tel X; as a homotopy coequalizer, this is
immediate from Proposition 2.1.6. O

The following “ladder lemma” is analogous to the gluing lemma above.

LEMMA 2.1.10. Assume given a commutative diagram

fo fi
Xo X1 X Xiyp —— -
o0 J/ i o1 l o \L o
X X X! X, — .
5 5
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in which the f; and f are cofibrations. If the maps «; are homotopy equivalences,
then so is their colimit

colim X; — colim X;.

PRoOF. This follows inductively from the proposition about cofiber homo-
topy equivalence given in [93, p. 44]. O

COROLLARY 21.11. Ifthemapsf;: X; —> X;,1 are cofibrations, then the natural
quotient map tel X; — colim X; is a homotopy equivalence.

PROOF. The map in question identifies a point (x, t) in the cylinder X; A I+
with the point (f;(x),0) in the base of the next cylinder X;,; A . We may
describe tel X; as the colimit of a sequence of partial telescopes Y;, each of
which comes with a deformation retraction «;: Y; — X;. These partial tele-
scopes give a ladder to which the previous result applies. d

This applies in particular to the inclusions of skeleta of a CW complex X,
and we have the following important definition.

DEFINITION 2.1.12. Let X be a (based) CW complex with n-skeleton X". A
map f: X —> Z is called a phantom map if the restriction of f to X" is null
homotopic for all n.

WARNING 2.1.13. This is the original use of the term “phantom map”, but the
name is also used in some, but by no means all, of the more recentliterature for
maps f : X —> Z such that f o g is null homotopic for all maps g: W — X,
where W is a finite CW complex. One might differentiate by renaming the
original notion “skeletally phantom” or renaming the new notion “finitely
phantom”. Skeletally phantom implies finitely phantom since any g as above
factors through X" for some n. Of course, the two notions agree when X has
finite skeleta.

The name comes from the fact that, with either definition, a phantom map
f+ X — Z induces the zero map on all homotopy, homology, and cohomol-
ogy groups, since these invariants depend only on skeleta, and in fact only
on composites f og, where g has finite domain. With the original definition,
Corollary 2.1.11 and Proposition 2.1.9 give the following identification of the
phantom homotopy classes.
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COROLLARY 2.1.14. The set of homotopy classes of phantom maps X — Z can
be identified with im'[ X", Z].

PROOF. By Corollary 2.1.11, the quotient map tel X" — X is a homotopy
equivalence, hence the conclusion follows from Proposition 2.1.9. O

In §2.3, we specify a simple algebraic condition, called the Mittag-Leffler
condition, on an inverse sequence {G;, y;} that ensures that lim! G; is a single
point. In the situation that occurs most often in topology, the G; are countable,
and then Theorem 2.3.3 below shows thatlim! G; is uncountable if the Mittag-
Leffler condition fails and a certain normality of subgroups condition holds.
In particular, the cited result has the following consequence.

COROLLARY 2.1.15. If the skeleta X" are finite, the homotopy groups my(Z) are
countable, the groups [£X", Z] are abelian, and the Mittag-Leffer condition fails
for the inverse system {[£X", Z]}, then lim'[£X", Z] is an uncountable divisible
abelian group.

As a concrete example, this result applies to show that [CP*°, S?] contains
an uncountable divisible subgroup. This is a result due to Gray [55] that we
shall explain in §2.4. Here the groups [SCP", $?] are abelian since S° is a
topological group. Although it is hard to specify phantom maps concretely on
the point-set level, their existence is not an exotic phenomenon.

2.2. Some basic homotopy limits

We gave the definitions and results in the previous section in a form that
makes their dualization to definitions and results about homotopy limits as
transparent as possible. We leave the details of proofs to the interested reader.
These constructions will be used later in the proofs of fracture theorems for
localizations and completions.

DEFINITION 22.1. The homotopy pullback (or double mapping path fibra-
tion) N(f,g) of a pair of maps f: X — A and g: Y —> A is the pullback
written in alternative notations as

(X xY)xaxa F(I4,A) or X xpF(I1,A)xgY.

It is the pullback defined with respect to f xg: X xY — A x A and the
fibration (po, p1): F(I+,A) — Ax A.
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Explicitly, with the alternative notation, N(f,g) is the subspace of
X x F(I4+, A) x Y that consists of those points (x, w, y) such that w(0) = f(x)
and (1) = g(y). Here (po,p1): F(I+,A) — A x A is a fibration by applica-
tion of Lemma 1.1.4 to the cofibration (ip,i1): AVA — AA L. Its fiber
over the basepoint is QA. Observe that pullback of this fibration along
fxg:XxY— AxA gives a fibration (po,p1): N(f,g) — X x Y with
fiber QA over the basepoint.

PROPOSITION 22.2. For any space Z, the natural map of pointed sets
[Z,N(f,8)] — [Z,X] x|z [Z, Y]

is a surjection. Its kernel is isomorphic to the set of orbits of [Z, QA] under the right
action of the group [Z, QX] x [Z, QY] specified by

ax(x,y) = (f)x(x) " - a- (2)«(y)
forae[Z,QA], x €[Z,QX],andy € [Z,QY].
The following  consequence, which  uses the fibration

(po.p1): N(f,g) — X x Y and the exact sequence of [93, p. 64], will be

especially important in our study of fracture theorems.

COROLLARY 223. Letf: X —> Aandg: Y —> A be maps between connected
spaces. There is a long exact sequence

s 1 (A) — TaN(frg) PP X)X (V) EES 1a(A)

— - —> m1(A) — mN(f,g) — *.

The space N(f,g) is connected if and only if every element of w1 (A) is the prod-
uct of an element of f.71(X) and an element of g1 (Y). For n > 1, the natural
map

Ta(N(f 8)) —> 7n(X) Xy (4) Tn(Y)

is an isomorphism if and only if every element of the abelian group mw,11(A) is the
sum of an element of fyn11(X) and an element of gy wp41(Y).

Ifn = 1, the inaccurate notation f, — g, means the pointwise product f,g; ';
the additive notation is appropriate when n > 1. In both cases, the condition
on homotopy groups says that the relevant homomorphism f, —g. is an
epimorphism.
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LEMMA 2.2.4. Assume given a commutative diagram

f g
X A Y

X — A =— Y

f g

inwhich f and f' are fibrations. If o, 8, and y are homotopy equivalences, then so
is their pullback
XxaY — X' xuY.

PROOF. The model category theory that we give later is self-dual in the very
strong sense that results for a model category, when applied to its opposite
category, give dual conclusions. This lemma is an illustrative example. It is
the model theoretic dual of Lemma 2.1.3, and the proof of Lemma 2.1.3 that
we outlined above dualizes in this sense. The notion of a right proper model
category is specified in Definition 15.4.1, and by Proposition 15.4.4, a model
category is right proper if and only if the conclusion of this “cogluing lemma”
holds. By Theorem 17.1.1 and Corollary 17.1.2, the category of spaces and the
category of based spaces are both left and right proper, so the conclusions of
both Lemma 2.1.3 and this lemma hold in both categories. O

COROLLARY 225. If f isa fibration and g is any map, then the natural injection
X xaY —> N(f,g) is a homotopy equivalence.

DEFINITION 22.6. The homotopy equalizer (or double fiber) F(f, f) of a pair
ofmapsf, f': X — Y is the homotopy pullback of (f,f"): X — Y x Y and
A:Y — Y XY.

Again, we have written the definition so as to mimic the categorical con-
struction of equalizers from pullbacks and products. Unraveling the definition,
we find that the space F(f,f’) is homeomorphic to the pullback of the natural
fibration N(f,f') — X x X along A: X — X x X.

PROPOSITION 2.2.7. Forany space Z, the natural map of pointed sets

[Z,F(f.f)1 — E(fuf's)

is a surjection, where fx, f’,: [Z,X] —> [Z, Y]. Its kernel is isomorphic to the set
of orbits of [Z, Y] under the right action of the group [Z, QX] specified by
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-1
yrx = (Qf (%) - () (%)

forx € [Z,QX]andy € [Z,QY].

DEFINITION 2.2.8. The homotopy limit (or mapping microscope)! mic X; of
a sequence of maps f;: X;;1 —> X; is the homotopy equalizer of the identity
map of Y = x;X; and x; f;: Y — Y. It is homeomorphic to the limit of the
sequence of partial microscopes Y, defined dually to the partial telescopes in
93, p. 113].

Explicitly, let mo: Yo = F(I4+,Xo) —> Xo be pi, evaluation at 1. Assume
inductively that 7,,: Y, —> X, has been defined. Define Y, to be the pull-
back displayed in the right square of the following diagram. Its triangle defines
Tn+1: Yne1 —> Xut1, and the limit of the maps Y,41 —> Y, is homeo-

morphic to mic X;.

Yn+1 Yn
Tin+1
/ i \L "
Xpt1 <=— F(I4, Xnt1) Xn+1 X
P po fn

PROPOSITION 22.9. For any space Z, the natural map of pointed sets

[Z, micX;] — lim[Z, X;]

is a surjection with kernel isomorphic to lim'[Z, QX;]. In particular, there are

natural short exact sequences

0 — lim! 7,41(X;) —> 7,(mic X;) —> lim 7,,(X;) —> 0.

LEMMA 2.2.10. Assume given a commutative diagram

fi fo
Xit1 X; e X1 Xo
O‘H—l \L \L o \L o1 l [o 1))
Xit1 X e Xy Xo
fi fo

1. This joke name goes back to 1970s notes of the first author.
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in which the f; and f; are fibrations. If the a; are homotopy equivalences, then so is
their limit

limX; — limX;.

PROOF. This follows inductively from the proposition about fiber homotopy
equivalence given in [93, p. 50]. O

PROPOSITION 22.11. Ifthe mapsf;: X;\1 —> X; are fibrations, then the natu-
ral injection lim X; —> mic X; is a homotopy equivalence.

2.3. Algebraic properties of lim'

The lim' terms that appear in Propositions 2.1.9 and 2.2.9 are an essential,
but inconvenient, part of algebraic topology. In practice, they are of little
significance in most concrete applications, the principle reason being that
they generally vanish on passage either to rationalization or to completion at
any prime p, as we shall see in {6.8 and {11.6. We give some algebraic feel for
this construction here, but only the Mittag-Leffler condition for the vanishing
of lim'G; will be relevant to our later work.

- We consider a sequence of homomorphisms y;: G;11 —> G;. Forj > i, let
yij =ViViy1"¥j-1: Gj —> G;andlet Gji =im yiJ . We say that the sequence
{Gi, v} satisﬁgs the Mittag-Leffler condition if for each i there exists j(i) such
that Gf = GJi(l) for all k > j(i). That is, these sequences of images eventually
stabilize. For example, this condition clearly holds if each y; is an epimorphism
or if each G; is a finite group.

The following results collect the basic properties of lim' G;. The main con-
clusion is that either the Mittag-Leffler condition holds and lim' G; = 0 or,
under further hypotheses that usually hold in the situations encountered in
algebraic topology, the Mittag-Leffler condition fails and lim! G; is uncount-
able.

PROPOSITION 2.3.1. A short exact sequence
1} — G, v} — {Gi v} — G .y} — (1}

of towers of groups gives rise to a natural exact sequence of pointed sets

1 - lim G} - lim G; — lim G, > lim' G — lim! G; — lim' G;" — 1.
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Moreover, the group lim G;” acts from the right on the set lim' G/, 8 is a map of
right lim G;"-sets, and two elements of 1im! G| map to the same element of lim' G;
if and only if they lie in the same orbit.

PROOF. The identity elements of groups are considered as their basepoints,
and sequences of identity elements give the basepoints necessary to the state-
ment. By an exact sequence of pointed sets, we just mean that the image in
each term is the set of elements that map to the basepoint in the next term.
We use square brackets to denote orbits and we regard G; as a subgroup of
G;. We define the right action of lim G;” on lim' G/ by letting

[s:1(g]) = [g "sivilgiv)],

where (g/') is a point in lim G;”. Here g; € G; is any element that maps
to g € G!. Define g/ = g;lsgyi(g,-ﬂ). Then g/ is in G| because the equality
8" = v"(gi+1") implies that g/ maps to 1 in G;". Define § by 6(g”) = [1]g”,
where [1] denotes the orbit of the sequence of identity elements of the G;.
With these definitions, the verification is straightforward, if laborious. O

LEMMA 23.2. For any strictly increasing sequence { j(i)}, the diagram

Vi Yo
. > it 4 (i) ... J(1) > 0
Gin G Gy Go
R A
- —— Gy G; Gy Go
Vi )

induces an  isomorphism  lim Gjl:(i) — limG; and a surjection
lim! Gji(l) — lim! G;. The latter function is a bijection if GJI.“) is a normal sub-
group of G; for each i.

PROOF. Since the sequence {j(i)} is strictly increasing, the isomorphism of
lim groups holds by cofinality. If (g;) is in lim G;, then g; maps to g; for each
J > i. In particular gj; maps to g;. This shows that the map of lim groups is
surjective, and injectivity is clear. To see the surjectivity on lim!, let (t;) € x;G;
and (g;) € x;G;. The definition of the right action given in Definition 2.1.8
shows that (t;) = (s;)(g;), where

si = gitivi(gi+1) " € Gi.
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H we ChOOSE
. o - , ~
Vij(l)(tj(i)) 11/,'](1) (tiiy-1) 1"%‘ Y(tig1) 1% Y

then we find that s; = yl.j(i)H(tj(i)H) e yij(iﬂ)( tii+1)) is in GJ . This displays
the orbit [t;] € lim! G; as an element in the image of lim' GJi O 1f GJi(l) is nor-

mal in G; for each i, then lim G;/ Gj ® is defined, and it is the trivial group
since another cofinality argument shows that an element other than (e;)
would have to come from a nontrivial element of lim G;/lim GJ . Therefore

lim! Gji( )5 lim! G; isaninjection by the exact sequence of Proposition 2.3.1. O

THEOREM 2.33. lim! G; satisfies the following properties.

(i) If{Gi, i} satisfies the Mittag-Leffler condition, then lim! G; is trivial.

(ii) If GJI. is a normal subgroup of G; for each j > i and each G; is countable, then
either {G;, y;} satisfies the Mittag-Leffler condition or lim! G; is uncount-
able.

(iii) If each G; is a finitely generated abelian group, then lim' G; is a divisible
abelian group.

PRoOOF. For (i), we may assume that Gk GJ( fork > j(i), where the (i) form

a strictly i mcreasmg sequence. Let (t;) € X; GJ . There are elements h; € GJ o)

such that t; = h;” Li(hiz1). To see this, let hg =1 and assume 1nduct1ve1y
that h, has been constructed for a < i. Then h;t; is in GN) Gi (1)

hit; = /" (g

1

, say
). Lethijyq = i{:irl)(g) Then h; 4 € GJ( * )andh iti = Vi(hiy1),
as required. This implies that (;) = (1)(h;), so that the orbit set lim! G{(i)
contains only the element [1]. By the surjectivity result of the previous lemma,
this implies that lim! G; also contains only the single element [1].

For (i), fix i > 0 and, letting j vary, consider the diagram

s GH’J+1 - GH’J - Gi1+2 - G;:+1
Gi G G &
L Hin . Hij H% Hil'
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Here HI.J =G/ G:ﬂ . By Proposition 2.3.1 and the fact that lim! is trivial on
constant systems, there results an exact sequence

i+j

* — lim G;” — G; — lim HiJ —> lim! G:ﬂ —> *.

Applying Proposition 2.3.1 to the exact sequence
{1) — (kery/) — (G} — (G} — {1},

we see that we also have a surjection lim' G — lim! G;ﬂ . Iflim Hij is un-

countable, then so are lim! Gzﬂ (since G; is assumed to be countable) and
lim? G;j. Here the index runs over j > i for our fixed i, but lim! Gj is clearly

independent of i. The cardinality of lim H{ is the product over j > 1 of the
cardinalities of the kernels Gzﬂ / G:ﬂﬂ of the epimorphisms Hij+l — Hl.J .
Therefore lim H lJ is countable if and only if G;ﬂ / Gzﬂ ' has only one element

for all but finitely many values of j, and the latter assertion (for all i) is clearly
equivalent to the Mittag-Leffler condition. This proves (ii).

For (iii), let n > 1 and apply Proposition 2.3.1 to the spliced short exact
sequences

{n}

Gi} {Gi}
{nG;}

{0} {0}.

Since G;/nG; is finite, lim' G;/nG; = 0 by (i). Therefore, by the triangles in

the diagram, multiplication by n on lim! G; is the composite epimorphism

lim! G; — lim! nG; — lim! G;. O

2.4. An example of nonvanishing lim' terms

As promised, we here give an example due to Gray [55] that shows how easy
it can be to prove that the Mittag-Leffler condition fails.

LEMMA 2.4.1. Let X be a based CW complex such that 7;(X) = 0 for i < q and
74(X) = Z, where q > 2 iseven. Assume that X isa CW complex with q-skeleton S

“530-46909_Ch02_5P.tex” — 8/19/2011 — 11:24 — page 38

{Gi/nGi} — {0}



24. AN EXAMPLE OF NONVANISHING lim' TERMS / 39

and give XX the induced CW structure with (SX)" = X", Letf: S4+1 — %X
generate mqy1(XX) =7Z. Suppose gof has degree zero for every map
g: TX —> S, Then the sequence of groups [ X", STH1] does not satisfy the
Mittag-Leffler condition.

PROOF. Forn > g, we have a cofiber sequence

jﬂ kn
Jn S X" S XVH—l ,

where J, is a wedge of n-spheres, j, is given by attaching maps, and k, is the
inclusion. Suspending, these induce exact sequences

(Sjn)* (Sh)*
[Z]y, ST J<——[2X", S4H ]<——[Z X", 591,

Since the functor [—, Z] converts finite wedges to finite products and thus
to finite direct sums when it takes values in abelian groups, [Z],, S91] is a
direct sum of homotopy groups ,41(S7"1). As we shall recall in 6.7, since g
is even, 7, 11(S9*1) is finite for all n > q.

Since X4 = S and 74 (X) = Z, j; must be null homotopic; if not, its homo-
topy class would be an element of 7, (X 1) that would map to zero in 74 (X). With
its cell structure induced from that of X, the g+ 1-skeleton of X4 is ST*1.
Let go: ©X9 —> S be the identity. Since j; is null homotopic, so is Xjj.
Therefore (Xj5)*[go] = 0and [go] = (Xkq)*[g1] for some [g1] € [ZX9tL g4+l
Inductively, starting with m; = 1, for n > 1 we can choose positive integers m,,
and maps g,: XX9T" — ST such that (Skyin—1)*(gn) = Mngr—1. Indeed,
for n > 2, (Zjg4n—1)*([gn—1]) is an element of a finite group, so is annihilated
by some my,, and then my[g,_1] is in the image of (kg n—1)".

Now suppose that the Mittag-Leffler condition holds. This means that, for
no large enough,

im[ZXT", $1T1 — [=X4, $9T1] = im[T X9, $9T1] — [ZXY, $971]

for all n > ng. Then we can take m, = 1 for n > ng. By the surjectivity part
of the lim! exact sequence, there is a map g: ¥X —> S9+! whose restriction
to XXt is homotopic to g, for each n. Thinking of f: S9! — XX as the
composite of the identity map on the g + 1-skeleton composed with inclusions
of skeleta and thinking of g as the colimit of its restrictions to skeleta, we see
thatthe composite g o f has degree m; - - - my,. This contradicts the assumption
that g of has degree zero. O
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LEMMA 2.4.2. With q = 2, CP™ satisfies the hypotheses of Lemma 2.4.1.

PROOF. With the notations of Lemma 2.4.1, we must show that gof has
degree zero for any map g: SCP>® — S3. Suppose that gof has degree
m # 0. Up to sign, g*(i) = mx in cohomology with any ring R of coefficients,
where i € H3(S?) is the fundamental class and x € H?(CP®) is the generator.
Taking R = F, where p is prime to m, we see that g* is an isomorphism in
degree 3. But the first Steenrod operation P! (see, e.g., [86, 130]) satisfies
Plx # 0, which by naturality contradicts P! (i) = 0. O

COROLLARY 2.43. There are uncountably many phantom maps CP® — S3.

We have just seen how easy it is to prove that phantom maps exist, but it is
very far from obvious how to write them down in any explicit form.

2.5. The homology of colimits and limits

It was observed in [93, p. 113] that homology commutes with sequential col-
imits of inclusions. The same holds more generally for suitably well-behaved
filtered colimits, which are defined to be colimits of diagrams defined on
filtered categories.

DEFINITION 25.1. A small category % is filtered if

(i) For any two objects d and d’, there is an object e that admits morphisms
d—>eandd —e.

(ii) For any two morphisms «, 8: d —> e, there is a morphism y: e — f
such that ya = y8.

This definition suffices for many applications. However, we insert the
following more general definitions [11, p. 268] since they will later play a
significant role in model category theory. The reader may ignore the general-
ity now, but it will be helpful later to have seen an elementary example of how
these definitions are used before seeing such arguments in model category
theory. The union of a finite set of finite sets is a finite set, and we recall that
regular cardinals are defined to be those with the precisely analogous property.

DEFINITION 252. A cardinal is an ordinal that is minimal among those of
the same cardinality. A cardinal 1 is regular if for every set I of cardinality less
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than A and every set {S;|i € I} of sets S;, each of cardinality less than 1, the
cardinality of the union of the S; is less than A.

DEFINITION 253. LetX bearegular cardinal. A small category 2 is A-filtered
if
(i) For any set of objects {d;|i € I} indexed by a set I of cardinality less than
A, there is an object e that admits morphisms d; — eforalli € I.
(ii) For any set of morphisms {o;: d —> e|i € I} indexed by a set I of cardi-
nality less than A, there is a morphism y: e — f such that yo; = yq;
for all indices i and j in I.

In Definition 2.5.1, we restricted to the ordinal with two elements, but
by finite induction we see that our original definition of a filtered category
is actually the same notion as an w-filtered category. As with any category, a
filtered category & may or may not have colimits and a functor, or diagram,
defined on 2 may or may not preserve them. The precise meaning of the
assumptions on colimits in the following result will become clear in the proof.
By a sequential colimit, we just mean a colimit indexed on the nonnegative
integers, viewed as a category whose only nonidentity maps are m — n for
m < n.

PROPOSITION 2.5.4. Let X be the colimit of a diagram X,.: 9 —> % of closed
inclusions of spaces, where 9 is A-filtered for some regular cardinal 1. If A > o,
assume in addition that 9 has sequential colimits and that X, preserves them. Let
K be a compact space. Then any map f : K —> X factors through some X;;.

PROOF. The colimit X has the topology of the union, so that a subspace is
closed if and only if it intersects each X; in a closed subset, and each Xj
is a closed subspace of X. Since we are working with compactly generated
spaces, f(K) is a closed compact subspace of X [93, p.37]. Assume that f
does not factor through any X;. Starting with any object dy, we can choose
a sequence of objects dy, and maps a,: dy—1 —> dy in Z and a sequence of
elements k, in K such that f(k,) is in the complement of the image of X ,
in X . Indeed, let n > 1 and suppose that d;, «;, and k; have been chosen for
0 < i < n.Thereis an element k, such that f (k,) isnotin X; .. There mustbe
some object d;, _; such that f (k) is in Xy - There is an object d,, that admits
maps o dy—1 — dyanday: d, | —> dy. Then f (k,) is in the image of the
inclusion Xy~ — Xy, induced by ;, but is not in the image of the inclusion

Xy, , — Xy, induced by .

-1
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We may view the countable ordered set {d,} as a subcategory of 2. If
A = w, then {d,} is cofinal in & and X can be identified with colim X; ; for
notational convenience, we then write X, = X (with no e in mind). If A > o,
then, by assumption, {d,} has a colimit e € Z and X, = colim Xj, . Since X,
is one of the spaces in our colimit system, our hypotheses imply that X, is a
closed subspace of X. Therefore, in both cases f(K) N X, is a closed subspace
of the compact space f(K) and is again compact. Since compactly generated
spaces are T (points are closed), the set Sop = {f (kx)} and each of its subsets
Sm = {f (kmi)|i = 0}, m > 0, is closed in f(K) N X,. Any finite subset of the
set {Sm} has nonempty intersection, but the intersection of all of the S,, is
empty. Since f(K) N X, is compact, this is a contradiction.? O

EXAMPLE 25.5. The hypothesis on sequential colimits is essential. For a
counterexample without it, let X = [0, 1] C R, and observe that X is the col-
imit of its countable closed subsets X, partially ordered under inclusion.
This gives an Ro-filtered indexing category. Obviously the identity map of
X does not factor through any X;. For n > 0, let X, = {0} U{1/i|]1 <i <n}.
As a set, the colimit of the X, is Xoo = {0}U{1/i|i > 1}. Topologized as a
subspace of X, X is a countable closed subspace of X, so it qualifies as
the colimit of {X,} in our indexing category of countable closed subspaces.
However, its colimit topology is discrete, so our colimit hypothesis fails.
(Observe too that if we redefine the X;, without including {0}, then X, is not
closed in X, showing that our indexing category does not have all sequential
colimits.)3

COROLLARY 25.6. For X, and X as in Proposition 2.5.4,
H,(X) = colimgep Hy(Xy),

where homology is taken with coefficients in any abelian group. Similarly, when X,
takes values in 7, . (X) = colimgyep 74 (Xy)-

PROOF. We can compute homology with singular chains. Since the simplex
Ay, is compact, any singular simplex f: A, —> X factors through some Xj.
Similarly, for the second statement, any based map from S" or S" A I} to X
factors through some Xj. O

2. This pleasant argument is an elaboration of a lemma of Dold and Thom [37, Hilfsatz 2.14].

3. This example is due to Rolf Hoyer.
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We need a kind of dual result, but only for sequential limits of based spaces.
The following standard observation will be needed in the proof. Recall the
notion of a g-equivalence from [93, p. 67].

LEMMA 25.7. A g-equivalence f: X —> Y induces isomorphisms on homology
and cohomology groups in dimensions less than q.

prRoOF. Using mapping cylinders, we can replace f by a cofibration [93, p.
42). Since weak equivalences induce isomorphisms on homology and coho-
mology, relative CW approximation [93, p. 76] and cellular approximation of
maps [93, p. 74] show that we can replace X and Y by CW complexes with the
same g-skeleton and can replace f by a cellular map that is the identity on the
g-skeleton. Since in dimensions less than g the cellular chains and thus
the homology and cohomology groups of a CW complex depend only on its
g-skeleton, the conclusion follows. O

DEFINITION 258. A tower (or inverse sequence) of spaces f,: Xpt+1 —> Xy
is convergent if for each g, there is an ng such that the canonical map X — X,
is a g-equivalence for all n > ny.

PROPOSITION 25.9. Let X =1imX,, where {X,} is a convergent tower of
fibrations. Then the canonical maps induce isomorphisms

T (X) Elim e (Xy), Hye(X) Z lim Hy(Xyn), and H*(X) = colim H*(Xy).

PROOF. We may replace X by micX,. The inverse systems of homotopy
groups satisfy the Mittag-Leffler condition, so that the lim! error terms are
trivial, and the isomorphism on homotopy groups follows. The isomorphism
on homology and cohomology groups is immediate from Lemma 2.5.7. O

2.6. A profinite universal coefficient theorem

In this brief and digressive algebraic section, we advertise an observation about
cohomology with coefficients in a profinite abelian group. We view it as a kind
of universal coefficient theorem for such groups. For present purposes, we
understand a profinite abelian group B to be the filtered limit of a diagram { B;}
of finite abelian groups. Here filtered limits are defined in evident analogy with
filtered colimits. They are limits of diagrams that are indexed on the opposite
category 2°P of a filtered category &, as specified in Definition 2.5.1.
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THEOREM 26.1. Let X be a chain complex of free abelian groups and let
B = lim By be a profinite abelian group. Then the natural homomorphism

H*(X; B) — lim H*(X; By)

is an isomorphism, and each H1(X; B) is profinite.

PROOF. Let A be any abelian group. We claim first that
Hom (A, B) = lim Hom (A, By)

and the derived functors lim" Hom (A, B,) are zero for all n > 0. It would be
altogether too digressive to develop the theory of derived functors here, and
we shall content ourselves by pointing out where the required arguments can
be found. When A is finitely generated, so that each Hom (A4, By) is finite, the
claim follows from Roos [119, Prop. 1] or, more explicitly, Jensen [73, Prop.
1.1]. In the general case, write A as the filtered colimit of its finitely generated
subgroups A;, where i runs through an indexing set .#. By Roos [119, Thm.
3], there is a spectral sequence that converges from

Ey? = limflim{ Hom (4;, By)

to the derived functors lim" of the system of groups {Hom (4;, B)} indexed
on.# x 9°P. Since all of these groups are finite, these lim" groups are zero for
n > 0, by a generalized version of the Mittag-Leffler criterion [119, cor. to Prop.
2], and the zeroth group is Hom (A, B). Since Eg‘q =0forg > 0, E; = Ex and
the groups Eg  must be zero for p > 0. This implies the claim.

We claim next that

Ext (A, B) = lim Ext (A, By).
Write A as a quotient F/F’ of free abelian groups and break the exact sequence
0 — Hom (A, B;) —> Hom (F, B;) —> Hom (F/, By) —> Ext (A, By) —> 0

of diagrams into two short exact sequences in the evident way. There result two
long exact sequences of lim" groups, and the vanishing of lim" on the Hom
systems therefore implies both that lim" (Ext (A, By)) = 0 for n > 0 and that
the displayed exact sequence remains exact on passage to limits. Our claim
follows by use of the five lemma.

Taking A to be a homology group H,(X) and applying the universal coef-
ficient theorem to the calculation of H*(X; B) and the H*(X; B;), we now see
by the five lemma that
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H*(X; B) = lim H*(X; By).

Finally, to see that each HY(X; B) is profinite, write X = lim X;, where
X; runs through those subcomplexes of X such that each Hy(X)) is finitely
generated; write ¢ for the resulting set of indices j. Then each H4(X;; By) is
a finite abelian group and Hg(X) = colim Hy(X;). The arguments just given
demonstrate that
H*(X; B) = lim H*(X;; By),

where the limit is taken over ¢ x 2°P. O
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3

NILPOTENT SPACES AND POSTNIKOV
TOWERS

In this chapter, we define nilpotent spaces and Postnikov towers and explain
the relationship between them. We are especially interested in restrictions
of these notions that are specified in terms of some preassigned collection
&/ of abelian groups, and we assume once and for all that the zero group is
in any such chosen collection. We define .o/ -nilpotent spaces and Postnikov
o/ -towers, and we prove that any . -nilpotent space is weakly equivalent to
a Postnikov < -tower. The role of the collection </ is to allow us to develop
results about spaces built up from a particular kind of abelian group (T-local,
T-complete, etc.) in a uniform manner.

As we discussed in the Introduction, nilpotent spaces give a comfortable
level of generality for the definition of localizations and completions. The the-
ory is not much more complicated than it is for simple spaces, and nilpotency
is needed for the fracture theorems.

The material of this chapter is fundamental to the philosophy of the entire
book. We expect most readers to be reasonably comfortable with CW com-
plexes but to be much less comfortable with Postnikov towers, which they may
well have never seen or seen only superficially. We want the reader to come
away from this chapter with a feeling that these are such closely dual notions
that there is really no reason to be more comfortable with one than the other.
We also want the reader to come away with the idea that cohomology classes,
elements of H"(X; ), are interchangable with (based) homotopy classes of
maps, elements of [X, K(rr, n)]. This is not just a matter of theory but rather a
powerful concrete tool for working with these elements to prove theorems.

3.1. &/ -nilpotent groups and spaces

A group is nilpotent if it has a central series that terminates after finitely many
steps. It is equivalent that either its lower central series or its upper central

46
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3.1. &/-NILPOTENT GROUPS AND SPACES [ 47

series terminates after finitely many steps [56, p. 151]. We simultaneously
generalize this definition in two ways. First, the successive quotients in the
lower central series are abelian groups. One direction of generalization is to
require normal sequences whose successive quotients satisfy more restrictive
conditions. For example, we might require them to be Zr-modules, where
Zr is the localization of Z at a set of primes T. The other direction is to start
with an action of a second group on our given group, rather than to restrict
attention to the group acting on itself by conjugation as is implicit in the usual
notion of nilpotency.

Let o7 be a collection of abelian groups (containing 0). The main example
is the collection <7b of all abelian groups or, more generally, the collection <&
of modules over a commutative ring R. The rings R = Zr and R = Z, are of
particular interest.! While .27 is an abelian category and we will often need
that structure to prove things we want, we shall also encounter examples of
interest where we really do only have a collection of abelian groups. We could
regard such a collection ¢ as a full subcategory of .«7b but, in the absence of
kernels and cokernels in &7, that is not a useful point of view.

Call a group G a -group if it has a (left) action of the group 7 as automor-
phisms of G. This means that we are given a homomorphism from 7 to the
automorphism group of G. We are thinking of 7 as 71(X) and G as 7, (X) for
a space X. Allowing general non-abelian groups G unifies the cases n = 1 and
n>1

DEFINITION 3.1.1. Let G be a w-group. A finite normal series
(I1=G;CGp1C---CGo=G
of subgroups of G is said to be an «7-central 7 -series if

(i) Gj—1/Gjisin < and is a central subgroup of G/G;.
(i) Gjisa m-subgroup of G and & acts trivially on G;_1/G;.

If such a sequence exists, the action of 7 on G is said to be nilpotent, and
the w-group G is said to be «7-nilpotent of nilpotency class at most g; the
nilpotency class of G is the smallest g for which such a sequence exists.

NOTATION 3.1.2. We abbreviate notation by saying that an </b-nilpotent
m-group is a nilpotent m-group and that an «/z-nilpotent w-group is an

1. We warn the knowledgeable reader that, in contrast to the theory in [21], we really do mean
the p-adic integers Z, and not the field F, here.
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48 / NILPOTENT SPACES AND POSTNIKOV TOWERS

R-nilpotent w-group. When it is clearly understood that a given group = is
acting on G, we sometimes just say that G is ./-nilpotent, leaving 7= under-
stood.

Of course, we can separate out our two generalizations of the notion of nil-
potency. Ignoring 7, a group G is said to be o/ -nilpotent if its action on itself
by inner automorphisms, x - g = xgx ™!, is &/-nilpotent. When &7 = &/b, this
is the standard notion of nilpotency. On the other hand, when G is abelian, a
w-group is just a module over the group ring Z[r]. The purpose of unifying
the notions is to unify proofs of the results we need, such as the following one.
We will use it often.

LEMMA 313, Let 1 — G’ -5 G5 G” —> 1 be an exact sequence of
7 -groups. If the extension is central and G’ and G” are < -nilpotent 7 -groups,
then G is an <of -nilpotent 1 -group. Conversely, if <7 is closed under passage to sub-
groups and quotient groups and G is an </ -nilpotent 7 -group, then G and G” are
& -nilpotent 7 -groups.

prROOF. For the first statement, let
1=G,CG,;C---CGy=C
and
1=G/CcG;C---CGy=G"
be o -central r-series. Then the sequence of inclusions
1=¢(G,) C#(G,_q) C--- C $(Gy)
=y NG YT Gl C o CcYTHG) =G

is an o7 -central -series for G'. The centrality assumption, which in particular
implies that G’ is abelian, is essential to the conclusion.

Conversely, suppose that G is «7-nilpotent. Then there is an «7-central
m-series

1=G4CGg1C-CGo=G.

We may identify ¢(G') with G and G” with G/G’. Define subgroups
G; = G;N G of G'. Since & is closed under passage to subgroups, this gives
a finite <7-central -series for G’. The quotient groups G;/G; are isomorphic
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3.2. NILPOTENT SPACES AND POSTNIKOV TOWERS / 49

to the quotient groups (G; - G')/G’, and these are subgroups of G”. Since o/
is closed under passage to quotient groups as well as subgroups, G is an
of -central m-series for G”. O

We use the action of 71X on the groups 7, X from Definition 1.4.4 and the
definition of an </ -nilpotent 1 X-group to define the notion of an </ -nilpotent
space. Observe that we are discarding unnecessary generality above, since now
either 7 = 71X is acting on itself by conjugation or = is acting on the abelian
group 7, X for n > 2.

DEFINITION 3.1.4. A connected based space X is said to be </ -nilpotent if
1, X is an «7-nilpotent 71 X-group for each n > 1. This means that 71 (X) is
&/ -nilpotent and acts nilpotently on 7, (X) for n > 2. When &/ = </b we say
that X is nilpotent. When &/ = o7&, we say that X is R-nilpotent.

Recall that a connected space X is simple if 771 X is abelian and acts trivially
on 7, X. Clearly simple spaces and, in particular, simply connected spaces, are
nilpotent. Connected H-spaces are simple and are therefore nilpotent. While
it might seem preferable to restrict attention to simple or simply connected
spaces, nilpotent spaces have significantly better closure properties under var-
ious operations. For an important example already mentioned, we shall see
in Theorem 6.3.2 that if X is a finite CW complex, Y is a nilpotent space, and
f: X —> Yisany map, then the component F(X, Y)f of f in F(X, Y) is nilpo-
tent. This space is generally not simple even when X and Y are simply con-
nected.

3.2. Nilpotent spaces and Postnikov towers

We defined <7 -nilpotent spaces in the previous section. The definition depends
only on the homotopy groups of X. We need a structural characterization that
allows us to work concretely with such spaces. We briefly recall two well-known
results that we generalize before going into this. The classical result about
Postnikov towers reads as follows.

THEOREM 3.2.1. A connected space X is simple if and only if it admits a Postnikov
tower of principal fibrations.

We recall what this means. We can always construct maps ay,: X — X,
such that o, induces an isomorphism on 7; for i <n and m;X, =0 for

“530-46909_Ch03_5P.tex” — 8/19/2011 — 11:24 — page 49



50 / NILPOTENT SPACES AND POSTNIKOV TOWERS

i > n just by attaching cells inductively to kill the homotopy groups of X in
dimension greater than n. When X is simple, and only then, we can arrange
further that X, 11 is the homotopy fiber of a “k-invariant”

k"2 X, — K(mpy1X,n+42).

This is what it means for X to have a “Postnikov tower of principal fibrations”.
The name comes from the fact that X, 11 is then the pullback along k"2 of the
path space fibration over K (my+1X, n+ 2). Of course, the fiber of the resulting
map pn+t1: Xn+1 —> Xy is an Eilenberg-MacLane space K(mp1X, n+1).

The quickest construction is perhaps the one outlined on [93, p. 179]. Pro-
ceeding inductively, the idea is to check that 7;Cay, is zero if i < n+1 and is
7p1X if i = n+ 2. One then constructs k"+2 by killing the higher homotopy
groups of the cofiber Ca,, and defines X, 11 to be the fiber of k"*2. However,
the proof there is not complete since the check requires a slightly strength-
ened version of homotopy excision or the relative Hurewicz theorem, neither
of which were proven in [93].

We shall give a complete proof of a more general result that gives an anal-
ogous characterization of ./ -nilpotent spaces. In the special case of ordinary
nilpotent spaces, it is usually stated as follows. We say that a Postnikov tower
admits a principal refinement if for each n, py41: X441 —> X, can be factored
as a composite

q Grp—1 q1
Xpp1 = Yy, —> Y1 —> - Y1 —> Yo = X,

n

where, for 1 <i <r,, g; is the pullback of the path space fibration over
K(G;,n+2) along a map k;:Y; 1 — K(G;,n+2). The fiber of g; is the
Eilenberg-MacLane space K(G;, n+ 1), where the G; are abelian groups.

THEOREM 3.2.2. A connected space X is nilpotent if and only if the Postnikov tower
of X admits a principal refinement.

3.3. Cocellular spaces and the dual Whitehead theorem

As a preliminary, we explain cocellular spaces and the dual Whitehead theo-
rems in this section. The arguments here were first given in [91], which is a
short but leisurely expository paper. We recall the definitions of the cocellular
constructions that we shall use from that source and refer to it for some easily
supplied details that are best left to the reader as pleasant exercises. Again, &
is any collection of abelian groups with 0 € &7

“530-46909_Ch03_5P.tex” — 8/19/2011 — 11:24 — page 50



33. COCELLULAR SPACES AND THE DUAL WHITEHEAD THEOREM / 51

DEFINITION 3.3.1. Let J# be any collection of spaces that contains * and is
closed under loops. A % -tower is a based space X together with a sequence
of based maps kj,: X, —> K, n > 0, such that

(i) Xo = *,

(ii) Ky is a product of spaces in 7,
(ili) Xy41 = Fky, and
(iv) X is the limit of the Xj,.

An o7 -tower is a . #a/ -tower, where 74 is the collection of Eilenberg-Mac Lane
spaces K(A, m) such that A € o/ and m > 0.

Thus Xj41 is the pullback in the following map of fiber sequences.

QK, ——= QK,

L

Xn+1 —— PK,

L

X, — K,
kn

We think of the maps X,41 —> X, as giving a decreasing filtration of X,
and of course the fiber over the basepoint of this map is QK. That is dual
to thinking of the inclusions of skeleta X" —> X"*+1 of a CW complex X as
giving it an increasing filtration, and of course the quotient space X"*1/X" is
a wedge of suspensions X S".

REMARK 3.3.2. The collection of % -towers has very general closure proper-
ties. Since right adjoints, such as P(—) or, more generally, F(X, —), preserve
all categorical limits and since limits, such as pullbacks and sequential lim-
its, commute with other limits, we find easily that products, pullbacks, and
sequential limits of J# -towers are again % -towers. The more restrictive col-
lections of Postnikov <7 -towers that we shall introduce shortly have weaker clo-
sure properties; compare Lemma 3.5.2 below. For this reason, it is sometimes
more convenient to work with J#z7-towers than with Postnikov o7 -towers.

We focus on %7 -towers in what follows, and we assume that all given
K(A, n)’s are of the homotopy types of CW complexes. It follows that the X,
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also have the homotopy types of CW complexes (see for example [103, 121]),
but it does not follow and is not true that X has the homotopy type of a CW
complex. The composite of the canonical composite X — X, .1 —> PK, and
the projection of PK, onto one of its factors PK(A, m) is called a cocell. The
composite of k,, and one of the projections K, —> K(A, m) is called a coattach-
ing map. Note that the dimensions m that occur in cocells for a given n are
allowed to vary.

There is a precisely dual definition of a based cell complex. We recall it in

full generality for comparison, but we shall only use a very special case.

DEFINITION 333. Let ¢ be a collection of based spaces that contains * and
is closed under suspension. A _¢-cell complex is a based space X together
with a sequence of based maps j,: J, —> Xu, n > 0, such that

(i

(i

X() = X,

Jn is a wedge of spaces in _gZ,
(iii) Xu+1 = Cju, and

X is the colimit of the X,.

- O

(iv
Thus X;41 is the pushout in the following map of cofiber sequences.

Jn
]n — X

L

C]n —_— Xn+1

L

2] 2]

The restriction of the composite CJ, — X,4+1 —> X to a wedge summand
CJ, ] € 7, is called a cell and the restriction of j, to a wedge summand ] is
called an attaching map.

The casetofocusonis #A = {X"A|n > 0} for afixed space A. For example,
since ¢ SO = {S"n > 0}, B4 S0-cell complexes are the same as based cell com-
plexes with based attaching maps. All connected spaces have approximations
by _# S%-cell complexes [93, p. 75]. In general, since attaching maps defined on
S™ for m > 0land in the component of the basepoint, the non-basepoint com-
ponents of _# S%-cell complexes are discrete. It is more sensible to consider
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7 S'-cell complexes, which have a single vertex and model connected spaces
without extra discrete components. Similarly, all simply connected spaces have
approximations by _# S2-cell complexes [93, p. 85]. Many of the standard argu-
ments for CW complexes that are given, for example, in [93, Ch. 10] work just
as well for _#-cell complexes in general. They are described in that generality
in [91]. We note parenthetically that _# A-cell complexes have been studied in
many later papers, such as [28, 40], where they are called A-cellular spaces.

Based CW complexes with based attaching maps are the same as _# S%-cell
complexes in which cells are attached only to cells of lower dimension. In the
context here, such an X has two filtrations, the one given by the spaces X, in
Definition 3.3.3, which tells at what stage cells are attached, and the skeletal
filtration, in which X" denotes the union of the cells of dimension at most n.
In practice, when X is connected, we can arrange that the two filtrations coin-
cide. However, in other mathematical contexts, it is the cellular filtration {X,}
that matters. In particular, model category theory focuses on cell complexes
rather than CW complexes, which in fact play no role in that theory. It often
applies to categories in which cell complexes can be defined just as in Defini-
tion 3.3.3, but there is no useful notion of a CW complex because the cellular
approximation theorem [93, p. 74] fails. We leave the following parenthetical
observation as an exercise.

EXERCISE 3.3.4. Let X be an n-dimensional based connected CW complex and
7 be an abelian group. Then the reduced cellular cochains of X with coeffi-
cients in  are given by C9(X; ) = m,_F(X49/X971, K(rr, n)). The differentials
areinduced by the topological boundary maps X4/X4~1 — £X9~!/X972 that
are defined in [93, p. 96]; compare [93, pp. 117, 147].

Analogously, the Postnikov towers of Theorems 3.2.1 and 3.2.2 are special
kinds of @7b-towers. The generality of our cellular and cocellular definitions
helps us to give simple dual proofs of results about them. For a start, the
following definition is dual to the definition of a subcomplex.

DEFINITION 3.3.5. Amapp: Z —> Bissaid tobea projection onto a quotient
tower if Z and B are «/-towers, p is the limit of maps Z, —> By, and the
composite of p and each cocell B— PK(A, m) of B is a cocell of Z (for the
same n).

DEFINITION 33.6. Amap &: X —> Y is an &/-cohomology isomorphism if
£*: H*(Y; A) — H*(X;A) is an isomorphism for all A € <.

“530-46909_Ch03_5P.tex” — 8/19/2011 — 11:24 — page 53



54 / NILPOTENT SPACES AND POSTNIKOV TOWERS

A word-by-word dualization of the proof of the homotopy extension and
lifting property [93, p. 73] gives the following result. The essential idea is just
to apply the representability of cohomology,

H"(X; A) = [X, K(A, n)],
which is dual to the representability of homotopy groups,
X =[S", X],

and induct up the cocellular filtration of an «7-tower. The reader is urged to
carry out the details herself, but they can be found in [91, 4*]. As a hint, one
starts by formulating and proving the dual of the based version of the lemma
on [93, p. 68]. The proof of the cited lemma simplifies considerably in the
based case, and the proof of its dual is correspondingly easy.

THEOREM 3.3.7 (COHELP). Let B be a quotient tower of an < -tower Z
and let £: X — Y be an < -cohomology isomorphism. If pyoh =go& and
pooh = pof inthe following diagram, then there exist § and h that make the dia-

gram commute.

po P
Fly,2) — > 7

\ ho 7 5§ 7
s 7
4 s
f // 3 7
N\ \\g
po pn

B~<~——— FI,B) —— = B

The following result, which is [91, Thm. 67], gives a generalization of Theo-
rem 0.0.2. Remember our standing assumption that all given spaces are of the
homotopy types of CW complexes. As we have noted, our towers Z = lim Z,
are rarely of the homotopy types of CW complexes; it is for this reason that
weak homotopy type rather than homotopy type appears in the following
statement.

THEOREM 3.3.8 (DUAL WHITEHEAD (FIRST FORM)). The following state-
ments are equivalent for a map §: X —> Y between connected spaces X and Y
of the weak homotopy types of < -towers.
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(i) & is an isomorphism in Ho.7.

(i) &t e (X) —> 7 (Y) is an isomorphism.
(iii) £*: H*(Y; A) — H*(X; A) is an isomorphism for all A € <.
(iv) §*: [Y,Z] — [X, Z] is a bijection for all <f -towers Z.

If o is the collection of modules over a commutative ring R, then the following
statement is also equivalent to those above.

(v) &x: Hy(X; R) —> H«(Y; R) is an isomorphism.

SKETCH PROOF. The equivalence of (i) and (ii) is immediate from the def-
inition of Ho.7, and (ii) implies (iii) and (v) by the weak equivalence axiom
for cohomology and homology. To see that (v) implies (iii) for a general ring R,
we must use the “universal coefficient spectral sequence”, but we shall only
apply this when R is a PID, so that the ordinary universal coefficient theo-
rem applies. The crux of the matter is the implication (iii) implies (iv), and
this is restated separated in the following result. The final implication (iv)
implies (i) is formal. Taking Z = X in (iv), we obtain a map £7!: Y — X
such that £ 1o& ~id. Taking Z =Y, we see that £0& ! ~id since
E*[EoE ] =¢*[id]in[Y,Y]. O

THEOREM 339 (DUAL WHITEHEAD (SECOND FORM)). If&§: X — Y is
an o -cohomology isomorphism between connected spaces and Z is an of -tower,
then £*: [Y, Z] —> [X, Z] is a bijection.

SKETCH PROOF. This is where the force of dualizing familiar cellular argu-
ments really kicks in. In view of our standing hypothesis that given spaces
such as X and Y have the homotopy types of CW complexes, we may interpret
[X, Z] as the set of homotopy classes of maps X —> Z. Now, as observed
in [91, Thm. 5%], the conclusion follows directly from coHELP in exactly the
same way that the dual result on cell complexes [93, p. 73] follows directly
from HELP. The surjectivity of £* results by application of coHELP to the quo-
tient tower Z — x. Just as the cofibration (ig, 11): (8I)+ — I+ AX is the
inclusion of a subcomplex when X is a based CW complex, so the fibration
(po,p1): F(l+, Z) — F(d14, Z) is the projection of a quotient tower when Z
is an .o/ -tower (compare Remark 3.3.2). Application of coHELP to this quotient
tower implies the injectivity of £*. O

The equivalence between (iii) and (v) in Theorem 3.3.8 leads us to the
following fundamental definition and easy observation. Despite its simplicity,
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the observation is philosophically important to our treatment of localization
and completion (and does not seem to be mentioned in the literature). For the
moment, we drop all hypotheses on our given spaces.

DEFINITION 3.3.10. Let Rbeacommutativeringandf: X — Y beamap.

(i) f is an R-homology isomorphism if f,: H.(X;R) — H.(Y;R) is an
isomorphism.

(ii) f is an R-cohomology isomorphism if f*: H*(Y; M) — H*(X; M) is an
isomorphism for all R-modules M.

In contrast to Theorem 3.3.8, the following result has no .</-tower hypo-
thesis.

PROPOSITION 33.11. Let R be a PID. Then f: X —> Y is an R-homology
isomorphism if and only if it is an R-cohomology isomorphism.

PROOF. The forward implication is immediate from the universal coefficient
theorem (e.g., [93, p. 132]). For the converse, it suffices to show that the reduced
homology of the cofiber of f is zero. If Z is a chain complex of free R-modules
such that H*(Z; M) = 0 for all R-modules M, then the universal coefficient
theorem implies that Hom (H,(Z), M) = 0 for all n and all R-modules M.
Taking M = H,(Z), Hom (Hy(Z), Hn(Z)) = 0, so the identity map of H,(Z)
is zero and Hy,(Z) = 0. Applying this observation to the reduced chains of
the cofiber of f, we see that the homology of the cofiber of f is zero. O

3.4. Fibrations with fiber an Eilenberg-MacLane space

The following key result will make clear exactly where actions of the funda-
mental group and nilpotency of group actions enter into the theory of Postnikov
towers.? For the novice in algebraic topology, we shall go very slowly through
the following proof since it gives our first application of the Serre spectral
sequence and a very explicit example of how one uses the representability of
cohomology,

3.4 F"(X; A) = [X, K(A,n)],

to obtain homotopical information. We regard K(A,n) as a name for any
space whose only nonvanishing homotopy group is m,(K(A, n)) = A. With

2. The first author learned this result and its relevance from Zig Fiedorowicz in the 1970s.
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our standing CW homotopy type hypothesis, any two such spaces are
homotopy equivalent. We shall make use of the fact that addition in the
cohomology group on the left is induced by the loop space multiplication on
K(A, n) = QK(A, n+ 1) on the right; the proof of this fact is an essential fea-
ture of the verification that cohomology is representable in [93, §22.2]. We
shall also make use of the fact that application of 7, induces a bijection from
the homotopy classes of maps K(A,n) — K(A,n) to Hom (A, A). One way
to see that is to quote the Hurewicz and universal coefficient theorems
[93, pp. 116, 132].

LEMMA 3.4.2. Letf: X —> Y be a map of connected based spaces whose (homo-
topy) fiber Ff is an Eilenberg-Mac Lane space K(A, n) for some abelian group A
and n > 1. Then the following statements are equivalent.

(i) Thereisamapk: Y —> K(A,n+ 1) and an equivalence & : X —> Fksuch
that the following diagram commutes, where 7 is the canonical fibration with
(actual) fiber K(A,n) = QK(A, n+1).

§

X — Fk
NS
Y

(ii) Thereisamapk: Y — K(A,n+ 1) andanequivalence.: Nf —> Fksuch
that the following diagram commutes, where 7 is asin (i) and p: Nf — Y
is the canonical fibration with (actual) fiber Ff .

A
Nf ————— Fk

ANIE

(iii) The group m1(Y) acts trivially on the space Ff = K(A, n).
(iv) The group m1(Y) acts trivially on the group A = m,(Ff).

PROOF. In (ii), Nf is the mapping path fibration of f, as defined in [93, pp.
48,59]. We first elaborate on the implications of (i). Consider the following
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diagram, in which ¢ and 7 are used generically for canonical maps in fiber
sequences, as specified in [93, p. 59].

' 7 f
QY Ff X Y
I
| X l 3
Y
QY —— QKA n+1) Fk Y KA, n+1)
—Qk t b k

In the bottom row, the actual fiber QK(A, n+ 1) of the fibration n is canon-
ically equivalent to its homotopy fiber Frr. The dotted arrow x making the
two left squares commute up to homotopy comes from Lemma 1.2.3, using
that the first four terms of the bottom row are equivalent to the fiber sequence
generated by the map 7 [93, p.59]. Since & is an equivalence, a compar-
ison of long exact sequences of homotopy groups (given by [93, p. 59))
shows that x is a weak equivalence and therefore, by our standing assump-
tion that all given spaces have the homotopy types of CW complexes, an
equivalence. Therefore the diagram displays equivalences showing that the
sequence

bid f k
K(A,n) X Y K(A,n+1)

is equivalent to the fiber sequence generated by the map k.
(i) implies (ii). Consider the following diagram.

§
X — Fk

i )L ‘
Ve
v v T
v

Nf ——= Y
P

Here p o v is the canonical factorization of f as the composite of a cofibration
and homotopy equivalence v and a fibration p with fiber Ff, as in [93, pp.
48, 59]%. Since v is an equivalence and a cofibration and 7 is a fibration,

3. The proof that v is a cofibration is missing from [93, p. 48]. It is easily supplied by verification
of the NDR-pair condition of [93, p. 43], using the deformation h on [93, p. 48] and the map
u: Nf —> I defined by letting u(x, w) be the supremum of {1 —tlw(s) =f(x) for 0<s<t},
where w: I —> Y is such that f (x) = »(0).
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Lemma 1.1.1 gives a lift A that makes the diagram commute. Since & and v
are equivalences, so is A. Although not needed here, A is a fiber homotopy
equivalence over Y by [93, p. 50].

(ii) implies (iii). The action of m1(Y) on Ff is obtained by pulling back the
action of w1 K(A, n+ 1) on K(A, n) along k,: m1(Y) — m1K(A, n+1). Since
K(A,n+1) is simply connected, the action is trivial in the sense that each
element of 7r1(Y) acts up to homotopy as the identity map of Ff.

(iii) implies (iv). This holds trivially since the action of m1(Y) on m,(Ff) is
induced from the action of 71 (Y) on Ff by passage to homotopy groups.

(iv) implies (iii). This holds since homotopy classes of maps Ff — Ff
correspond bijectively to homomorphisms A — A.

(iii) implies (i). This is the crux of the matter. Write Ff = K(A, n). We shall
construct a commutative diagram

X
K(An) —> QKA n+1) QK(A,n+1)
| |
X Nf Fk PK(A,n+1)

N -

Y =—— Y7 — > K(An+1)
k

in which the three columns display fibrations (the bottom vertical arrows)
and the inclusions of their fibers (the top vertical arrows); the map x and
therefore also the map A are equivalences. Then & = Lov: X —> Fk will be
an equivalence such that 7 0§ = f, proving (i).

The fibration in the right column is the path space fibration, and we are
given the fibration in the left column. The lower left triangle commutes by the
definition of Nf. We must first construct k. This is where the Serre spectral
sequence enters, and we will summarize everything we need in Chapter 24.
Taking coefficients in A, the cohomology Serre spectral sequence for the left
fibration p converges to H*(Nf; A) = H*(X; A). Our assumption (iii) implies
that the local coefficient system that enters into the calculation of the E, term
is trivial and therefore

EP? = HP(Y; HY(K(A, n); A)).
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In fact, we shall only need to use the triviality of the local coefficients when
q = n is the Hurewicz dimension, where it is transparent. Indeed, the Hur-
ewicz isomorphism preserves the action of 71(Y), so that 71(Y) acts trivially
on Hy(K(A,n);Z) and therefore, by the universal coefficient theorem, on
H™K(A, n); A).

Clearly, Ef’q = 0 for 0 < g < n. By the universal coefficient theorem,

ES™ = H™(K(A, n); A) = Hom (A, A).

We let ¢, denote the fundamental class, which is given by the identity
homomorphism of A. Similarly we let t,41 be the fundamental class in
H" (K (A, n+ 1); A). The differentials d, (1,,) land in zero groups for2 < r < n,
and we have the transgression differential
T(tn) = du1(t) =j € H™(Y; 4) = E}TL.

The class j is represented by amap k: Y — K(A, n+ 1), so that k*(t,+1) =J.
By definition, the fiber Fkis the pullback displayed in the the lower right square
of our diagram.

We claim that ko p is null homotopic. Indeed, a map Nf — K(A,n+1)
is null homotopic if and only if it represents 0 in H"*!(Nf; A), and the coho-
mology class represented by ko p is

PR tne1) = p*(j) = p a1 (1n) = O.

Thelastequality holds since p* can be identified with the edge homomorphism

n+1,v. ~ pn+1,0 _ n+1,0 n+1,0 0,n
H (Y; A) = E2 - En+1 - En+1 /dn+1En+1

— Eono+l,0 c Hn+1(Nf; A)

Choose a homotopy h: Nf x I — K(A, n+ 1) from the trivial map to ko p.
Then h determines the map A': Nf —> Fk specified by 1'(2) = (p(2), h(2))
for z € Nf, where h(z)(t) = h(z,t). This makes sense since Fk = {(y, )}
where y € Y, w € PK(A,n+1), and k(y) = w(1). Observe for later use that
h(z) € QK(A,n+1) when z € i(Ff) = p~1(x).

Clearly 7 o ' = p since 7 is induced by projection on the first coordinate.
Thus A’ restricts to a map x': K(A, n) = Ff — QK(A, n+ 1) on fibers. This
gives a diagram of the sort displayed at the start of the proof that (iv) implies
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(i), but with primes on the left-hand horizontal maps. Here x’ need not be an
equivalence, but we claim that we can correct A’ and x’ to new maps A and x
such that x and therefore X are equivalences. In the Serre spectral sequence of
the path space fibration on the right, dy+1(tn) = tn+1. By naturality, comparing
the left column to the right column in our diagram, we have

dnr1((X')" (tn)) = K" (@dn41(tn) = K" (tn41) =J = dns1(tn),

where the last d,,+1 is that of the spectral sequence of 7. Therefore d, ;1 for
the spectral sequence of p satisfies

nt1(tn — (X)) (tn) = 0
so that we have the cycle

tn— (X')*(tn) € EYT, = EQ" = H™(Nf; A)/F' H"(Nf; A).

Choose a representative £: Nf — QK(A, n+ 1) >~ K(A, n) for a cohomology
class that represents ¢, — (§')*(ios) in this quotient group. For any choice of ¢,
the restriction £ o i to K(A, n) = Ff represents t, — (x')*(tn). Now define

Az) = (p(2), h(2) - £(2)),

where the dot denotes concatenation of the path h(z) with the loop
£(z). We again have wA =p, and we thus have an induced map
x: K(A,n)=Ff—QK(A,n+ 1)onfibers. Forz € Ff, x(z) = x/(2) - £i(2). Since
loop multiplication on QK (A, n+ 1) induces addition on cohomology classes,

X" (tn) = (X) () 7 () = (X)) + 0 = (X)) (tn) =t
Therefore x € [K(A, n), QK(A,n+1)] = H"(K(A, n); A) corresponds to the

identity map A —> A. This proves that x and therefore X are equivalences. O

3.5. Postnikov &/ -towers

Just as cell complexes are too general for convenience, suggesting restriction
to CW complexes, so o7-towers are too general for convenience, suggesting
restriction to Postnikov < -towers.

DEFINITION 3.5.1. A Postnikov «7-tower is an «7-tower X = lim X; (see Def-
inition 3.3.1) such that each K; is a K(A;, n; + 1) with A; € o7, nj 1 > n; > 1,
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and only finitely many n; = n for each n > 1. A map ¢: X — Y between
Postnikov «7-towers is cocellular if it is the limit of maps ¢;: X; — Y;. For
example, a projection onto a quotient tower of a Postnikov </-tower X is a
cocellular map.

A Postnikov o7 -tower X is connected since Xp = * and the K; are simply
connected. By the long exact sequences of the fibrations appearing in the
definition of an «/-tower, the homotopy groups of X are built up in order,
with each homotopy group built up in finitely many stages. We shall be more
precise about this shortly. Note that a product of Eilenberg-Mac Lane spaces
I1;K(4;,j) is an Eilenberg-Mac Lane space K(IT;A;, j). When < is closed under
products, this makes it especially reasonable to use a single cocell at each stage
of the filtration.

We shall make little formal use of the following result, but we urge the
reader to supply the proofs. They are precisely dual to the proofs of familiar
results about CW complexes that are given in [93, pp. 72-73].4

LEMMA 3.5.2. Let X and Y be Postnikov of -towers, let W be a quotient tower of X,
andlety: Y —> W be a cocellular map.

(i) X x Y is a Postnikov of -tower with one cocell for each cocell of X and each
cocell of Y.
(it) Y xw X is a Postnikov < -tower with one cocell for each cocell of X that does
not factor through a cocell of W.
(iii) If Xis simply connected, QX is a Postnikov < -tower whose coattaching maps
are the loops of the coattaching maps of X.

Recall that we assume that all given spaces have the homotopy types of CW
complexes, although limits constructed out of such spaces, such as o7 -towers,
will not have this property. Recall too that we are working in Ho.7, where
spaces are implicitly replaced by CW approximations or, equivalently, where
all weak equivalences are formally inverted. In view of this framework, the re-
sults of this section show that we can freely replace <7-nilpotent spaces and
maps between them by weakly equivalent Postnikov <7-towers and cocellular
maps between them.

4. For (iii), the precise dual states that the suspension of a CW complex X is a CW complex
whose attaching maps are the suspensions of those of X. That requires based attaching maps as in
Definition 3.3.3.
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DEFINITION 353. An «/-cocellular approximation of a space X is a weak
equivalence from X to a Postnikov «7-tower.

The definition should be viewed as giving a kind of dual to CW approxi-
mation.’ Just as CW approximation is the basis for the cellular construction
of the homology and cohomology of general spaces, cocellular approximation
is the basis for the cocellular construction of localizations and completions of
general nilpotent spaces.

A Postnikov «7-tower is obtained from a sequence of maps of fiber se-
quences

K(A;, 1) =———= K(A;,n)

| l

Xiy1 —— PK(Aj,ni+1)

| |

X; —— K(A;,n+1).
ki

The left column gives an exact sequence of homotopy groups (central ex-
tension)
0— A — my, Xip1 —> i, X; — 0.

Since X; 1 —> X; on the left is the fibration induced by pullback along k; from
the path space fibration on the right, we see by using the naturality of the group
actions of Proposition 1.5.4 with respect to maps of fibration sequences that
71(X) is nilpotent and acts trivially on the A; that enter into the computation
of my(X) for n > 1. Therefore, using Lemma 3.1.3, we see that any Postnikov
&f -tower is an .«7-nilpotent space. The following result gives a converse to this
statement.

THEOREM 3.5.4. Let X be an o -nilpotent space.

(i) Thereis a Postnikov o7 -tower P(X) and a weak equivalence §x: X —> P(X);
that is, & is a cocellular approximation of X.

(ii) Ify: X — X’ isa map of o/ -nilpotent spaces, then there is a cocellular map
P(y): P(X) —> P(X') such that P() o &x is homotopic to &xr o V.

5. It is similar to fibrant approximation, which is dual to cofibrant approximation in model
category theory.
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PROOF. The idea is to use any given «/-central w1 X-series for the groups
7, X to construct spaces X; in a Postnikov .o/-tower such that X is weakly
equivalent to lim X;. Taking &/ = &b, it is clear that Theorems 3.2.1 and 3.2.2
are special cases. For the first, a simple space is a nilpotent space such that
each homotopy group is built in a single step. For the second, the notion of
a principal refinement of a Postnikov tower in the classical sense, with each
homotopy group built up in a single step, is just a reformulation of our notion
of a Postnikov «7b-tower.
Thus, to prove (i), assume given o/ -central 71 X-series

1=Gyp, C--- C Guo=muX

forn>1.LetA,; = Gy j/Gpjy1 for 0 <j < ry,sothat A, ; € o and m1 X acts
trivially on A, ;. Using these groups, we define spaces Y, ; and maps

Ty J X — Yn J
such that

(i) 7j induces an isomorphism 7;X — 7Y, ; for q < n;
(ii) 7nYy; = 7uX/Gyj and the map 7, X — 7, Y,; induced by z,; is the
epimorphism 7, X —> 7,X/Gy,; and
(ili) 774Y,,; = 0 for q > n.

The spaces Y, j and maps X — Y, ; are constructed by attaching (n + 1)-cells
to X to kill the subgroup G, of 74(X), using maps S" — X that represent
generators of G, ; as attaching maps, and then attaching higher-dimensional
cells to kill the homotopy groups in dimensions greater than n. To start work
and to implement the transition from finishing work on the nth homotopy
group to starting work on the (n+1)st, we set Y190 =% and Y,410 = Yau,r,.
The maps 1, are just the inclusion maps. From the constructions of Y, ; and
Y,,j+1 we have the solid arrow maps in the diagram

Yn,j+1

Tnj+1 |
| Pnj
\i

X —— Yn,j-
Tnj

We construct a map p,; that makes the diagram commute directly from the
definition. We urge the knowledgeable reader to resist the temptation to
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reformulate the argument in terms of obstruction theory. Let Ys — Yiy1
be the s stage of the construction of the relative cell complex
Tpjr1: X —> Y11, so that Yy is constructed from Y by attaching
(s+ 1)-cells. Starting with 7,,;: X — Y}, ;, assume that we have constructed
ps: Ys —> Y, ; such that the following diagram commutes.

Since G, j41 C Gp,j C mnX and 74, ; = 0 for g > n, the composite of ps
and any attaching map S" — Y; used in the construction of Y41 from Y;
represents an element of a homotopy groups that has already been killed.
Thus this composite is null homotopic and therefore extends over the cone
CS*. Using these extensions to map the attached cells, we extend p; to
ps+1: Ysy1 —> Y, ;. Passing to colimits over s we obtain the desired map p, ;.
Clearly p,, ; induces an isomorphism on all homotopy groups except the nth
where it induces the quotient homomorphism 7,(X)/G,, j+1 —> 7u(G)/Gy,j-
Since Ay, ; is the kernel of this homomorphism, the only nonzero homotopy
group of the fiber Fp, ; is the nh which is A, j. Moreover, by the natural-
ity of fundamental group actions, we see that 7Y, ; acts trivially on this
group.
We now correct this construction to obtain commutative diagrams

Xn,j+1

Onj+1 |
I Tnj
Y

X —— Xy
U”vj

with the same behavior on homotopy groups together with “k-invariants”
knJ‘Z Xn,j —> K(AnJ,n+ 1)
such that X, ;1 = Fk,; and 7, is the canonical fibration, where Xj o = *

and Xy +1,0 = Xu,r,,- In fact, we construct equivalences x,;: Y, ; —> X, and
commutative diagrams
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Xnj+1
Y”J'+1 E— XnJ+1

Tn,j+1 |
\L Pnj | Ty
\

X Yn,j Xn,j .

Tnj Xnj

Assuming that we have already constructed the equivalence y,;, we sim-
ply apply Lemma 3.4.2 to the composite f = x,jpn;: Yyj1 —> X, . Since
Ff = K(A;j, n) and 71X, ; acts trivially on A, ;, part (i) of that result gives the
required k-invariant k,, ; together with an equivalence

Xnj+1° Yn,j+1 - Xn,j+1 = Fkn,j

making the diagram just displayed commute.

Wedefineo,; = x,jo01,j: X — X, ;. Wethendefine P(X) = lim X, jand
leté: X — P(X) be the map obtained by passage to limits from the maps o, ;.
Then £ is a weak equivalence since 0, j induces an isomorphism on homotopy
groups in degrees less than n, and n is increasing.

For the naturality statement, we are free to refine given .«7-central 71X
and 71X’ series for 7,X and 7, X’ by repeating terms, and we may therefore
assume that the o7-central 1 X' series 1 = G, ., C --- C G, , = m, X' forn > 1
satisfies . (Gp ) C G;J. LetA’nJ = G;J/G’

w41 and perform all of the construc-

tions above with X replaced by X'.
We claim first that there exist maps 6,,;: Y,,; — Y, j such that the follow-
ing diagram commutes.

/
Y”vj > Yn,j

Gn,j

For this, assuming that 6,,; has been constructed, we look inductively at the
stages Y; —> Ysi1and Y —> Y/ ; of the cellular constructions of Y, j+1and
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Y41 from X and X’. We assume that 6;: Y; —> Y{ has been constructed in
the following diagram.

X X'

N

Y, — Y/

o

!
Yor1 — — > YS+1

Os+1

The composites of attaching maps S7 — Y; with the composite Y; — Y,
in the diagram are null homotopic, either because of our hypothesis that
V«(Gny) C G, jor by the vanishing of homotopy groups, hence we can con-
struct 6541 by using homotopies to extend over cells.

By induction, suppose that we have constructed maps v, ; and homotopies

Mgt Xy, ;° Onj = Vnj © Xnj as displayed in the following diagram.

, Po , n ,
X F(ly, X, i11) X1
Xv/;,j+1°9"vj+1 7 Vnjt1
\ P Ve
P v
- hnj+1 Knj+1 -
Y+ Xnjt1
’ X T ’
ﬂmj Pn,j ) ﬂ”rj
Xnj
Y, J X, J
, po , n ,
Xn,j F(ILy, Xn,j) Xn,j

Here the inductive hypothesis implies that the solid arrow portion of the dia-
gram commutes. Therefore we can apply Theorem 3.3.7 to obtain a map v, ;1
such that nV’LJ 0 Yyjt1 = Ynjom,j and a homotopy

- ~
hn,j+1 * Knj+1° 9n,j+1 = wn,j+1 O Xnj+1-
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To start the induction, note that Xj g and X1/,0 are both * and hq o and 1 o are
both constant maps.

Define P(y) =limy,;: P(X) —> P(X’'). In the following diagram all
squares and triangles that are not made homotopy commutative by h,,; and
hyjy1 are actually commutative. Therefore the maps h,,; determine a homo-
topy from &x o Y to P(v/) o éx on passage to limits.

14
X
\tn,ﬁl
9n,j+1
Yn,j+1
’
Y’:l Xny
Vnj+1

This completes the proof of the naturality statement. O
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4

DETECTING NILPOTENT GROUPS
AND SPACES

We collect together a number of technical preliminaries that will be needed in
our treatment of localizations and completions and are best treated separately
from either. The reader is advised to skip this chapter on a first reading. The
essential point is to detect when groups and spaces are </-nilpotent. When
discussing naturality, we require that </ be a category rather than just a collec-
tion of abelian groups. For some results, we must assume the much stronger
hypothesis that .7 is an abelian category, and we then change notation from
2/ to ¢ for emphasis.

4.1. Nilpotent actions and cohomology

We give a few easy results about identifying nilpotent group actions here. We
are only interested in group actions on abelian groups, and we agree to call an
abelian 7-group a w-module. It is sometimes convenient to think in terms of
group rings. An action of 7 on an abelian group A is equivalent to an action
of the group ring Z[r] on A. Let I denote the augmentation ideal of Z[r],
namely the kernel of the augmentation ¢: Z[w] —> Z specified by ¢(g) =1
for g € . Thus I is generated by the elements g — 1 and I9 is generated by the
products (g1 — 1) - -- (g5 — 1). It follows that A is -nilpotent of class g if and
only if [1A = 0 but I171A # 0.

The following observation gives a simple criterion for when a nilpotent
rw-module is a ¢-nilpotent w-module, assuming that % is an abelian category
with infinite direct sums. Since we have only quite specific examples in mind,
we shall not recall the formal definition of abelian categories; see, for example
[79, p. 198]. Informally, they are additive subcategories of .o7b that are closed
under finite direct sums, kernels, and cokernels; more accurately, they come
with faithful and exact forgetful functors to </b. The examples to keep in mind
are the categories of modules over a commutative ring, thought of as abelian
groups by neglect of the module structure.

69
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LEMMA 4.1.1. Let € be an abelian category with infinite direct sums. Let C € €
be a nilpotent w -module such that x: C — C is a morphism in € foreach x € m.
Then C is a € -nilpotent m -module.

PROOF. Here C € ¥, but the action of 7 on C need not be trivial. The lemma
says that if the action of each element of 7 is a morphism in ¢, then we can
find a 7 -series with 7 -trivial subquotients such that the subquotients lie in %
Clearly the quotient C/IC is w-trivial, and it is in ¢ because it is a cokernel of
a morphism in ¥, namely the morphism @ye, C —> C whose restriction to
the x™" summand Cisthemapx — 1: C — C. Our assumption on the action
ensures that this map is in ¥. Now IC is in ¥ since it is the kernel of the quo-
tientmap C — C/IC, whichisin%.LetC; =1 iCfori> 0. Inductively, each
C; satisfies the original hypotheses on C and each inclusion C; ;1 C C;isamap
in ¢ since it is the kernel of the quotient map I'C — I'C/I'*'C in €. The
descending n-series {C;} satisfies C, = 0 for some n since C is 7-nilpotent. OJ

In two examples, we will encounter full abelian subcategories of .o7b, full
meaning that all maps of abelian groups between objects in the category are
again in the category. The first plays a role in the theory of localizations and the
second plays a role in the theory of completions. In these cases, we conclude
that all nilpotent w-modules in ¥ are necessarily € -nilpotent 7-modules.

LEMMA 4.1.2. Let T be a set of primes. Any homomorphism of abelian groups
between T-local abelian groups is a homomorphism of Zt-modules. Thus the cate-
gory of Zr-modules is a full abelian subcategory of </b.

LEMMA 413, Let T be a nonempty set of primes and let Fr = X peTFp. Observe
that Fr-modules are products over p € T of vector spaces over Fp. Any homomor-
phism of abelian groups between Fr-modules is a map of Fr-modules. Thus the
category of Fr-modules is a full abelian subcategory of </b.

LEMMA 4.1.4. Ifagroup m acts nilpotently on each term of a complex of w -modules,
then the induced action on its homology is again nilpotent.

PROOF. This is a consequence of Lemma 3.1.3, using the exact sequences
0 —> Zu(C) —> Cp —> Bp_1(C) —> 0
0 —> By(C) —> Zy(C) —> Hp(C) —> 0

relating the cycles Z,(C), boundaries B, (C), and homology groups of a chain
complex C. O
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For the following lemma, we assume that the reader has seen the definition
H*(n; B) = Ext}p, (Z, B)

of the cohomology of the group 7 with coefficients in a 7-module B. Here
acts trivially on Z; more formally, Z[7] acts through ¢: Z[7] —> Z. We shall
later also use homology,

H,(m; B) = TorZ" (7, B).

We urge the reader to do the exercises of [93, pp. 127, 141-142], which use
universal covers to show that there are natural isomorphisms

415 H,(7; B) = H,(K(,1); B) and H*(x; B) = H*(K(r,1); B)

when 5 acts trivially on B. The latter will be used in conjunction with the
representability of cohomology. In degree zero, the groups in (4.1.5) are B,
and it makes sense to remove them by defining

H,(m; B) = Hy(K(m,1); B) and H*(x; B) = H*(K(r,1); B).

LEMMA 4.1.6. Let &/ be a collection of abelian groups. Let &: m —> 7’
be a homomorphism of groups such that £§*: H*(n'; A) — H*(w; A) is an
isomorphism for all A€ o/, where m and n’ act trivially on A. Then
&*: H*(n'; By — H*(m; B) is an isomorphism for all of -nilpotent n’-modules
B, where r acts on B through §.

PROOF. Since Bis an & -nilpotent 7’-module, there is a chain of 7’-modules
0=ByCBg1C---CBy=B8

such that A; = B;/B;,1 € o/ and n’ acts trivially on A;. The short exact se-
quence of 7’ groups

0— Bjy17— B — A — 0

induces a pair of long exact sequences in cohomology and a map between
them.

H™n';Biy1) — H"(n’;B)) —— H"(n;A;)) —— H"TY(7/;Bi.1)

| | | |

H"(r; Bi11) — H"(m;B;)) —— H"(7;A)) —— H""Y(7; B;}4)

“530-46909_Ch04_5P.tex” — 8/19/2011 — 11:24 — page 71



72 / DETECTING NILPOTENT GROUPS AND SPACES

By induction and the five lemma, this is an isomorphism of long exact sequen-
ces for all 7, and the conclusion follows. O

4.2. Universal covers of nilpotent spaces

Let X be a nilpotent space. By Theorem 3.5.4, we may assume that X is a
Postnikov tower, which for the moment we denote by limY;. After finitely many
stages of the tower, we reach Y; = K(m1X, 1), and then the higher stages of the
tower build up the higher homotopy groups. In this section, it is not relevant
that 71X is nilpotent, only that it acts nilpotently on the higher homotopy
groups. We therefore define a modified tower by setting Xo =, X1 =Y,
and X; = Y ;1 for i > 2. We still have X = limX;, but now the fiber of the
fibration 7;: X;,1 —> X; is K(A;, n;) for some abelian group A; with trivial
action by 71X and some n; > 2. Although our interest is in nilpotent spaces,
we can now drop the assumption that 1 (X) is nilpotent and work with a tower
of the form just specified. We note that we really do want to work with the
actual limit here, only later applying CW approximation. This ensures that not
only the maps m; for i > 1 but also the projections o;: X — X; for i > 1 are
fibrations. These fibrations all induce isomorphisms on 7.

Since X; = K(m1X, 1), we can take X to be the fiber of o7: X — X;.!
Of course, X is simply connected rather than just nilpotent, hence it has an
ordinary Postnikov tower in which each homotopy group is built up in a single
step. However, it is useful to construct a refined Postnikov tower for X from
our modified Postnikov tower limX;. To this end, let X; = % and, fori > 1, let
X; be the fiber of ;: X; —> Xj. Since o; induces an isomorphism on 71, X; is
a universal cover of X;. By Lemma 1.2.3, since the right-hand squares in the
following diagram commute (not just up to homotopy), there are dotted arrow
maps 6; 1 and 77; that make the diagram commute.

Qx; % X X
|
I Giy1 Oit+1
y

QX X1 X1 — X3
|
(71 i
Y

QX X; X; X1

1. We assumed in Notations 0.0.3 that all spaces have universal covers, but not all nilpotent
spaces are semi-locally simply connected; we understand X to mean the space just defined, even
though, strictly speaking, it need only be a fibration over X, not a cover.
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By the functoriality statement in Lemma 1.2.3, 7; 0 6;,1 = G;. Moreover, by
Addendum 1.2.4, the maps &; and 7; are fibrations. Clearly, in degrees greater
than 1, the long exact sequence of homotopy groups of the second column
maps isomorphically to the long exact sequence of homotopy groups of the
third column. By passage to limits, the maps 6; induce a map

£:X — limX;,

and this map induces an isomorphism on homotopy groups and is thus a weak
equivalence. It is reasonable to think of lim X; as P(X). Itis a refined Postnikov
tower of X that, in effect, uses the Postnikov tower of X to interpolate fibrations
into the ordinary Postnikov tower of X in such a way that the homotopy groups
74(X) for n > 2 are built up in exactly the same way that the original Postnikov
tower of X builds up the isomorphic homotopy groups 7, (X).

PROPOSITION 4.2.1. Let € be an abelian category with infinite direct sums, let
C € €, and assume that the cohomology functors H1(—; C) on chain complexes of
free abelian groups take values in € (as holds when € is the category of modules
over a commutative ring). Let X be a nilpotent space and let X be its universal cover.
Then 111X acts € -nilpotently on each H1(X; C).

PROOF. Theaction of 71X on HY(X; C)is induced from the action of 71 X on X
by passage to singular chains C, (X), then to singular cochains Hom (C, (X), C),
and finally to cohomology. Since the cohomology functor H4(—; C) takes val-
ues in ¢, the action of 71X on H?(X; C) is through morphisms in €. Thus,
by Lemma 4.1.1, it suffices to show that 771X acts nilpotently on H%(X; C).
Since m1X = m1X; acts trivially on A;, Lemma 3.4.2 implies that it acts
trivially on the space K(4;, n;) and therefore acts trivially on H*(K(A;, n;); A)
for any abelian group A. We claim that 771 X acts trivially on H*(X;; C). This is
clear when i = 1 since X; = %, and we proceed by induction on i. We have the
following commutative diagram whose rows and columns are fiber sequences.

K(Aj, 1) Xit1 X;
l - i
K(Aj, 1) Xiv1 X;
* — X1 X1
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The Serre spectral sequence of the top row of the diagram has E, term
HP(X;; H1(K(A;, ms); C)).

By the induction hypothesis, we see that 771X acts nilpotently on the E, term.
By Lemma 4.1.4, it therefore acts nilpotently on each E, and thus on E. By

Lemma 3.1.3, we conclude that it acts nilpotently on H*(X;,1; C). O

4.3. o/ -maps of o/ -nilpotent groups and spaces

Now return to the definitions of §3.1. Whenever one defines objects, one
should define maps between them. Since it is inconvenient to focus on canon-
ical choices of .o7-central 7-series, we adopt an ad hoc definition that depends
on choices and ignore the question of how to make a well-defined category
using the maps that we define. The topology of cocellular maps of Postnikov
o/ -towers is tailor-made to mesh with this algebraic definition. We assume that
&/ is a category and not just a collection of abelian groups. Thus not all homo-
morphisms of abelian groups between groups in . need be morphisms of <.

DEFINITION 43.1. Let G and H be &/ -nilpotent -groups. We say that a mor-
phism f: G — H of w-groups is an «/-morphism if there exist .o/-central
m-series

1=G1CGC---CG1 =G

and
1=Hjy1CH;C---CH1=H

such that f (G;) C H; and each induced homomorphism G;/Gj,1 — H;/Hj1
is a map in the category /.

DEFINITION 432 We say thata map f: X — Y of «/-nilpotent spaces is
an «/-map ifeach f;: 7, X — m,Y is an &/-morphism of 71 X-groups, where
m1X acts on w, Y through fi: mX — m1Y.

NOTATION 4.3.3. We refer to R-morphisms or R-maps in these definitions
when o/ = o7y is the category of modules over a commutative ring R. We refer
to fR-maps when R is Noetherian and & is the category of finitely generated
R-modules.

Again, the cases R = Zt and R = Z, are especially important to us. How-
ever, they behave quite differently since a map of abelian groups between
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R-modules is automatically a map of R-modules when R is the localization Zt
but not when R is the completion Z,.

In the latter case, the following results will be used to get around the incon-
venient kernel and quotient group hypotheses in Lemma 3.1.3. These results
require our given category < to be abelian, and we again change notation
from &/ to € to emphasize this change of assumptions.

LEMMA 43.4. Let ¢ be an abelian category. The kernel and, if the image is normal,
the cokernel of a € -morphism f : G —> H between € -nilpotent 7t -groups are again
€ -nilpotent 7 -groups.

PROOF. Assume that we are given %-central r-series as described and dis-
played in Definition 4.3.1. We use the language of additive relations A — B,
where A and B are abelian groups. While these can be viewed as just homo-
morphisms from a subgroup of A to a quotient group of B, the elementary
formal theory in [79, I11{6] is needed to make effective use of them. This works
for abelian categories, but the reader should think of the category of modules
over a commutative ring.

Our given category ¥ is abelian, and the abelian groups and homomor-
phisms in the following argument are all in ¥". The map f determines an
additive relation

Gj/Gj+1 — Hjtr/Hjpr1a

It sends an element x € G; such that f (x) € H;y, to the coset of f (x). We can
construct a singly graded spectral sequence from these additive relations. Its
E%-term is

E’ = Gj/Gjs1® Hj/Hia
with differential given by dJQ (g, h) = (0,f(g)). The kernel of djp is
{(g. WIf (g) € Hjy1} C Gj/Gjy1 ® Hj/Hjq
The image of dj(,) is
{(0.f(g))lg € Gj} C Gj/Gj 11 ® Hj/Hj;1.
The differential djlz EJ,1 — Ejl+1 is given by alj1 (g, h) = (0,f(g))- Since dj1 is
defined on the kernel of djp, the image is contained in E .1+1. The map defined on

the kernel descends to a well-defined map on the homology E !. Each further
differential is given by the same formula. The kernel of dj’ is
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{g Wf(g) € Hixrt1} C Gj/Gjy1 ® Hj/Hjpq
and the image of dj’_r is
{0.f(8))lg" € Gj—+/Gj—r41} C Gj/Gj11 ® Hj/Hjy1.

For r > g, the length of our given central series, we see that

E® = E = {(g,h)|f(g) = 01/{0.f(g)lg' € G} C Gj/Gy1 @ Hy/Hya
This can be rewritten as
EjOo =[(Gjnkerf)/(Gj1Nker f)] & [im (H; — coker f)/im (Hj; — cokerf)].

The required ¢’-central 7-series for kerf and coker f are given by G; Nker f
and im (H; — coker f). O

LEMMA 43.5. Let € be an abelian category. Assume given a long exact sequence
of w-modules

gnt1 hni J g
..._)Bn+1n_)Cn+1n_+>An_n)Bn_n)Cn_)...

in which the g, are € -morphisms between € -nilpotent 7w -modules B, and Cy,. Then
the A, are € -nilpotent w-modules. The analogues with hypotheses on the maps f;,
or hy, and conclusion for the w -modules Cy, or By are also true.

PROOF. By Lemma 4.3.4, ker g, and coker g, 11 are ¢-nilpotent 7-modules,
hence coker hy, 41 and ker f, are ¢’-nilpotent -modules. Let

0=DyC Dj_1 C---C Dy = coker hy11
0=En CEn_1C---CEy=kerfy,
be «7-central m-series. By Lemma 3.1.3 and the short exact sequence
0 — kerf, — A, —> cokerhyy1 — O,

the {E;} and the inverse images of the {D;} give an /-central m-series
for A,. |

4.4. Nilpotency and fibrations

As in §1.5, let p: E — B be a surjective fibration. We allow basepoints to
vary. We record three results that relate the nilpotency of the components of
the spaces F, = p~!(b), E, and B. We may as well assume that B is connected,
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since otherwise we could restrict to the components of E that map to a given
component of B. Foreach e € E with p(e) = b, let E, be the component of E that
contains e, let F, be the component of Fj, that contains ¢, and let¢: F, — E,
be the inclusion.

PROPOSITION 4.4.1. Assume that E, is nilpotent.

(i) Feisnilpotent and the 1 (F,, €)-nilpotency class of wu(Fy, €), n > 1, is at most
one greater than the w1 (E,, €)-nilpotency class of 7wy (E,, €).
(it) If B is also nilpotent, then w1 (Ee, €) acts nilpotently on F,.

PROOF. We agree to write F and FE for the components F, and E, and to omit
basepoints from all notations. We use the action of 71(E) on the long exact
homotopy sequence (1.5.1) that is made explicit in Proposition 1.5.4. Thus we
have the long exact sequence

8n+1 ly Pn
o> 7u1(B) 774 (F) 7n(E) 7u(B)

of 71 (E)-groups and homomorphisms of 71 (E)-groups.

For (i), we focus on the case n > 2; the proof when n = 1 is similar, using
that the image of 3, in 71 (F) is a central subgroup by Lemma 1.4.7(v). Write g
and Ir for the augmentation ideals of 1 (E) and 71 (F). Assume that 7, (E) is
m1(E)-nilpotent of class g, so that I1Z[r,(E)] = 0. Leth € I} and x € Z[x,(F)].
Then ¢, (h) = 0 and thus ¢, (hx) = t,(h)i(x) = 0, so there exists z € Z[m,41(B)]
such that 9(z) = hx. For g € m1(F), t«(g)z = px«t«(g)z = z by the definition of
the action of 71 (E) on my+1(B) and the fact that p., is the trivial homomor-
phism. Thus (t«(g) — 1)z = 0. But, since 9 is a map of 71 (E)-modules,

(ex(g) = 1)z = (1x(g) = 1)3(2) = (1x(g) — Dhx = (g = hx,

where Proposition 1.5.4(i) gives the last equality. This shows that
1

15 2 (F)] = 0.
For (ii), we use that our long exact sequence breaks into short exact se-

quences.
1 — ker (pu) —> Ta(E) —> ma(E)/ ker (py) —> 1
1 — im(pn) — ma(B) —> coker (p,) — 1
1 — coker (ppt1) —> 7u(F) — ker(pn) — 1

Lemma 3.1.3 implies that ker ( p,) and coker ( p,) are nilpotent 71 (E)-groups,
and Lemma 1.4.7(v), adapted in the evident way to replace the homotopy
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fiber there with the actual fiber here, shows that the last extension is cen-
tral when n = 1. These observations and Lemma 3.1.3 imply that 7, (F) is a
nilpotent 771 (E)-group. Observe that since 71 (F) acts through 1 (E) on my(F),
by Proposition 1.5.4(i), this gives another proof that F is nilpotent. O

Returning to the notations of the previous section, we let 4" be an abelian
category in the following two results. We continue to work in the unbased

setting.

PROPOSITION 4.4.2. If all components of B and E are € -nilpotent and each
restriction of p to a component of E is a € -map onto a component of B, then
each component of each fiber of p is €-nilpotent. If, further, the image of
p«: w1(E,€) —> m1(B,b) is normal, then the cokernel 7o(Fy,e) of p« is a
€ -nilpotent group.

PROOF. Here we use Proposition 1.5.4 to regard (1.5.1) as a long exact
sequence both of 71 (E, €)-groups and, by pullback along .., of 71 (F, €)-groups.
For n > 2, m,(F,€) is a € -nilpotent 71 (F, e)-group by Lemma 4.3.5. Lemmas
3.1.3 and 4.3.4 imply that n1(F,e) and 77o(F}, €) are €-nilpotent; compare
Remark 1.5.5. O

PROPOSITION 443. Iff: A— B and the fibration p: E —> B are € -maps
between € -nilpotent spaces, then the component of the basepoint of AXpE is a
€ -nilpotent space.

PROOF. Let X denote the cited basepoint component. Omitting basepoints
from the notations for homotopy groups, Corollaries 2.2.3 and 2.2.5 give an
exact sequence of homotopy groups ending with

s ma(A) x () T s (B) B 1 (X) — m1(A) xomy 5y 71 (E) —> 1.
By Proposition 1.5.4, this is a long exact sequence of 71(X)-groups. Since f
and p are ¥-maps between % -nilpotent spaces, f, — p« is a ¥-map and, as we
see from Lemma 4.3.4 or 4.3.5, the action of 71(X) on m,(X) is € -nilpotent
for n > 2. The image of 9 is a central subgroup of 1 (X), by Lemma 1.4.7,
and 71 (A) X, () 71(E) is a kernel of a ¥-morphism, hence we also conclude
by Lemma 4.3.4 that 71 (X) is a ¢ -nilpotent 71 (X)-group. A similar argument
would work starting with the long exact sequence of the fibration A xg E—~A
with fiber F = p~1(x), but here the possible nonconnectivity of F would
complicate the argument for 71 (X). O
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4.5. Nilpotent spaces and finite type conditions

The spaces that one usually encounters in algebraic topology satisfy finiteness
conditions. For CW complexes X, it is standard (going back at least to Wall’s
1965 paper [140]) to say that X is of finite type if its skeleta are finite, that is, if
it has finitely many n-cells for each n. More generally, a space X is said to be
of finite type if it is weakly equivalent to a CW complex of finite type. This is a
topological specification, and it is the meaning of “finite type” that we adopt.

Unfortunately, it has more recently become almost as standard to say that
a space X is of finite type if its integral homology groups H;(X; Z) are finitely
generated for each i. This is an algebraic specification, and we say that X is
homologically of finite type. Some authors instead ask that the homotopy
groups 7;(X) be finitely generated for all i. Our main goal in this section is to
prove that these three conditions are equivalent when X is nilpotent.

This will later help us determine what can be said about localizations and
completions of nilpotent spaces of finite type. This is particularly important in
the case of completion, whose behavior on homotopy groups is much simpler
in the finite-type case than itis in general. We introduce the following notations
in anticipation of consideration of localizations and completions.

NOTATION 45.1. For a Noetherian ring R, let fo/g denote the abelian cate-
gory of finitely generated R-modules. To abbreviate notation, we say that an
fafp-nilpotent w-group is fR-nilpotent. Similarly, we say that an f./g-nilpotent
space is fR-nilpotent. We speak of f -nilpotent groups and spaces when R = Z.

Thus an f-nilpotent space is a nilpotent space X such that m1(X) is
f-nilpotent and acts f -nilpotently on 7;(X) for i > 2. This is a statement about
subquotients of these groups, but it turns out to be equivalent to the statement
that these groups themselves, or the homology groups H;(X; Z), are finitely
generated. These equivalences are not at all obvious, and we have not found
a complete proof in the literature. We shall sketch the proof of the following
theorem, which is well-known when X is simple. It is beyond our scope to
give full details in the general case, but we shall give the essential ideas.

THEOREM 452. Let X be a nilpotent space. Then the following statements are
equivalent.

(i) X is weakly equivalent to a CW complex with finite skeleta.
(ii) X is f -nilpotent.
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(iii) m;(X) is finitely generated for each i > 1.
(iv) m1(X) and H;(X;Z) fori > 2 are finitely generated.
(v) H;(X;Z) is finitely generated for each i > 1.

The implication (i) implies (v) is general, requiring no hypotheses on X.
We restate it in terms of our definitions of spaces being of finite type.

LEMMA 4.53. If X is of finite type, then X is homologically of finite type.

PROOF. The cellular chains of a CW complex X with finite skeleta are finitely
generated in each degree, and the homology groups of a chain complex that
is finitely generated in each degree are finitely generated. O

In outline, the rest of the proof goes as follows. We first explain a clas-
sical result of Serre that implies a generalization of the equivalence of (i)
and (iv). We then outline a purely group-theoretic proof that (ii) and (iii) are
equivalent. Using information from that proof and a spectral sequence argu-
ment, we see next that (v) implies (iv). Finally, we observe that Wall’s classical
characterization of spaces of finite type [140] applies to show that (iv) implies (i).

Serre proved the following result using the Serre spectral sequence and
what are now called Serre classes of abelian groups [125]. Their introduction
was a crucial precursor to the theory of localization. While our argument
follows his original one, tom Dieck [36, 20.6] has shown that his results can
actually be proven without any use of spectral sequences.

THEOREM 4.5.4 (SERRE). Let X be simply connected. Then all w;(X) are finitely
generated if and only if all H;(X; Z) are finitely generated.

Since 7;(X) = 7;(X) for i > 2, application of this result to the universal
cover of a space X gives the promised generalization of the equivalence of (iii)
and (iv) in Theorem 4.5.2.

COROLLARY 45.5. For any (connected) space X, not necessarily nilpotent, m;(X)
is finitely generated for each i > 1 if and only if w1 (X) and H;(X; Z) for each i > 2

are finitely generated.

REMARK 4.56. One might ask instead of (iv) that H;(X; Z) for i > 2 be finitely
generated over Z[r1(X)], rather than over Z. These conditions are equivalent
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when 71 (X) is finitely generated and nilpotent, but they are not equivalent in
general and the previous corollary requires the stronger hypothesis.

The proof of Theorem 4.5.4 begins with the following result. We take all
homology groups to have coefficients Z in the rest of this section.

THEOREM 4.5.7. If X is simply connected, then all H;(X) are finitely generated if
and only if all H;(2X) are finitely generated.

PROOF. The Serre spectral sequence of the path space fibration over X satis-
fies E;yq = Hy(X; Hy($2X)) and converges to H, (PX), which is zero except for
Hy(PX) = Z. Using the universal coefficient theorem in homology,

H(X; Hy(QX)) = (Hy(X) ® Hy(@X)) @ Tor (H,1(2X), Hy(QX)).

In particular, Ej, = Hy(X) and Ej, = Hy(22X). From here, inductive argu-
ments that Serre codified in [125] give the conclusion. O

COROLLARY 458. If7 isa finitely generated abelian group and n > 1, then each
H;(K (7, n)) is finitely generated.

prRoOF. Either by a standard first calculation in the homology of groups [24,
p- 35] or by direct topological construction of a model for K(r,1) as a CW
complex with finitely many cells in each dimension (e.g., [93, p. 126]), the result
istruewhenn = 1. Since QK(w, n+ 1) = K(r, n), the conclusion follows from
the theorem by induction on n. O

PROOF OF THEOREM 4.54. Suppose that the homotopy groups of X are
finitely generated. The Postnikov tower of X gives fibrations

K(ma(X), n) —> Xy —> Xp_1.
These have Serre spectral sequences that converge from the groups
Epq = Hp(Xa-15 Hy (K (n(X), m))

in total degree p + g to H,(X,). By Corollary 4.5.8 and induction on n, we may
assume that each H;(X,—1) is finitely generated and deduce that each H;(X,)
is finitely generated. Since this holds for all n, H;(X) is finitely generated.
Conversely, suppose that the homology groups of X are finitely generated.
Define g,: X(n) —> X to be the fiber of the fibration X — X,,_1 given by a
Postnikov tower of X. By the long exact sequence of homotopy groups, we see
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that 7;(X(n)) =0 for i <n—1 and g, : 7;(X(n)) — 7;(X) is an isomor-
phism for i > n. A map X(n) — X with these properties is said to be an
(n — 1)-connected cover of X, and then 7,(X) = H,(X(n)) by the Hurewicz
theorem. Since X is simply connected, we can write X = X(2), and then
72(X) £ H;(X) is finitely generated. For n > 3, we can apply Lemma 1.2.3 to
the diagram

dn
QX, — X(n) X Xn
|
|

| |-

QX —— X(n—1) —— X —— X1
qn—1

™

to obtain a map r, that makes the diagram commute up to homotopy. By
the resulting map of exact sequences of homotopy groups, we see that the
homotopy fiber of r, must be a space K(w,—1(X), n —1). Applying the Serre
spectral sequences of the fibration sequences

K(mp-1(X),n—1) — X(n) — X(n—1)

inductively, starting with X = X(2), we see that the homology groups of X (n)
are finitely generated and therefore the m,(X) = H,(X(n)) are finitely gen-
erated. O

The following result shows that (ii) and (iii) of Theorem 4.5.2 are equivalent.
The proof uses a little more group theory than we wish to present in detail.

PROPOSITION 4.5.9. Let G be a nilpotent group. Then the following statements
are equivalent.

(i) G is f-nilpotent.
(it) G/[G, G] is finitely generated.
(i) G is finitely generated.
(iv) Every subgroup of G is finitely generated.
Moreover, when these conditions hold, the group ring Z[G] is (left and right)
Noetherian and the group G is finitely presentable.

PROOF. Any central series of G gives an exact sequence

C e

1 el G G/G 1
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where G’ is nilpotent of lower class than G and G/ G’ is abelian. Using the lower
central series of G, we may as well take G’ to be the commutator subgroup
[G, GI. If G is f-nilpotent, then certainly G/G’ is finitely generated, so that
(i) implies (ii). Suppose that (ii) holds. Choose elements h; of G such that the
elements 7 (h;) generate G/G’ and let H be the subgroup of G generated by
the h;. For g € G, there is an element h € H such that 7 (g) = 7 (h), and then
g = gh~'his an element of G'H. By [56, Cor. 10.3.3], this implies that H = G
and therefore G is finitely generated, showing that (ii) implies (iii).

The proof that (iii) implies (iv) is given in [56, p. 426]. The proof goes in two
steps. First, if G is finitely generated, then G is supersolvable, meaning that
it has a finite normal series with cyclic subquotients. Second, every subgroup
of a supersolvable group is supersolvable and is therefore finitely generated.
Finally, (iv) implies (i) since if every subgroup of G is finitely generated, then
G/G’ and G’ are finitely generated. By induction on the nilpotency class, we
can assume that G’ is f-nilpotent, the abelian case being clear, and then the
displayed short exact sequence shows that G is also f-nilpotent.

The Noetherian statement should look very plausible in view of (iv), but
we refer the reader to [57, Thm. 1] for the proof. It applies more generally
to polycyclic groups, which can be characterized as the solvable groups all
of whose subgroups are finitely generated. The statement that G is finitely
presentable is an exercise in Bourbaki [15, Ex. 17b, p. 163]. The essential point
is that if N and H are finitely presentable and G is an extension of N by H,
then G is finitely presentable. O

Returning to the topological context of Theorem 4.5.2, assume that X is
nilpotent and let 7 = 71(X).

SKETCH PROOF THAT (V) IMPLIES (1v). Since H1(X;Z) = n/[n, 7], the
implication (ii) implies (i) of Proposition 4.5.9 shows that 7 is finitely gen-
erated. There are several choices of spectral sequences that can be used to
show that H;(X; Z) is finitely generated for i > 2. One can use the Serre spec-
tral sequence obtained from the fiber sequence X —> X — K(, 1), which
converges from H, (1; Hy (X)) to Hy(X), using a backward induction from the
assumption that 7 and the H;(X) are finitely generated. A more direct argu-
ment uses the Eilenberg-Moore spectral sequence which, in its homological
version and ignoring details of grading, converges from the homology groups
EZ, = Hy(m; Hi(X)) to H,(X). The spectral sequence converges by a result
of Dwyer [41], the essential point being that 7 acts nilpotently on H,(X), by
the homology analogue of Proposition 4.2.1. Using that the group ring Z[n] is

“530-46909_Ch04_5P.tex” — 8/19/2011 — 11:24 — page 83



84/ DETECTING NILPOTENT GROUPS AND SPACES

Noetherian, one can check that the groups of the Ej-term are finitely generated
and deduce that the groups H;(X) are finitely generated. Alternatively, one can
use the lower central series spectral sequence for the calculation of the groups
7;(X), as explained (with comparable brevity) in [21, p. 153]. O

SKETCH PROOF THAT (1v) IMPLIES (1). If X is simply connected and
each 7r;(X) is finitely generated, the result is easy. There is a standard construc-
tion of a weak equivalence 'X — X from a CW complex I'X to X given, for
example, in [93, p. 75]. Using minimal sets of generators for the homotopy
groups and kernels of maps of homotopy groups that appear in the construc-
tion, we see that we only need to attach a finite number of cells at each stage. A
slight variant of the construction makes the argument a little clearer. Instead of
attaching cylinders in the proof there, we can attach cells to kill the generators
of the kernel of 7;(X;) — 7;(X) in the inductive argument. These kernels are
finitely generated at each stage, so we only need to attach finitely many cells to
kill them. Wall [140] refines this argument to deal with a nontrivial fundamen-
tal group 7. In [140, Thm. A}, he gives necessary and sufficient conditions for
X to be of finite type. In [140, Thm. B], he shows that these conditions are sat-
isfied if Z[] is Noetherian, 7 is finitely presented, and each H;(X) is finitely
generated over Z[r]. We have the first two conditions by Proposition 4.5.9,
and the last condition certainly holds if each H;(X) is finitely generated as an
abelian group. O
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LOCALIZATIONS OF NILPOTENT GROUPS
AND SPACES

We develop localization at T for abelian groups, nilpotent groups, and nilpo-
tent spaces. Of course, localization of abelian groups is elementary and direct.
However, following Bousfield and Kan [21], we first construct localizations
of spaces and then use them to construct localizations of nilpotent groups
topologically rather than algebraically. A purely algebraic treatment is given
by Hilton, Mislin, and Roitberg [60, 62]. We discuss localizations of abelian
groups in §5.1, the essential point being to determine the behavior of localiza-
tion on homology. We define localizations of spaces and show how to localize
the Eilenberg-Mac Lane spaces of abelian groups in §5.2. We construct local-
izations of nilpotent spaces by induction up their Postnikov towers in §5.3. We
specialize to obtain localizations of nilpotent groups in §5.4. We discuss their
general algebraic properties in §5.5, and we discuss finiteness conditions in
§5.6, leading up to a characterization of f Zr-nilpotent groups. The reader may
wish to skip the last two sections on a first reading. Their main purpose is to
develop algebra needed later to prove the fracture theorems in full generality.

Recall our notational conventions from the Introduction. In particular, T
is a fixed set of primes, possibly empty, throughout this chapter and the next.
Maps ¢ will always denote localizations.

5.1. Localizations of abelian groups

Recall that an abelian group B is said to be T-local if it admits a structure of
Zr-module, necessarily unique. It is equivalent that the multiplication map
q: B —> Bisanisomorphism for all primes g notin T. We have the following
easy observation.

LEMMA 5.1.1. Let

0—A—A A" —0
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be a short exact sequence of abelian groups. If any two of A’, A, and A” are T-local,
then so is the third.

The localization at T of an abelian group Aisamap¢: A —> Artoa T-local
abelian group At that is universal among such maps. This means that any
homomorphism f: A — B, where B is T-local, factors uniquely through ¢.
That s, there is a unique homomorphism f that makes the following diagram
commute.

¢

A——— Ar

We can define ¢ explicitly by setting AT = A® Zt and letting ¢(a) = a® 1.
Clearly A is T-local if and only if ¢ is an isomorphism. Since Zr is a torsion-
free abelian group, it is a flat Z-module. We record the following important

consequence.
LEMMA 5.1.2. Localization is an exact functor from abelian groups to Zr-modules.

We shall focus on cohomology when defining localizations of spaces. This
is natural when thinking about Postnikov towers and the dual Whitehead
theorem, and it leads to efficient proofs. In preparation for this, we describe
the homological behavior of localization of abelian groups in some detail.

THEOREM 5.1.3. The induced map
¢« Hy(A;Z1) —> Hy(AT; Z71)
is an isomorphism for all abelian groups A. If B is T -local, then the homomorphism
H.(B;Z) — H.(B;ZT)
induced by the homomorphism Z. —s Zr is an isomorphism and thus H,(B; Z) is

T-local in every degree.

PROOF. There are several ways to see this result, and the reader is urged
to use her favorite. In view of (4.1.5), one is free to carry out the proof using

algebra, topology, or a combination of the two. Any module over a PID Ris the -1
filtered colimit of its finitely generated submodules, and any finitely generated 0
— +1
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R-module is a finite direct sum of cyclic R-modules (R-modules with a single
generator). We apply this with R =Z and R = Zr. In these cases, the finite
cyclic modules can be taken to be of prime power order, using only primes
in T in the case of Zr, and the infinite cyclic modules are isomorphic to Z or
to Zr.

The localization functor commutes with colimits since it is a left adjoint,
and the homology of a filtered colimit of abelian groups is the colimit of their
homologies. To see this topologically, for example, one can use the standard
simplicial construction of classifying spaces [93, p. 126] to give a construction
of K(A, 1)’s that commutes with filtered colimits, and one can then use that
homology commutes with filtered colimits, by Proposition 2.5.4. Finite sums
of abelian groups are finite products, and as we have already noted it is clear
that a product K(A, 1) x K(4’,1) is a K(A x A, 1). By the Kiinneth theorem
(e.g., [93, p- 130)), the conclusions of the theorem hold for a finite direct sum
if they hold for each of the summands. This reduces the problem to the case
of cyclic R-modules.

One can check the cyclic case directly, but one can decrease the number of
checks needed by using the Lyndon-Hochschild-Serre (LHS) spectral sequence
of Proposition 24.5.3. That spectral sequence allows one to deduce the result
for cyclic groups of prime power order inductively from the result for cyclic
groups of prime order.

Thus suppose first that A is cyclic of prime order g. Since Zt is T-local,
so are both the source and target homology groups. We focus on the reduced
homology groups since K(r, 1)’s are connected and the zeroth homology group
with coefficients in R is always R. If g = 2, K(A, 1) = RP* and if g is odd,
K(A, 1) is the analogous lens space S*°/A. In both cases, we know the integral
homology explicitly (e.g., by an exercise in [93, p. 103]). The nonzero reduced
homology groups are all cyclic of order g, that is, copies of A. Taking coef-
ficents in Zt these groups are zero if g ¢ T and A if g € T, and of course
Ar =0ifg ¢ T and A7 = Aif g € T. Thus the conclusions hold in the finite
cyclic case.

Finally, consider A = Z, so that A = Zr. The circle Slisa K(z,1). Our
first example of a localized space is S, which not surprisingly turns out to
be K(Zr,1). Ar can be constructed as the colimit of copies of Z together with
the maps induced by multiplication by the primes not in T. For example, if
we order the primes g; not in T by size and define r, inductively by r; = g1
and ry, =111 Gu = 4} - - - qn, then Z7 is the colimit over n of the maps
tn: Z —> Z. We can realize these maps on 71(S") by using the r,™ power
map S! — S'. Using the telescope construction [93, p. 113] to convert these
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multiplication maps into inclusions and passing to colimits, we obtain a space
K(Zt,1); the van Kampen theorem gives that the colimit has fundamental
group Zr, and the higher homotopy groups are zero because the image of a
map from S" into the colimit is contained in a finite stage of the telescope,
and each such finite stage is equivalent to S'. The commutation of homology
with colimits gives that the only nonzero reduced integral homology group of
K(Zr,1) is its first, which is Zr.

An alternative proof in this case uses the LHS spectral sequence of the
quotient group Zr/Z. Groups such as this will play an important role in com-
pletion theory and will be discussed in Chapter 10. The spectral sequence has
the form

E2, = Hy(Z1/Z; Hy(Z; Z1) = Hyyq(Zr; Z1)-

The group Zr/Z is local away from T, hence the terms with p > 0 are zero,

and the spectral sequence collapses to the edge isomorphism

¢+t Hy(Z: Z1) —> Hi(Z1:Z1). O

COROLLARY 5.1.4. The induced map
¢*: H*(Ar; B) — H*(A; B)

is an isomorphism for all Zr-modules B.

On H', by the representability of cohomology and the topological interpre-
tation (4.1.5) of the cohomology of groups, this says that

¢*: [K(Ar, 1), K(B,1)] —> [K(A, 1), K(B,1)]

isanisomorphism. On passage to fundamental groups, this recovers the defin-
ing universal property of localization.

In fact, as we shall use heavily in §5.4, for any groups G and H, not
necessarily abelian, passage to fundamental groups induces a bijection

5.1.5 [K(G, 1), K(H,1)] = Hom(G, H).

(This is an exercise in [93, p. 119]). One way to see this is to observe that the
classifying space functor from groups to Eilenberg-Mac Lane spaces (e.g., [93,
p- 126]) gives an inverse bijection to 71, but it can also be verified directly from
the elementary construction of K(G, 1)’s that is obtained by realizing 71 as
the fundamental group of a space X [93, p.35] and then killing the higher
homotopy groups of X.
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5.2. The definition of localizations of spaces

Recall that we take all spaces to be path connected. We have the following
three basic definitions. Recall Definition 3.3.10 and Proposition 3.3.11.

DEFINITION 521. A map §: X —> Y is a Zr-equivalence if the induced
map &: Hy(X;ZT) — H.(Y;Z7) is an isomorphism or, equivalently, if
the induced map &*: H*(Y; B) — H*(X; B) is an isomorphism for all
Zr-modules B.

DEFINITION 5.22. Aspace Zis T-localif £*: [Y, Z] — [X, Z] is a bijection
for all Zr-equivalences é: X — Y.

Diagrammatically, this says that for any map f: X — Z, there is a map
f, unique up to homotopy, that makes the following diagram commute up to
homotopy.

DEFINITION 5.23. Amap ¢: X — X7 from X into a T-local space Xt is a
localization at T if ¢ is a Zr-equivalence.

This prescribes a universal property. If f : X — Z is any map from X to
a T-local space Z, then there is a map f, unique up to homotopy, that makes
the following diagram commute.

¢

X —— Xr

Therefore, localizations are unique up to homotopy if they exist. We shall prove
in §19.3 that they do always exist, but we focus on nilpotent spaces for now.

REMARK 5.2.4. Onthe full subcategory of connected spacesin Ho.7 thatadmit
localizations at T, localization is automatically functorial (up to homotopy). For
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amap f: X — Y, there is a unique map fr: Xr — Y7 in Ho.7 such that
¢ of =fro¢in Ho.7, by the universal property.

When specialized to Eilenberg-Mac Lane spaces K(A, 1), these definitions
lead to alternative topological descriptions of T-local abelian groups and of the
algebraic localizations of abelian groups at T. The proofs are exercises in the
use of the representability of cohomology.

PROPOSITION 5.2.5. Anabelian group Bis T-local ifand only if the space K (B, 1)
is T-local.

PROOF. If Bis T-local and £ : X —> Y is a Zr-equivalence, then
£*: HY(Y; B) — H'(X; B)
is an isomorphism. Since this is the map
£*: [Y,K(B,1)] — [X, K(B,1)],

K(B,1) is T-local. Conversely, if K(B,1) is T-local, then the identity map
of K(B,1) is a Zr-equivalence to a T-local space and is thus a localization
at T. However, the map ¢: K(B,1) — K(Br, 1) thatrealizes ¢: B—> Bt on
fundamental groups is also a Zr-equivalence, by Corollary 5.1.4 and (4.1.5).
Therefore ¢ is also a localization at T. By the uniqueness of localizations, ¢
must be an equivalence and thus ¢: B —> Br must be an isomorphism. O

COROLLARY 5.2.6. Anabelian group B is T-local if and only if the homomorphism
&*: H*(Y; B) — H*(X; B) induced by any Zr-equivalence £: X —> Y is an
isomorphism.

PROOF. If B has the cited cohomological property, then K(B, 1) is T-local by
the representability of cohomology and B is T-local by the previous result. The
converse holds by the definition of a Zr-equivalence. O

PROPOSITION 5.2.7. A homomorphism ¢: A —> B of abelian groups is an
algebraic localization at T if and only if the map, unique up to homotopy,

¢: K(A, 1) — K(B,1)

that realizes ¢ on 11 is a topological localization at T.
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PROOF. By Corollary 5.1.4 and (4.1.5), if ¢: A —> B s an algebraic localiza-
tion at T, then ¢: K(A,1) — K(B, 1) is a Zr-equivalence. Since K(B, 1) is
T-local by the previous result, this proves that ¢ is a topological localization.
Conversely, if ¢: K(A,1) — K(B, 1) is a localization at T and C is any T-local
abelian group, then the isomorphism

¢*: HY(K(B, 1), C) — HY(K(A,1),C)

translates by the representability of cohomology and passage to fundamental
groups into the isomorphism

¢*: Hom(B, C) — Hom(A, C).

This adjunction expresses the universal property of algebraic localization. O
By induction on n, we can now localize Eilenberg-Mac Lane spaces K(A, n).

THEOREM 5.28. If B is a T-local abelian group, then K(B, n) is a T-local space
and H,(K(B,n);Z) is T-local in each degree. For any abelian group A, the map
¢: K(A, n) — K(AT,n), unique up to homotopy, that realizes the localization
¢: A —> At onm, is alocalization at T.

PROOF. If&: X —> Y is a Zr-equivalence, then
£*: [Y, K(B,n)] —> [X, K(B,n)]

is the isomorphism induced on the nth cohomology group. Thus K(B, n) is
T-local.

For n > 2, we may write QK (A, n) = K(A, n— 1), and the map ¢ induces a
map of path space fibrations

K(An—1) — = PK(A,n) —> K(An)

| | |

K(AT,n—l) e PK(A]',VL) e K(AT,n).

This induces a map of Serre spectral sequences converging to the homologies
of contractible spaces. The map Q¢ on fibers realizes ¢ on 7,1, and we
assume inductively that it is a Zr-equivalence. By the comparison theorem for
spectral sequences, Theorem 24.6.1 below, it follows that the map ¢ on base
spaces is also a Zr-equivalence. This proves the last statement.

“530-46909_Ch05_5P.tex” — 8/19/2011 — 11:24 — page 93



94/ LOCALIZATIONS OF NILPOTENT GROUPS AND SPACES

Taking A = Bto be T-local, we prove that [, (K(B, n), Z) is T-local by induc-
tive comparison of the Z and Z1 homology Serre spectral sequences of the
displayed path space fibrations. Starting with the case n = 1in Theorem 5.1.3,
we find that

H.(K(B,n),Z) = H,(K(B,n),Zr). )

5.3. Localizations of nilpotent spaces

Our construction is based on a special case of the dual Whitehead theorem.
Take o7 in Theorem 3.3.9 to be the collection of Zr-modules. Then that result
takes the following form, which generalizes the fact that K(B, n) is a T-local
space if B is a T-local abelian group.

THEOREM 5.3.1. Every Zr-tower is a T-local space.
We use this result to construct localizations of nilpotent spaces.
THEOREM 5.3.2. Every nilpotent space X admits a localization ¢: X — Xr.

PROOF. In view of Theorem 3.5.4, we may assume without loss of
generality that X is a Postnikov tower lim X; constructed from maps
k;: X; — K(A;, n; + 1), where A; is an abelian group, ;11 > n; > 1, and only
finitely many n; = nforanyn > 1. Here Xp = *, and welet (Xo)7 = *. Assume
inductively that a localization ¢;: X; — (X;)r has been constructed and
consider the following diagram, in which we write K(A;, n;) = QK(A;, n; + 1).

k;
K(A; 1)) ——— Xy X; K(A;, n; +1)

|
Qe J{ I ¢iy1 i b J/ ¢
Y

K((Ai)T, 1)) —— (Xiy1)r —— (Xi)r —— K((A))1,ni +1)
(ki) T

By Theorem 5.3.1, since ¢; is a Zr-equivalence and K((A;)1,n;+1) is a
Zt-local space there is a map (k;)7, unique up to homotopy that makes the
right square commute up to homotopy. The space X; is the fiber Fk;, and
we define (X, 1)t to be the fiber F(k;)T.

ByLemma 1.2.3, thereis amap ¢; that makes the middle square commute
and the left square commute up to homotopy. By Theorem 5.3.1, (X, 1)1 is
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T-local since it is a Zr-tower. We claim that ¢;,; induces an isomorphism
on homology with coefficients in Zt and is thus a localization at T. Applying
the Serre spectral sequence to the displayed fibrations, we obtain spectral
sequences

E} = Hp(X;; Hy(K(Aj, m); 1)) = Hpyq(Xip1; Z7)
Ey o = Hy((Xi)1; Hy(K((A)T, m); Z1)) = Hpg((Xi41)73 Z7)

and a map between them. By Theorem 5.2.8, the induced map on the homol-
ogy of fibers is an isomorphism. Since ¢; is a localization at T and thus a
Zr-equivalence, the map on E? terms is an isomorphism. It follows that
¢i11 is a Zr-equivalence, as claimed.

Let X7 = lim (X;)7 and ¢ = lim ¢;: X —> Xr. Then ¢ is a Zr-equivalence
by Proposition 2.5.9 and is thus a localization of X at T. O

Our explicit “cocellular” construction of localizations of Postnikov towers
allows us to be more precise about functoriality than in Remark 5.2.4.

THEOREM 53.3. Let X and Y be Postnikov towers and let v : X —> Y be a cocel-
lular map. Choose cocellular localizations at T of X and Y. Then there exists
a cocellular map Yr: Xt —> Y, unique up to cocellular homotopy, such that
Y o ¢ is homotopic to ¢ o Y.

PROOF. We construct 1 and h: ¥ o ¢ = ¢ o by inductive application of
coHELP, Theorem 3.3.7, to the following diagrams and passage to limits.

Po P
(Yip1)T F(Lt, (Yiy1)T) (Yiga)T
ir1oVit1 it 7 (Vit1)T 7
\ Pad P
7 7
- it -
Xi1 (Xit1)T
\L [ l
X (Xi)T
(Yi)T F(Lt, (Yi)T) (Yi)r
Ppo p1
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Now let Y7 and n be maps Xt —> Yr such that both ¥ro¢ and
no¢ are homotopic to ¢po. Let P; 1 be the pullback of F(I,(Y;)r) and
F({0,1}4, (Yiz1)T) over F({0,1}+,(Y;)T) and observe that the fibration
(Yir1)T — (Vi) and cofibration {0, 1} — I induce a canonical fibration

F(L+, (Yig1)T) — Pis1-
We construct the following diagram inductively and apply coHELP to it.

Po P
F(L, (Yig1)r) <~ F(Lp, F(It, (Yi)1) ——— F(Ly, (Yia)7)

fi+1 hi+1 7 81 7
< s
\ - .
- Bir1 -
Xi1 (Xiv1)T
Py F(L4, Piy1) Py
Po P

The map fi11: X;11 — F(I+, (Y;y1)71) is 2 composite of homotopies
Yrop X oy =nop.

The map g;11: (Xiy1)T —> Pi11 is the map into P;,; defined by the maps

(Xir1)T — ()T > F(L4, (Yi)7)

and
a: (Xip1)t —> F({0, 1}, (Yiz1)T)s

where a(x)(0) = ¥r(x) and «(x)(1) = n(x). It is not difficult to check induc-
tively that this pair of maps does define a map into the pullback. Similarly, the
map hiyq: X;11 — F(I4, Piyq) is defined by the pair of maps

by
X1 — X; — F(L+, F(I4, (Yi)1))

and
B
X1 — (X)) — F(I+, F({0, 1}4, (Y1) 7))

where (x)(t)(0) = ¥r(x) and B(x)(t)(1) = n(x). On passage to limits, the maps
&; give the desired homotopy from yr to 7. O

We have analogous conclusions for quotient towers and pullbacks.

“530-46909_Ch05_5P.tex” — 8/19/2011 — 11:24 — page 96



5.4. LOCALIZATIONS OF NILPOTENT GROUPS / 97

PROPOSITION 53.4. Let W be a quotient tower of a Postnikov tower X with
projection w: X —> W. Then there are cocellular localizations Xt of X and
Wr of W such that W is a quotient tower of Xr whose projection satisfies
nrod =¢om. If m=1(*) is connected, the map ¢: 7~ (x) —> (1)~ 1(*)
obtained by restricting ¢ : X — Xr to fibers is again a localization at T. If, further,
Y is a Postnikov tower, 6: Y —> W is a cocellular map, and 01: YT — Wr
is chosen as in Theorem 5.3.3, then the pullback Xt Xw, YT of T and Ot is a
cocellular localization of the pullback X xw Y of m and 6.

PROOF. The first statement is an easy induction based on the definition of
a quotient tower. For the second statement, note that 7 ~!(*) is a Postnikov
tower with one cocell for each cocell of X that does not factor through W. For
the last statement, note that X x w Y can be viewed as a Postnikov tower with
one cocell for each cocell of X that does not factor through W and each cocell
of Y. O

Taking W = x*, we have the following special case.
COROLLARY 53.5. X1 X YT is a cocellular localization of X x Y.

Either applying Proposition 5.3.4 to the path space fibration or arguing
directly, we obtain a similar result for loop spaces.

COROLLARY 53.6. If X is a simply connected Postnikov tower, then Q(Xt) is a
cocellular localization of QX.

5.4. Localizations of nilpotent groups

Let g be a prime. A group G is said to be uniquely g-divisible if the g™ power
function G — G is a bijection.

REMARK 5.4.1. Of course, an abelian group B is uniquely g-divisible if and
only if the multiplication homomorphism q: B — B is an isomorphism. In
turn, this holds if and only if B® F; = 0 and Tor (B, Fy) = 0.

REMARK 5.4.2. If G is uniquely g-divisible for all primes q ¢ T and g € G is
an element of finite order prime to T, so that g" = 1 for some product r of
primes notin T, then g = 1.

DEFINITION 543. A T-local group is a nilpotent group that is uniquely
g-divisible for all primes g notin T.
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Thus, for us, a T-local group is necessarily nilpotent. The localization of
a nilpotent group G at T is defined the same way as for abelian groups. It
isamap ¢: G —> Gr to a T-local group Gr that is universal among such
maps. However, it is no longer obvious how to construct such a map, and we
will use topology rather than algebra to do so. We need some preliminaries
that allow us to recast the definitions just given in terms of Zr-nilpotency. We
give a complete proof of the following generalization of Lemma 5.1.1 to help
familiarize the reader with the relevant kinds of algebraic arguments, but the
result itself will be superceded by Corollary 5.4.11 below, which shows that
the centrality assumption is unnecessary. Thus the result can be viewed as
scaffolding leading toward that generalization.

LEMMA 544, Let
4

1— G —>5G—G —1
be a central extension of groups. If any two of G', G, and G” are uniquely
q-divisible, then so is the third.

PROOF. First assume that G’ and G” are uniquely g-divisible. To show that
the g power map of G is surjective, let x € G. Then v (x) = 24 for some
z € G” since G” is uniquely g-divisible. Since v is surjective, ¥ (y) = z for
some y € G. Therefore x = y%(y') for some y’ € G'. Since G’ is uniquely
g-divisible, y = x'1 for some x’ € G" and thus x = y%(x)9 = (yi(x/))? since
our extension is central. To show that the g™ power map of G is injective, let
x1 = ylforx,y € G. Then ¥ (x)1 = ¥ (y)? and, since G” is uniquely g-divisible,
¥ (x) = ¥ (y). By exactness, x = yi(x’) for some x’ € G’ and so x7 = yl(x"9).
Since ¢ is injective x'4 = 1. Since G’ is uniquely g-divisible, x’ = 1 and x = y.

Next, assume that G’ and G are uniquely g-divisible. The g™ power map of
G" is surjective since the g™ power map of G is surjective. Suppose that
Y (x)? = ¥ (y)?. Then x7 = ((2)y? for some z € ((G'). Since G’ is uniquely
g-divisible, z = w4 for some w. By centrality, x7 = ((w)1y? = ((w)y)4. Since
G is uniquely g-divisible, x = ¢(w)y and thus ¥ (x) = ¥ (y).

Finally, assume that G and G” are uniquely g-divisible. The g power map
of G’ is injective since the g™ power map of G is injective. Let x € G'. In G,
t(x) = y1 for some y, hence ¥ (y)? = 1. This implies that ¢(y) = 1 and thus
y = (2) for some z € G/, and 29 = x since ((29) = ((x). O

It is convenient to use this result in conjunction with the following obser-

vation. Let Z(G) denote the center of a group G. Of course, Z(G) is nontrivial
if G is nilpotent.
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LEMMA 5.4.5. IfGisa uniquely g-divisible nilpotent group, then Z(G) is a uniquely
q-divisible abelian group.

PROOF. The ¢ power operation on Z(G) is injective because that is true in
G.Ifz € Z(G), then z = y¥ for a unique y € G. Forany g € G,

z=y"=g""ylg = (g7 'yg)"

and therefore y = g~'yg, so that y € Z(G). Thus the g™ power operation on
Z(G) is also surjective. U

Using these results, we can generalize our alternative descriptions of what
it means for an abelian group to be T-local to the nilpotent case.

LEMMA 5.4.6. Let G be a nilpotent group. Then G is T-local if and only if G is
ZT-nilpotent.

PROOF. We prove both implications by induction on the nilpotency class of
G, starting with the abelian case.

Suppose first that G is T-local. By the previous lemma, Z(G) is a nonzero
T-local abelian group (and thus a Zr-module). Applying Lemma 5.4.4 to the
central extension

1— Z(G) — G — G/Z(G) — 1,

we conclude that G/Z(G) is T-local. By the induction hypothesis, this im-
plies that G/Z(G) is Zr-nilpotent. Therefore, by Lemma 3.1.3, G is also
Zr-nilpotent.

Conversely, suppose that G is Zr-nilpotent with a Zr-central series

1=G6,CG1C--CG1CG=6G

of minimallength. Then G4 1 iscentralin G, and G;1and G/G4 1 are T-local
by the induction hypothesis. Therefore, by Lemma 5.4.4, G is also T-local. O

This allows us to generalize Propositions 5.2.5 and 5.2.7 to nilpotent groups.

PROPOSITION 5.4.7. Anilpotentgroup G is T-local ifand only ifthe space K(G, 1)
is T-local.

PROOF. If Gis T-local and thus Zr-nilpotent, then Theorem 3.5.4 constructs
K(G,1) as a Postnikov Zr-tower and thus as a T-local space. Conversely, if
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K(G, 1) is T-local, then it is equivalent to its cocellular localization, which is a
Zr-tower and thus displays G as a Zr-nilpotent group on passage to 71. O

PROPOSITION 5.4.8. A homomorphism ¢: G —> H between nilpotent groups
is an algebraic localization at T if and only if the map, unique up to homotopy,

¢: K(G,1) — K(H, 1)

that realizes ¢ on w1 is a topological localization at T

PROOF. If ¢: K(G,1) — K(H, 1) is a localization, then specialization of its
universal property to target spaces Z = K(J, 1) and passage to fundamental
groups shows that ¢: G — H satisfies the universal property required of an
algebraic localization at T. For the converse, we know by the proof of Theo-
rem 5.3.2 that K(G, 1) has a topological localization K(G,1). If ¢: G — H
is an algebraic localization at T, then H must be isomorphic to Gr, since both
are algebraic localizations, and therefore K(H, 1) must also be a topological
localization of K(G, 1). O

In the course of proving that localizations exist, we implicitly proved the
following homological result, which generalizes Corollary 5.1.4.

PROPOSITION 5.4.9. If¢: G —> Gr is the localization of a nilpotent group G,
then ¢..: Hy(G; Z1) —> Hy(GT; ZT) is an isomorphism and therefore

¢*: H*(Gr; B) — H*(G; B)
is an isomorphism for all T-local abelian groups B.

The exactness of localization also generalizes from abelian to nilpotent
groups.

PROPOSITION 5410 If 1 — G' — G —> G” — 1 is an exact sequence
of nilpotent groups, then
1— G — Gr — G} — 1
is an exact sequence.
PROOF. The given exact sequence implies that the homotopy fiber of the

evident map K(G,1) — K(G”,1) is a K(G/, 1). Using a given central series
for K(G,1) and the quotient central series for K(G”, 1), the arguments of
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the previous section show that we can construct K(G,1) — K(G”, 1) as the
projection of a tower onto a quotient tower. As in Proposition 5.3.4, we can
then choose localizations such that K(Gr,1) — K(G7,1) is also a projec-
tion onto a quotient tower and the induced map on fibers is a localization
K(G',1) — K(G%, 1). This gives us a fibration

K(Gly, 1) —> K(Gr,1) —> K(G, 1).
Its long exact sequence of homotopy groups reduces to the claimed short exact

sequence. (]

This implies the promised generalization of Lemma 5.4.4 to non-central
extensions.

COROLLARY 54.11. Let

1 G G G” 1
1 H’ H H' — 1

be a commutative diagram of nilpotent groups with exact rows. If any two of G', G,
and G” are T-nilpotent, then so is the third. If any two of the vertical arrows are
localizations at T, then so is the third.

PROOF. Firstletthe bottom row be the localization of the top row. If two of G/,
G, and G” are T-nilpotent, then two of the vertical arrows are isomorphisms,
hence the third vertical arrow is also an isomorphism by the five lemma.
Therefore the third group is T-nilpotent. Returning to the general diagram
and taking two of its vertical arrows to be localizations at T, we have just
shown that the bottom row is an exact sequence of T-local groups. Therefore
the map from the top exact sequence to the bottom exact sequence factors
through the localization at T of the top sequence. Two of the resulting new
vertical arrows are isomorphisms, hence so is the third, and therefore the third
vertical arrow of the original diagram is a localization at T. O

5.5. Algebraic properties of localizations of nilpotent groups

We have constructed localizations of nilpotent groups topologically. While
that gives the most efficient exposition, it obscures elementwise algebraic
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properties. We here describe some results that give a better algebraic under-
standing of localizations of nilpotent groups and of maps between them,
focusing primarily on just what we shall need later and proving only those
results that play an essential role. Considerably more information appears in
both the topological and algebraic literature; see for example [60, 62, 141]. It
is convenient to introduce the following notation.

DEFINITION 55.1. A T’-number is a product of primes not in T. An ele-
ment g of a group G is T’-torsion if g" =1 for some T’-number r; G is
a T’-torsion group if all of its elements are T’-torsion. A homomorphism
a:G— His

(i) a T-monomorphism if its kernel is a T’-torsion subgroup;
(ii) a T-epimorphism if for each element h € H, there is an element g € G
and a T’-number r such that h = «(g)"; this implies that the cokernel of
o is a T'-torsion group; and
(iii) a T-isomorphism if it is a T-monomorphism and a T-epimorphism.

Observe that the proof of Theorem 5.3.2 shows that the nilpotency class of
Gr is at most the nilpotency class of G.

PROPOSITION 55.2. Let G be a nilpotent group and let ¢: G —> Gr be its
localization at T.

(i) ¢ is a T-monomorphism; its kernel is the set of all T’ -torsion elements of G,
hence this set is a normal subgroup of G.
(it) ¢ is a T-epimorphism; that is, for every element h € Gr, there is an element
g € G and a T'-number r such that h™ = ¢(g).
(iii) Every element of G is T’ -torsion if and only if Gt = 1.

PROOF. The proofis by induction on the nilpotency class of G. We first show
(i) and (ii) for abelian groups and then deduce them for nilpotent groups.
For an abelian group A, ¢: A — Ar is part of the exact sequence

0 —> Tor (A, Z1/Z) —> A > Ar—>A® (Z1/Z) —> 0
that arises from the short exact sequence

0— 72— Ztr — Z7]Z — 0.
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All elements of Zt/Z are T'-torsion, so the cokernel A® Z1/7Z and kernel
Tor(A, Zt/Z) of ¢ are T'-torsion. The conclusion follows easily.
For a nilpotent group G, there is a central series

1=G,CG4-1C---CG1CGy=0G.

Since localization is exact, we have a commutative diagram with exact rows

1 G G G/Gg —— 1
2 SR CR €
1 —— (Gr Gr (G/G1)T — 1.

By induction, we may assume that the conclusion holds for G; and G/G;.
From here, the proof is diagram chasing reminiscent of the proof of the five
lemma and of Lemma 5.4.4 above. We leave the details as an exercise for the
reader.

For (iii), if Gr = 1, then all elements of G are in the kernel of ¢ and G
is a T’-torsion group by (i). For the converse, let h € Gr. By (ii), there is an
elementg € G and a T’-number r such that h" = ¢(g). Since G is a T'-torsion
group, there is also a T’-number s such that g* = 1. Then h"™ = ¢(g°) = 1,
hence h = 1 by Remark 5.4.2. O

COROLLARY 553. Letaw: G —> H be a homomorphism from a nilpotent group
G to a T-local group H. Then « is a localization at T if and only if it is a
T-isomorphism.

PROOF. The forward implication is given by parts (i) and (ii) of Proposi-
tion 5.5.2, and the converse follows from (iii), which shows that the locali-
zations at T of the kernel and cokernel of « are trivial. O

With a little more work, one can prove the following more general result.

PROPOSITION 5.5.4. Letaw: G —> H be a homorphism between nilpotent groups
and let ar: Gt —> Hr be its localization.

(i) ar is a monomorphism if and only if o is a T-monomorphism.
(ii) o is an epimorphism if and only if « is a T-epimorphism.
(iii) o is an isomorphism if and only if o is a T-isomorphism.
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SKETCH PROOF. One would like to say that since localization is exact, the
sequence

1 —> (kera)r — Gy —> Hr —> (cokera)r —> 1

is exact, so that the conclusions follow from Proposition 5.5.2(iii). However, in
our non-abelian situation, we must take into account that the two implicit short
exact sequences do not splice, since the image of « is not a normal subgroup
of H. Part (i) works naively but part (ii) needs more a little more work to
show how the notion of T-epimorphism circumvents this problem. Details
are given in [60, Cor. 6.4]. The key element of the proof is the following group
theoretic observation, which is [60, Thm. 6.1]. We shall have another use for it
shortly. O

Recall that the lower central series of G is defined by I''(G) = G and,
inductively, [V*1(G) = [G, TY(G)].

LEMMA 555, Let g and h be elements of a group G. If h1 = 1, then
() = g7 mod TV (G).

Therefore, if G is nilpotent of nilpotency class c, then (gh)? = g?.

The following observations will play a role in proving the fracture theorems
for localization. Recall that localization commutes with finite products. It does
not commute with infinite products in general, but we have the following
observation.

LEMMA 55.6. If G; is a T-local group for all elements of an indexing set I, then
[Tic; Gi is T-local.

PROOF. A group G is T-local if and only if the g'-power function G — G
is a bijection for all g not in T. A product of bijections is a bijection. d

LEMMA 5.5.7. Localization at T commutes with pullbacks.

PROOF. Let Gand H be the pullbacks displayed in the following commutative
diagram, where y is obtained by the universal property of pullbacks.
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AN

H— Kr

|

J L

NN

Jr ——— I

G —— K

N\

The claim is that y is a localization of G at T. When J, K, and L are abelian, G
is the kernel of the difference map J x K — H and the conclusion follows by
the exactness of localization. A different proof applies in general. For a prime
q ¢ T, the g power function on H C JT x Kr is a bijection since (x,y) € H if
and only if (x4, y1) € H. Therefore H is T-local. We now use Corollary 5.5.3.
Let (j,k) € G. If y(j, k) = 1, then ¢(j) = 1 € J7 and ¢(k) = 1 € Kr, hence
j" =1and k* = 1 for T"-numbers r and s. Therefore (j, k)" = 1. This implies
that the kernel of y is the T'-torsion subgroup of G, so that y is a T-mono-
morphism. If (x,y) € H, we must have x4 = ¢(j') € Jr and y" = ¢ (k) € Kr
for some j' € J, k' € K and T’-numbers g and r. Let s=gqr, j = (j/)", and
k = (K')9. Then x° = ¢(j) and y* = ¢(k). Let m and n denote the images of j

-1

and kin L. These may not be equal, but £ = m~'nmapsto 1in L, hence there

is a T’-number u such that £* = 1. Of course, n = mf. Lemma 5.5.5 shows
that n*° = m*, where ¢ is the nilpotency class of L. Therefore (j*,k*") is in
G and y maps it to (x,y)™ in H. This proves that y is a T-epimorphism. [

We round out our discussion with some discussion of the behavior of local-
ization with respect to various central series of a nilpotent group G. We first
record a direct consequence of our cocellular construction of localizations.

PROPOSITION 5.5.8. For any central series
{(I1=G4CG1C---CGo=G
of G, the localization ¢: G —> Gr passes to subquotients to give localizations
Gi/Gjt1 — (Gj/Gja)t, G —> (Gj)r and G/Gj —> (G/Gj)r

forl <j.
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This should make the following pair of results not too surprising. For
complete proofs, see [60, Thms. 5.6, 5.9]. Note that the lower central series
is functorial in G. Using that together with the two out of three result in
Corollary 5.4.11, we obtain an inductive proof of the following result.

PROPOSITION 5.59. The localization ¢: G —> Gt at T passes to subquotients

to give localizations
V(G) — [¥(Gr) and G/I¥(G) — Gr/I¥(Gr)

for1l <j.

Recall that the upper central series of G is defined inductively by letting
Zy(G) = 1, letting Z1(G) be the center of G, and letting Z;,1(G)/Z;(G) be the
center of G/Z;(G). Note that since the center is not functorial, neither is the
upper central series. Proposition 4.5.9 gives the starting point for the follow-
ing result, and we shall prove part of it in Lemma 5.6.6 below.

PROPOSITION 5.5.10. If H is T-local, then so is Z;(H) for j > 1. The localization
¢: G —> Gr restricts to maps Zj(G) to Z;(Gr) and, if G is finitely generated, these
restrictions are localizations for 1 < j.

5.6. Finitely generated T-local groups

It is often necessary to restrict attention to finitely generated modules over
the principal ideal domain Zr, and we need the appropriate notion of finite
generation for T-local groups. Although the ideas are clear enough, we have
not found a treatment adequate for our purposes in either the algebraic or
the topological literature. We prove what we need in this section, leaving some
details to the algebraic literature. Our purpose is to say just enough to lay
the groundwork for the later fracture theorems.

Recall that an f Zr-nilpotent group G is one that admits a Zr-central series
whose subquotients are finitely generated Zr-modules. It is immediate from
our cocellular construction of localizations that Gt is fZr-nilpotent if G is
f-nilpotent. We gave several equivalent conditions for a group to be f -nilpotent
in Proposition 4.5.9, and we shall prove a T-local analogue of that result. We
shall use it to characterize f Zr-nilpotent spaces in Theorem 6.1.4, in analogy
with our characterization of f-nilpotent spaces in Theorem 4.5.2.

Remember that we require T-local groups to be nilpotent and not just
uniquely g-divisible for primes notin T. We shall need the following definition.
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DEFINITION 5.6.1. For a subgroup H of a group G, define H to be the set
of elements g € G such thatg" € H for some T’-number r.!

The following result is due to Warfield [141, Thm. 3.25]; we shall not repeat
its proof.

LEMMA 5.6.2. Foranysubgroup H of a nilpotent group G, the set H ? is a subgroup

of G.

For a subgroup H of a T-local group G, H% can be characterized as the
smallest T-local subgroup of G that contains H. By Proposition 5.5.2, if
¢: G —> Grisalocalization of G, then G = ¢(G)$. We adopt the following
terminology.

DEFINITION 5.6.3. If H is the subgroup of a nilpotent group G generated by
aset S, then we call H % the subgroup of G T-generated by S. We say that G is
T-generated by Sif G = H% . We say that G is finitely T-generated if it has a
finite set of T-generators.

By an easy clearing of denominators argument, a finitely generated
Zr-module is a finitely T-generated abelian group. The following analogue
of Proposition 4.5.9 admits a similar proof. However, since the details are not
obvious and the result is not in the literature, we shall give the proof. We will
need the following notion.

DEFINITION 5.6.4. Agroup Gis T-supersolvableifithas a finite normal series
of subgroups that are uniquely g-divisible for q ¢ T and whose successive
subquotients are cyclic Zr-modules.

PROPOSITION 5.6.5. Let G be a T-local group. Then the following statements are
equivalent.

(i) GisfZr-nilpotent.
(ii) G/(IG, G1%) is finitely T-generated.
(iii) G is finitely T-generated.
(iv) Every T-local subgroup of G is finitely T-generated.

1.In[78, 141], H% is called the T’-isolator of H, where T’ is the set of primes notin T.
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PROOF. Write G’ = [G, G]$. Itis easily checked that G’ is a normal subgroup
of G, and we let 7: G — G/G’ be the quotient homomorphism. Certainly
(i) implies (ii). Assume (ii). To prove (iii), choose a finite set S of elements h;
of G such that the elements 7 (h;) T-generate G/G, let H be the subgroup of
G generated by S and let HS D H be the subgroup of G T-generated by S.
The restriction of 7 to H ? is an epimorphism. Indeed, if k € G/G/, then there
is a T’-number r such that k" is in the subgroup generated by the 7 (h;), say
k" = m(h)forh € H. Since Gis T-local, thereisauniquej € Gsuchthatj” = h,
and then 77 (j) = k since 7 (j)" = k'. It follows exactly as in the proof of Propo-
sition 4.5.9 that G = G’HE. By Lemma 5.6.7 below, this implies that HS = G.

The proof that (iii) implies (iv) is a modification of the proof in [56,
Thm. 10.2.4] of the corresponding implication of Proposition 4.5.9. It pro-
ceeds in two steps. First, by Lemma 5.6.8 below, if G is finitely T-generated,
then G is T-supersolvable. Second, by Lemma 5.6.9 below, every T-local sub-
group of a T-supersolvable group is T-supersolvable and therefore T-finitely
generated. Finally, if (iv) holds, then the center Z(G) is T-local by Lemma 5.4.5
and is therefore finitely T-generated. Since G is finitely T-generated, so is
G/Z(G). By induction on the nilpotency class, we may assume that G/Z(G) is
fZr-nilpotent. Therefore G is f Zr-nilpotent. O

We must prove the lemmas quoted in the proofjust given. We use the upper
central series, and we usually abbreviate Z;(G) to Z;. Itis standard group theory
that Z; = G if and only if G is nilpotent of nilpotency class g. The following
observation is false for the lower central series since [G, G] need not be T-local
when G is T-local.

LEMMA 5.66. If G is nilpotent, then G is Z-nilpotent if and only if each Z; is
Z-nilpotent or, equivalently, each Z;/Z;_1 is a T-local abelian group.

PROOF. By induction on the nilpotency class of G, this is immediate from
Lemmas 5.4.4 and 5.4.5. To see this, it helps to observe that

Zi1(G/Z1(G) = Z(G)/ Z1(G). O

LEMMA 5.6.7. Let G be T-local and suppose that G = [G, G1$], where ] C G is
T-local. Then | = G.

PROOF. Let Jo = J and J;,1 = Z;11J;- Then J; is a normal subgroup of J; ;.
Indeed, for z € Z;,; and g € G [2,g] = zgz"'g~! is in Z;. When g € J;, this
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gives that zgz~! = [z, glgisin Z;J; = J;, the last equality holding since J; D Z;.
Suppose that | is a proper subgroup of G. Since Z,, = G for some m, there
is an i such that J;,; = G but J; # G. The quotient G/J; is a T-local abelian
group, since itis isomorphicto Z; 1 /J; N Z;,1, and it follows that J; D [G, G]?.
Therefore

G=IG,GIf] CIG,GIFJi =J;

which is a contradiction. O
LEMMA 5.6.8. A finitely T-generated T-local group G is T -supersolvable.

PROOF. Let H be the subgroup generated (in the usual sense) by a finite
set of T-generators, so that G = ng. Since G is nilpotent, so is H, by
Lemma 3.1.3. By Proposition 4.5.9, Z(H) is finitely generated. We claim that
Z(G)=Z(H )% and is therefore finitely T-generated. To see this, let z € Z(H)
and g € G. Thereisa T’-number r such thatg” € H, and then g = zgz~! since
g" =2g"z71 = (zgz!)". This shows that Z(H) C Z(G), and therefore
Z(H) = Z(G)N H. It follows that

Z(H)$ = (Z(G)NH)$ = Z(G)$ N HE = Z(G)N G = Z(G).

The second equality holds since it is easily checked that (J N H)$ = J¢ N HS
for any pair of subgroups of a T-local group, and the third equality holds by
Lemma 5.4.5. Now Z(G) is a finitely generated Zr-module and is thus a finite
direct sum of cyclic Zr-modules, so Z(G) is obviously T-supersolvable. We may
assume by induction on the nilpotency class that G/Z(G) is T-supersolvable,
and it follows that G is T-supersolvable. O

LEMMA 5.6.9. Let G be a T-supersolvable group. Then G is finitely T -generated. If
H is a subgroup that is uniquely q-divisible for q ¢ T, then H is T-supersolvable.
If H is also normal in G, then G/H is T-supersolvable.

PROOF. Consider a finite normal series
(1}=G,CGpu-1C---C Gy =G

such that the G; are uniquely g-divisible for q ¢ T and the G;,1/G; are cyclic
Zr-modules. Inductively, Gy is T-generated by m — 1 elements, and these
elements together with an element that projects to a Zr-generator of G/Gq
T-generate G. The intersections HN G; give a similar normal series for H
and, if H is normal, the images of the G; in G/H give a similar normal series
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for G/H. The essential point is just that submodules and quotient modules of
cyclic Zr-modules are cyclic. d

REMARK 5.6.10. The algebra of T-local and especially finitely T-generated
T-local groups deserves more algebraic study than it has yet received. For
just one example of a further result that seems not to be in the literature, one
can prove by the methods of [78, §67] that the normalizer of a T-local subgroup
of a T-local group is again T-local.
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CHARACTERIZATIONS AND PROPERTIES
OF LOCALIZATIONS

We give several characterizations of localizations in {6.1, and we use these to
study the homotopical behavior of localization with respect to standard con-
structions on based spaces in §§6.2—6.4. Here §6.2 deals with limits and fibra-
tions, §6.3 deals with function spaces, and 6.4 deals with colimits and cofiber
sequences. The commutation relations in (6.4 lead to a dual cellular construc-
tion of localizations of simply connected spaces, as we explain in §6.5. We
give still other constructions of localizations of H-spaces and co-H-spaces in
§6.6, and we show that localizations preserve such structure. Finally, in §6.7,
we discuss rationalization. In particular, we calculate the rationalizations of
spheres and use the result to give a quick proof of Serre’s theorem about the
finiteness of the homotopy groups of spheres.

6.1. Characterizations of localizations of nilpotent spaces

In order to understand the behavior of various space-level constructions with
respect to localization, we need to show that several alternative conditions on a
map are equivalent to its being a localization. We state two omnibus theorems
for ease of reference and then proceed to their proofs.

THEOREM 6.1.1. The following properties of a nilpotent space Z are equivalent,
and they hold if and only if Z is T -local.

(i) Z is a Zt-nilpotent space.

(it) £*:[Y,Z] — [X, Z] is a bijection for every Zr-equivalence §: X —> Y.
(iii) Each w,Z is a T-local group (nilpotent if n = 1, abelian ifn > 1).
(iv) Each Hy,(Z;Z) is a T-local abelian group.

THEOREM 6.1.2. For a nilpotent space X, the following properties of a map
¢: X — Y from X to a T-local space Y are equivalent. There exists one and,
up to homotopy, only one such map, namely the localization X — Xr.

111
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(i) ¢*: Y, Z] — [X, Z] is an isomorphism for all T-local spaces Z.
(ii) ¢ is a Zr-equivalence.
(iii) ¢x: mnX —> m,Y is localization at T for n > 1.
(iv) ¢w: Hy(X;Z) —> Hy(Y;7Z) is localization at T forn > 1.

In Theorem 6.1.1, (ii) is the definition of what it means to be T-local. In
Theorem 6.1.2, (ii) is the definition of what it means for ¢ to be a localization
at T, and we have already proven the existence and uniqueness of such a local-
ization. Thus in both results, it suffices to prove the equivalence of (ii) with
the remaining properties. It is noteworthy in all three results that the actions
of fundamental groups on higher homotopy groups are not mentioned. In
particular, the implication (iii) = (i) in Theorem 6.1.1 shows that if the
groups 7, Z are T-local, then 71 Z must act Zr-nilpotently on them. We com-
ment on the meaning of (iv), which will have no analogue in the case of
completions, and interpolate an important variant of Theorem 6.1.1 before
proceeding to the proofs.

REMARK 6.1.3. Since Zr is Z-flat, Tor (A, ZT) = 0 for all abelian groups A and
the universal coefficient theorem gives an isomorphism

a: Hy(X;Z) @ Zy —> Hy(X; Z7).
Moreover, under this isomorphism the canonical map
B: Hy(X;Z) — Hy(X;Z7)

induced by Z — Zt coincides with the localization homomorphism. There-
fore (iv) in Theorem 6.1.1 is equivalent to the assertion that g is an isomor-
phism when X is T-local. By the naturality of « and 8 applied to the map ¢,
this implies that (iv) in Theorem 6.1.2 is equivalent to the assertion that

¢x: Ho(X; Z1) — Ho(X13Z7)

is an isomorphism.

THEOREM 6.1.4. The following properties of a nilpotent space Z are equivalent.
(i) Z is an f Zr-nilpotent space.
(ii) Each my(Z) is a finitely T-generated T-local group.
(iii) H;(Z; Z) is a finitely generated Z-module for each i > 1.

REMARK 6.1.5. We shall develop a theory of “T-CW complexes” in §6.5, but
only for simply connected T-local spaces. With that theory in place, we can
prove as in Theorem 4.5.2 that a simply connected space is f Zr-nilpotent if and
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only if it has the weak homotopy type of a T-CW complex with finite skeleta.
We say that a space weakly equivalent to such a space is simply connected of
finite T-type.

PROOF OF THEOREM 6.1.1. We proceed step by step.

(i) = (ii). Since a Z-nilpotent space is weakly equivalent to a Postnikov
Zr-tower, this is a special case of Theorem 5.3.1.

(il) = (i). Since Z is T-local, its localization ¢: Z — Z7 must be a weak
equivalence, by the uniqueness of localizations. By our cocellular construction,
Zr is a Postnikov Zr-tower and is therefore Zr-nilpotent.

(i) = (iii). If Z is Zr-nilpotent, then 7, Z is a Zr-nilpotent 71 Z-group for
n > landis thus T-local by Lemma 5.4.6if n = 1 and by Lemma 5.1.1ifn > 1.

(iii) = (i). We can prove this algebraically or topologically. Algebraically,
since each 7, Z is T-local, w1Z is a Zr-nilpotent 71 Z-group by Lemma 5.4.6
and 7, Z for n > 1 is a Zr-nilpotent w1 Z-group by Lemmas 4.1.1 and 4.1.2.
Topologically, since Z is nilpotent, it has a cocellular localization ¢: Z— Zr
in which Zr is Zr-nilpotent. By (iii) of Theorem 6.1.2, proven below,
¢x: TnZ —> m,Zr is localization at T and is thus an isomorphism. Therefore
¢ is a weak equivalence and Z is Zr-nilpotent.

(i) = (). When Z = K(B,n) for a Zr-module B, (iv) holds by Theo-
rem 5.2.8. For the general case, we may assume that Z is a Postnikov Zr-tower
Z = lim Z;, where Z;, is the fiber of amap k;: Z; — K(B;, n; + 1) and B; is
a Zr-module. Using the form of (iv) given in Remark 6.1.3, the map from the
Serre spectral sequence

Hy(Zi; Ho(K(Bi, m:); Z)) = Hpiq(Zis1;Z)
to the Serre spectral sequence
Hp(Z; Hy(K(Bi, mi); Z1)) = Hpiq(Zig1; Z1)
shows that (iv) for Z; implies (iv) for Z;,;. On passage to limits, we see by
Proposition 2.5.9 that (iv) holds for Z.
(iv) = (i). We have the localization ¢: Z —> Z. We shall shortly prove
the implication (ii) = (iv) in Theorem 6.1.2, and this gives that

¢y Ho(Z;Z) — Ho(Z1;7)
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is localization at T. By our assumption (iv), the domain here is T-local,
so that this localization is an isomorphism. Since Z and Zr are nilpotent
spaces, ¢ is a weak equivalence by Theorem 3.3.8 and therefore Z, like Zr, is
Zr-nilpotent. d

PROOF OF THEOREM 6.1.4. Proposition 4.5.9 implies that (i) and (ii) are
equivalent. One can see that (i) implies (iii) by inductive use of the Serre spec-
tral sequences of the stages in a Postnikov tower of X. Changing the ground
ring from Z to Zt, the proof that (iii) implies (ii) is the same as the proof that
(iv) implies (iii) in Theorem 4.5.2. O

PROOF OF THEOREM 6.1.2. Again, we proceed step by step.

(i) = (i). Since T-local spaces are weakly equivalent to Postnikov T-towers,
this is a special case of Theorem 5.3.1.

(i) = (ii). Since K(B, n) is T-local for a Zr-module B, this implication is
immediate from the representability of cohomology.

(i) = (iii) and (iv). By the uniqueness of localizations, it is enough to
prove that our cocellular localization ¢: X — Xr satisfies (iii) and (iv).
Thus we assume that X is a Postnikov tower lim X; constructed from maps
ki: X; — K(A;, n; + 1), where A; is an abelian group, n; .1 > n; > 1, and only
finitely many n; = n for each n > 1. Construct Xt by Theorem 5.3.2. On pas-
sage to homotopy groups, the map of fibrations constructed in the proof of
Theorem 5.3.2 gives a map of short exact sequences

1 A; T Xit1 TTn, Xi 1

i @ l Pit1x l Dix

1 —— (A)r —— mlXip1)1] —— 7 l(Xi)7] —— 1.

By construction, the groups in the lower sequence are T-local. Since the left
and right vertical arrows are localizations at T, so is the middle arrow, by
Corollary 5.4.11. Inductively, this proves that (iii) holds. To see that (iv) holds
in the form given in Remark 6.1.3, we just repeat the proof of Theorem 5.3.2
using homology rather than cohomology.

(iv) = (ii). This is an application of the universal coefficient theorem. Let
C be T-local and consider the map of exact sequences
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0 — Ext(H,_1(X1;Z1),C) — H"(X1;C) —> Hom(H,(Xr;Z71),C) —> 0

| | l

0 —> Ext(H, 1(X;Z1),C) —> H"(X;C) —> Hom(H,(X;Z1),C) —> 0

induced by ¢. By assumption and Remark 6.1.3, the left and right vertical maps
are isomorphisms, hence the middle vertical map is also an isomorphism and
¢ is a Zr-equivalence.

(iii) = (ii). Assuming that ¢,.: 7, X — 7,,Y is alocalization at T for every
n > 1, we must prove that ¢ is a Zr-equivalence. This is given by Proposi-
tion 5.4.8 when X = K(G, 1) for a nilpotent group G and by Theorem 5.2.8
when X = K(A, n) for an abelian group A.

We first deal with the case when X and Y are simple spaces and then
use universal covers to deal with the general case. Thus suppose that X
and Y are simple. We may assume that they are simple Postnikov tow-
ers and that ¢ is cocellular. Then X =1limX; is defined by k-invariants
k+2: X, — K(m;41X,i+2), and similarly for Y. The map ¢ induces maps
of fibration sequences.

K1 X,i+l) —— X411 —— X

| L

K(JTi+1Y,l'+1) E— Yi+1 — Y]

Let B be a Z7-module. We have Serre spectral sequences of the form
B} = HP(X;; HY(K (41X, i+ 1); B)) => HP™(X;1q; B)

and similarly for the Y;. Since the base spaces are simple, the local sys-
tems are trivial. By induction and the case of Eilenberg-Mac Lane spaces, the
induced map of E, terms is an isomorphism and therefore so is the map
H*(Y;;1; B) — H*(X;y1; B). Passing to limits, we conclude from Proposi-
tion 2.5.9 that ¢ is a Zr-equivalence. Now consider the general case. We have
a map of fibrations

—_— X — K(7T1X,1)

L

Y — = K(mY,1).

~ <——— X
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The Serre spectral sequence for X has the form
B! = HP(K(m1 X, 1); HY(X; B)) = HP1(X; B)

and similarly for Y. Here the action of the fundamental group of the base space
on the cohomology of the fiber can be nontrivial. By the case of K(G, 1)’s,

¢*: H*(K(m1Y,1); B) — H*(K(m1X, 1); B)

is an isomorphism for all Z7-modules B. By Proposition 4.2.1, HY(Y; B) is a
Zr-nilpotent 71 Y-module. By Lemma 4.1.6, this implies that

¢*: H*(m;Y, HP(Y; B)) — H*(m1X, HP(Y; B))

is an isomorphism, where 71X acts on Hi(Y; B) through ¢. By the previous
step, ¢*: HY(Y; B) — HY(X; B) is an isomorphism, and the actions of 71X
are the same on the source and target. Therefore the map

¢*: H*(m Y, H*(Y; B)) — H*(mX, H*(X; B))

of E; terms is an isomorphism and ¢ is a Zr-equivalence. O

6.2. Localizations of limits and fiber sequences

The characterizations of localizations imply numerous basic commutation
relations between localization and familiar topological constructions. We gave
some such results using the explicit cocellular construction of localizations in
Proposition 5.3.4 and Corollaries 5.3.5 and 5.3.6. Their homotopical versions
can be proven either directly from the characterizations or by approximating
given nilpotent spaces and maps by Postnikov towers and cocellular maps.
The latter approach leads to the following homotopical observation. Recall the
notion of a Zr-map from Definition 4.3.2.

LEMMA 6.2.1. If f: X —> Y is a map between nilpotent spaces, then its localiza-
tion fr: Xr —> Yr isa Zr-map.

PROOF. By Theorem 3.5.4 we may assume that X and Y are Postnikov towers
and that f is a cocellular map. We may then construct ¢x: X — Xr and
¢y: Y —> Y7 by Theorem 5.3.2 and construct fr by Theorem 5.3.3, so that
it too is a cocellular map. Since a map of abelian groups between T-local
abelian groups is a map of Zr-modules, by Lemma 4.1.2, the conclusion
follows. O
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REMARK 6.2.2. Recall Notations 4.5.1 and 4.3.3. There are precise analogues
for f-nilpotent and fZr-nilpotent spaces for all results in this section and
the next. That is, if we start with finitely generated input in any of our results,
then we obtain finitely generated output. On the fundamental group level, this
relies on Proposition 5.6.5.

We first record the homotopical versions of commutation results that we
have already seen cocellularly and then give a stronger result about fibrations.

PROPOSITION 6.23. IfX and Y are nilpotent spaces, then (X x Y)t is naturally
equivalent to X1 x Yr.

PROPOSITION 6.2.4. IfX isnilpotentand Qo (X) denotesthe basepoint component
of QX, then (QX)T is naturally equivalent to Qo(XT).

pROOF. This is immediate by inspection of homotopy groups. Alternatively,
observe that QoX is equivalent to 2X, where X is the universal cover of X,
and apply the cocellular version to X. O

We state the following result in terms of homotopy pullbacks, as defined
in Definition 2.2.1, rather than fibrations. The conclusion is that localization
commutes with homotopy pullbacks. This will play a key role in the fracture
theorems for localization.

PROPOSITION 625. Let f: X —> Aand g: Y —> A be maps between nilpo-
tent spaces, let No(f,g) be the basepoint component of the homotopy pullback
N(f,g), and let fr and gr be localizations of f and g at T.

(i) No(f,g) is nilpotent.

(it) If N(f,g) is connected, then N(fr,gr) is connected.
(iii) No(f,g) is T-local if X, Y, and A are T-local.
(iv) No(fr,gr) is a localization at T of No(f, g)-

PROOF. Part (i) holds by the case ¥ = b of Proposition 4.4.3. For part (ii),
Corollary 2.2.3 shows how to determine connectivity by the tail end of an exact
sequence, and the exactness of localization of nilpotent groups gives the con-
clusion. Since a space is Zr-nilpotent if and only if it is T-local and nilpotent,
we have a choice of proofs for part (iii), depending on whether or not we
want to use the notion of a Zr-map. While the homotopy groups of a homo-
topy pullback are not the pullbacks of the corresponding homotopy groups in
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general, the description given in Corollary 2.2.3, together with Lemma 5.5.7,
implies that the homotopy groups of No(f,g) are T-local. Alternatively, we
can use the case ¢ = o7, of Proposition 4.4.3 to prove directly that N(f, g)
is Zr-nilpotent. Using Corollary 5.4.11, part (iv) follows by comparison of the
long exact sequences of homotopy groups for No(f, g) and No(fT, gr) given in
Corollary 2.2.3. O

THEOREM 6.26. Let f: X —> Y be a map to a connected space Y such that Y
and all components of X are nilpotent. Let F = Ff. Then each component of F is
nilpotent and there is a homotopy commutative diagram

Y
4 Fr ¢
A\
3
Ffr Xt

‘ p fr

QY F

QYr

with the following properties.

(i) Themap ¢: Y —> YT is a localization at T.

(ii) The maps ¢: X —> Xt and ¢: F —> Fr are the disjoint unions of local-
izations at T of the components of X and F defined using any (compatible)
choices of basepoints in these components.

(iii) The rows are canonical fiber sequences.

(iv) The restriction of ¥ to a map from a component of F to the component of its
image is a localization at T.

(v) The map &: Fr —> Ffr is an equivalence to some of the components of Ff.

(vi) Fixx € X, lety = f(x) € Y, and assume that the images of

ferm(X, %) — m(Y,y) and fr,: mi(Xr, ¢(x) — 71 (Y1, 0(y))
are normal subgroups. Then
(a) the quotient group 7o (F) is nilpotent;

(b) the quotient group 7wo(Ffr) is Zr-nilpotent; and
(¢) Vs: 7wo(F) —> 7o (FfT) is @ localization at T.
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PROOF. We may as well replace f by its mapping path fibration. We see
that the fiber F = Ff is nilpotent by Proposition 4.4.1 or 4.4.2. We start the
construction of the diagram with the upper fibration sequence and chosen
localizations ¢ of Y and the components of X and F. By the universal property,
applied one component of X and F at a time, there are maps fr: Xt — Yt
and pr: Fr — Xr, unique up to homotopy, such that fro¢ ~ ¢of and
pro¢ =~ ¢ op. The map fr then gives rise to the bottom fibration sequence.
Again by Proposition 4.4.1 or 4.4.2, the components of Ffr are nilpotent. More-
over, the groups in (vi) are nilpotent by Lemmas 3.1.3 and 4.3.4. We see that
Ffr and 7o (Fpr) are T-local by Corollary 5.4.11. Let ¢ be any fill-in making
the left and middle squares commute up to homotopy. Then a comparison of
long exact sequences of homotopy groups shows that ¢ : F — Ffr restricts
to localizations of components and the last clause of (vi) holds. By the unique-
ness of localization, there results a componentwise equivalence & such that
Eo¢ >~ ¥, and po& =~ pr by the uniqueness of pr. O

The previous result simplifies when Y is simply connected and therefore
F is connected. In that case, we can ignore the interior of the central square
and parts (v) and (vi), concluding simply that : F — Fft is a localization of
FatT.

6.3. Localizations of function spaces

We first record an essentially obvious consequence of the general theory of
localizations. All of our spaces have given basepoints, and we let X, denote
the component of the basepoint of X.

LEMMA 63.1. Let X be nilpotent and Y be T-local and nilpotent. Then
¢": F(XT,Y) — F(X,Y).

is a weak homotopy equivalence.

PROOF. We state this in terms of weak equivalence since F(X, Y) need not
have the homotopy type of a CW complex even under our standing assumption
that all given spaces have the homotopy types of CW complexes. Since X is
connected,

Ta(F(X, Y)s) = [S", F(X, Y)s] = [X, (2"Y),]
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for n > 0, and similarly with X replaced by Xr. The space (2"Y), is T-local
since Y is T-local, and the conclusion follows from the universal property of
the localization ¢p: X — Xr. O

Our main interest in this section is to use our study of fibrations to examine
the interaction between localization at T and function spaces. The results here
will play a key role in the proofs of the fracture theorems for localization.
Changing notation, we take X to be the target space and K to be the source.
We are interested in finite based CW complexes K, not necessarily nilpotent.
For such K, F(K, X) does have the homotopy type of CW complex, by [103].
Without changing its homotopy type, we can arrange that K has a single
vertex and based attaching maps. By a based CW complex, we mean one of
this sort. We form the function space F(K, X) of based maps K — X. It has
a canonical basepoint, namely the trivial map, which we denote by *, but we
generally ignore this fact.

THEOREM 6.3.2. Let X be a nilpotent space and K be a finite based connected CW
complex. Let f € F(K, X), and let F(K, X)s denote the component of F(K, X) that
contains f. Let K* denote the i-skeleton of K and define [K, X]r to be the set of all
g € [K, X] such that g|K"~1 = f|K"~ 1 in [K"~1, X], where n is the dimension of
K. Let ¢: X —> Xr be a localization of X at T. Then the following statements
hold.

(i) F(K,X)s is a nilpotent space, F(K,Xr)gof is a Zr-nilpotent space, and
¢x: F(K, X)r —> F(K, XT)gof is a localization of spaces at T.

(it) [K,X]y is a nilpotent group, [K,Xrlgor is a Zr-nilpotent group, and
¢« [K, X1 —> [K, XTlg0of is a localization at T.

PROOF. First consider the case when K is a finite wedge of i-spheres, where
i>1. Here F(K,X); = F(Vv Si,X)f is a component of a finite product of
copies of Q2'X and is thus a simple space. Since F(K, X) is a loop space and
thus a group up to homotopy, its components are all homotopy equivalent.
Therefore , (F(K, X)r) = X7 (QX) = x7,4:(X) forn > 1, and similarly with
X replaced by X7. Since m,,;(X7) is a localization of m,1;(X), we see that
F(K, XT)gof is T-local and ¢ is a localization of F(K, X)r at T by use of the
homotopical characterizations in Theorems 6.1.1 and 6.1.2. Similarly, (ii)
holds since the skeleton K1 is apoint, sothat[K, Xlp =I[K,X]isa finite prod-
uct of copies of 7;(X) and [K, Xrlgos = [K, XT]is the corresponding product of
copies of ;(XT).
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Now assume that (i) holds for K"~!, where K has dimension n with n > 2.
Let K be the cofiber of a wedge of attaching maps j: ] —> K"~! where J is a
finite wedge of (n — 1)-spheres. Since K can be identified with Cj, the fiber F*,
Jj* = F(j,id), ishomeomorphic to F(K, X) by Lemma 1.1.6. (Here the fiber Fj*
is defined with respect to the canonical basepoint of F(], X)). Thus, for any
map f: K — X with restriction e to K n=1 we have a restriction

F(K,X); —> F(K"™!,X). —> F(J,X)s

to components of a canonical fibration sequence. By the first case and the
induction hypothesis, the components F(K"1, X), and F( ], X) are nilpotent
with localizations F(K"~!, X1)poe and F(], Xt)«. Now (i) follows directly from
Theorem 6.2.6(i). Note that we can take ¢ = F(id, ¢) in this specialization of
that result, so that its diagram takes a more canonical form.

To prove (i), it suffices to identify the set [K,X]; with the group
7o(F(K, X),f), and similarly with X replaced by Xr. We have the required
normality conditions since F(J, X), is a loop space, so that its fundamental
group is abelian and the image of the fundamental group of F(K"~!, X), is
necessarily a normal subgroup. By Theorem 6.2.6(ii),

Vit 70(F(K, X), f) —> 7o(F(K, X1), ¢ of)

is a localization at T for each f € F(K, X), so that these identifications will
imply (ii). Thus consider the exact sequence of pointed sets

71 (F(K"1, X), ¢) LN m1(F(J, X),f o)) 2 70(F(K, X),f) LN 7o(F(K" L, X), ).
Here [K, X] can be identified with 7o (F(K, X), f), and [K, X]s can be identified

with the kernel of i*. This exact sequence restricts to the sequence

0 — 7 (F(K, X),f) LN o(E(K, X),f) l—*> no(F(K”_l,X),e)

and this identifies 77o(F(K, X), f) with the kernel [K, X]f of i*. O

6.4. Localizations of colimits and cofiber sequences

Using the homological characterization of localizations, we obtain analogues
of the results in §6.2 for wedges, suspensions, cofiber sequences, and smash
products. However, in the non-simply connected case, the required preserva-
tion of nilpotency is not automatic. Wedges behave badly, for example. The
wedge S! v S!is not nilpotent since a free group on two generators is not nilpo-
tent, and the wedge S! v S? is not nilpotent since 71 does not act nilpotently
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on ;. In the following series of results, appropriate natural maps are obtained
from the universal properties or functoriality of the specified constructions.

PROPOSITION 6.4.1. IfX, Y, and X V'Y are nilpotent spaces, then (X v Y)r is
naturally equivalent to X7 Vv Yr.

PROPOSITION 6.4.2. If X is nilpotent, then (X£X)T is naturally equivalent to
T (X7).

PROPOSITION 6.4.3. Leti: A —> X be a cofibration andf : A — Y be a map,
where A, X, Y, X /A, and X Up Y are nilpotent. If we choose localizations such that
it: Ay —> Xr is a cofibration, then X1 Ua, Yt is a localization of X U, Y.

PROOF. We first note that Cit >~ X1 /Ar is a localization of X/A and then
use the long exact sequences of Zr-local homology groups of the cofibration
sequences Y — XU Y — X/Aand Yr — X7 Ua, YT — X7/Ar. O

PROPOSITION 6.4.4. Let f: X —> Y be a map such that X, Y, and Cf are
nilpotent and let ¢: X —> Xt and¢: Y —> Y belocalizations. Then any fill-in
¢ in the map of canonical cofiber sequences

f 1 T
X Y cf X
|
¢ \L ¢ l (I P
\
Xr Yr Cfr XYr
fr i i

is a localization of Cf at T.
PROPOSITION 6.4.5. Let X be the colimit of a sequence of cofibrations
X; —> X;.1 between nilpotent spaces and choose localizations (X)) —> (Xi41)T

that are cofibrations. Then colim (X;)T is naturally a localization of X.

PROPOSITION 6.4.6. If X, Y, and X A'Y are nilpotent, then (X AY)T is natu-
rally equivalent to X1 A Yr.

PROOF. The Kiinneth theorem and the homological characterization of
T-local spaces imply that Xr A Yr is T-local. The Kiinneth theorem also
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implies that the smash product of localizations is a localization. The universal
property of (X A Y)r gives the conclusion. O

6.5. A cellular construction of localizations

We have constructed localizations of nilpotent spaces at T using a cocellular
method, and we have proven a number of properties of localizations that do not
depend on the particular construction. Other constructions can also be useful.
In this section, we describe a dual cellular construction of the localizations of
simply connected spaces. The construction does not generalize to nilpotent
spaces, butit has redeeming features. For example, it gives rise to local cellular
chain complexes for the computation of T-local homology.

Since we are interested in simply connected spaces, the logical first step in
the construction is to pick a fixed localization for S?. However, it is easier to
start with S'. We can construct a localization ¢: S' —> SI. by taking S1. to be
K(Z7,1) for some particular construction of this Eilenberg-Mac Lane space;
the map ¢: S' —> Si. is then induced by the inclusion Z —> Zt. We gave
an explicit construction in the proof of Theorem 5.1.3.

Nowtake S? = ¥ S!and S2 = £(SL). Inductively, define S’ tobe £ "~ and
define SiT tobe & SiT_l. Define ¢: St —> SiT to be £¢. This gives a localization
by Proposition 6.4.2. Similarly, we localize wedges of spheres, pushouts along
attaching maps, and sequential colimits by the evident and natural use of
Propositions 6.4.1, 6.4.3, and 6.4.5. Note that we must start with S rather
than S! since otherwise taking wedges of spheres loses nilpotency. This is
where the restriction to simply connected spaces enters.

Now recall the definition of _#-complexes from Definition 3.3.3. It spe-
cializes to give _# S?-complexes and _# SZT-cell complexes. In both cases, we
can define CW complexes by requiring cells to be attached only to cells of
lower dimension, and then we can arrange that the sequential filtration that
describes when cells are attached coincides with the skeletal filtration; note
that the 1-skeleton of such a CW complex is just the basepoint. We refer to cell
complexes and CW complexes in _# S% as T-cell complexes and T-CW com-
plexes. The following theorem hardly requires proof since it follows directly
from the results of the previous section. However, we give some details to
illustrate the duality with the cocellular construction.

THEOREM 6.5.1. There is a cellular localization functor from the homotopy cate-

gory of 7 S?-cell complexes to the homotopy category of _# S%-cell complexes that
takes CW complexes to T-CW complexes.
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PROOF. Describe X € _#S? as in Definition 3.3.3. Thus X is the colimit of a
sequence of cofibrations X;, —> X, 11 such that Xy = *, X;41 is the pushout
of the cofibration J, — CJ, and a map j,: J» — Xy, where J,, is a wedge
of spheres of dimension at least two. When X is a CW complex, we may take
Jn to be a wedge of n-spheres and then X, is the n-skeleton of X. We define
(X1)n inductively, starting with (X)o = *. Given (Xr)y, consider the following
diagram.

Jn . Xpy1 —— X]n

|
¢ l l n | Pnt1 l pors
Y

(Jn)r ——= Xu)1 —— Xur1)T1 —— (ZJW)T
(Jn)T

The upper row is a cofiber sequence, and (J,,) is the wedge of the localiza-
tions of the wedge summands S? of J,. There is a map (j»)7, unique up to
homotopy, such that the left square commutes up to homotopy by the univer-
sal property of localizations. We define (X, 1) to be its cofiber and then the
lower row is also a cofiber sequence. There is a fill-in map ¢,41 that makes the
middle square commute and the right square commute up to homotopy, by
Lemma 1.2.1. As noted in the previous section, the homological characteriza-
tions of T-local spaces and localizations at T imply that ¢+ is a localization
at T and that if X7 is the colimit of the (X,)r, then the map ¢: X — Xr
obtained by passage to colimits is also a localization at T. A quick summary
of the construction is that we can construct (Xr), as (Xu)t. O

In the previous result, we understand the relevant homotopy categories
to be full subcategories of Ho.7, and then the functoriality of the construc-
tion is immediate from the functoriality of localization in general. However,
we can refine this by dualizing the cocellular functoriality of Theorem 5.3.3.
Recall from [93, p. 74] that, for CW complexes X and Y, any map X — Y
is homotopic to a cellular map and any two homotopic cellular maps are cel-
lularly homotopic. The proof works equally well to give precisely the same
conclusion for CW complexes in ¢ S2 or B4 SZT. Therefore, restricting to CW
complexes (which is no restriction on homotopy types), the full subcategories
just mentioned are the same as the categories of CW complexes and cellular
homotopy classes of cellular maps.

In the construction above, if we start with a CW complex X, we obtain
a T-CW complex Xr. If f: X — X’ is a cellular map, we can construct
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Jfr: X1 — X} to be a cellular map, and it will be unique up to cellular
homotopy.

We can define the cellular chains of a T-CW complex Y in the same way as
for ordinary CW complexes, letting

6.5.2 Cq(Y) = Hy(Y9, YT Z7)

and letting the differential come from the connecting homomorphism of the
triple (Y4, Y4=1, Y472), asin[93, p. 117]. In positive degrees, we getisomorphic
chainsif wereplace Zby Zr. If Y = Xr is the cellularly constructed localization
of a CW complex X, then

6.5.3 CqlXr) = Cy(X; Z1).

The cellular chains of T-CW complexes are functorial on cellular maps, and the
isomorphism (6.5.3) is natural with respect to cellular localizations of maps.
We remark parenthetically that when Y is of dimension n, the corresponding
cochains satisfy

6.5.4 CUY; ) = mu_g F(YY/ YT, K(r, 1))

for any Zr-module r, as in Exercise 3.3.4.

6.6. Localizations of H-spaces and co-H-spaces

Recall that an H-space, or Hopf space, X is a space together with a product
X x X —> X such thatthe basepoint * € X is atwo-sided unitup to homotopy.
We may assume that the basepointis a strict unit, and we often denote it by e. Of
course, topological monoids and loop spaces provide the canonical examples.
Nonconnected examples are often of interest, but we continue to take X to be
connected. Recall from Corollary 1.4.5 that X is a simple space.

The elementary construction of SI. in the proof of Theorem 5.1.3 used the
product on S!, and we can use the product on any H-space Y to obtain a
precisely similar construction of Yr. Again, we order the primes g; notin T
by size and define r; = 1 and r; = g} - - - g;, so that Zr is the colimit over i of
the maps r;: Z —> Z. Applied pointwise, the product on Y gives a product
between based maps S" — Y. This product is homotopic to the product
induced by the pinch map $" — S" v §", as we leave to the reader to check.
The latter product induces the addition on homotopy groups, hence so does
the former. An H-space is homotopy associative if its product satisfies the
associative law up to homotopy. We do not require this. However, associating
the product in any fixed order, we can define iterated products. In particular,
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restricting such an r-fold product to the image of the diagonal Y — Y", we
obtain an r-power map r: Y — Y. It induces multiplication by r on each
group m,(Y).

PROPOSITION 6.6.1. For an H-space Y, the localization YT can be constructed
th
as the telescope of the sequence of r;"-power maps Y —> Y.

PROOF. Writing Y for the telescope, we have 7, (Yr) = colim 7, (Y), where
the colimit is taken with respect to the homomorphisms given by multiplica-
tion by r;, and this colimit is 77, (Y) 1. The inclusion of the base of the telescope
isamap Y — Yr that induces localization on homotopy groups. O

The following basic result is more important than this construction and
does not depend on it.

PROPOSITION 6.6.2. If Y is an H-space with product u, then Y is an H-space
with product wr such that the localization ¢: Y — Yr is a map of H-spaces.

PROOF. Consider the diagram

m
YXY —— Y

wl s

YrxYr —— Y.
wr

The map ¢ x ¢ is a localization of Y x Y at T, by Theorem 6.1.1. By the
universal property, there is a map pr; making the diagram commute up to
homotopy. To see that the basepoint of Y7 is a homotopy unit for 17,, consider
the diagram

id

¥ XY — YXY — Y
t n

g l l o l !

L Ut
*XYT —— YTXYT E—— XTi‘

\/

id

“530-46909_Ch06_5P.tex” — 8/19/2011 — 11:24 — page 126



6.6. LOCALIZATIONS OF H-SPACES AND CO-H-SPACES / 127

The identity map of Y1 and the map prt are both localizations of id = ut on
Y, hence they are homotopic, and similarly for the right unit property. O

The converse does not hold. There are many interesting spaces that are not
H-spaces but have localizations that are H-spaces. In fact, in 1960, well before
localizations were constructed in general, Adams [2] observed that S7. is an
H-space for all odd »n and all sets T of odd primes. In fact, there is a quite
simple construction of a suitable product.

EXERCISE 6.63. [130, p. 14] . Let n be odd. Give S" ¢ D"*! the basepoint
x = (1,0,...,0). Define f: S" x S"— S" by f(x,y) = y — (2Xx;y;)x. Observe
that f does have image in S" and show that the degrees of the restrictions
S* — S"of f to x = x and y = * are 2 and —1, respectively.

That is, f has bidegree (2, —1). Since ,(S%) =[S}, S}] =Zr and 1/2 €
Zt, we have a map of degree 1/2 on S%}. We also have a map of degree —1.
The required product on S is the composite

(1/2,-1) fr

S? X S%—>S¥ X S?—)S?.

This map has bidegree (1,1), which means that it gives S7 an H-space
structure. Adams observed further that S% is homotopy commutative and
is homotopy associative if 3 ¢ T. These can be checked from the construction.

In contrast, S" itself is an H-space only if n =0, 1, 3, or 7, by Adams’
solution to the Hopf invariant one problem [1]. Here the Lie group S* is not
homotopy commutative and the H-space S’ given by the unit Cayley num.-
bers is not homotopy associative. There is a large literature on finite T-local
H-spaces, especially when T = {p}. In the simply connected case, finite here
is best understood as meaning homotopy equivalent to a T-CW complex that
has finitely many cells.

The study breaks into two main variants. In one of them, one allows general
finite T-local H-spaces, not necessarily homotopy associative or commutative,
and asks what possible underlying homotopy types they might have. In the
other, one studies finite T-local loop spaces, namely spaces X that are of the
homotopy type of finite T-CW complexes and are also homotopy equivalent
to QBX for some T-local space BX. Such X arise as localizations of finite loop
spaces. One asks, typically, how closely such spaces resemble compact Lie
groups and what limitations the H-space structure forces on the homology
and homotopy groups. The structure theorems for Hopf algebras that we give
later provide a key starting point for answering such questions.
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Although of less interest, it should be observed that Propositions 6.6.1
and 6.6.2 have analogues for co-H-spaces. A co-H-space Z is a space with a
coproduct §: Z — Z Vv Z such that V o § is homotopic to the identity, where
V:Zv Z — Zis the folding map. Suspensions XX with their pinch maps
provide the canonical examples. We can define r™ copower maps Z — Z by
iterating the coproduct in some fixed order and then applying the r-fold itera-
tion of V. Assuming for simplicity that Z is simply connected, to avoid dealing
with the group m1(Z), we can check that this map too induces multiplication
by r on homotopy groups. From here the proof of the following result is the
same as the proof of Proposition 6.6.1.

PROPOSITION 6.6.4. For a simply connected co-H-space Z, the localization Zt
th
can be constructed as the telescope of the sequence of r;" copower maps Z — Z.

PROPOSITION 6.6.5. IfZisa simply connected co-H -space with coproduct §, then
Z is a co-H-space with coproduct 81 such that the localization ¢: Z — Zr isa
map of co-H -spaces.

PROOF. Since Z is simply connected, the wedge Z7 Vv Zr is a localization of
Z v Z, and the conclusion follows by use of the universal property. O

6.7. Rationalization and the finiteness of homotopy groups

Localization at the empty set of primes is called rationalization. Logically it
should be denoted Xj, but it is usually denoted Xp. It will play a special role in
the fracture theorems since rationalization X —> X, factors up to equivalence
as the composite X — X1 —> Xj of localization at T and rationalization for
every set of primes T'. Itis also of considerable interest in its own right. We give
a few examples here and return to the rationalization of H-spaces in Chapter 9.

Many results in algebraic topology that preceded the theory of localization
are conveniently proven using the newer theory. We illustrate this with a
proof of a basic theorem of Serre on the finiteness of the homotopy groups of
spheres. Serre proved the result using (Serre) classes of abelian groups [125].
The proof using rationalization is simpler and more illuminating.

THEOREM 6.7.1 (SERRE). Forn > 1, the homotopy groups m4(S") are finite with
the exceptions of w,(S") = Z for all n and w,—1(S™) = Z & F, for n even, where
F, is finite.
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The fundamental class ¢, € H"(K(Q, n); Q) is represented by the identity
map of K(Q, n), and we have the following easy calculation.

PROPOSITION 6.7.2. The cohomology algebra H*(K(Q,n); Q) is the exterior
algebra on v, if n is odd and the polynomial algebra on v, if n is even.

PROOF. For n =1 and n = 2, this is clear from Theorem 5.2.8 and the fact
that S! = K(Z, 1) and CP® = K(Z, 2). We proceed by induction on n, using
the Serre spectral sequence of the path space fibration

K(Q n) — PK(@Qn+1) — K(Q,n+1).

Here 1, transgresses (via dy41) to ty41. For n even, the Leibnitz rule im-
plies that dn+1(tg) = an+1L371, and the spectral sequence is concentrated
on the 0" and (n+1)* columns. For n odd, the Leibnitz rule implies that
oanrl(t?l 1ln) = Lzﬁ, and the spectral sequence is concentrated on the 0™ and
n'* rows. O

PROOF OF THEOREM 6.7.1. Starting with a representative k: S"— K(Z, n)
for the fundamental class of S" and arguing as in the cocellular construction
of localizations, we obtain a homotopy commutative diagram

k
K(Z,n—1) —> S"(n) sn K(Z, n)

| N

K@Qn—-1 ——= S*n)g —— S§ —— K(@Q,n)
ko

in which the rows are canonical fiber sequences and the maps ¢ are rationali-
zations.

If nis odd, ko induces an isomorphism in rational cohomology and is there-
fore an equivalence. This implies that all homotopy groups 74(S"), g > n, are
in the kernel of rationalization. That is, they are torsion groups. Since they are
finitely generated by Theorem 4.5.4, they are finite.

If n is even, the Serre spectral sequence of ko implies that H*(S"(n)o; Q)
is an exterior algebra on a class 12,1 of degree 2n — 1 that transgresses to Li.
Here dzy,(tﬁtz,l,l) = L?L“, the spectral sequence is concentrated on the 0" and
(2n—1)* rows, and (¢, survives to the fundamental class of S§. Therefore
the Hurewicz dimension of $*(n)o is 2n — 1, and a map S(Z)”*1 —> S™(n) that
represents (7,1 must be an equivalence. Thus the rationalization of the homo-
topy group m4(S"), g >0, is 0 if g #2n—1 and is Q if g =2n—1. Since
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7on—1(S") is a finitely generated abelian group with rationalization Q, it must
be the direct sum of Z and a finite group. O

We point out an implication of the proof just given.

COROLLARY 6.7.3. Considertherationalizationky: S§ —> K(Q, n) ofthe canon-
ical map k: S* — K(Z,n). If nis odd, ko is an equivalence. If n is even, the fiber
of ko is K(Q,2n —1).

6.8. The vanishing of rational phantom maps

In this brief section, we give an observation that shows, in effect, that phantom
maps are usually invisible to the eyes of rational homotopy theory.

LEMMA 6.8.1. Let X be a connected CW complex with finite skeleta. If Z is f Q-
nilpotent, then

lim!' [£X",Z]1=0

and
[X,Z] = lim [X", Z]

is a bijection.

PROOF. We claim that each [£X", Z] is an f Q-nilpotent group. The proof is
by induction on n. Note first that if | is a finite wedge of i-spheres, i > 1, then
[X], Z] is a finite dimensional Q-vector space and [ ], Z] is an fQ-nilpotent
group.

We may assume that X0 = . Let Jn, n > 1, be a wedge of n-spheres such
that X"+ is the cofiber of a map Uy, : J — X". Then thereis an exact sequence

(2% pun)* 8 * (Zpn)*

- = [B2X" Z] = (2%, Z] — (=X, Z] — [EX",Z] — [Z] Z].

By Lemma 1.4.6(v), the image of § is central in [ZX"*1, Z].

Assume inductively that [£X", Z] is an fQ-nilpotent group. By Lemma
5.1.2, (Z%uyu)* is a map of Q-vector spaces and (Xj,)* is a Q-map. By
Lemma 4.3.4, im§ = coker(EZ,un)* is a finite dimensional Q-vector space
and coker § = ker (X un)* is an f Q-nilpotent group. Then Lemma 5.1.2 and
the exact sequence

0 — imé — [ZX"!, Z] — coker§ — 0
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imply that [£X"*1, Z] is Q-nilpotent. By Proposition 5.6.5, im 8 and coker &
both have finite sets of J-generators. The images of the (J-generators for im §
and a choice of inverse images of the #J-generators for coker § give a finite set
of #-generators for [X X n+1 Z). Proposition 5.6.5 then implies that [Z X", Z]
is f Q-nilpotent.

Now the following easy observation, which is trivial in the abelian case,
implies that the sequence [£X", Z] satisfies the Mittag-Leffler condition des-
cribed in Section 2.3, so that the result follows from Theorem 2.3.3(i). O

LEMMA 6.38.2. Any descending chain of f Q-nilpotent groups has finite length.
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FRACTURE THEOREMS FOR
LOCALIZATION: GROUPS

In Chapter 5, we described how to construct localizations of nilpotent spaces.
In the next chapter, we go in the opposite direction and describe how to start
with local spaces and construct a “global space” and how to reconstruct a given
global space from its localizations. Results such as these are referred to as frac-
ture theorems. In contrast to Chapter 5, where we constructed localizations
of nilpotent groups from localizations of nilpotent spaces, we first prove frac-
ture theorems for abelian and nilpotent groups in this chapter and then use
the results of Chapter 6 to extend the algebraic fracture theorems to nilpotent
spaces in the next.

Although much of this material can be found in [21, 62, 133], there seem
to us to be significant gaps and oversights in the literature, including some
quite misleading incorrect statements, and there is no single place to find a
full account. There are also some ways to proceed that are correct but give less
complete answers; we shall say little about them here. The new concept of a
“formal localization” plays a central role in our exposition, and that concept
leads us (in §7.5) to a new perspective on the “genus” of a nilpotent group,
namely the set of isomorphism classes of nilpotent groups whose localizations
at each prime are isomorphic to those of the given group. In the next chapter,
we will find an analogous perspective on the genus of a nilpotent space.

Throughout this chapter, let I be an indexing set and let T; be a set of
primes, one for each i € I. Let S = (";; T; and T = (J,; T;; it is sensible to
insist that T; N T; = S for i # j and that T; # S for all i, and we assume that
this holds. Thus the T; — S give a partition of the primesin T — S.

We are mainly interested in the case when S is empty and localization at S is
rationalization. We are then starting with a partition of the set of primes in T,
and we are most often interested in the case when T is the set of all primes. For
example, I might be the positive integers and T; might be the set consisting
of just the ith prime number p;. A common situation is when I = {1, 2},

132
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T1 = {p}, and T is the set of all other primes. For example, spaces often look
very different when localized at 2 and when localized away from 2.

Until §7.6, all given groups in this chapter are to be nilpotent. We have
two kinds of results. In one, we start with a T-local group G and ask how
to reconstruct it from its localizations at the T;. We call these global to local
results and treat them in §7.2, after developing perspectives and preliminaries
in §7.1. We give a conceptual proof that works simultaneously for nilpotent
and abelian groups, but in {7.6 we give a general group theoretical result that
allows an alternative proof by induction on the nilpotency class and that will
be needed later to prove the analogous global to local result for completions.

In the other, we are given T;-local groups and ask how to constructa T-local
group from them. We call these local to global results and treat them in §7.4,
after developing the notion of a formal localization in {7.3. In both, we are
concerned with certain basic pullback diagrams, and it turns out that there
are simplifying features when the indexing set I is finite or the given groups
are finitely generated.

As a matter of philosophy or psychology, the global to local and local to
global perspectives should be thought of as two ways of thinking about essen-
tially the same phenomenon. We either start with a global object and try to
reconstruct it up to equivalence from its local pieces or we start with local
pieces and try to construct a global object with equivalent local pieces. These
processes should be inverse to each other. In all cases the global to local results
are actually implied by the local to global results, but for purposes of exposition
we prefer to think of firstlocalizing and then globalizing, rather than the other
way around.

7.1. Global to local pullback diagrams

For nilpotent groups G, and in particular for T-local groups G, we have the
localizations

¢:G— Gs, ¢i: G— Gr, and ;: G, — Gs.

Since Gg is T;-local for each i, we can and do choose ¥; to be the unique homo-
morphism such that y;¢; = ¢ foreachi. Wealsolet¢s: [[; Gr, — ([]; GT,)s
denote a localization at S. We fix these notations throughout this section. We
are headed toward a description of a T-local group G in terms of its local-
izations. We have the following two commutative diagrams, in which ¢ is a
localization at S, P and Q are pullbacks, and « and 8 are given by the universal
property of pullbacks.
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(¢)
7.1.1 [Tic: Gt,
S
Gs ([Tic1 GT)s
(#)s
(¢3)
7.1.2 G 1 GTy
] Iy
Gs [lic1 Gs
A

Here (¢;) denotes the map with coordinates ¢; and (¢;)s denotes its local-
ization at S. By Lemma 5.5.6, [[; Gs is S-local and we may identify it with
its localization at S. Applying Lemma 5.5.7 to commute pullbacks with locali-
zaton at T and at Ty, we obtain the following conclusion.

PROPOSITION 7.1.3. The groups P and Q are T-local, and for each k € I local-
ization at Ty, gives pullback diagrams

Pr, —— (niej GTi)Tk and Qr, —— (Hiel GTi)Tk

l l (#s)T, l i (M),

Gs —— (l—liel GTi)S Gs — l_[LEI
(¢4)s A

We have a comparison diagram that relates the T-local groups P and Q. If

i+ [ Gr,—>Gr; is the projection, there is aunique map 7;: ([ [ G1;) g—>Gs
such that ;0 s = ¥; om;. The map (7;): (][ Gr,)s — [[; Gs with coor-
dinates 7; is the localization (y;)s of the map (¥;): [[Gr, — [; Gs.
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Q l—[iEI GT;
¢s l
Gs (niel GTi)S Iy
Gs [lie1 Gs
A

Here y is given by the universal property of the pullback Q. It is immediate
fromthe diagramthat y o« = 8. Sincelocalization commutes with finite prod-
ucts, the map (7;) is an isomorphism and the distinction between diagrams
(7.1.1) and (7.1.2) disappears when I is finite.

LEMMA 7.5, If I is finite, the pullback diagrams (7.1.1) and (7.1.2) may be
identified and the map y : P — Q is an isomorphism.

We are interested in determining when o and g are isomorphisms. Since
ya = B, they can both be isomorphisms only if y is an isomorphism. This
can easily happen even when (77;) is not an isomorphism and the pullback
diagrams cannot be identified. Indeed, we have the following observation.

LEMMA 7.1.6. Supposethat (;): ([[ic; Gr,)s — [lic; Gs is a monomorphism.
Then y is an isomorphism, hence o is an isomorphism if and only if B is an
isomorphism.

PROOF. Let g€ Gs and h € [[; Gr,. If (g,h) € P and y (g, h) = (1,1), then
of course the coordinates must be g =1 and h = 1. That is, y is always a
monomorphism. Now suppose that (g, h) € Q. Then g = y;(h) = 7;¢s(h) for
all i. If g denotes the image of g in ([ [; Gr,)s, then we also have g = 77;(g) for
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all i. Since (77;) is a monomorphism, g = ¢s(h) and (g, h) € P. Thus y is an
epimorphism. d

Before giving our general results, we record an important elementary
example where the two pullback diagrams do not coincide, but their pullback
groups do.

PROPOSITION 7.1.7. Let T be the i prime p;. If A is a finitely generated abelian
group, then both of the following diagrams are pullbacks.

(¢,) @)

A — > l_[iA(Pi) and A —— HieIA(Pi)
bo l \L o o l l v
Ao —— (IT;i Ao Ao —— [li4o

(6p;)s A

However, the difference map
(¢p)s = ¢o: Ao X [T Ay ——=(ITi Ap)o,
whose kernel in the left diagram is A is an epimorphism, but the difference map
A =T Ag x [T; Apy——[1; Ao,

whose kernel in the right diagram is also A is only an epimorphism in the trivial
case when A is finite.

PROOF. Since Ais a finite direct sum of cyclic groups, it suffices to prove this
when A = Z/p" for some prime p and when A = Z. The first case is trivial.
We leave the second as an illuminating exercise for the reader. O

In some of the early literature, the focus is on the pullback Q and the
resulting map B: G — Q, but then there are counterexamples that show
that B is not always an isomorphism and thus the pullback Q does not always
recover the original group. In fact, thatis usually the case when the indexing set
Iisinfinite. Of course, such counterexamples carry over to topology. Moreover,
even when y: P — Q is an isomorphism, its topological analogue will not
induce an equivalence of homotopy pullbacks in general. The reader who
looks back at Corollary 2.2.3 will see the relevance of the observation about
epimorphisms in the previous result.
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We shall prove in the next section that « is always an isomorphism. The
proof will use the following observation about the detection of isomorphisms.

LEMMA 7.1.8. A homomorphism a: G —> H between T-local groups is an iso-
morphism if and only if at,: Gr, — Hr, is an isomorphism for all k € I.

PROOF. This is proven by two applications of Proposition 5.5.4. Since ar, is
an isomorphism, « is a Ty-isomorphism. Since T is the union of the Ty, it
follows that « is a T-isomorphism. In turn, this implies that a7 is an isomor-
phism. Since G and H are T-local, « itself is an isomorphism. O

However, perhaps the most interesting aspect of the proof will be the cen-
tral role played by the following categorical observation about pullbacks. It
applies to any category that has categorical products. Such categories are said
to be cartesian monoidal. Examples include the categories of abelian groups,
groups, spaces, and sets. Less obviously, the homotopy category Ho.7 is an-
other example, even though pullbacks do not generally exist in Ho.7.

LEMMA 7.1.9. In any cartesian monoidal category, a commutative diagram of the
following form is a pullback.

(id.gf)

A——— AxC

s l | e

B —— = BxC

(id.g)

PROOF. A proofusing elements, if we have them, just observes thatifa € A,
b e B, and ¢ € C satisfy (b, g(b)) = (f(a),¢), then b = f(a) and ¢ = g(f(a)).
However, it is an easy categorical exercise to verify the result directly from the
universal properties that define products and pullbacks (e.g., [93, p. 16]). O

7.2. Global to local: abelian and nilpotent groups

Here, finally, is our main algebraic global to local result.

THEOREM 7.2.1. Let G be a T-local group.

(i) (#1): G —> [lic; G, is a monomorphism.
(ii) The following diagram is a pullback.
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(¢)
G — [lie/ G,

d

Gs —— ([lie; G1))s
(Pi)s

Moreover, every element z € ([ [;c; GT,)s is a product z = ¢s(x)(¢i)s(y) for
somex € [[;c; Gr; andy € Gs.

(iii) If G is finitely T-generated, the following diagram is also a pullback.

(@)
G — [lies O,

d |

Gs — [lier Gs
A

PROOF.

(i).

This holds by two applications of Proposition 5.5.2. The group ker (¢;)
is the intersection of the kernels of the localizations ¢;: G — G, and
all elements of ker ¢; are T;-torsion. Since T is the union of the T;, all
elements of the intersection are T’-torsion. Since G is T-local, ker (¢;) is
trivial.

. Let «: G — P be the map given in (7.1.1). We must prove that « is

an isomorphism. Since P is T-local, by Proposition 7.1.3, it suffices to
show that at,: Gr, — Pr, is an isomorphism for all k € I. Again by
Proposition 7.1.3, Pr, is the pullback of the localizations at Tj of the
maps (¢;)s and ¢s. It suffices to show that G, is also the pullback of
these localizations at Ty. To get around the fact that localization does
not commute with infinite products, we think of [ [;; Gr, as the product
of the two groups G, and Hj;ék Gr;. Localization at Ty, commutes with
finite products and is the identity on Tj-local groups, such as Gs. Thus,
after localization at T, our maps are

Gr, X ([ G113
\L (Y Vk)

Gs

Gs x ([T GT)s-
(id.(¢5)s)
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We claim that the group H = (]_[j#k Gry)1y is S-local, so that the second
component v, of the right-hand map is the identity. By Lemma 7.1.9,
this will imply that G, is the pullback of these two maps and will thus
complete the proof. To prove the claim, let g be a prime that is not in S.
If g is not in Ty, then the g™ power function H — H is a bijection since
H is Ty-local. If g is in T}, then g is not in any T; with j # k since g is not
in S =T;NT;. The g™ power function is then an isomorphism on each
Gr; and therefore also on H. This proves the claim.

An alternative argument is possible. One can first prove this in the
abelian case by the argument just given and then argue by induction on
the degree of nilpotency of G. The argument is not uninteresting but is
longer. We give a general group theoretical result that specializes to the
required inductive step in Lemma 7.6.2.

We must still prove the last statement in (ii). We show this when
G = A is abelian here. Using the exactness of localization at T; and
S and the fact that a product of exact sequences is exact, the proof
when G is nilpotent is completed by induction up a central series, using
Lemma 7.6.1 below. In the abelian case, let C be the cokernel of the differ-
ence map

(0i)s —#s: As x [[; A,——(I]; A1y)s,

whose kernel is A. It suffices to prove that C = 0. Since Cis a Zr-module,
this holds if the localization of C ateach prime p € T is zero (e.g., [6, Prop.
3.8)). In turn, since p is in some T}, this holds if the localization of C at
Ty is zero. But we have just shown that after localization at T}, we obtain
a pullback diagram of the simple form displayed in Lemma 7.1.9, and it
is obvious that the difference map for such a pullback of modules over
any ring is an epimorphism.

In this case we do not have a direct argument that works for general
nilpotent groups. We first use the structure theorem for finitely generated
modules over the PID Zr to prove the result in the abelian case. Here
the result reduces to the case of cyclic T-modules, where the proof is
no more difficult than that of Proposition 7.1.7. A few more details will
be given in the local to global analogue, Proposition 7.4.4 below. The
general case follows by induction on the degree of nilpotency of G, using
that T-local subgroups of finitely T-generated T-local groups are T-local,
by Proposition 5.6.5, and that the center of a T-local group is T-local, by
Lemma 5.4.5.
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The inductive step can be viewed as a specialization of Lemma 7.6.2
below, but special features of the case at hand allow a simpler argument.
Thus let

L P
1 H G K 1

be an exact sequence of finitely T-generated T-local groups and assume
that the conclusion holds for H and K. Letg; € G, and go € Gs be given
such that v;(g;) = go foralli € I. We must show that there is a unique el-
ementg € Gsuchthat¢;(g) =g; forall i and therefore ¢ (g) = ¥, ¢;(g) = go-
There is a unique element k € K such that ¢;(k) = p;(g;) for all i, where
p; denotes the localization of p at T;. Choose g’ € G such that p(g') = k.
Then pi(g)) = ¢ip(g') = pigi(g'), hence g = ¢i(g')i(hi) where h; € Hr,
and, again, ¢; denotes the localization of ¢ at T;. Since v;(g;) = go and
Yid; = ¢, ¥;(h;) is independent of i. Therefore there is a unique element
h € H such that ¢;(h) = h; for all i. Let g = g’¢(h). Then

di(g) = dilg)bit(h) = dilg)u(h) = g

for all i. To prove that g is unique, it suffices to show that 1 is the unique
element g € G such that ¢;(g) =1 € Gy, forall i. Forsuchag, p(g) =1
by the uniqueness in K, so that we can write g = ((h). Then we must

have ¢;(h) = 1 € Hy, for all i, hence h = 1 by the uniqueness in H. O

REMARK 7.2.2. Theorem 7.2.1(ii) was proven under a finite generation hypo-
thesis in Hilton, Mislin, and Roitberg [62], and Hilton and Mislin later noticed
that the hypothesis can be removed [61]. That fact is not as well-known as it
should be. We learned both it and most of the elegant proof presented here
from Bousfield.

7.3. Local to global pullback diagrams

In §7.2, we started with a T-local group and showed that it was isomorphic to
the pullback of some of its localizations. In the next section, the results go in
the opposite direction. We start with local groups with suitable compatibility,
and we use these to construct a “global” group. Again, all given groups are to
be nilpotent. However, we need some preliminaries since, a priori, we do not
have an analogue of the pullback diagram (7.1.1).

Quite generally, we do have an analogue of the pullback diagram (7.1.2). Let
I be an indexing set and suppose that we are given groups H and G; fori € I
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together with homomorphisms ;: G; — H. We understand the pullback
of the ¥;’s to be the pullback Q displayed in the diagram

(8:)
7.3.1 Q —— [La G

H — [l H.
A

Now return to the standing assumptions in this chapter, so that we have
an indexing set I together with sets of primes T; fori € I suchthat T = | T;,
T;(\T;j = Sfori #j,and T; # S for i € I. We consider the pullback diagram
(7.3.1) when G; is Tj-local, H is S-local, and y;: G; — H is localization at
S for each i. Since it is a pullback of T-local groups, the group Q is then
T-local. In general, we cannot expect the coordinates & to all be localizations
at k. By comparison with §7.2, we expect to encounter difficulties when the
indexing set I is infinite, and that is indeed the case. However, in view of
Proposition 7.1.7, we also expect these difficulties to diminish under finite
generation hypotheses. That, however, is less true than we might expect.

The diagram (7.1.2) displays the special case of (7.3.1) that we obtain when
we start with a T-local group G and consider its localizations at the T; and S.
As in §7.2, we would like to have a companion pullback diagram

(1)
7.3.2 P —— [l Gi

S

H —— (HieIGi)Sr

w

where ¢s is a localization at S. However, since we do not start with a global
group G and its localizations ¢;, as in (7.1.1), we do not, a priori, have a map w.
This suggests the following definition. Observe thatif 7;: [ | G;— G; is the pro-
jection, then there is a unique map 7; ([ | G;)s— H such that 7; o ¢ps = ¥ o 7;,
and (7;) is the localization (;)s of the map (y;): [[G; — [; H.

DEFINITION 7.3.3. Let G; be a T;-local group and H be an S-local group, and
let ;: G; — H be alocalization at S for each i. Let ¢s: [[; G; — ([, Gi)s
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be a localization at S and let 7;: ([ [;c; Gi)s — H be the unique map such
that 77; o ¢s = v; o 7r; for all i. A formal localization associated to the y; is a
map w: H — ([];c; Gi)s such that the composite 77; o w is the identity map
of H foreachie I.

The name comes from the fact that when w exists, it turns out that the map
wni: P —> Gjin (7.3.2) is a localization at T;, hence the map v is a localization
at S and w is the localization of (u;) at S. There must be a formal localization
® whenever the maps §;: Q —> Gy in (7.3.1) are localizations at Ty, for all k.
Indeed, the composites Y, 0§, = £: Q —> H are then localizations at S for
all k. By Theorem 7.2.1(ii), if we define P to be the pullback of ¢s and the
localization @ = (3;)s such that w o ¢ = ¢s 0 (§;), then the resulting canonical
mapa: Q —> P that we obtain must be an isomorphism. We conclude thata
general local to global construction that recovers the local groups that we start
with must incorporate the existence of a map w as in (7.3.2).

When we are given a formal localization w, we obtain a comparison diagram
and a comparison map y : P — Q analogous to (7.1.4), but with Gr, and Gg
there replaced by G; and H.

(1)
734 P [lic1 Gi
\/\ \
(8:)
v Q l_[ieI G
R ¢s l
w
H —— | —— ([lic1 Gi)s 0y

H l_[ieI H

In view of the following observation, the notion of a formal localization is
only needed when the indexing set I is infinite.

LEMMA 7.3.5. Let I be finite. Then (7;) is an isomorphism and the composite

o = (7;) "' o A is the unique formal localization associated to the ;: G; —> H,
hence the diagrams (7.3.2) and (7.3.1) are canonically isomorphic.
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7.4. Local to global: abelian and nilpotent groups

With the notations of (7.3.2), here is our main algebraiclocal to global theorem.

THEOREM 7.4.1. Let G; be a T;-local group and H be an S-local group, and let
Y;: G; —> H be a localization at S for each i € 1. If I is finite or, more generally,
if I is infinite and the ; have a formal localization w, then P is T-local and the
induced map fi,: Pr, —> Gy, is an isomorphism for each k € I.

PROOF. Despite the difference in context, the proof is exactly the same as the
proof of part (ii) of Theorem 7.2.1, with G, and Gg there replaced by G; and
H and with (¢;)s there replaced by w. Thus P is T-local since it is a pullback of
T-local groups, and the maps fi;, are isomorphisms since Lemma 7.1.9 applies
to show that Gy, agrees with the pullback obtained by localizing the pullback
diagram that defines P at Tj. O

REMARK 7.4.2. Infact, the global tolocal result Theorem 7.2.1(ii) can be viewed
as a direct corollary of the local to global result Theorem 7.4.1. To see that, we
apply Theorem 7.4.1 to G, and Gy for a given T-local group G and then use
Lemma 7.1.8 to conclude that «: G — P is an isomorphism.

In many of the applications, the indexing set I is finite and of course it
is then most natural to work directly with Q rather than introduce formal
localizations. In that case, the following addendum is important. Recall the
characterization of f Zr-nilpotent groups from Proposition 5.6.5.

PROPOSITION 7.43. Assume in Theorem 7.4.1 that I is finite and G; is
fZr1,-nilpotent. Then Q is f Zt-nilpotent.

PROOF. Assume first that G; = A; is abelian. Then A; is a finitely generated
Zt,-module. Multiplying any given generators by scalars to clear denomina-
tors, we can assume that the generators of A; are in the image of the Zr-module
Q. Let Q' C Q be the Zr-submodule generated by pre-images of the gener-
ators of the A; for all i € I. The localization of Q/Q’ at each prime p € T is
zero, hence Q/Q’ = 0 and Q is a finitely generated Zr-module.

The nilpotent case is proven by induction on the least common bound g of
the lower central series
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(1}=G4CGig1C--CG1CGio=G;

of the G;. We prove inductively that G is f Zr-nilpotent. It is therefore finitely
T-generated by Proposition 5.6.5. We use the lower central series since it is
functorial, so that the lower central series of each G; maps to the lower central
series

{(l=H;CHy1C---CHiCHy=H

of H. We have induced maps of central extensions

1 —— Gi,j/Gi,j+1 E— Gi/Gi,j+1 E— Gi/Gi,j — 1

l l l

1 —— Hj/Hjy —— H/Hj1 ——> H/H —— 1,

For each j, we obtain three pullbacks as in (7.3.1), and they assemble to a central
extension of pullbacks by Lemma 7.6.2(ii), whose key epimorphism hypothesis
is satisfied by the abelian case of the last statement of Theorem 7.2.1(ii). O

There is sometimes an analogue of Theorem 7.4.1 for the pullback Q, rather
than the pullback P, even when I is infinite. When this holds, y: P — Q is
an isomorphism. However, the analogous statement for homotopy pullbacks
in topology will fail in general.

PROPOSITION 7.44. Let A; be a finitely generated Zt,-module and B be a finitely
generated Zs-module, and let y;: A; —> B be a localization at S for each i € I.
Assume that A; has no (T; — S)-torsion for all but finitely many i. Then the induced
map Qr, —> Ay, is an isomorphism for all k € I.

PROOF. We use the structure theory for modules over a PID. Since the A; all
localize to B at S, we find that

A =Fr,®C;®D and B=Fr@D

for some finitely generated free abelian group F, some finite (T; — S)-torsion
abelian groups C;, and some finite S-torsion abelian group D. Here all but
finitely many of the C; are zero. Under these isomorphisms, ; is the sum
of a localization Fr, —> Fs at S, the zero homomorphism on C;, and an
isomorphism D — D. From this, we cannot conclude that

Q=Freo|]CeD.

iel
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However, observing as in the proof of Theorem 7.2.1(iii) that ([[;.4 Aj)1, is
S-local, we can conclude that for each k

Qr, = Fr,® @ D. O

REMARK 7.45. In contrast with Proposition 7.4.3, we shall see in the next
section that Q need not be finitely T-generated even when F is free on one
generator and all C; and D are zero.

REMARK 7.4.6. One might conjecture thata generalization of Proposition 7.4.4
would apply when given fZr,-nilpotent groups G; with a common bound
on their nilpotency class. The outline of proof would follow the proof of
Proposition 7.4.3. However, application of Lemma 7.6.2(ii) fails since its key
epimorphism hypothesis usually fails, as noted in Proposition 7.1.7.

7.5. The genus of abelian and nilpotent groups

It is natural to ask how many groups can have isomorphic localizations at
each set of primes T;. In general, this relates to the question of how unique
formal localizations are. This in turn raises the question of how unique the
localizations v;: G; —> H are in the local to global context. For definiteness
and familiarity, we assume that T is the set of all primes, S is the empty set,
and T; is the set consisting of just the i prime number p;.

A first thoughtless answer is that the v; are unique since the rationaliza-
tion ¥;: G; —> H of a pj-local group G; is unique. But of course it is only
unique up to a universal property, and if one composes v; with an isomor-
phism &;: H — H, then the resulting composite ¥/ = &;1; again satisfies
the universal property. If we have formal localizations associated to the v/; and
the 1//{ and form the associated pullbacks P and P/, then P and P’ need not be
isomorphic, but they do have isomorphic localizations at each prime p;. This
leads to the following definition.

DEFINITION 7.5.1. Let G be a nilpotent group. The extended genus of G is
the collection of isomorphism types of nilpotent groups G’ such that the local-
izations G, and G;, are isomorphic for all primes p. If G is finitely generated,
then the genus of G is the set of isomorphism classes of finitely generated
nilpotent groups in the extended genus of G.

There is an extensive literature on these algebraic notions, and we shall not
go into detail. Rather, we shall explain how to calculate the extended genus
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under a simplifying hypothesis that holds when G is finitely generated and
serves to eliminate the role of formal localizations. The actual genus can then
be sought inside the extended genus, one method being to exploit partitions
of the set of primes into finite sets and make use of Proposition 7.4.3. This
gives a partial blueprint for the analogous topological theory.

Let Aut (G) denote the group of automorphisms of G. We show that ele-
ments of the extended genus are usually in bijective correspondence with

double cosets
Aut (Go)\ [[; Aut (Go)/ [ [; Aut (G).

Any nilpotent group G is isomorphic to a pullback as displayed in (7.1.1).
Here we start from localizations ¢;: G —> G; of G at p; and rationalizations
Vi1 G; = Go and use the resulting rationalization w = (¢;)o: Go — ([ [; Gi)o,
which is a formal rationalization of Gyg. We can reconstruct a representa-
tive group in each element of the extended genus of G starting from these
fixed groups G; and Gy, using pullbacks as displayed in (7.3.2). However, the
rationalizations v;: G; —> Gy used in the specification of the relevant for-
mal completion w: Go —> ([[; G;)o can vary, the variation being given by an
automorphism §; of the rational nilpotent group Go. Similarly, the rational-
ization of [ [; G; can vary by an automorphism of the rational nilpotent group
(IT; Gilo-

To be more precise about this, observe that, up to isomorphism, any two
groups G and G’ in the same extended genus can be represented as pullbacks
P and P’ as displayed in the top triangles of commutative diagrams

P and

AN

— ([[;G))o =— [, G:i Go — ([[;Gi)o =— [L;Gi

\ l(ﬁi);/ \ i(ﬁg);/
A (¥:) A W)

[1; Go [1; Go.

Here 7; is the unique map ([]; G;)o —> Go such that 7; o g = ¥; o 7r;, and
similarly for 7. Usually the pullbacks P and P’ of (w, $o) and (o', ¢) are
not isomorphic. We fix a reference pullback P = G and have the following
result.
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PROPOSITION 7.5.2. Assume that (7T;) is a monomorphism. Then the extended
genus of G is in bijective correspondence with

Aut (Go)\ [T; Aut (Go)/ [T; Aut (G;).

PROOF. Since (7;) is a monomorphism,  is uniquely determined and, by
Lemma 7.1.6, the canonical map y: P — Q from the pullback P of (w, ¢o) to
the pullback Q of (A, (¥;)) is an isomorphism. Since localizations are unique
up to automorphisms of their targets, we see that (7;) is also a monomorphism
and that the analogous canonical map y’: P’ — Q' is also an isomorphism.
Thus the monomorphism hypothesis allows us to ignore formal localizations
and concentrate on pullbacks of diagrams of the form (A, ())).

The double cosets are defined with respect to A: Go —> []; Aut (Go) and
the homomorphisms Aut (G;) — Aut (Gp) that send an automorphism ¢; of
G; to the unique automorphism Z; of Go such that Z; o ¥; = ; o ¢;. We empha-
size that this definition refers to the v; of the fixed reference pullback P = Q.

For any rationalizations ¥ G; —> Gy, there are automorphisms &/ of Go
such that & o ¥; = /. Sending the automorphism £’ = (/) to the isomor-
phism class of the pullback Q’ of

A ()
Go [1; Go [1;Gi

gives a surjection from the set Aut ([[; Go) to the extended genus of G. Sup-

pose we have an isomorphism ¢: Q' —> Q” between two such pullbacks
and consider the following diagram, in which the front and back squares are

pullbacks.
7.5.3 Q’ [Lic; Gi
N
Q,N nie[ Gi
V) l
A
Go [Tic1 Go ()
Co\x k
Go [Tier Go
A
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The unlabeled left vertical arrows are rationalizations and the coordinates of
the unlabeled top horizontal arrows are localizations at p;. The universal prop-
erty of localizations gives automorphisms ¢; of G; and ¢y of Go making the
top and left squares commute. The bottom square obviously commutes, and
then the right square must also commute, so that ¢g o ¥/ = ;" 0 ¢;. As above,
we have a unique automorphism ¢; of Go such that ¢; o ¥; = ¥; 0 {;. Writing
V! =& o and ¥/ = £/ o Yy, these equalities imply that & = oo/ o g:fl,
so that the automorphisms &' = (§/) and §” = (£) are in the same double
coset. Conversely, if §” and £” are in the same double coset, then we obtain an
isomorphism ¢ as displayed in (7.5.3). O

REMARK 7.5.4. If G is abelian, then (7;) is a monomorphism if and only if
all but finitely many of the p;-local abelian groups G; are torsion free. It fol-
lows that (7;) is a monomorphism when G is f-nilpotent or, equivalently by
Proposition 4.5.9, finitely generated.

We give anilluminating elementary example. Above, we started with a given
group G together with fixed localizations G; = G, and a fixed rationalization
Go. If we start out with an abelian group A = A®Z, we have the canonical
localizations A; = A ® Z(p,) and the canonical rationalization Ag = A® Q. The
inclusions Z C Zp,), Z C Q, and Z,,) C Q induce canonical localizations and
rationalizations

¢ A— A, ¢p: A—> Ay, and ¥ A, — Ag

such that y;¢; = ¢. This gives a canonical pullback diagram with pull-
back A.

EXAMPLE 7.55. Let A = Z. An automorphism of Q is just a choice of a unit
in Q, and similarly for Z,,. We are interested in varying choices of v/,
and these amount to choices of nonzero rational numbers &;. We are only
interested in the coset of & modulo the action of the units of Zp, given
by multiplication, hence we may as well take & = p~"i for some r; > 0 for
each i. We are only interested in the coset of the resulting automorphism
( p;ri) modulo action by units of Q. If we can clear denominators, the coset
is that of (1;), so that to obtain noncanonical pullback diagrams up to iso-
morphism, we must assume that r; > 0 for all but finitely many i. We obtain
a diagram
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$o

w
Q — (ILiZpp)o =— TLiZpy

\ l (ﬁ)/
A )

[LQ

by letting ¢o be the canonical rationalization, ¢o(1;) = (1;), so that
#i(1}) = p; . Then w can and must be defined by setting »(1) = (p.'). The
pullback that we obtain is the subgroup of Q consisting of fractions (in redu-
ced form) whose denominators are not divisible by p?“ for any i. These are
infinitely generated groups when r; > 0 for all but finitely many i. Multiplica-
tion by a fixed nonzero rational number gives an isomorphism from one of
these groups to another. The resulting isomorphism classes give the extended
genus of Z, which is uncountable.

In contrast, the structure theory for finitely generated abelian groups has
the following immediate consequence.

PROPOSITION 7.5.6. The isomorphism class of A is the only element of the genus
of a finitely generated abelian group A.

EXAMPLE 75.7. In contrast, non-isomorphic finitely generated nilpotent
groups can be in the same genus, and this can already happen when the nilpo-
tency classis two. A class of examples due to Milnor is described in [62, p. 32]. If
r and s are relatively prime integers, let G, s be the group with four generators
g1, &, h1, hy and with relations specified by letting

gL' =1 and [g1,8] = [, k]

and letting all triple commutators be 1. Then G,/; and G,y are non-iso-
morphic groups that are in the same genus if and only if either r = ' mod sor
rr’ = +1 mod s.

REMARK 7.5.8. The word “genus” is due to Mislin [105], following an analogy
due to Sullivan [133], and has nothing to do with the use of the word elsewhere
in mathematics. Rather, the analogy is with genetics or, perhaps better, taxo-
nomy. Think of a group as an animal, isomorphic groups as animals in the
same species, and groups in the same genus as animals in the same genus.
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Since groups in the same extended genus can be quite unlike each other, they
might be thought of as animals in the same family.

7.6. Exact sequences of groups and pullbacks

We prove two results about pullback diagrams and exact sequences here.
Exceptionally, we do not require our groups to be nilpotent. Our first result
was used in the proof of Theorem 7.2.1(ii) and will be used again in Chapter 12.

LEMMA 7.6.1. Suppose that the rows in the following commutative diagram are
exact and that the image of p1 is a central subgroup of G1.

P2 o2
H, G K3 1
21 J/ \L B i Y21
Pl o1
H; G Ky 1
a31 T T B31 T V3,1
H; G3 K; 1
£3 03

Assume that for each element hy € Hi there are elements hy € Hy and h3 € H3
such that h1 = ay1(ha)as 1(h3) and similarly for the groups K;. Then for each
g € Gy, there are elements g € G, and g3 € G3 such that g1 = B2,1(22)B3,1(g3)-

PROOF. Let g1 € G1. There are elements k; € K; and k3 € K3 such that
o1(g1) = v2,1(k2)y3,1(k3). Therearealsoelements g, € Gy andgj € Gs suchthat
02(gy) = k2 and 03 (g}) = k3. Then o1 (g; ' B2,1(25) B3.1(g5)) = 1, so there is an ele-
ment hy € Hy such that p1(h;') = g; ' B21(g5)B3,1(g;) and therefore, by cen-
trality, g1 = B2,1(g5)p1(h1)B3,1(g5). Moreover, there are elements h; € H, and
h3 € Hysuchthath; = Olzyl(hz)all(hg,) and thus ,01(]11) = ,32)1,02(]12)/33’1/)3(113).
Let gy = gy p2(h2) and g3 = p3(h3)g;. Then g1 = B2,1(g2)B3,1(g3)- Note that we
do not assume and do not need any of the p; to be monomorphisms in this
proof. d

The first part of the following result is relevant to global to local results. It
allows alternative inductive proofs of some of our results in this chapter and
is used in Chapter 12. The second part is relevant to local to global results. It
was used to prove Proposition 7.4.3.
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LEMMA 7.6.2. Consider a commutative diagram of groups

04 o4

1 —— Hy Gy Ky 1

Y,z \/34,2 \/z:,z

P2

1 H, Gy K; 1

43 l Ba3 l V4,3 l

P3 o3

1 —— H; G;3 K3 1

\ a1 \ B2 \ Y21
o3,1 B3.1 V3,1

1 H; G Ky 1.

P1 o1

Assume that the three rows

Pi o

1 H; G; K; 1,

1 < i < 3 are exact. Consider the fourth row and the three squares

04,2 Ba V4,2
Hy ——= Hy Gy —— Gy Ky — K
4,3 \L \L 21 Ba3 \L i P21 V43 \L J/ V2,1
H3 — H1 G3 — Gl. K3 — Kl.
3,1 B31 Y31

(i) If the fourth row is a central extension and the left and right squares are
pullbacks, then the middle square is a pullback.

(i) If all three squares are pullbacks and every element hy € Hy is a product
az1(h2)as1(h3) for some hy € Hy and h3 € Hs, then the fourth row is
exact.

PROOF.

(i) We verify the universal property required for the middle square to be a
pullback. Let 72: G —> G; and 13: G —> G3 be homomorphisms such
that By112 = B3,173. We must show there is a unique homomorphism
74: G —> Gy such that B4,74 = 17 and B4 374 = 73.
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Note that V210272 = 012,172 = 013,113 = ¥3,10373. Since the square
formed by the K;’s is a pullback there is an induced homomorphism

w: G— K4

such that V4,20 = 02T and V4,30 = 03T3.
Since oy is surjective, for each g € G there is a g4 € G4 such that
04(g4) = o(g). Then

02(Ba2(ge) 1287 ")) = 14204(g4) - 022(g ") = yanw(g) - ama(g ™) =1,

hence there is a unique hy € H; such that py(h2) = Ba2(gs) - T2(g 1)
Similarly,

o3(Beslge) T3(g ") =1,

hence there is a unique h3 € H3 such that p3(h3) = Ba3(gs) - 13(g71).
Note that

p1(z1(h2) - az1(hyt)) = Bripa(ha) - Bsaps(hyh)
= B21Ba2(gs) - P2172(g7Y) - B3173(8) - B31Baslgy )
=1.

Since p; is injective, o 1(h2) = «3,1(h3). Since the square formed by the
H;’sisapullback, thereisaunique element hy € Hy suchthatou s (hs) = ha
and w43(h4) = h3. Then, using that p4(H4) is central in G4 and
Bapa = pr0a,

Baz(gs - pa(hy ") = Baa(pa(hy ) g4)
= oa(hy ") - Ba2(gs)
= 12(g) - Ba2(gy ) - Baz(gs) = 2(g).
Similarly,
Bas(ge- palhy ) = T3(9)-

To each element ge G this associates an element

74(g) = g4 - pa(hy ') € Ga suchthat By 2(t4(g)) = T2(g) and B 3(t4(g)) = T3(g)-

To show that 74 is a well-defined function G — G4, we must show that
it is independent of the choice of g4. Again using that p4 factors through
the center of Gy, it will follow that 74 is a homomorphism.

Suppose that g; is another element of G4 such that o4 (g)) = w(g). As
above, we obtain elements h}, hj, and h such that
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pa(hy) = Bra(g) malg™) p3(h3) = Baslgl) (87,
asa(hy) =k, and  ag3(hy) = hi.
Again as above, this implies that

Baa(gh- pa((hy) ™) =1a(g) and  Basz(gs- pa((hy) ")) = T3(g).

We must show that gs - pa(h, ') = g - pa((h})~"). Since o4p4 is trivial,

ou(gs- pahy ") pahl) - (8) ") = oulge) -ou((g) ) = 1.
Therefore, there is an element xe€ Hy; such that
pa(x) = ga - palhy ") - pa(h}) - (g4) 7" Then, using that pyos s = P24,

p20042(x) = Ba2(g4) - .34,2104(’@;1) - Baapa(hy) - Baoallg) ™)
=n(@ nE ) =1

Since p; is injective a4 (x) = 1. Similarly, o4 3(x) = 1. Therefore x = 1.
This implies that the map 74: G —> G4 is a well-defined homomor-
phism.

A similar argument shows that 74 is unique. Suppose we have another
homomorphism 7;: G —> G4 such that B4,7; = v, and 437, = 13.
Little diagram chases show that

! I
V4,204T4 = V4204Ty and  y4304T4 = y43047,.

Since the square formed by the K;’s is a pullback, this implies that
0474 = 047,. Therefore 4(g)(z;) "1 (g) = pa(x) for some x € Hy. Further
little diagram chases and the fact that p; and ps3 are injective imply that
a42(x) =1 and au3(x) = 1. Since the square formed by the H;’s is a
pullback, this implies that x = 1 and therefore that 74 = 7.

It is clear that ps is a monomorphism, o4ps is trivial, and
ker (04) = im(p4). We must show that the map oy is an epimorphism. Let
(k2,k3) € Ky, so that y,1(k2) = ¥3,1(k3), and choose g) € G, and g} € G3
such that o;(g)) = k2 and o3(g;) = k3. Then o1(B21(g5)B31(g3)"Y) = 1,
hence B21(g5)(B31(g5) " = p1(h1) and by = a1 (hy V)as1(h3) for some
hi € H;. Let g = py(hy)g; and g3 = p3(h3)g;. Then (g2,83) € G4 and

04(82, g3) = (k2, k3). O
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FRACTURE THEOREMS
FOR LOCALIZATION: SPACES

In this chapter we extend the results of the previous chapter to nilpotent spaces.
We first consider fracture theorems for maps from finite CW complexes into
nilpotent spaces and then consider fracture theorems for nilpotent spaces
themselves. For the former, we induct up the skeleta of the domain. For the
latter, we could use the results of the previous chapter to conclude corre-
sponding results for Eilenberg-MacLane spaces and then induct up Postnikov
towers to extend the conclusions to nilpotent spaces. However, we shall see
that more elegant proofs that directly mimic those of the previous chapter are
available. As usual, all given spaces are taken to be based, connected, and of
the homotopy types of CW complexes.

As in the previous chapter, let T;, i € I, be sets of primes, and let
T = Ti, and S = ;¢ T;- We assume that T;NT; = Sif i # j, and that
T; # Sforie I

8.1. Statements of the main fracture theorems

For ease of reference we record the main results of this chapter, which are
analogues of the main results of the previous chapter. For our global to local
results, we let

¢p: X — X5, ¢i:X — Xr,, and ¢ X1, — Xs

be localizations of a nilpotent space X such that y;¢; >~ ¢ for each i € I. We
alsolet ¢s: [[; X1, — (][; X1;)s denote a localization at S.

THEOREM 8.1.1. Let X be a T-local space and let K be a finite CW complex. Then
the function

($is): [K, X1 — [ [IK, X1]

iel

154
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is an injection and the following diagram is a pullback of sets.

(¢i)*
8.12 [K,X] — [K,[]je; Xt

N |

[K,Xs] —— [K,([]ie; X1)s]
((¢i)s)«

THEOREM 8.13. Let X be a T-local space. Then the following diagram is a
homotopy pullback of spaces.

(9)
X — [l Xy

N

Xs —> (HiEIXTi)S
(¢i)s

ADDENDUM 8.1.4. If the indexing set I is finite, then both theorems remain
valid if we replace ([[;c;
right corner of the pullback diagrams. Now suppose that I is infinite and that
X is f Zr-nilpotent.

Xr;)s by the equivalent space [[;.; Xs in the lower

(i) In Theorem 8.1.1, the conclusion remains true if we replace ([];c; X1;)s
by [1;c; Xs in the lower right corner.

(ii) In Theorem 8.1.3, the conclusion generally fails if we replace ([[;c; Xt,)s
by [1ic; Xs in the lower right corner.

For our local to global results, let X; be a Tj-local nilpotent space, let Y be an
S-local space, and let y;: X; — Y and ¢s: [[;c; X; —> ([ ]ic; Xi)s be local-
izations at S. Let 77;: ([];c; Xi)s —> Y be the map, unique up to homotopy,
such that 7; 0 s >~ ¥ o ;. Then (7;): (][]
of () at S.

ic1 Xi)s — [1; Y is a localization

DEFINITION 8.1.5. Aformallocalization associated tothe maps /;: X; — Y

is a homotopy class of maps w: Y —> (] ];c; X;)s that satisfies the following

iel
two properties.

(i) The composite of w and 7; is homotopic to the identity map for each
iel
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(ii) Each element z € mq(([[;c; Xi)s) is the product of an element ¢, (x) and
an element w,(y), where x € m([[;c; Xi) and y € mq(Y) .

As will emerge shortly, w exists and is unique if I is finite. Given w, let P
be the homotopy pullback in the diagram

"
8.1.6 P —— [liagXi

S

Y —— (HieIXi)S'

w
By Corollary 2.2.3, property (ii) is equivalent to requiring P to be connected.

THEOREM 8.1.7. Let X; be T;-local and Y be S-local, and let r;: X; —> Y be a
localization at S for each i € I. Assume that either I is finite or I is infinite and
the ¥; have an associated formal localization w. Then P is T-local and the induced
map Pr, — X, is an equivalence for all k € I.

COROLLARY 8.1.8. The coordinate P —> X of v in (8.1.6) is a localization at
Ty, hence v in (8.1.6) is a localization at S and w is the localization of w at S.

We have phrased our results in terms of P, but much of the literature
focuses instead on the homotopy pullback Q in the diagram

8.1.9 Q —— [liaX

e

Y — [l Y
A

Here there is no formal localization, and the following observation, whose
proof is the same as that of Lemma 7.3.5, shows that the notion of a formal
localization is only needed when the indexing set I is infinite.

LEMMA 8.1.10. Let I be finite. Then (;) is an equivalence and the composite

o = (75;) "' o A is the unique formal localization associated to the ;: X; —> Y,
hence the diagrams (8.1.6) and (8.1.9) are canonically equivalent.
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By Proposition 7.4.3 and Theorem 4.5.2, Theorem 8.1.7 has the following
important refinement when the indexing set I is finite.

COROLLARY 8.1.11. If I is finite and X; is f Zr,-nilpotent for each i € I, then
Q = P is fZr-nilpotent. In particular, if T is the set of all primes, then Q is
f-nilpotent.

WARNING 8.1.12. The space Q is always T-local. However, even if each X; is
fZt,-nilpotent and simply connected, the induced map Qr, — X, is gener-
ally not an equivalence for all k € I (since otherwise P — Q would be an
equivalence) and the homotopy groups of Q are generally not finitely gener-
ated Z-modules (as will become clear in our discussion of the extended genus
in §8.5). This contradicts claims made in several important early papers on the
subject.

We prove Theorem 8.1.1 in {8.2, Theorem 8.1.3 in §8.3, and Theorem 8.1.7
in §8.4. The latter two proofs are direct and conceptual, but we explain alter-
native proofs by induction up Postnikov towers in {8.6. This depends on the
general observation thathomotopy pullbacks of homotopy pullbacks are homo-
topy pullbacks, which is a topological analogue of Lemma 7.6.2. We note that
it would be possible to instead first prove Theorem 8.1.7 and then deduce
Theorem 8.1.3 from it, following Remark 7.4.2. The starting points for all of
our proofs are the characterizations of T-local spaces and of localizations at
T in terms of homotopy groups that are given in Theorems 6.1.1 and 6.1.2.
In analogy with §7.5, in §8.5 we use the notion of a formal localization to
describe the genus of a nilpotent space, namely the equivalence classes of
spaces whose localizations at all primes p are equivalent to those of the given
space.

8.2. Fracture theorems for maps into nilpotent spaces

We prove Theorem 8.1.1 in this section. Thus let K be a finite CW complex
and X be a T-local nilpotent space. We emphasize that even if K and X are
simply connected, the proofs here require the use of nilpotent groups.

THEOREM 8.2.1. The function
(@ix): [K, X]—— [;e/[K, X7,

is an injection.
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PROOF. When K = S", the claim is that (¢;,): [S", X] — [[;;[S". X1,]is a
monomorphism. This means that

(Bis): TnX —> Hiel (mnX) T,

isamonomorphism. The claim follows from Theorem 7.2.1(i) since the groups
7, X are T-local.
The case K = v;S" reduces to showing that

(bix): TT;0S™ X1 —> Tlicr (TT;18" X131)

is a monomorphism, and this follows from the case K = S™.

We now argue by induction. Thus assume that the result holds for K"~1,
where the dimension of K is n, and recall the notation [K, X]; from Theo-
rem 6.3.2. Let f, g € [K, X] and assume that ¢; o f >~ ¢; og for all i. By induc-
tion, f|K"~! =~ g|K"~! and therefore g € [K, X]y.

By Theorem 6.3.2 and the assumption that X is T-local, [K,X]s
is a Zr-nilpotent group, [K,X1]gof is a Zr-nilpotent group, and
[K, X]f —> [K, X1;1,0f is localization at T;. By Theorem 7.2.1(i), the map

[K, XTI — [TieslK, X110

is a monomorphism. Since ¢;og =¢;of =id in [K, Xr]4,r for each i,
f~g O

REMARK 822. Exceptthat we change the group theoretic starting point, mak-
ing use of Theorem 7.2.1(iii), the proof of (i) in Addendum 8.1.4 is exactly the
same.

EXAMPLE 823. The assumption that K is finite is essential. An easy coun-
terexample otherwise goes as follows. Let ¢: S® — S”. be localization at T,
where n > 2, and let T; be the i** prime in T. Let K be the cofiber of ¢, so that
we have a cofiber sequence

¢ , i T ) Z¢ "
n n
S St K NG ST

For each prime p € T, ¢,: Sj — (S7)p is an equivalence, hence so is Z¢,.
Since the localization at p of the cofiber sequence is again a cofiber sequence,
7, must be null homotopic. However,  itself is not null homotopic since, if
it were, the map £¢ would have a left homotopy inverse and Z would be a
direct summand of Zr.
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When K has localizations, their universal property has the following con-
sequence, whose algebraic precursor is recorded in Lemma 7.1.8. It says that
to check whether or not two maps are homotopic, it suffices to check whether
or not they become homotopic after localization at each prime p.

COROLLARY 824. Letf,g: K —> X be maps, where K is a nilpotent finite CW
complex and X is a nilpotent space. Then f ~ g if and only if f, >~ g, for all
primes p.

PROOF. By the theorem, (¢p,): [K, X] —> I—[p[K,Xp] is injective. Since K
is nilpotent, we have qb?;: [K, X,] = [Kp, Xp]. Therefore the product of locali-
zations

(K, X] —> [T,[Kp, X;]

is injective. U

Retaining the notations of Theorem 8.2.1, observe that since ¥; o ¢; >~ ¥
for each i the image of (¢;)« in [K, [ [;c; X1;] factors through the pullback of
sets constructed from the lower and right legs of the diagram (8.1.2). For the
purposes of this proof, we give this pullback the abbreviated notation P[K, X].
THEOREM 8.25. The function

(¢i)«: [K,X] — P[K, X]

is a bijection of sets.
PROOF. By Theorem 8.2.1, (¢;)+ is injective. We must show that it is sur-

jective. First consider the case K = S". We must show that (¢;). maps m,(X)
isomorphically onto the pullback of the diagram

Hie[ 7n(XT;)

|

n(Xs) —— ([licr mn(X1;))s-
(Pix)s

This holds by Theorem 7.2.1(ii) since the groups 7,X are T-local. The result
for a wedge of spheres again reduces to the case of a single sphere.

Assume that the result holds for K"~!, where K has dimension n. Con-
sider an element (g;) € P[K, X]. By the induction hypothesis there is a map
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e € [K"1X] such that ¢;oe=g|K" ! for all i. Let ] be a wedge of
(n — 1)-spheres, chosen so that K is the cofiber of a map j: ] — K"~1. Since
J is a wedge of (n — 1)-spheres,

(i)« [J, X] — P[], X]

is an isomorphism. Consider the following diagram.

J e ®i
K" 1 X XTi
j f
8i
K

Since ¢; oe extends to g;, ¢; oeoj is trivial by the long exact sequence for a
cofibration. For maps from J, (¢;,) is a bijection by the previous case. There-
fore, eoj is trivial and e extends to a map f € [K, X]. Note that ¢; f|gn-1 is
homotopic to g;|gn-1, but ¢;f is not necessarily homotopic to g; on all of K.
However, since ¢; f |gn-1 = g;|gn—1 for all i, the maps (g;) define an element of
the nilpotent group given by the pullback of the diagram

J

HieI[K’ XTi]‘f’iOf

i I

[K,Xs] —— ([Lies[K, XT;1g0f)s-
(¢i*)5

By Theorems 6.3.2 and 7.2.1, there is an element g € [K, X]r such that
¢;og =g foralli. d

EXAMPLE 8.26. The assumption that K is finite is again essential. Let

T = Ty U T, be a partition of the set of all primes. If K = CP* and X = S3,
the square

[CP>®,$3] — [CP™, 53]

| |

[CP®, S} ] —— [CP%, S]]

is not a pullback because the canonical map of lim! terms
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lim' [ECP", §*] — lim' [ECP", S}, | ®lim' [£CP", $3. |

is not a monomorphism. The details are similar to those of §2.4; see [21, V.7.7].

While less important than the previous results, we record the following
observation since it does not appear in the literature.

PROPOSITION 827. IfI isfinite, then the formal sum
[lic/[EK, X1,] — [ZK, X;5]

is a surjection.

PROOF. The claim is that every element of the target is a product of elements
Vi (x;) from the source. Since [ K, Y] = 71 (F(K, Y), %) for any Y, this follows
from Theorem 6.3.2 by inducting up the skeleta of K and using Theorem 7.2.1.
0

REMARK 8.28. It is possible to relax the hypothesis on the space K in Theo-
rems 8.2.1 and 8.2.5 and in Proposition 8.2.7. If we take K to be a space with
finitely generated integral homology, then there is a finite CW complex K and
amap f: K — K such that

f* K, YI=[K, Y]

see, for example, [62, 11.4.2, I1.4.3]. Therefore, we may apply the cited results
to any space K with finitely generated integral homology.

8.3. Global to local fracture theorems: spaces

In this section, we follow §7.2 and prove the analogous global to local result,
namely Theorem 8.1.3. Thus let X be a T-local nilpotent space. We must prove
that the diagram

(¢3)
83 X M

qo ]

Xs — ([licr X1))s
(Pi)s

is always a homotopy pullback. Recall that part (ii) of Addendum 8.1.4 states
that the analogous diagram
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(¢3)
832 X — Tl X,

d e

Xs ——= [lier Xs

is generally not a homotopy pullback, even when X is fZr-nilpotent. Re-
member that these diagrams are equivalent when the indexing set I is finite.

Recall too that Proposition 2.2.2 and Corollary 2.2.3 tell us how to compute
the homotopy groups of homotopy pullbacks. In particular, leta: G — Gy
and B: G, —> Gop be homomorphisms of groups with pullback G. Con-
sider the corresponding homotopy pullback X of Eilenberg-Mac Lane spaces
K(—, n), taking the given groups to be abelian when n > 1. Let G; x G, acton
Go by go(g1,82) = «(g1) " 'g0B(g2) with orbit set J. Then

mp—1(X) =] and m,(X) =G,

with 74(X) = 0 otherwise. Of course, for a product of groups G;, we have
K(T1Gi,n) ~ 1, K(G;, n). Now Theorem 7.2.1(ii) implies the following result
since it shows that J is trivial in this case.

LEMMA 83.3. The diagram (8.3.1) is a homotopy pullback when X is a T-local
Eilenberg-Mac Lane space.

EXAMPLE 83.4. The diagram (8.3.2) is not a homotopy pullback in the case
when X = K(Z,n) and T; is the jth prime number since, with additive notation,
Proposition 7.1.7 shows that | is nonzero in this case.

From here, we can prove that the diagram (8.3.1) is a homotopy pullback
by inducting up the Postnikov tower of X, as we will explain in {8.6. However,
we have a simpler alternative proof that directly mimics the proof in algebra.
It starts with the analogue of Lemma 7.1.8.

LEMMA 83.5. Let X and Y be T-local nilpotent spaces. Amapf: X — Y isan
equivalence if and only if fr,: X1, — Yr, is an equivalence for each k € I.

PROOF. Itsufficestoshow thatfi: 7, (X) —> 7,(Y)isanisomorphism ifand
onlyif (fr,)«: m«(X1,) — 7+(Y1,)is anisomorphism for all k. This means that

(f) 1 e (X) 1, —> (V)7

is an isomorphism for all k. Lemma 7.1.8 gives the conclusion. O
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Recall from Proposition 6.2.5 that localization preserves homotopy pull-

backs.

THEOREM 83.6. The diagram (8.3.1) is a homotopy pullback for any T-local
nilpotent space X.

PROOF. Let P be the homotopy pullback displayed in the diagram

(¢3)
X

P — [l Xr;

b

Xs —— ([lier X1))s-
(i)s

¢

The outer square commutes up to homotopy, hence there is a map f that
makes the diagram commute up to homotopy. We must show that f is an
equivalence. By Lemma 8.3.5 it suffices to show that fr, is an equivalence for
all k € I. By Proposition 6.2.5, we obtain another homotopy pullback diagram
after localizing at Tj.

Pry ——— (ITier X1)13

| |

(Xs)r, —— (([Tic1 X1)s)T;

Arguments exactly like those in the proof of Theorem 7.2.1(ii) imply that
this diagram is equivalent to the diagram

Pr, X1, < ([ Tizk X1,)s

| -

Xs Xs % ([Tik X,)5-

(id,(#)s)

To interpret this homotopy pullback, we assume or arrange that vy, is a fibra-
tion and then take the actual pullback. Here we are using actual identity maps
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where indicated, and we can apply Lemma 7.1.9 in the cartesian monoidal
category of spaces to conclude that the homotopy pullback is equivalent to
Xr,. Parenthetically, we can also apply Lemma 7.1.9 in the homotopy cate-
gory of spaces, and we conclude that in this case the homotopy pullback is in
fact a pullback in the homotopy category. In any case, it follows that fr, is an
equivalence. d

REMARK 83.7. We repeat Remark 7.2.2, since it applies verbatim here. Theo-
rem 8.1.3 was proven under a finite generation hypothesis in Hilton, Mislin,
and Roitberg [62], and Hilton and Mislin later noticed that the hypothesis can
be removed [61]. That fact is not as well-known as it should be. We learned
both it and most of the elegant proof presented here from Bousfield.

8.4. Local to global fracture theorems: spaces

We here prove Theorem 8.1.3. Thus let X; be a T;-local nilpotent space and
Y be an S-local nilpotent space. Let ;: X; —> Y be a localization at S for
each i. When the indexing set I is infinite, we assume that we have a for-
mal localization w: Y — ([]; X;)s. We then have the homotopy pullbacks
P and Q of (7.1.1) and (7.1.2). These are both homotopy pullbacks of dia-
grams of T-local spaces and are therefore T-local if they are connected, by
Proposition 6.2.5. Again, remember that these diagrams are equivalent when
the indexing set I is finite. In that case, it is clear from algebra that P and
Q are connected, and our definition of a formal localization ensures that P
is connected in general. However, the algebraic description of the homotopy
groups of a homotopy pullback in Proposition 2.2.2 shows that the homo-
topy groups of Q are quite badly behaved when I is infinite: quotients of the
huge Zs-module [[;.; 7. (Y) appear with a shift of degree. In fact, Q is rarely
a connected space.

We must prove that the induced map Py, — X is an equivalence for all
k € I. The proof follows the outline of the proofs in §7.4 and §8.3. As in the
latter section, we could start by using the algebraic result, Theorem 7.4.1, to
prove the following topological analogue.

LEMMA 8.4.1. The maps Pr, —> X are equivalences when the X; are Tj-local
Eilenberg-Mac Lane spaces.

However, an argument precisely like the proofs of Theorem 7.4.1(ii) and
Theorem 8.1.3 gives the general conclusion directly.

“530-46909_Ch08_5P.tex” — 8/19/2011 — 11:24 — page 164



85. THE GENUS OF NILPOTENT SPACES [ 165

THEOREM 8.4.2. The maps Pt, —> X are equivalences.

PROOF. Let P be the homotopy pullback displayed in (8.1.6). We have as-
sumed that P is connected, and by Proposition 6.2.5 we obtain another
homotopy pullback diagram after localizing at Tj.

Pr, —— (Tliet X7

| |

Yr, — (T Tier Xi)s) 1,

Arguments exactly like those in the proof of Theorem 7.2.1(ii) imply that this
diagram is equivalent to the diagram

Pr, Xie % ([ Tier Xi)s
\L X/IkXid
Y Y 5 ([Tizr Xi)s

(id,mw)

where 7, denotes the evident projection. The description of the right vertical
arrow depends only on the v; and not , but the assumed compatibility of @
with A ensures that its localization at T, takes the required form (id, mpw).
Lemma 7.1.9 applies to show that the homotopy pullback Pr, is equivalent to
X, (and is a pullback in the homotopy category). O

When [ is infinite, we do not have an alternative inductive proof since
we must start with a formal localization and it is not clear how those behave
with respect to Postnikov towers. When [ is finite, the formal localization
is equivalent to A: Y — []; Y and we do have such a proof, as we explain
in §8.6.

8.5. The genus of nilpotent spaces

Much early work in the theory of localization focused on the concept of genus,
which was introduced by Mislin [105] in the context of H-spaces. The literature
is quite extensive and we refer the reader to the survey [100] of McGibbon for
further information and many references. We first introduce the idea, state
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some key results, and give some examples, without proofs. We then describe
how the notion of a formal localization applies to the analysis of the extended
genus. As in §7.5, we assume that T is the set of all primes, S is the empty set,
and T; is the set consisting of just the i* prime number p;.

DEFINITION 85.1. Let X be a nilpotent space. The extended genus of X, de-
noted G(X), is the collection of homotopy types of nilpotent spaces X’ whose
localizations at all primes p are equivalent to those of X. When X is f -nilpotent,
the genus of X, denoted G(X), is the collection of f-nilpotent homotopy types
in G(X). A property of f-nilpotent spaces is said to be generic if it holds for all
(or none) of the spaces in a given genus.

As we shall explain in §13.6, use of completions rather than localizations
leads to two interesting variant notions of the genus of a space. A little thought
about the structure of finitely generated abelian groups and the universal coeffi-
cient theorem gives the following consequence of the fact that the genus of any
finitely generated abelian group has a single element. For the last statement,
see [100, p. 82].

PROPOSITION 85.2. Homology groups and homotopy groups, except for the fun-
damental group if it is non-abelian, are generic. While the integral cohomology
groups are generic, the integral cohomology ring is not.

EXAMPLE 85.3. Example 7.5.7 implies that the fundamental group is not
generic.

Perhaps for this reason, but also because of the difficulty of computations,
the study of the genus is generally restricted to simply connected spaces of
finite type. The extended genus is generally very large, probably too large to be
of interest in its own right. For example, Example 7.5.5 and Proposition 7.5.6
have the following consequence.

EXAMPLE 85.4. The extended genus of K(Z, n) is uncountable for n > 1. The
genus of K(A,n) has a single element for any finitely generated abelian
group A.

McGibbon generalized this example to the following result [101, Thm. 2].

THEOREM 85.5. Let X be simply connected of finite type and assume that either
Hu(X;Z) = 0 or my(X) = 0 for all but finitely many n. Then the extended genus of
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X is finite if and only if Xy is contractible. If Xo is not contractible, the extended
genus of X is uncountable.

In contrast, Wilkerson [144] proved the following opposite conclusion for
the genus; see also [100, Thm. 1].

THEOREM 85.6. Let X be simply connected of finite type and assume that either
Hu(X;Z) = 0 or m,(X) = O for all but finitely many n. Then the genus of X is finite.

Having the homotopy type of a finite CW complex is not a generic property,
by a counterexample of Mislin [106]. Being of the homotopy type of a space
with finitely generated integral homology is generic, and that gives interest
to Remark 8.2.8. Results of Zabrodsky [146, 2.9] and Mislin [107] give the
following conclusion, and Zabrodsky’s work in [146] gives a complete recipe
for the computation of the genus in this case.

THEOREM 85.7. The property of being a finite H-space is generic.
A beautiful worked out example was given by Rector [117].
THEOREM 85.8. The genus of P is uncountably infinite.

For comparison, McGibbon [99] computed the genus of the finite nilpotent
projective spaces RP2"+1, CP" and HP" for 1 < n < oc. For these spaces X,
he uses pullbacks over X to give the set G(X) a group structure and proves the
following result.

THEOREM 85.9. Letn be a positive integer.

(i) GRP? 1) =1,
(ii) G(CP") =1,
(iii) GHP" ZZ/2@ - - - ® Z/2, where the number of factors equals the number
of primesp such that2 < p <2n—1.

As in the case of nilpotent groups, asking how unique formal localizations
are gives a starting point of the analysis of the extended genus, and one can
then seek the actual genus inside that. Again, a general idea is to exploit finite
partitions of the primes and Corollary 8.1.11, and thatleads to many of the most
interesting examples. We shall say just a little more about that in {9.4, where
we consider fracture theorems for finite H-spaces. Although we shall not cor-
relate this approach to the analysis of the genus with the existing literature
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in this book, the flavor is much the same. Many known calculations rely on
an understanding of double cosets of homotopy automorphism groups, and
we indicate their relevance, following §7.5. Roughly speaking, the conclu-
sion is that, under suitable hypotheses, elements of the extended genus of an
f-nilpotent space are in bijective correspondence with the double cosets

hAut(Xo)\ [T, hAut(Xo)/ [T; hAut(X;),

where hAut denotes the group of self-homotopy equivalences of a space X.

Any nilpotent space X is equivalent to a homotopy pullback P constructed
from rationalizations y; of its localizations X; at p; and a formal localization
w: Xo —> ([; X;)o of its rationalization Xp. Since we are only trying to classify
homotopy types, we can use the same spaces X; and Xj to construct a repre-
sentative for each homotopy type in the same genus as X. The v; can vary, the
variation being given by a self-homotopy equivalence §; of the rational nilpotent
space Xp. Similarly, the rationalization of [ [; X; can vary by a self-equivalence
of the rational nilpotent space ([[; X;)o. Notice that Theorem 7.2.1(ii) and
Corollary 2.2.3 imply that the homotopy groups 7, (P) are isomorphic to the
pullbacks 7,(X0) X, [, x;)0) 7n( [ I; Xi) for any space P in the same extended
genus as X; any variation is in the maps that define these pullbacks. As
already noted, the homotopy groups are generic when X is simply connected of
finite type.

To be more precise, up to equivalence any two spaces X and X’ in the same
genus can be represented as homotopy pullbacks P and P’ as displayed in the

P/

top triangles of commutative diagrams

PR

Xo — ([[;Xi)o =— [} X%

L N
A (V1) A (¥

[]; %o []; Xo.

and

Here 7; is the map ([]; X;)o — Xo, unique up to homotopy, such that
;o ¢o = Yiom;, and similarly for 7. Usually the homotopy pullbacks of
(w, o) and (', ¢p) are not equivalent. We fix a reference pullback P ~ X
and have the following result. It is less satisfactory than its algebraic analogue
Proposition 7.5.2 but serves to give the idea.
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PROPOSITION 8.5.10. Assume that

(i)« [Xo, ([ [ Xi)ol — X0, ] [ Xo!

is a monomorphism. Then the extended genus of X is in bijective correspondence
with a subset of
hAut(Xo)\ [T, hAut(Xo)/ [T; hAut(X;).

PROOF. Since (7;)« is a monomorphism, the homotopy class of w is uniquely
determined by the requirement that 77; o w = id for all i. Similarly, the homo-
topy class of the localization ¢ is uniquely determined by the ;. Since
localizations are unique up to equivalences of their targets, we see that (7).
is also a monomorphism and ' and ¢y, are also uniquely determined.

The double cosets of the statement are defined with respect to
the diagonal A: hAut(Xo) — [[;hAut(Xo) and the homomorphisms
h Aut (X;) — h Aut(Xp) that send a self-equivalence ¢; of X; to the self-
equivalence ¢; of Xy, unique up to homotopy, such that &; o ¥; = ¥; o ¢;. This
definition refers to the y; of the fixed-reference pullback P. We must restrict
to the double cosets of K (which is not claimed to be a subgroup).

At this point the analysis diverges from the algebraic setting, since the
homotopy pullbacks P and Q of (w, ¢o) and (A, (;)) are not only not equivalent
but, in contrast to Proposition 8.5.2, they can have very different homotopy
groups. This means that we cannot even take for granted the existence of
formal localizations @’ for all choices of the ;. However, since we are trying
to determine the extended genus, we are starting with given global spaces that
determine the required formal localizations.

For each P’ and each i, there is a self-equivalence &’ of Xj such that
&/ o = /. Let K be the subset of [ [; hAut(Xo) consisting of those & = (§')
such that the ¢ admit a formal localization &', necessarily unique. Sending
& to the homotopy class of the pullback P/, we obtain a surjection from K to
the extended genus of X.

The double cosets of the statement are defined with respect to
the diagonal A: hAut(Xp) —> [];hAut(Xp) and the homomorphisms
h Aut (X;) — h Aut(Xp) that send a self-equivalence ¢; of X; to the self-
equivalence Z; of Xp, unique up to homotopy, such that &; o ¥; = ¥; o ¢;. This
definition refers to the y/; of the fixed reference pullback P. We must restrict
to the double cosets of K.

1. We do not claim that K is a subgroup of [; h Aut (Xo) in general, but we expect the two to
be equal in reasonable examples.

“530-46909_ChO8_5P.tex” — 8/19/2011 — 11:24 — page 169



170 / FRACTURE THEOREMS FOR LOCALIZATION: SPACES

Suppose we have a homotopy equivalence ¢ : P" —> P” between two such
pullbacks and consider the following diagram, in which the front and back
squares are pullbacks.

8.5.11
P l_[ieIXi

\i \

(gi)
P//
¢o/ l
o @)

Xo — | —= (ITier Xi)o

\ \ “ \({0)
o %

Xo (l_[iEI Xi)o l_[i Xo

© (@)

The unlabeled left vertical arrows are rationalizations and the coordinates
of the unlabeled top horizontal arrows are localizations at p;. The universal
properties of localizations give self-equivalences ¢; of X; and ¢y of Xy making
the top and left squares homotopy commutative. There is a map o, unique
up to homotopy, that makes the bottom square commute up to homotopy, and
then the right square must also commute up to homotopy. We have completed
the diagram to the right to aid in identifying the double coset interpretation.
As above, we have a self-equivalence Z; of Xy such that ; o ¥; >~ v; 0 ¢;. Weaalso
have self-equivalences " and £” of Xp such that &/ o ¢/; = ¢/ and & o ¥; = ¢/".
Choosing homotopy inverses ;71, we see that £ ~ ¢po ¢/ o E;l. Running the
argument in reverse, we see that if £’ and £” are in the same double coset,
then we obtain an equivalence ¢ as in (8.5.11). O

8.6. Alternative proofs of the fracture theorems
We explain parenthetically how to prove Theorems 8.1.3 and 8.1.7 by inducting

up Postnikov towers. This uses an easy but useful general observation about
homotopy pullbacks. We shall make essential use of it later.

PROPOSITION 86.1. Consider the following homotopy commutative diagram.

“530-46909_Ch08_5P.tex” — 8/19/2011 — 11:24 — page 170



8.6. ALTERNATIVE PROOFS OF THE FRACTURE THEOREMS / 171

A Ao Ay A
A
G Co G C
R
By By By B
Py Py Py

Let the column and row displayed to the right and at the bottom be obtained by
passage to homotopy pullbacks from the corresponding rows and columns of the
diagram. Let D be the homotopy pullback of the column at the right and P be the
homotopy pullback of the row at the bottom. Then D and P are equivalent.

PROOF. Ifthe diagram commutes and D and P are the actual pullbacks, then
the conclusion holds by the well-known and easy categorical analogue that
pullbacks of pullbacks are pullbacks [80, IX, §8]. To calculate the six given
homotopy pullbacks, we must use the mapping path fibration to replace at
least one of the two maps with a common target in each row and column
of the diagram by a fibration and then take actual pullbacks, and a diagram
chase shows that we can simultaneously make the diagram commute rather
than just commute up to homotopy. We claim that judicious choices make
one of the two maps in the induced column and row a fibration. That reduces
the homotopy pullbacks to actual pullbacks to which the categorical analogue
applies. We choose to replace the maps

Ay — Ay, B —> By, Ay — C3, Bi —> Cq1, C1 —> Cp, and By — C

by fibrations (the last two choices being arbitrary). With these choices, the
induced maps of pullbacks A — C and P, — Py are also fibrations. By
symmetry, we need only prove the first of these. Thus suppose given a lifting
problem

Y — A

r 7
Ve
Ve
7

YxI —— C.
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Weusethat Ay — C; isafibration to obtain alift A, in the following diagram,
and we then use that A; — Ay is a fibration to obtain a lift A4.

Y A

1

A
Ay =— Ay
A \L
G
A2 \
x I

The lifts 21 and 1, induce the required lift A into the pullback A. O

Y C

EXAMPLE 8.6.2. Asaperhapsamusing example, observe that QX is the homo-
topy pullback of the diagram % —> X <«— x. If P is the homotopy pullback of
mapsf: X — Aandg: Y — A, then the proposition shows that QP is the
homotopy pullback of the maps ©f and Qg. As a more serious example, when
gisx —> A, Pisthe fiber of f. We shall shortly specialize Proposition 8.6.1 to
the case when one of the columns is trivial and we are considering pullbacks
of fibers.

Proposition 8.6.1 specializes to give the inductive step of the promised
alternative proof that the diagram (8.3.1) is a homotopy pullback. To see that,
suppose that the conclusion holds for a T-local space X and let Y be the
fiber of a map k: X — K, where, for definiteness, K is a simply connected
T-local Eilenberg-Mac Lane space. Note that Y is the homotopy pullback of k
and the trivial map * — K, or the actual pullback of k and the path space
fibration PK — K. We apply Proposition 8.6.1 to the following homotopy
commutative diagram. The homotopy pullbacks of its rows are as indicated
in the column at the right since localizations preserve homotopy pullbacks by
Proposition 6.2.5. The homotopy pullbacks of its columns are as indicated in
the row at the bottom by Lemma 8.3.3 and asssumption.
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l'IkTi
HXTi _ I—[KTi <~ % HYTi
[ J{ J/ ¢s i ¢s
(Tk;)s
(ITX7)s —— ([1Kp)s =— = (ITYr)s
(#i)s T T (¢i)s T (#i)s
Xs Ks * YS
ks
X K *

By Proposition 8.6.1, Y is equivalent to the homotopy pullback of the right
column.

Finally, we show how to prove inductively that the maps Py, — X} of {8.4
are equivalences when [ is finite. We can apply the following result to each
stage of compatible Postnikov towers for the X; and Y and then pass to limits.

LEMMA 86.3. Let K; be a T;-local, simply connected Eilenberg-Mac Lane space, L
be an S-local, simply connected Eilenberg-Mac Lane space, and ;1 K, — Lbea
localization at S. Let X; be a T;-local space, Y be an S-local space, and y;: X; —> Y
be a localization at S. Let X! and Y’ be the fibers of maps k;: X; — K; and a map
£:Y —> L such that £y; >~ k; for all i and consider the following diagram.

Tk
Mx —> [k, ~— * Mx
Vi Vi ilﬂi
e
[TY —— J]L =— =« [1Y
A A TA
Y L * Y’
4
P Py * P

where P, Py, and P’ are the homotopy pullbacks of the columns above them. Assume
that P —> X, is a localization at Ty, for each k. Then P' — X] is a localization
at Ty, for each k.
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PROOF. There is a map £ as stated because localization commutes with finite
products. More precisely, this is a consequence of Lemma 8.1.10. By Proposi-
tion 8.6.1, P’ is the fiber of the map P — Py, and for each k there results a
map of fiber sequences

P p Py

Lo

Xlé — X — K.

The space X, is Tj-local by Theorem 5.3.1. The middle and right vertical arrows
are localizations at Ty by assumption and Lemma 8.4.1. Therefore, by the five
lemma applied to homotopy groups, the left vertical arrow is a localization
atk. O
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RATIONAL H-SPACES AND
FRACTURE THEOREMS

We here describe the category of rational H-spaces and apply this to give more
algebraically calculational fracture theorems for H-spaces. Rather tautologi-
cally, a major theme of algebraic topology is the algebraization of homotopy
theory. In some cases, the algebraization is complete, and this is true for
rational homotopy theory, as proven by Quillen [115] and Sullivan [134]; see
also Bousfield and Gugenheim [20] and Félix, Halperin, and Thomas [48].
However, the algebraization of the rational homotopy theory of H-spaces is
elementary, depending only on the structure theory for Hopf algebras that we
shall develop in Chapter 22. The reader may want to look at that chapter before
reading this one.

After describing the cited algebraization, we show how to give it more
topological content via the Samelson product on homotopy groups. This gives
a Lie algebra structure on m,(X) for a connected H-group X (as defined in
Definition 9.2.1) such that the Lie algebra 7.(X) ® Q is determined by the
Hopf algebra H,(X; Q). This leads to an all too brief discussion of Whitehead
products, which are the starting point for serious work in unstable homotopy
theory. We then return to fracture theorems and describe how such results
can be algebraicized when restricted to H-spaces.

In this chapter, we agree to say that a rational space Y is of finite type if
its integral, or equivalently rational, homology groups are finite dimensional
vector spaces over Q.

9.1. The structure of rational H-spaces

We shall prove the following basic result, which describes the homotopy types
of rational H-spaces.

175
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THEOREM 9.1.1. If Y is a connected rational H-space of finite type, then Y is
equivalent to a product X, K(w,(Y), n) of rational Eilenberg-Mac Lane spaces. If Y
is finite (as a rational CW complex), then 7, (Y) = 0 for all even n.

The finite type hypothesis is needed due to the topology rather than the
algebra. The problem is the lack of a Kiinneth theorem for infinite products.

Since the k-invariants of X, are the rationalizations of the k-invariants of
X, the theorem has the following implication.

COROLLARY 9.1.2. The k-invariants of an H-space X that is rationally of finite
type are torsion classes. If X is finite (as a CW complex), then X has the rational
homotopy type of a finite product of odd dimensional spheres.

When X is finite, the number of spherical factors is the rank of X and the
list of their dimensions is the type of X. The classification problem for finite
H-spaces considers those X with the same rank and type. When X is a compact
Lie group, this notion of rank coincides with the classical one: the rank of X
is the dimension of a maximal torus.

The multiplication on an H-space X determines a comultiplication on the
rational cohomology of X. This is compatible with the multiplication induced
on H*(X; Q) by the diagonal map and so H*(X; Q) is a commutative and asso-
ciative quasi-Hopf algebra. Here “quasi” refers to the fact that the coproduct
need not be coassociative since the product on X need not be homotopy asso-
ciative. The proof of Theorem 9.1.1 is based on the following structure theorem
for rational quasi-Hopf algebras, which is Theorem 22.4.1.

THEOREM 9.1.3. If A is a commutative, associative, and connected quasi-Hopf
algebra over Q, then A isisomorphic as an algebra to the tensor product of an exterior
algebra on odd degree generators and a polynomial algebra on even degree gen-
erators.

We calculated the rational cohomology of K(Q; n) in Proposition 6.7.2. It
is the polynomial algebra P[i,] if n is even and the exterior algebra E[¢,] if

nis odd.

PROOF OF THEOREM 9.1.1. By Theorem 9.1.3, the rational cohomology of
X is a tensor product of exterior and polynomial algebras. We can choose
representative maps X —> K(Q, n) for the generators and take them as the
coordinates of a map f from X to a product of K(Q, n)’s. The map f induces
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an isomorphism on rational cohomology and therefore, by our finite type
hypothesis, on rational homology. Since the source and target of f are simple
and rational, the Q-equivalence f must be an equivalence. O

While our interest is in H-spaces, the proof makes clear that the conclusion
applies to any simple rational space of finite type whose rational cohomology
is a free commutative Q-algebra.

We can elaborate the argument to obtain an equivalence of categories.

THEOREM 9.1.4. Rational cohomology defines a contravariant equivalence from
the homotopy category of rational connected H-spaces of finite type to the cat-
egory of commutative, associative, and connected quasi-Hopf algebras of finite

type.

PROOF. The required contravariant functor S from H-spaces to Hopf alge-
bras is given by S(Y) = H*(Y; Q). The inverse functor T from Hopf algebras
to H-spaces assigns to a Hopf algebra A the product of Eilenberg-Mac Lane
spaces K(Q, n), one for each algebra generator of degree n. This fixes the space
and therefore the cohomology algebra, but it does not fix the H-space struc-
ture. The coproduct ¢ : A —> A ® A sends each generator x of degree n to an
element of A ® A of degree n. By the Kiinneth theorem, we may identify A® A
with H*(Y x Y; Q). By the representability of cohomology, the element v (x)
is represented by a map Y x Y to K(Q, n). These maps are the coordinates of
the product Y x Y —> Y that makes Y into an H-space. A moment’s reflec-
tion will convince the reader that ST(A) is isomorphic to A as a quasi-Hopf
algebra, and it follows from Theorem 9.1.1 that TS(Y) is equivalent to Y as an
H-space. ]

It is clear from the proof that this equivalence of categories provides a
dictionary for translating topological properties into algebraic properties. For
example, we have the following elaborations.

PROPOSITION 9.1.5. A rational H-space Y of finite type is homotopy associative
(or homotopy commutative) if and only if H*(Y; Q) is coassociative (or cocommu-
tative). If' Y is of finite homological dimension, so that H*(Y; Q) is an exterior
algebra, then Y is homotopy associative if and only if Y is equivalent as an
H-space to a finite product of spaces K(Q, 2n — 1). In particular, it is then homotopy
commutative.
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PROOF. The first statement is clear. For the second, if Y is of finite homo-
logical dimension, then, as we shall prove in Corollary 22.4.3, H*(Y; Q) is
an exterior Hopf algebra. This means that its generators x are primitive,
Y(x) =x®1+1Q®x. Since the fundamental classes of Eilenberg-Mac Lane
spaces are clearly primitive, the conclusion follows. For the last statement,
recall from [93, p. 127] that Eilenberg-Mac Lane spaces can be constructed as
commutative topological groups. O

9.2. The Samelson product and H..(X; Q)

In this digressive section, which elaborates on [104, App.], we show that there
is a conceptual topological way of interpreting the homology H, (X; Q) when X
is a connected homotopy associative H-space, not necessarily of finite homo-
logical dimension. We begin with some preliminaries on the structure of
H-spaces.

DEFINITION 921. An H-monoid is a homotopy associative H-space. An
H-group is an H-monoid with a map x providing inverses up to homotopy,
so that

po(idx x)oA s~ po(x xid)oA,

where * denotes the trivial map at the unit element e and u is the product.
If we abuse notation by writing x (x) = x~! and writing u(x,y) = xy, then
the condition becomes “xx~! = e = x~'x” up to homotopy. An H-monoid
is grouplike if 7o(X) is a group under the product induced by the product

on X.

More elegantly, an H-space X is an H-monoid if the functor [—, X] is
monoid-valued and is an H-group if the functor [—, X] is group-valued. Using
the uniqueness of inverses in a group, a formal argument shows that if X is an
H-monoid, then itis an H-group if we have either of the homotopies displayed
in the definition; the other will follow. Note in particular that the set [S° X]
of components is then a group, so that an H-group is necessarily grouplike.
Less obviously, the converse often holds.

LEMMA 9.2.2. A connected H-monoid is an H-group.

PROOF. Define the “shearing map” &: X x X — X x X by £(x,y) = (x, xy).
On m,(X) X 7, (X), including n = 1, it induces the homomorphism of abelian
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groups that sends (a,b) to (a,a+b). This is an isomorphism; its
inverse sends (a,b) to (a,b—a). Therefore & induces an isomorphism
on homotopy groups and is an equivalence. Choose a homotopy inverse
€71 and define x =m0 louy, where 11(x) = (x,€) and m(x,y) =Y.
Then since £7! is homotopy inverse to &, m0£~! is homotopic to 71,
and po£~! is homotopic to m,. Using the first of these, we see that
(id xx) 0 A = (id xmp) o (id x& ') o (id xt1) 0 A is homotopic to £ 1 ou.
Using the second, we see that i 0 £ ! o 11 is homotopic to the constant map. [

Digressing from our usual assumption that X is connected, we have the
following weaker analogue. We shall make use of it later, when proving Bott
periodicity.

LEMMA 9.23. If X is a grouplike H-monoid, then H is homotopy equivalent to
X, x mo(X), where X, denotes the component of the unit element e. If, further, X
is homotopy commutative, then X is equivalent to X, x mo(X) as an H-space and
therefore X is an H-group.

PROOF. Choose a basepoint x; in each component [x;], taking e in the com-
ponent [e] = X,. Write y; for the basepoint in the component inverse to [x;]
in mo(X). Define p: X —> X, x mo(X) by p(x) = (xy;, [%;]) for x € [x;] and
define v: X, x mp(X) —> X by v(x,[x;]) = xx;. Then p and v are inverse
equivalences, and they are maps of H-spaces if X is homotopy com-
mutative. d

Now consider the rational homology of a connected H-group X. Since
the Hopf algebra H,(X; Q) is cocommutative, it is primitively generated and
is therefore isomorphic to the universal enveloping algebra U(P), where P
denotes the Lie algebra (under the commutator) of primitive elements in
H,(X; Q). This statement is explained and proven in Theorem 22.3.1 and
Corollary 22.3.3. The vector space of primitive elements depends only on
the coproduct of H,(X; Q) and therefore depends only on the diagonal map
of X, not on its product. Therefore, as a vector space, P can be identified
with the primitive elements in the homology of the product of Eilenberg-
MacLane spaces that is equivalent to the rationalization of X. However,
a moment’s thought makes clear that the Hurewicz homomorphism for a
rational Eilenberg-Mac Lane space identifies its homotopy groups with the
primitive elements in its rational homology. Therefore that is also true for the
rationalization Xp. This proves the following result.
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PROPOSITION 9.2.4. The Hurewicz homomorphism
h: my(Xo) — H«(Xo;Z) = Hi(X; Q)

is a monomorphism whose image is the vector subspace of primitive elements.

This raises the question of whether there is a homotopical construction
of a Lie bracket on m,(X) for an H-group X that is compatible under the
Hurewicz homomorphism with the commutator in H,(X; Z). The answer is
that indeed there is. The relevant product on homotopy groups is called the
Samelson product, and we shall define it shortly. The discussion just given will
then have the following immediate implication. Here and below, when X is
connected, we understand 7, (X) to mean the graded abelian group consisting
of the homotopy groups of X in positive degrees.

THEOREM 9.2.5. Let X be a connected H-group of finite type. Then H,(X; Q) is
isomorphic as a Hopf algebra to U (. (X) ® Q), where 7, (X) is regarded as a Lie
algebra under the Samelson product.

DEFINITION 9.26. Let X be an H-group. Write x (x) = x~! and define a map
¢: X xX — Xby

p(x.y) = () (x~'y7).

As noted above Proposition 1.4.3, we may assume that e is a strict two-sided
unit element, and a similar use of the nondegeneracy of the basepoint e shows
that ¢ is homotopic to a map ¢’ that restricts to the trivial map on X v X and
thus factors through X A X. For based spaces | and K, define the generalized
Samelson product

(= =) [LXIQIK, X] — [JAK, X]

by (f,g) =[¢'o(f Ag)]. Specializing to ] = S and K = $9, this gives the
Samelson product

(= =) mp(X) @ g (X) —> 7p14(X).
PROPOSITION 9.2.7. Let X be an H-group. If x € Hy(X;Z) and y € Hy(X; Z)
are primitive, then

Px(x ®y) = xp — (= 1)"yx =[x, y].
Therefore the Hurewicz homomorphism h: m.(X) —> H.(X; Z) satisfies

h((f,g)) = [h(x), h(y)].
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PROOF. The map ¢ is defined by the commutative diagram

AxA idxtxid
XXxXxXxX —— X xXxXxX

¢ l l idxidx x x x

X X xX X xXxXxX.
I3 X [

For a primitive element x, A (x) = x® 1+ 1® x and x (x) = —x, by (21.3.4).
From here, a simple chase of the displayed diagram gives the first statement.
Since h(f Ag) = h(f) @ h(g), the second statement follows. O

For connected rational H-groups Y, h: m,(Y) — H,(Y;Q) is a monomor-
phism, and it follows that 7,(Y) is a Lie algebra under the Samelson product.
Since 74 (Xo) is 7 (X) ® Q, the rationalization of 7, (X) is a Lie algebra for any
connected H-group. It requires more work to show that . (X) is itself a Lie
algebra. We only sketch the proof. Complete details may be found in [143, X§5].

PROPOSITION 9.2.8. For a connected H-group X, m.(X) is a Lie algebra under
the Samelson product.

SKETCH PROOF. We need three preliminaries, the first of which is group
theoretical. Recall that the lower central series {I';} of a group G is given by
I'1 = G and, inductively, I';,; = [T}, Gl. If {G;} is any central series of G,
starting as usual with Go = G, then I'; C G;_;. If G is nilpotent of class m,
then I'yy1 = 0, and it follows that all iterated commutators of length m + 1
are zero. By [148, pp. 82-84], for x,y,z € G,

9.2.9 [x,yz] = [x,y][x,z] mod I3
and
9.2.10 [x, [y, 211y, [z, x]1[z, [x,y]l = 1 mod T4.

Second, we need the notion of the category of a space. For finite based
connected CW complexes X;, 1 < i <k, filter the product Y = X3 x - - - x X; by
letting (x1, ..., %) bein F;Y if atleast k — j of the coordinates x; are basepoints.
Thus FyY is a point, F1Y is the wedge of the X;, and so on, with F,Y =Y.
Taking all X; = X, say that the category of X is less than k if the diagonal map
A: (X, %) — (X¥, F,_1X¥) is homotopic to a map into Fy,_; X*. It follows that
X has category less than k + 1. The category of X, denoted cat(X), is defined
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to be the minimal k such that X has category less than k+ 1. When k = 0, this
means that X is contractible.

Third, we need the calculation of cat(Y) when Y is a product of spheres. A
stratification of X of height k is a filtration by subcomplexes FX, 1< j<k,
such that FoX = %, the boundary of each cell in FX is contained in Fi1X,
and FiX = X. If X has such a stratification, then cat(X) < k; in particular,
cat(X) < dim(X). For a lower bound on cat(X), one checks that if X has cate-
gory less than k, then the product of any k elements in H*(X; Z) is zero. Now let
X;=SPp;>1,and Y =Xj x - -- X X}. The filtration of Y above is a stratifi-
cation of height k, hence cat(Y) < k, and equality follows since the product of
the k fundamental classes is nonzero.

Now return to our H-group X. Let K be a finite CW complex. If cat(X) =k,
one proves that the group G = [K, X]is nilpotent of class at most k [143, X.3.6].
For a more explicit result, suppose that K has a stratification F;K, 1 <j < k.
Define G CGto be the set of maps in f € [K, X] such thatlejK is null
homotopic. Then {G;} is a central series for G [143, X.3.10].

We apply all of this with K taken to be a product of either 2 or 3 spheres,
so that cat(K) = 2 or cat(K) = 3. We conclude that all double commutators
[x, [y, z]] vanish in the group [SP x S7, X] and all triple commutators vanish in
the group [SP x S9 x S", X]. Noticing that the maps [K A L, X] —> [K x L, X]
are monomorphisms, and similarly for K A L A M, we see that we can check
the required algebraic identities by working either in the group [S? x S9, X], in
which I's C G, = 0, or in the group [SP x S1 x S, X],inwhich 'y C G3 = 0.

For example, to check that (f,g+h) = (f,g)+(f,h), for f e my(X)
and g,h e my(X), we map these homotopy groups to the group
[SP x S1,X], where the equation holds modulo I'3 =0 by (9.2.9). The
proof that (f,g)+(—1)P(g,f) works similarly, using  that
t: SPTd = SP A ST —> S ASP = STMP has degree (—1)P4. Similarly, for
f enp(X), g € my(X), and h € 7, (X), the Jacobi identity

(=1P(f (g b)) + (= )P g, (h ) + (= 1) (h,(f.8) =0

can be deduced from the equation (9.2.10) in the group [SP x S% x S", X]. The
signs enter from transpositions needed to arrange that all elements lie in this
group. |

9.3. The Whitehead product

In this even more digressive section, we briefly describe the Whitehead prod-
uct, which is fundamental in the deeper parts of unstable homotopy theory

“530-46909_Ch09_5P.tex” — 8/19/2011 — 11:24 — page 182



9.3. THE WHITEHEAD PRODUCT [ 183

and is conspicuous by its absence from [93]. It is most easily defined as a
special case of the Samelson product. That is the approach that we shall take,
although it risks obscuring the importance of the definition.

For any based spaces | and X, we may identify [X], X] with [ ], QX]. It is
relevant to signs that we write suspensions on the right, £J = J A S'. Since
QX is an H-group under concatenation of paths, we have the generalized
Samelson product

(— =) [, QX1®[K, QX] — [J A K, QX].
We rewrite this as
- —1: [Z], X]® [ZK, X] — [Z(] A K), X]

and call it the generalized Whitehead product. Taking Taking | = SP~! and
K = $971, this specializes to the Whitehead product

[— =12 mp(X) @ 74(X) —> 7p4¢-1(X)-

Clearly this is natural in X. It is determined in general by knowledge of the
[ip, iq], where i, € m,(SP) is the fundamental class.

More formally, in analogy with cohomology operations we define an r-ary
homotopy operation of degree n to be a natural transformation

Wi g (X) X X1, (X) —> 7pin(X), p=p1+---+pr

Such homotopy operations are in canonical bijective correspondence with
elements ¥ € 7y ,(SP1 V- .-V SPr). The element ¥ corresponding to V¥ is
W (ip,, -+ ,ip,), and the operation ¥ corresponding to v is given by

V(fi o f) = (Vo (five - VD).

Here f;: SPi — X is an element of 7y, (X), and V is the fold map, which is the
identity on each wedge summand of X Vv - - - v X. The Whitehead products are
the most important examples. From this point of view, the Whitehead product
[ip, iq] is thought of as a map SPT4~1 — SP v S9, and it is the attaching map
for the construction of SP x S7 from SP v S4.

The Whitehead products appear in the EHP-sequence, which is the most
important tool for the study of unstable homotopy groups. Expositions may be
found in Whitehead’s 1978 book [143], which nowhere mentions localization,
and Cohen’s 1985 lecture notes [30], which assume familiarity with it. The
latter is especially recommended as a follow-up to this book for the reader
who is interested in learning more about classical homotopy theory.
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9.4. Fracture theorems for H-spaces

Now return to the fracture theorem context of the previous chapter. As there,
we let T;, i € I, be sets of primes. We now assume that T; N T; = @ for i # j,
so that the set S of the fracture theorems is empty, and we assume that
T = |J; T; is the set of all primes. Thus we are relating global spaces X to
their rationalizations Xy through intermediate localizations Xr,.

THEOREM 9.4.1. Let X be a nilpotent finite CW complex or, more generally, a
nilpotent space with finitely generated integral homology.

(i) X is an H-space if and only if each Xr, is an H-space and the coproducts on
H*(X; Q) induced by the rationalization maps V;: X1, — Xo all coincide.

(ii) X is a homotopy associative (or commutative) H-space if and only if each Xr,
is a homotopy associative (or commutative) H-space.

PROOF. First,letX bean H-space. By Proposition 6.6.2, each Xr; has a unique
H-space structure such that the localization ¢;: X — X, is an H-map. Sim-
ilarly, the resulting product on Xr, induces a unique H-space structure on Xy
such that the localization v;: X1, — Xp is an H-map. Since the composite
V;¢; is rationalization, each of these H-space structures on Xy must coincide
with the one induced by that of X. Thus they induce the same coproduct on
H*(X; Q) = H*(Xo; Q). This implication does not depend on X having finitely
generated integral homology.

Conversely, suppose that each Xr, is an H-space and the induced coproducts
on H*(X; Q) coincide. Using Remark 8.2.8, we can apply Theorem 8.2.5 and
Addendum 8.1.4(i) with K taken to be the n-fold product X" for any », since
these spaces are again nilpotent and have finitely generated integral homology
groups. Using the notations for maps from the cited references, for purposes
of the present proof we let Q[X", X] denote the pullback displayed in the
diagram

(1)
9.4.2 QIX", X] —— [X" [lie; X1

115* i l (l_[, Vjt)*

(X", Xo] — [X",[];e; Xol.
A,

We conclude from Theorem 8.2.5 and Addendum 8.1.4(i) that the canonical
map
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9.4.3 [X" X] — Q[X" X]

is a bijection. By the universal properties of (X")r, and (X")o and the commu-
tation of localization with finite products, the induced maps

[(XT)", X1,] = [(X")71,, X1,] — [X", XT,]
and
[(X0)", X0l = [(X™)0, X0l — [(X")1;, X0] — [X", Xo]

are bijections for all i. Putting these bijections together, we can rewrite
(9.4.2) as

(¢ix)
9.4.4 QX" X1 —— [lie/l(XT)", X1,

. |

[(X0)", X0l — [;c;[(X0)", Xo]-
A

By assumption, the product maps on X7, induce the same map on H*(X; Q)
and, by Theorem 9.1.4, this implies that the induced products on X, are
homotopic. Thus the assumptions give us a well-defined element of Q[X?, X].
The corresponding element of [X?, X] is an H-space structure on X, the unit
condition being obtained by two applications of (9.4.3) with n = 1.

If X is homotopy associative or homotopy commutative, then so is X7, since
the multiplication on X7, is induced from that on X. Conversely, if the X7, are
homotopy associative, we can apply (9.4.3) with n = 3 to see that

po(uxl)2puo(lxpu): XxXxX— X.

Similarly, if the Xr, are homotopy commutative and ¢: X x X — X x X is
the interchange map, we can apply (9.4.3) with n = 2 to conclude that

pot~pu: X xX — X. O
THEOREM 9.4.5. Let I be finite. Let Y; be a T;-local H-space such that H.(Y;; Z)
is finitely generated over Zr,. Let A be a quasi-Hopf algebra over Q, and let
Yt A— HY(Y;Q)

be an isomorphism of quasi-Hopf algebras. Then there exists one and, up to equiv-

alence of H-spaces, only one H-space X such that Xt, is equivalent as an H-space 1
to Yy, for each k € 1. Moreover, X has finitely generated integral homology. 0
41
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PROOF. By the equivalence of categories given in Theorem 9.1.4, there is a
rational H-space Y corresponding to the Hopf algebra A and for each map v/
there is a map of H-spaces

wiiYi—>Y

that realizes the map ] on rational cohomology. Let X be the homotopy
pullback of the ;. By Theorem 8.1.7, the canonical map X7, — Y; is an
equivalence for each i € I. Since the integral homology of Y; is finitely gener-
ated over Zt;, X has finitely generated integral homology by Proposition 7.4.3.
As in the previous proof, we now have the bijection (9.4.3). The product on X is
the element of [X?, X] that corresponds to the products on the X1,in Q[X 2 X].
Again, the unit condition is obtained by two applications of (9.4.3) with n = 1.
The uniqueness follows from the uniqueness of Y and Theorem 8.1.1. O

The results of this section give the starting point for the subject of finite
H-space theory. For example, one can build exotic finite H-spaces, ones not
equivalent to compact Lie groups, S7, and products thereof, by patching
together localizations at different sets of primes of different global H-spaces
that happen to be rationally equivalent. Returning to the taxonomic analogy of
Remark 7.5.8, this is an application of a standard approach to the construction
of interesting examples of global spaces with well-understood localizations
that are in the same genus. Thinking of spaces, homotopy types, and spaces
in the same genus as analogous to animals, animals in the same species, and
animals in the same genus, algebraic topologists are expert at genetic mod-
ification to produce different species in the same genus. We usually modify
spaces using finite sets I, especially partitions of the primes into two disjoint
sets T; and T5. In that case, the local to global fraction results go under the
name of Zabrodsky mixing, following [145, 146, 147].

The idea is to take two spaces Xj and X, that are equivalent rationally but
have very different localizations at T; and T, and construct a hybrid beast by
our local to global construction. We refer the interested reader to [2, p. 79] for
an amusing discussion of the resulting bestiary. The historically first example
was due to Hilton and Roitberg [63]. They constructed an H-space X that is in
the same genus as the Lie group Sp(2) but is not equivalent to it. Both X and
Sp(2) are equivalent to S3 x S7 away from the primes 2 and 3. As is explained
in [62, pp. 122-127], the three H-spaces in sight, X, Sp(2), and S x §’, are
total spaces of bundles over S” with fiber S3, and every simply connected finite
H-space with rational cohomology E[x3, x7] is equivalent to the total space of
such a bundle. There is a large literature devoted to examples such as this.
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For a beautiful concrete general result, we quote the following remarkable
theorem of Hubbuck [69].

THEOREM 9.4.6. Let X be a connected homotopy commutative finite H-space.
Then X is homotopy equivalent to a torus T = (S*)" for some n.

Since T admits a unique H-space structure, it follows that the equivalence
is necessarily an equivalence of H-spaces. Observe that it is not even assumed
that X is homotopy associative, but the result implies that it is. The following
corollary is essentially equivalent to the theorem.

COROLLARY 9.4.7. A simply connected homotopy commutative finite H-space is
contractible.
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B N
10

COMPLETIONS OF NILPOTENT
GROUPS AND SPACES

We develop completion at T for abelian groups, nilpotent groups, and nilpotent
spaces. We say right away that there is a choice here. It is usual to focus on a
single prime p, and there is no loss of information in doing so since completion
at T is the product over p € T of the completions at p, and similarly for all
relevant algebraic invariants. We have chosen to work with sets of primes, but
the reader may prefer to concentrate on a single fixed prime.

In contrast to localization, completions of abelian groups can sensibly be
defined in different ways, and the most relevant definitions are not standard
fare in basic graduate algebra courses. Here again we construct and study com-
pletions of nilpotent groups topologically rather than algebraically. We discuss
various ways of completing abelian groups in {1. We define completions of
spaces and connect the definition to the algebraic theory of completions in §2.
We then construct completions of nilpotent spaces by induction up their Post-
nikov towers in §3. We specialize to obtain completions of nilpotent groups
in (4.

Recall our notational conventions from the Introduction. In particular, T
is a fixed and nonempty set of primes throughout this chapter. Maps ¢ will
always denote completions.

10.1. Completions of abelian groups

10.1.1. p-adic completion
It is usual to define the completion of an abelian group A at a given prime p
to be the p-adic completion

A, =lim (A/pA),

where the limit is defined with respect to the evident quotient homomor-
phisms. For later reference, we recall that the limit can be displayed in the
short exact sequence

191
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10.1.1 0— Ay —> x,A/p'A 5 X A/p'A—> 0,

where « is the difference of the identity map and the map whose r coordinate
is the composite of the projection to A/p" 1 A and the quotient homomorphism
q: A/p"T1A — A/p" A; since the maps g are epimorphisms, « is an epimor-
phism [93, p. 147]. This definition will not fully serve our purposes since p-adic
completion is neither left nor right exact in general, and exactness properties
are essential to connect up with the topology. The Artin-Rees lemma implies
the following analogue of Lemma 5.1.2.

LEMMA 10.1.2. When restricted to finitely generated abelian groups, the p-adic
completion functor is exact.

When A = Z, we write Z, instead of Zp for the ring of p-adic integers, and
we abbreviate Z/nZ to Z/n. Observe that the p-adic completion functor takes
values in the category of Z,-modules. The action is given by the evident natural
maps

limZ/p" ®limA/p'A — lim (Z/p" @ A/p"A) = lim A/p" A.

When A is finitely generated, p-adic completion is given by the map
¥: A— AQ®Z, specified by ¥/ (a) = a® 1, this again being a consequence
of the Artin-Rees lemma. In this case, the alternative notion of completion at
p that we shall give shortly agrees with p-adic completion. Since Zj, is torsion
free, it is a flat Z-module, which gives us another way of seeing Lemma 10.1.2.

Even if we restrict to finitely generated abelian groups, we notice one
key point of difference between localization and completion. While a homo-
morphism of abelian groups between p-local groups is necessarily a map of
Z(p-modules, a homomorphism of abelian groups between p-adically com-
plete abelian groups need not be a map of Zy-modules.

10.1.2. Derived functors of p-adic completion

To overcome the lack of exactness of p-adic completion in general, we consider
theleft derived functors of the p-adic completion functor. For the knowledgable
reader, we recall that left derived functors are usually defined only for right
exact functors, in which case the 0% left derived functor agrees with the given
functor. However, the definition still makes sense for functors that are not
right exact. We shall not go into the general theory of derived functors since,
for our present purposes, the abstract theory is less useful than a concrete
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description of the specific example at hand. The left derived functors of
p-adic completion are given on an abelian group A by first taking a free
resolution

0—F —>F—>A—0

of A, then applying p-adic completion, and finally taking the homology of the
resulting length two chain complex l:"l’, — ﬁp. Thus the left derived functors
of p-adic completion are defined by

Lo(A) = coker (F, —> F,) and Ly(A) = ker (F, — F).

These groups are independent of the choice of resolution, as one checks by
comparing resolutions, and they are functorial in A. The higher left derived
functors are zero. We have a map of exact sequences

10.1.3 0 F F A 0
I
L
A

0 —= LA Fy F, LoA 0

It induces a natural map
¢: A— LHA

Since kernels and cokernels of maps of Z,-modules are Zy-modules, since
a free abelian group is its own free resolution, and since p-adic completion is
exact when restricted to finitely generated abelian groups, we have the follow-
ing observations.

LEMMA 10.1.4. The functors Lo and Ly take values in Zy-modules. If A is either a
finitely generated abelian group or a free abelian group, then LoA = Ap, L1A=0,
and ¢: A —> LyA coincides with p-adic completion.

We usually work at a fixed prime, but we write Lg and Llf when we need to
record the dependence of the functors L; on the chosen prime p.

DEFINITION 10.1.5. Fix a prime p. We say that the completion of A at p is
defined if L;A = 0, and we then define the completion of A at p to be the
homomorphism ¢: A — LoA. We say that A is p-complete if ¢p: A —> LHA
is an isomorphism. As we shall see in Proposition 10.1.18, if A is p-complete,
then [1A = 0.
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EXAMPLE 10.1.6. We have seen that finitely generated and free abelian
groups are completable and their completions at p coincide with their p-adic
completions.

EXAMPLE 10.1.7. Zy ® Z, and Z/p™ (see below) are Zy-modules that are not
p-complete.

The essential exactness property of our derived functors, which is proven
in the same way as the long exact sequences for Tor and Ext, reads as follows.

LEMMA 10.1.8. For a short exact sequence of abelian groups
0—A —A—A —0,
there is a six term exact sequence of Zy-modules
0— LA — L1A — LA — [(A — [(A — [(A” — 0.

This sequence is natural with respect to maps of short exact sequences.

10.1.3. Reinterpretation in terms of Hom and Ext

These derived functors give a reasonable replacement for p-adic completion,
but they may seem unfamiliar and difficult to compute. However, they can be
replaced by isomorphic functors that are more familiar and sometimes more

easily computed. Define Z/p* to be the colimit of the groups Z/p" with respect
to the homomorphisms p: Z/p" — Z/p"*! given by multiplication by p.

EXERCISE 10.19. Verify that Z/p™ = Z[p~1]/Z.

NOTATION 10.1.10. For a prime p and an abelian group A, define E,A to be
Ext (Z/p*°, A) and define H,A to be Hom (Z/p*°, A).

Of course, E,A = 0 if A is a divisible and hence injective abelian group.
Write Hom (Z/p", A) = A, for brevity. We may identify A, with the subgroup
of elements of A that are annihilated by p'.

PROPOSITION 10.1.11. There is a natural isomorphism
HyA = lim A,,

where the limit is taken with respect to the maps p: Ary1 —> A,, and there is a
natural short exact sequence

0 —> lim' A, —> E,A —> A, —> 0.
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PROOF. The exact sequence
r r
0—Z—>Z—Z/p —0

displays a free resolution of Z/p", and the sum of these is a resolution of
®,Z/p". Since Hom (Z, A) = A, we may identify Ext(Z/p’, A) with A/p"A.
Moreover, we have maps of free resolutions

r+1

P
0 7 Z Z/ptt —— 0
p l l q
0 / / Z/p" 0
pl’

The colimit Z/p™ fits into a short exact sequence
0 — &Z/p" — & L/p —> L/p* —> 0.

Writing 1, for theimage of 1in Z/p", ((1;) = 1, — p1,41. The resulting six term
exact sequence of groups Ext (—, A) takes the form

10.1.12
0 — HyA— x, A, L XA —> Ep,A— x, A/p"A LN xrA/pr A—>0.

The first map ¢* is the difference of the identity map and the map whose r*

coordinate is p: Ar11 —> Ay. Its kernel and cokernel are lim A, and lim! A,,
respectively. The second map ¢* is the map « of (10.1.1) whose kernel and
cokernel are Ap and 0, respectively. O

EXAMPLE 10.1.13. Any torsion abelian group A with all torsion prime to p
satisfies H,A = 0 and E,A = 0.

EXAMPLE 10.1.14. Hp(Z/p™) is a ring under composition, and it is isomor-
phic to the ring Z, by inspection of the limit system in the previous result;
Ey(Z/p*>°) = 0 since it is a quotient of Ext (Z/p*°, Zlp~') = 0.

The following immediate consequence of Proposition 10.1.11 shows that
E,A is isomorphic to A, in the situations most often encountered in algebraic
topology.

COROLLARY 10.1.15. Ifthe p-torsion of A is of bounded order, then H,A = 0 and
£:EyA — Ap is an isomorphism.
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EXAMPLE 101.76. If A = @,>17Z/p", then E,A is not a torsion group, the map
£:EpA — Ap is not an isomorphism, and A is not p-complete.

PROPOSITION 10.1.17. There are natural isomorphisms
Lo(A) =EpA and Li(A) = H,A.
Moreover ¢: A —> LoA coincides with the connecting homomorphism
8: A= Hom (Z,A) — Ext(Z/p™,A) = E,A
associated with the short exact sequence

0 — Z —> Z[p ] — Z/p™ — 0.

PROOF. Let

0—F—F—>A—0
be a free resolution of A. From this sequence we obtain the exact sequence
0—>L1A—>15’p—>l:”p—>LoA—>O
of (10.1.3) and also, since Hj,F = 0, the exact sequence of Ext groups
0 — HyA — EpF' — E,F — E,A — 0.

Since E,F = l:"p for free abelian groups F, we may identify these two exact
sequences. The last statement follows since the diagram (10.1.3) has an easily
checked analogue for Hy, and E,. O

These isomorphisms may seem a little unnatural at first sight since Extis a
derived functor of Hom. It was first noted by Harrison [58] that these Ext groups
give a homologically appropriate variant of the classical p-adic completion
functor.

PROPOSITION 10.118. Let A be an abelian group and let B be any of A, HyA,
and E,A. Then H,B =0 and §: B —> E,B is an isomorphism. Equivalently,
LiB=0and ¢: B—> LoB is an isomorphism. Therefore, if ¢p: A —> LoAisan
isomorphism, then [1A = L1 LA = 0.

PROOF. Using the six term sequence of groups Ext(—, B) associated to
the short exact sequence 0 —> Z —> Z[p~'] —> Z/p™ —> 0, we see that
H,B =0and §: B— E,Bis an isomorphism if and only if
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10.1.19 Hom (Z[p~!],B)=0 and Ext(Z[p~!],B) = 0.

This condition certainly holds if p" B = 0 for any r, so it holds for all A, and
A/p"A. If (10.1.19) holds for groups B;, then it holds for their product x;B;.
Suppose given a short exact sequence 0—> B'—> B—> B”—0. If (10.1.19)
holds for B, then

Hom (Z[p~ '], B) =0, Hom (Z[p~'], B") = Ext (Z[p~'], B),
and Ext(Z[p~'],B") = 0.

If (10.1.19) holds for B”, then it holds for B’ ifand only if it holds for B. Now the
short exact sequence (10.1.1) implies that (10.1.19) holds for B = Ap, and the
four short exact sequences into which the six term exact sequence (10.1.12)
breaks up by use of kernels and cokernels implies that (10.1.19) holds for
B =TE,Aand B = HyA. O

Further interesting group theoretical results on “cotorsion abelian groups”,
of which p-complete abelian groups are examples, were obtained by Harrison
[58] long before their relevance to topology was noticed. His results were later
summarized by Bousfield and Kan [21, pp. 181-182]. Since we will not have
need of them, we will not recall them here.

10.1.4. The generalization to sets of primes

DEFINITION 10.1.20. Fix a nonempty set of primes T and recall that Z[T ']
is obtained by inverting the primes in T, whereas Zr is obtained by inverting
the primes not in T. Define

HrA = Hom (Z[T~!1/Z, A) and ErA = Ext(Z[T"'1/Z, A).

We say that the completion of A at T is defined if Hr A = 0, and we then define
the completion of A at T to be the connecting homomorphism

¢: A=Hom (Z,A) — ETA
that arises from the short exact sequence
0— 7Z—> ZIT" Y1 — zZ[T" 1)z —> 0.

We say that B is T-complete if ¢ is an isomorphism. We let @7 denote the
collection of all abelian groups that are completable at T and we let A1 C @1
denote the collection of all T-complete abelian groups.
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REMARK 10.1.21. The short exact sequence above gives rise to an exact
sequence

0 — HrA — Hom (Z[T™!],A) > A — E7A — Ext(Z[T '], A) — 0;

A is completable at T if Hom (Z[T~'],A) = 0 and B is T-complete if and
only if

10.1.22 Hom (Z[T'1,B)=0 and Ext(Z[T~'],B) =0.

The inclusion Z[T~!] — Q induces an isomorphism Z[T~']/Z — Q/Zr,
and Q/Zr is isomorphic to the T-torsion subgroup of Q/Z. In turn, Q/Z is
isomorphic to the direct sum over all primes p of the groups Z/p*>°. These
statements are well-known in the theory of infinite abelian groups, and we
invite the reader to check them for herself. It follows that the definitions above

generalize those given when T is a single prime. Indeed, we have the chains
of isomorphisms

HrA = Hom (Z[T~11/Z, A)
= Hom (®per ZIp~'1/Z, A)
= X, Hom (Z[p™'1/Z, A)

= Xper HpA
and

ErA = Ext! (Z[T~11/Z, A)

12

Ext' (@per Zlp~'1/Z, A)

12

xper Ext! (Z[p~'1/Z, A)
= Xper EpA.

Analogously, we define

AT = ngTAp.

By Lemma 10.1.4, all of these are modules over the ring Z1 = X peTLp.

The results we have proven for a single prime p carry over to sets of primes.
For example, Corollary 10.1.15 and Proposition 10.1.18 imply the following
results.
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PROPOSITION 10.1.23. If A is a torsion-free or finitely generated Zs-module for
any set of primes S D T, then Hr A = 0 and the canonical map ETA —> At isan
isomorphism; its inverse can be identified with the map A ® Z1 —> ErA induced
by the action of Zr on ETA. In particular, BT restricts to an exact functor from
finitely generated Z-modules to Zr-modules.

PROPOSITION 10.1.24. For any abelian group A, the groups At, Hr A, and ET A
are T-complete.

10.2. The definition of completions of spaces at T

Recall that we take all spaces to be path connected. Recall too that we let
F1 = XpeTFp. We have the following three basic definitions, which are written
in precise parallel to the definitions in the case of localization. The equiva-
lence in the following definition follows directly from Definition 3.3.10 and
Proposition 3.3.11.

DEFINITION 10.21. A map &: X —> Y is said to be an Fr-equivalence if
&« Hy(X;Fp) —> Hy(X;Fp) is anisomorphism for all primes p € T or, equiv-
alently, if £*: H*(Y; B) - H*(X; B) is an isomorphism for all Fr-modules B.

DEFINITION 10.2.2. A space Z is T-complete if £*: [Y,Z] — [X,Z] is a
bijection for all Fr-equivalences §: X — Y.

Diagrammatically, this says that for any map f: X — Z, there is a map
f, unique up to homotopy, that makes the following diagram commute up to
homotopy.

DEFINITION 1023. Amap¢: X — Xr from X into a T-complete space Xr
is a completion at T if ¢ is an Fr-equivalence.

This prescribes a universal property. If f : X — Z is any map from X to

a T-complete space Z, then there is a map f, unique up to homotopy, that
makes the following diagram commute.
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¢

X — Xr

Therefore completions are unique up to homotopy if they exist. We shall
prove in Chapter 19 that they do always exist, but we focus on nilpotent spaces
for now.

REMARK 10.2.4. On the full subcategory of connected spaces in Ho.7 that
admit completions at T, completion is automatically functorial (up to homo-
topy). For a map f: X — Y, there is a unique mapr: Xr — Yrin HoZ
such that ¢ o f = fr o ¢ in Ho.7, by the universal property.

The definitions just given do not mention any of the algebraic notions that
we discussed in the previous section. However, they lead directly to consid-
eration of the collection #Ar of T-complete abelian groups, as the following
analogue of Corollary 5.2.6 shows.

THEOREM 10.2.5. TheFr-equivalences coincide with the maps that induce isomor-
phisms on cohomology with coefficients in all groups in Br, and PBr is the largest
collection of abelian groups for which this is true.

PROOF. Let ¢ denote the collection of all abelian groups C such that
£*: HY(Y; C) — H*(X; C)

is an isomorphism for all Fr-equivalences &: X — Y. Our claim is that
Pt = €r. The collection @ has the following closure properties.

(i) If two terms of a short exact sequence of abelian groups are in 47, then
so is the third term since a short exact sequence gives rise to a natural
long exact sequence of cohomology groups.

(ii) If p € Tand p'C = 0, then C € %7, as we see by (i) and induction on r;
the case r = 1 holds by the definition of an Fr-equivalence.

(iii) Any product of groups in 47 is also in €7 since H*(X; x;C;) is naturally
isomorphic to x; H*(X; C;).

(iv) By (i), the limit of a sequence of epimorphisms f;: C;;; —> C; between
groups in €T is a group in %7 since we have a natural short exact
sequence
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0 — lim Ci — XiCi —> XiCi —> 0;

the lim! error term is 0 on the right because the f; are epimorphisms;
see §2.3.
(v) All groups At are in €, as we see by (ii), (iii), and (iv).
(vi) ETAisin @t if Ais completable at T, as we see by (i), the exact sequence
(10.1.3) and Proposition 10.1.17.
(vii) Aisin%r if Ais T-complete since A is then completable and isomorphic
to ETA.

This proves that A1 C ¢r. For the opposite inclusion, we observe first that
the unique map from K(Z[T~'],1) to a point is an Fr-equivalence. Indeed,
we have seen that K(Z[T~!], 1) is a localization of S' = K(Z, 1) away from T.
Its only nonzero reduced homology group is Hy(K(Z[T~'],1);Z) = Z[T~'].
Since multiplication by p € T is an isomorphism on this group, the universal
coefficient theorem implies that I:I*(Z[T_l],lﬁ‘p) = 0forp € T.For C € 6T, we
conclude that H*(Z[T~'], C) = 0. By the universal coefficient theorem again,

Hom (Z[TY],C) = HYZ[T™1],C) =0

and
Ext (Z[T~'],C) = H(Z[T™1),C) = 0.

By Remark 10.1.21, this means that C is T-complete. O

Recall the discussion of profinite groups from §2.5 and say that a profinite
group B = lim By is T-profinite if the B are T-torsion groups. Itis clear from
Theorem 10.2.5 and its proof that many T-profinite abelian groups are in At
and are thus T-complete in our sense, but it is not clear that all of them are.
However, Theorem 10.2.5 and the restriction of Theorem 2.6.1 to T-profinite
abelian groups imply the following result.

COROLLARY 10.2.6. All T-profinite abelian groups are in Br.
Returning to topology, we can now relate Zr to Eilenberg-Mac Lane spaces.
COROLLARY 10.2.7. If Bis T-complete, then K(B, n) is T-complete for all n > 1.

PROOF. If&: X —> Y is an Fr-equivalence, then

£*: H*(Y; B) — H*(X; B)
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is an isomorphism by Theorem 10.2.5 and thus
£*: [Y, K(B,n)] — [X, K(B,n)]

is an isomorphism by the representability of cohomology. d

By analogy with Proposition 5.2.5, we have an alternative topological
description of the collection At of T-complete abelian groups. As in that
result, we cannot prove this without first doing a little homological calculation,
but we defer that to the next section.

PROPOSITION 10.2.8. An abelian group B is T-complete if and only if the space
K(B, 1) is T-complete.

PROOF. If Bis T-complete, then K(B, 1) is T-complete by the previous result.
Suppose that K(B, 1) is T-complete. Then the identity map of K(B,1) is a
completion at T. Moreover,

£%:0 =[x K(B,1)] — [K(Z[T'1,1), K(B,1)]

is an isomorphism since K(Z[T~!],1) —> * is an Fr-cohomology isomor-
phism, as we observed in the proof of Theorem 10.2.5. Using the represent-
ability of cohomology, this gives that

Hom (Z[T~'1, B) = HY(Z[T '], B) = 0.

This implies that HyB =0, so that B is completable at T. In Theo-
rem 10.3.2 below, we shall show among other things that the map
¢: K(B,1) — K(ETB, 1) thatrealizes ¢: B — Er B on fundamental groups
is an Fr-equivalence, and its target is T-complete since ErB is T-complete
by Proposition 10.1.24. Thus ¢ is also a completion of K(B, 1) at T. By the
uniqueness of completion, ¢ must be an equivalence and thus ¢: B— ErB
must be an isomorphism. d

10.3. Completions of nilpotent spaces

We construct completions here, beginning with completions of Eilenberg-
Mac Lane spaces. That was the easy step in the case of localizations, but it is
the key step in the case of completions. We first record the relevant special
case of the dual Whitehead theorem. Take .«7 in Theorem 3.3.9 to be #r. Then
that result takes the following form, which generalizes the fact that K(B, n) is
T-complete if B is T-complete.
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THEOREM 103.1. Every Ar-tower is a T-complete space.

We use this result to construct completions of nilpotent spaces, dealing
separately with Eilenberg-Mac Lane spaces before proceeding to the general
case.

THEOREM 10.3.2. Foreach abelian group A and each n > 1, there is a completion
¢: K(A,n) — K(A,n)}. The space K(A, n)y is Br-nilpotent, its only nonzero
homotopy groups are

ma(K(A, n)}) = ETA

and
71 (K(A, m)3) = HrA,

and ¢, : 7, (K(A, 1)) —> m,(K(A, n)%) coincides with ¢: A — ETA.

PROOF. First consider a free abelian group F. Here we have HrF = 0 and
ErF = Fr. We claim that the map

¢: K(F,n) — K(Fr,n)

that realizes ¢: F —> Fr is a completion at T. Since Fris T-complete by
Proposition 10.1.24, K(Fr, n) is T-complete by Corollary 10.2.7. Thus we only
need to prove that ¢, is an isomorphism on mod p homology for p € T. We
proceed by induction on n, and we first consider the case n = 1.

The projection Fr — ﬁp induces an isomorphism on mod p homology
since its kernel is local away from p. We now use the LHS spectral sequence,
Proposition 24.5.3, of the quotient group ﬁp /F. The spectral sequence has the
form

E} = Hy(Fp/F; Hy(F; Fp)) == Hpyq(Fp; Fp).

The group l:"p /Fisuniquely p-divisible. One can see this, for example, by noting
that the canonical map F — 1:"p is a monomorphism of torsion-free abelian
groups that induces an isomorphism upon reduction mod p. Alternatively,
writing elements of F in terms of a basis for F and writing integer coefficients
in p-adic form, we see that elements of F /p" F can be written in the form f + pg,
where the coefficients appearing in f satisfy 0 < a < p. If we have an element
(fr +pgr)of im F/p"F C x,F/p" F with components written in this form, then
compatibility forces (f;) to come from an element f € F, and it follows that
our given element is congruent to p(g;) mod F. It follows that the terms with
p > 0 are zero and the spectral sequence collapses to the edge isomorphism
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. . ~ 2 _ ~ .
@1 Hy(F; Fp) = EO’* = EO,* = H*(Fp,]Fp).

Forn > 1, take K(F,n— 1) = QK(F, n) and consider the map of path space
fibrations

K(F,n—1) ——> PK(F,n) ——> K(F,n)

| ! i

K(Fr,n—1) — PK(Fr,n) — K(Fr,n).

By the Serre spectral sequence, the induction hypothesis, and the comparison
theorem, Theorem 24.6.1, the map

¢x: Hg(K(F,n), Fp) —> Hy(K(Fr, ), Fp)

is an isomorphism and therefore ¢ is a completion at T.

Now consider a general abelian group A. Write A as a quotient F/F’ of free
abelian groups and let i: F/ —> F be the inclusion. We construct a map of
fibration sequences

i
K(F,n) —> K(An) — = K(F,n+1) — K(F,n+1)

| O T .

A lT

K(Fr,n) — KA Ny —— K(F,n+1) — K(Fr,n+1).

Here the map i realizes the algebraic map i on passage to 7,4+1 and can be
viewed as the map from the fiber to the total space of a fibration with base space
K(A,n+1). We take K(A, n) to be the fiber Fi and take K(F,n) = QK(F,n+1).
The two completion maps on the right have been constructed, and that on the
left is the loops of that on the right. The map i% is the map, unique up to
homotopy, that makes the right square commute up to homotopy, and it real-
izes the algebraic map i} on passage to 7,,1. We define K(A, n)} to be its
fiber. By Lemma 1.2.3, there is a dotted arrow map ¢ that makes the middle
square commute and the left square commute up to homotopy. This map
induces an isomorphism on mod p homology for p € T by the map of Serre
spectral sequences induced by the map of fibrations given by the left two
squares. To show that ¢ is a completion of K(A, n) at T it remains to show
that K(A, n); is complete. Since K(A, n)} is visibly a #r-tower, this holds by
Theorem 10.3.1.
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The bottom fibration sequence above gives a long exact sequence
o= T (K(Fr, n)) —> 7as1(K(A, 1)) —> g1 (K(Fp, n+ 1))
— a(K(Fr, 1)) — 75(K(A, 1)) —> ma(K(Ff,n41)) —> -

By the case of free abelian groups this simplifies to

SA
0 —> Tuy1(K(A n)p) — B - By —> my(K(A, m)p) —> 0.

The map i} is the product over p € T of the maps i)}, and our algebraic
definitions and results give exact sequences

0—>HPA—>1:";—>IEP—>IEPA—>O.

The product over p € T of these exact sequences is isomorphic to the pre-
vious exact sequence, and this gives the claimed identification of homotopy
groups. Comparing the map on homotopy groups given by our map of fibra-
tion sequences to the diagram (10.1.3), we see that the map on n** homotopy
groups induced by ¢ is the algebraic map ¢. O

In view of Example 10.1.14, we have an interesting explicit example where
homotopy groups shift dimension.

EXAMPLE 103.3. For a prime p, K(Z/p°, n);,\ is an Eilenberg-Mac Lane space
K(Zp,n+1).

This is not an exotic example. Analogous dimension-shifting examples play
a central role in comparing the algebraic K-theory of an algebraically closed
field, which is concentrated in odd degrees, to topological K-theory, which is
concentrated in even degrees [89, 113, 116].

The generalization from Eilenberg-Mac Lane spaces to nilpotent spaces
works in precisely the same way as the construction of localizations. We need
only replace the localizations K(Ar, n) by the completions K(A, n)4. The fact
that the latter are not Eilenberg-Mac Lane spaces does not change the details
of the construction.

THEOREM 103.4. Every nilpotent space X admits a completion ¢: X —> Xr.
PROOF. Exactly as in the proof of Theorem 5.3.2, we may assume that X

is a Postnikov tower lim X; constructed from maps k;: X; — K(A;,n;+ 1),
where A; is an abelian group, n;,1 > n; > 1, and only finitely many n; = n
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for any n > 1. Here Xy = %, and we let (Xo)§ = . Assume that a completion
¢i: X; — (X;)% has been constructed and consider the following diagram, in
which we write K(A;, n;) = QK(A;, n; +1).

K(Aj, 1) ——— Xip X; K(A;, m +1)

|
Qe l I ¢y i o l ¢
\

KA, n)p —— (Xi41)p —— (X)) —— K(A,m+1)p
(ki)

By Theorem 10.3.1, since ¢; is an Fr-equivalence and K(A;,n;+ 1)} is a
T-complete space there is a map (k;)%, unique up to homotopy, that makes the
right square commute up to homotopy. The space X; is the fiber Fk;, and
we define (X;41)% to be the fiber F(k;)%.

By Lemma 1.2.3, thereis amap ¢; ; that makes the middle square commute
and the left square commute up to homotopy. By Theorem 10.3.1, (X11)% is
T-complete since it is a Ar-tower. To see that ¢;, 1 is a completion at T it
remains to show that it induces an isomorphism on homology with coeffi-
cients in F, for p € T. The proof is a comparison of Serre spectral sequences
exactly like that in the proof of Theorem 5.3.2. We define X7 = lim (X;)} and
¢ =lim¢;: X — X7. Then ¢ is an Fr-equivalence by Proposition 2.5.9 and
is thus a completion of X at T. O

Similarly, the proofs of the following analogues of Theorem 5.3.3, Propo-
sition 5.3.4, and Corollaries 5.3.5 and 5.3.6 concerning the functoriality of
our cocellular constructions are virtually identical to the proofs of those
results.

THEOREM 103.5. Let X and Y be Postnikov towers and let v: X — Y be a
cocellular map. Choose cocellular completions at T of X and Y. Then there exists
a cocellular map Y7 : X5 —> Y7, unique up to cocellular homotopy, such that
V4 o ¢ is homotopic to ¢ o .

PROPOSITION 10.3.6. Let W be a quotient tower of a Postnikov tower X with
projection w: X —> W. Then there are cocellular completions X1 of X and
W7 of W such that W7 is a quotient tower of X1 whose projection satisfies
npop=¢om. If w~1(x) is connected, the map ¢: w1 (x) —> (7)1 (*)
obtained by restricting p: X —> X7 to fibers is again a completion at T. If, further,
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Y is a Postnikov tower, 0: Y —> W is a cocellular map, and 67 : Y — W¢
is chosen as in Theorem 10.3.5, then the pullback X7 x wh Y7 of w4 and 67 isa
cocellular completion of the pullback X xw Y of w and 6.

COROLLARY 103.7. X x Y7 is a cocellular completion of X x Y.

COROLLARY 103.38. If X is a simply connected Postnikov tower, then Q(X7) is a
cocellular completion of QX.

10.4. Completions of nilpotent groups

As in the case of localization we can extend the definition of completion from
abelian groups to nilpotent groups by using the completion at T of nilpotent
spaces. By Theorem 10.3.4, for any nilpotent group G there is a completion
K(G,1)% of K(G, 1). By construction, ,(K(G, 1)}) = 0 for n > 3. We define

ErG = m1(K(G, 1))

and
HrG = m(K(G, 1)/]5),

and we let ¢: G —> E1G be the homomorphism induced on 71 by the com-
pletion ¢: K(G,1) — K(G,1)%. Of course, as a second homotopy group,
HrG is abelian. By the functoriality of topological completion, Hy and Er
are functors and ¢ is a natural transformation. We say that G is completable
at T if HrG = 0, and we then call ¢ the completion of G at T. We say that
G is T-complete if ¢ is an isomorphism; as in the abelian case, this implies
that Hr G = 0. The universal property of topological completions specializes
to show that completion at T is universal among homomorphisms G — H
of nilpotent groups such that G is completable at T and H is T-complete.

The following three results are the analogues for completion of Propositions
5.4.7,5.4.8, and 5.4.9. The proofs of the second and third of them are identical
to the proofs in the case of localization, but the proof of the first must take
account of the fact that not every nilpotent group is completable.

LEMMA 10.4.1. A nilpotent group G is T-complete if and only if G is
ABr-nilpotent.

PROOF. If G is T-complete, then both its identity homomorphism and the
homomorphism obtained by passage to 71 from the inductive construction
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of completion at T in Theorem 10.3.4 are completions of G at T. By unique-
ness, they agree up to isomorphism under G, and the latter description dis-
plays G as a Zr-nilpotent group. Conversely, suppose that G is a Zr-nilpotent
group. Then K(G,1) is a Ar-nilpotent space and is equivalent to a Post-
nikov Ar-tower. Since we only have a fundamental group to construct, each
n; = 1 and the groups A; are all T-complete in the inductive diagram that
appears in the proof of Theorem 10.3.4. The maps ¢; defined inductively
there are all equivalences between Eilenberg-Mac Lane spaces K(—, 1), hence
¢: K(G,1) — K(G, 1)} is an equivalence. Therefore, K(G,1)7 must be a
space K(E1G, 1) and ¢: G —> ErG must be an isomorphism. O

PROPOSITION 10.4.2. A homomorphism ¢: G —> H between completable nil-
potent groups is an algebraic completion at T if and only if the map, unique up to
homotopy,

¢: K(G,1) — K(H, 1)

that realizes ¢ on w1 is a topological completion at T.
PROPOSITION 1043. If¢: G —> Gr is the completion of a completable nilpo-

tent group G, then
¢«: He(G;Fp) —> Hu(GT;Fp)

is an isomorphism for all primes p € T.

Proposition 5.4.10 and Corollary 5.4.11 also have analogues for comple-
tions.

PROPOSITION 1044. Let1 — G —> G —> G” —> 1 be an exact sequence
of nilpotent groups. Then the induced maps give a fibration sequence
K(G, 1)} — K(G,1)7 — K(G",1)%,
and the resulting long exact sequence of homotopy groups has the form
1 — HrG — HrG — HrG' — E7G — E1G — E7G” — 1.

PROOF. We can choose a central series for G that begins with a central series
for G’ and ends with the inverse image of a central series for G”. We can
construct corresponding Postnikov towers, so K(G”, 1) is a quotient tower of
K(G,1) with fiber K(G,1). Then, by Theorem 10.3.5, we can arrange our

completions so that the map K(G, 1)} — K(G”, 1)} is the projection onto a
quotient tower and the map on the fiber is completion at T. O
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COROLLARY 10.4.5. Suppose given a map of short exact sequences of completable

nilpotent groups
1 G G G” 1
1 H H H —— 1

in which the groups on the bottom row are T-complete. If any two of the three vertical

arrows are completions at T, then so is the third.

We give some algebraic properties of completion at T in the rest of the
section. Some of these properties are direct generalizations from the abelian
case, but others give further information even in that case.

LEMMA 10.4.6. For any nilpotent group G, Hr G and E1G are T-complete. More-
over, the map ¢: G —> Er G gives rise to isomorphisms

Hr(ker¢) EHrG and ErG = Er(im¢),

and Er(ker ¢) = 0, Hr(im ¢) = 0, Er(coker ¢) = 0, and Hr( coker ¢) = 0.

PROOF. Since K(G, 1)} is nilpotent, it can be constructed as a Postnikov
tower with quotient tower K(ETG,1). The fiber of the quotient map is a
space K(HrG, 2). Labeling the quotient map 7 and the fiber inclusion map ¢,
Proposition 10.3.6 gives a map of fibration sequences

L 4
K(HrG,2) —> K(G, 1)} ——> K(ErG,1)

| | |

K(HrG,2)) —> (K(G,1)})} —> K(ErG,1)}.
i Ty

The vertical arrows ¢ are completions, and the middle arrow is an equiva-

lence since the identity map of K(G, 1) is also a completion. By construction,

K(HtG, 2)} is simply connected and 7, (K(E1G, 1)}) = 0 for n > 2. Compar-

ing the long exact sequences of homotopy groups, we see that

(i) HTHT G = m3(K(HT G, 2)}) = 0;
(ii) m2(74) = 0 and hence HrETG = m(K(ETG, 1)7) = 0; and
(iil) m2(:4) and mq(7f}) are isomorphisms.
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Therefore the left and right vertical arrows ¢ induce isomorphisms of homo-
topy groups. This proves the first statement. The second statement is left as
an exercise for the reader. It is shown by applying Proposition 10.4.4 to the
two short exact sequences obtained by factoring ¢ through its image. The
proof entails diagram chasing of the two resulting six term exact sequences,
using the fact that the composite ErG — Erim¢ — ErE7G is the isomor-
phism Er¢. O

We will not make direct use of the following result, but we will make a
little use of some of its consequences. To prove it, we drop our attempt to be
algebraically as well as topologically self-contained and use some group theory
that can be found in standard sources, such as Kurosh [78].

PROPOSITION 104.7. Let G be a nilpotent group.

(i) Hr G = Hr(rG), where TG is the T-torsion subgroup of G.
(it) Ht G = 0 if the p-torsion elements of G are of bounded order forp € T.
(iii) ETG = 0 if and only if G is p-divisible forp € T.

PROOF. The quotient group G/ G is T-torsion free, hence so are the abelian
subquotients of its upper central series [78, II, pp.245, 247]. This implies
that Hr(G/1G) = 0, and (i) now follows from Proposition 10.4.4. Since the
abelian subquotients of any central series of TG will inherit the boundedness
property in (ii), (i) and the abelian group case of (ii) imply that (ii) holds in
general.

For (iii), assume first that Er G = 0. Consider the fiber F¢ of the map

¢: K(G,1) — K(G, 1)".

The space K(G, 1)% is nilpotent, and its reduced mod p homology is zero for
p € T. Therefore the integral homology of F¢ is local away from p and so F¢
is local away from T, hence the nilpotent group 71 (F¢) is local away from
p. Since ErG =0, G is a quotient of w1 (F¢) and is therefore p-divisible for
peT.

Conversely, assume that G is p-divisible for p € T. We have not yet proven
the abelian case of the claim, so we consider that first. If G is abelian and
T-torsion free, then it is a Z[T~1]-module. If G is abelian and a T-torsion
group, then it is a direct sum of copies of Z/p* for p € T [78, I, p.165].
In either case, Hom (Z[T~!], G) —> Hom (Z, G) is an epimorphism and
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¢: G—> ErG is the zero homomorphism. Therefore the isomorphism
Er¢: ETG — ErETG is zero and thus ErG = 0. For general nilpotent
p-divisible groups G, an argument in [78, II, p.237] shows that G admits
a central series all of whose abelian subquotients are of one of the two types
just considered, so that ErG = 0. O

REMARK 10.4.8. By the previous two results HyG = Hr K, where K is the
T-torsion subgroup of ker ¢. Using Proposition 10.4.4 and Lemma 10.4.6,
we find that ETK = 0. By the previous result, K is thus a divisible torsion
nilpotent group. It is therefore abelian [78, II, p. 235], in accordance with our
definition of H7 G as an abelian group. When T = {p},

H,G = H,K = Hom (Z/p*, K) = Hom (Z/p, G).

The last Hom refers to the category of groups, and the last equality is the
observation that any group homomorphism Z/p* — G factors uniquely
through K.

COROLLARY 10.4.9. For any nilpotent group G, HrG is a torsion-free abelian
group, and Ext (Hr G, ETA) = 0 for all abelian groups A.

PROOF. Byinspection, Hr G is torsion free when G is abelian, and the general
case follows from the previous remark. The second statement follows since
ErA is an Ext group, Tor (B, C) = 0 if B is torsion free [25, VI1.4.2], and

Ext (B, Ext (C, D)) = Ext (Tor (B, C), D)
for all abelian groups B, C, and D [25, V1.3.5a]. O

REMARK 10.4.10. We shall use this together with the fact that, for abelian
groups Aand B, Ext (B, A) classifies extensions0 — A — C — B —> 0Oof
abelian groups[79, p. 68]. Thus Ext (B, A) = 0implies that every such extension
splits in the form C = A& B.

The results above are less complete than in the abelian case in that we have
not yet considered T-adic completion of nilpotent groups. We will never make
later use of such a notion, but we sketch how the theory goes, without striving
for rigor. There are several equivalent ways to define T-adic completion, and
we give the one that best fits our way of thinking about completion.
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DEFINITION 10.4.11. For a nilpotent group G, define the T-adic completion
of G to be the inverse limit of the Zr-nilpotent groups under G. That is, the
inverse system runs over the commutative diagrams of homomorphisms

B/

where B and B’ are T-nilpotent. This gives a functor since for f: H — G
we can map an element of Hr to the element of G given by the coordinates
indexed on composites H —> G —> B. By the definition, we have a natural
map ¢: G —> Gr. Applying the functor Er and using that the groups B in
the limit system are T-complete, we obtain a natural map v : ErG —> Gr
such that ¥ o¢ = ¢. That is, the T-adic completion ¢ factors through the
T-completion ¢.

The definition is not quite rigorous because we have not shown that the
inverse system can be restricted to a cofinal set of homomorphisms G — B.
The standard way around this is to restrict attention to epimorphisms, taking
the limit of T-nilpotent images of G, as we did implicitly for p-adic completion
of abelian groups. However Gr is defined, we will have G = x p@p, and we
could start with that as part of the definition. We did that in the abelian case
and, as there, we could redefine Cp to be lim G/G?’, where G?" denotes the
subgroup, necessarily normal, generated by all elements g for g € G. This
gives a well-defined functor, and it is the definition of choice in the algebraic
literature (see, for example, [141, p. 52]), but now we must check that each
G/GP' is p-complete. Alternatively, we can redefine @p using epimorphisms to
Fp-nilpotent groups. When G is finitely generated, we can replace %, -nilpotent
groups by finite p-groups in the limit system, and then G, is isomorphic to
the classical profinite completion of G at p [126, p. I-5].

PROPOSITION 10.4.12. If the p-torsion elements of G are of bounded order for
pe T, theny: ErG — GT is an isomorphism.
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SKETCH PROOF. The hypothesis on the p-torsion is inherited by all subquo-
tients of G, so Ht vanishes on all groups in sight. Profinite completion at pis an
exact functor on finitely generated nilpotent groups, and one can generalize to
show that this remains true without finite generation under our hypothesis on
the p-torsion. In the case of abelian groups, this is a p-adic generalization of the
Artin-Rees lemma that we proved implicitly in the first section of this chapter.
Given the exactness, Gt is p-complete and ¥ is an isomorphism by induction
on the nilpotency class of G, using Proposition 10.4.4 and Corollary 10.4.5.
For closely related results, see [141, Thms. 7.4, 7.6]. O
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CHARACTERIZATIONS AND PROPERTIES
OF COMPLETIONS

We give several characterizations of completions in {1. Starting with {2, we
restrict attention to completions at a single prime p, and we study the homo-
topical behavior of completion at p with respect to standard constructions on
based spaces. The treatment runs parallel to that in Chapter 6, and we focus
on points where completion behaves differently from localization.

11.1. Characterizations of completions of nilpotent spaces

We show that several alternative conditions on a map are equivalent to its
being a completion at T. We have the following pair of omnibus theorems.

THEOREM 11.1.1. The following properties of a nilpotent space Z are equivalent,
and they hold if and only if Z is T-complete.

(i) Z is a Br-nilpotent space.

(ii) £*: [Y, Z] — [X, Z] is a bijection for every Fr-equivalence §: X —> Y.
(iii) Each wn,Z is a T-complete group (nilpotent if n = 1, abelian if n > 1).

THEOREM 11.1.2. For a nilpotent space X, the following properties of a map
¢: X — Y from X to a T-complete space Y are equivalent. There exists one
and, up to homotopy, only one such map, namely the the completion X —> Xr.
(i) ¢*: 1Y, Z] — [X, Z] is an isomorphism for all T-complete spaces Z.
(ii) ¢ is an Fr-equivalence.
Moreover, for each n > 1, there is a natural and splittable exact sequence

0 —— ErapyX —— 7Y —— Hrrp,1 X —— 0,

214
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and the composite 7, X L Erm,X — w,Y is ¢s. If X is @/r-nilpotent,
so that each Hrm,X =0, the following condition is equivalent to (i)
and (ii).

(iii) Forn > 1, ¢y: mnX —> mw,Y is completion at T.

In Theorem 11.1.1, (ii) is the definition of what it means to be T-complete.
In Theorem 11.1.2, (ii) is the definition of what it means for ¢ to be a comple-
tion at T, and we have already proven the existence and uniqueness of such a
completion. Therefore, in both results, it suffices to prove the equivalence of
(ii) with the remaining properties. Note that the hypothesis for criterion (iii)
of Theorem 11.1.2 is essential. For example, 7, (K(Z/p*>°, n),) = 0.

PROOF OF THEOREM 11.1.1. This is very nearly the same as the proof of
Theorem 6.1.1. We use our characterization of Zt in Theorem 10.2.5 and the
dual Whitehead theorem for the collection #r to see that (i) = (ii). The im-
plications (ii) = (i) and (i) = (iii) are proven as in Theorem 6.1.1. The
topological proof of (iii) = (i) in Theorem 6.1.1 works just as well here,
although the algebraic proof does not. O

PROOF OF THEOREM 11.1.2. Again, much of this is nearly the same as
the proof of Theorem 6.1.2. The equivalence of (i) and (ii) follows from
Theorem 10.3.1 and the representability of cohomology. The proof that
(iii) = (ii) when X is @77 -nilpotentis the same as the corresponding implication,
(iii) = (ii), of Theorem 6.1.1. Conversely, to see that (ii) implies (iii) when
X is o#r-nilpotent, it suffices to check the general statement about homotopy
groups. For that purpose, we may use our cocellular completion ¢. The con-
clusion holds when X is an Eilenberg-Mac Lane space by Theorem 10.3.2. The
claimed exact sequence of homotopy groups and the description of ¢, fol-
low inductively by chasing the maps of exact sequences of homotopy groups
associated to the maps of fibration sequences in the inductive construction
of X7 in Theorem 10.3.4. The chase uses the exact sequences displayed in
Lemma 10.1.8 and, more explicitly, Proposition 10.4.4. With the notations of
the proof of Theorem 3.5.4, these give exact sequences of the form

0 — HrA; — Hr(G/Gpjr1) —> Hr(G/Gy))
— ErA; — E7(G/Gpjt1) — Er(G/Gyj) — 1

determined by the central series used to build up G = 7, X. Ateach stage of the
inductive construction of X, we are building one of these exact sequences in
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the (n + 1)* and n homotopy groups of Xr, and by the time we have finished
building up the n* homotopy group we have also built the summand Hrm,X
of the (n+ 1) homotopy group. At each stage of the construction, we have
splittings in view of Corollary 10.4.9 and Remark 10.4.10. d

Recall that HTA = X pe7HpA and ETA = X ,c7EpA. Together with Theo-
rem 11.1.2, these observations have the following consequence, which was
promised at the very beginning of the previous chapter.

COROLLARY 11.1.3. For a nilpotent space X, the canonical natural map
(p): XT —> Xpe1Xp
is an isomorphism in Ho7.

PROOF. Observe that )A(p is a T-complete space since %) is contained in AT,
so thatany %p-mlpotent space is Zr-nilpotent. By the universal property of Xt
the completions X — Xp factor through canonical natural maps 7, : Xr — Xp
forpeT:

The map (mp): Xr — x pgr)?p induces an isomorphism on homotopy
groups and is thus a weak equivalence or, equivalently, an isomorphism in
HoJ. d

The following result makes clear that completion at T can be thought of as
a refinement of localization at T.

PROPOSITION 11.1.4. The completion at T of a nilpotent space X is the composite
of its localization at T and the completion at T of the localization Xr.

PROOF. Since F, is a p-local abelian group it is also T-local. Therefore

any Fr-equivalence is a Zr-equivalence. By the definitions of T-local and
T-complete spaces, this implies that any T-complete space is T-local. By
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the universal property of localization at T, we obtain a map ¢ making the
following diagram commute.

Since ¢ is clearly an Fr-equivalence, it is a completion of Xt at T. d

REMARK 11.1.5. Observe that we have no analogues of the homological crite-
ria in parts (iv) of Theorems 6.1.1 and 6.1.2. In fact, the integral homology
of completions is so poorly behaved that it is almost never used in practice.
The groups H,(Xr;Z) are always T-local, so they are uniquely g-divisible for
q ¢ T, but little more can be said about them in general. Observe that, by
Remark 5.4.1 and the universal coefficient theorem, if I:In()?T;Fp) =0 and
Hy1(X7; Fp) =0forp e T, then H,(X1;Z) is a rational vector space.

One might naively hope that, at least if X is f-nilpotent, H,(Xr;Z) might
be isomorphic to Hy(X; Z) ® Zr, in analogy with what is true for localization.
However, as observed in [21, VI.5.7], that is already false when X = S". For
q > n, the groups Hy(S%;Z) are rational vector spaces. Let n be odd. Then
Corollary 6.7.3 implies that the rationalization of 3’} is a space K(Q®Zr,n)
so that, for g > n,

Hy (8% Z) = Hy((S)o; Q) = Hy(K(Q® Z1, n); Q).

For a Q-vector space V, Hy(K(V,n); Q) behaves homologically as if it were
a graded exterior algebra generated by Hy,(K(V,n);Q) = V. In particular,
Hgn(S%; Z) is an uncountable Q-vector space for g > 2.

11.2. Completions of limits and fiber sequences

Since completions see one prime at a time, by Corollary 11.1.3, we now fix
a prime p and only consider completion at p henceforward. This allows us
to work with the Noetherian ring Z, rather than the ring ZT, which is not
Noetherian if the set T is infinite.

This section is analogous to the corresponding section, §6.2, for localization.
The main difference is that it is necessary to be more careful here since exact-
ness properties are more subtle and since the characterizations of completions
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are weaker. To begin with, we do not have a general analogue for completions
of the result that a p-local nilpotent group is Zy)-nilpotent. This is related to
the fact that a homomorphism between p-complete abelian groups need not
have p-complete kernel and cokernel and need not be a homomorphism of
Zy-modules. Recall the notion of a Zy-map from Definition 4.3.2.

LEMMA N2 If f: X — Y is a map between nilpotent spaces, then its
completion f,: }A(p —> f/p is a Zy-map.

PROOF. ByTheorem 3.5.4 we may assume that X and Y are Postnikov towers
and that f is a cocellular map. We may then construct ¢x: X — }A(p and
oy Y — f/p by Theorem 10.3.4 and constructﬁ by Theorem 10.3.5, so that
it too is a cocellular map. Since the functors H, and E,, that describe homotopy
groups take values in the category of Zp-modules, the conclusion follows. O

While this result works in full generality, it is only useful to us when we
obtain fZ,-maps. The problem is that, while the kernel and cokernel of a map
of Zy-modules between p-complete abelian groups are Zy-modules, they still
need not be p-complete. However, they are so when the given modules are
finitely Zy,-generated. Recall Notations 4.5.1 and 4.3.3. The proof above works
to give the following refinement.

LEMMA M.22. If f: X —> Y is a map between fZr-nilpotent spaces for any
set of primes T such that p e T, then its completion f,: Xp — f’p is an

SfZy-map.

The following two results work without f-nilpotency hypotheses on our
spaces.

PROPOSITION 11.23. IfX and Y arenilpotent spaces, then (X x Y), is naturally
equivalent to )A(p X ?p.

PROPOSITION 11.2.4. If X is nilpotent and Qo(X) denotes the basepoint compo-
nent of QX, then (QX), is naturally equivalent to Qo(f(p).

PROOF. As noted in the proof of Proposition 6.2.4, QX is equivalent to QX.
The cocellular version of the statement applies to X. O
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Our methods do not give the most general possible forms of the next two
results, but their f-nilpotency hypotheses are satisfied in the applications and
would shortly become necessary in any case.

PROPOSITION 11.25. Let f: X —> A and g: Y —> A be maps between
f-nilpotent spaces, let No(f, g) be the basepoint component of the homotopy pullback
N(f,g), and let f, and g, be p-completions of f and g.

(i) If N(f,g) is connected, then N( fp, 8p) is connected.
(it) No(f,g) is p-complete if X, Y, and A are p-complete.
(iii) No(ﬁ,,grp) is a p-completion of No(f, g).

PROOF. Recall from Proposition 6.2.5 that No(f, g) is nilpotent. We mimic
that result for the rest. The f-nilpotent hypothesis is not needed for (i) since
Corollary 2.2.3 shows how to determine connectivity by the tail end of an
exact sequence, and the right exactness of the functor E, gives the conclu-
sion. For (ii), Proposition 4.4.3, applied to the abelian category f.o77, of finitely
generated Zy-modules, shows that No( ﬁ,, 8p) is f Zyp-nilpotent and is therefore
p-complete. Using Corollary 10.4.5, part (iii) follows by comparison of the
long exact sequences of homotopy groups for No(f, g) and No(fT, gr) given in
Corollary 2.2.3. O

Similarly, the proof of the following theorem uses the results just cited,
and also Lemmas 3.1.3 and 4.3.4, exactly as in the proof of its analogue,
Theorem 6.2.6, for localizations.

THEOREM 11.2.6. Let g: X —> Y be a map to a connected space Y such that Y
and all components of X are f-nilpotent. Let F = Fg. Then each component of F is
f-nilpotent and there is a homotopy commutative diagram

L q g
QY F X Y
\\¢
o ¥ F, 6 ¢
dp
% \
QY, : Fg, , X, - ¥,
8p
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with the following properties.

(i) Themap ¢p: Y —> f/p is a completion at p.

(it) The maps ¢: X —> )?p and ¢: F — I:“I{J are the disjoint unions over the
components of X and F of completions at T, defined using any (compatible)
choices of base points in these components.

(iii) The rows are canonical fiber sequences.

(iv) The restriction of ¥ to a map from a component of F to the component of its
image is a completion at p.

(v) The map & : 131, — Fgy is an equivalence to some of the components of f:p.

(vi) Fix xe€X, let y=g(x)€Y, and assume that the images of
g« m1(X, x) — m1(Y,y) and Gy 711(5(1,,¢(x)) — nl(?p,db(y)) are normal
subgroups. Then the quotient group 7o(F) is f -nilpotent, the quotient group
7o (Fg,) is f Zp-nilpotent, and Yr..: 7o(F) —> 7o (Fy) is a completion at p.

As in the local case, the result simplifies when Y is simply connected and
therefore F is connected. We can then ignore the interior of the central square
and part (ii), concluding simply that the fill-in y: F — Fg, is a completion
of F at p.

11.3. Completions of function spaces

We first record an essentially obvious consequence of the general theory of
completions. We wrote the proof of Lemma 6.3.1 in such a way that it applies
with minor changes of notation to prove the following analogue.

LEMMA 11.3.1. Let X be nilpotent and Y be p-complete. Then
¢*: F(Xy, Y) — F(X, Y).
is a weak homotopy equivalence.
More deeply, we have the following analogue of Theorem 6.3.2, in which

we use much of the same notation that we used there. This result will play a
key role in the fracture theorems for completion.

THEOREM 11.3.2. Let X be an f-nilpotent space and K be a finite based connected
CW complex. Let g € F(K, X), and let F(K, X)g denote the component of F(K, X)
that contains g. Let K' denote the i-skeleton of K and define [K, X]g to be the set of
all h € [K, X] such that h| K" 1 = glK”*1 € [K"1, X1, where n is the dimension
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of K. Let ¢: X —> X,, be a completion of X at p. Then the following statements
hold.

(i) F(K,X)g is an f-nilpotent space, F(K,}A(p)(pog is an f Zy-nilpotent space, and
¢«: F(K,X)s — F(K, }A(p)(;,og is a completion of spaces at p.

(ii) [K,X]g is an f-nilpotent group, [K,}A(p]g is an fZ,-nilpotent group, and
¢y [K, X]g — [K,)A(p](i,og is a completion at p.

The proof of Theorem 6.3.2 applies verbatim. Note that even if we could
manage to eliminate f-nilpotency hypotheses in our results on fibrations in
the previous section, we would still have to restrict to f-nilpotent spaces in this
result, as the example of K = S§" and X = K(Z/p*>°, n) makes clear.

11.4. Completions of colimits and cofiber sequences

The analogues for completion of the results of {6.4 are intrinsically less sat-
isfactory since the relevant constructions fail to preserve p-complete spaces.
Notably, it is not true that £X is p-complete when X is p-complete, as we
saw in Remark 11.1.5. As there, the problem is that we have no homological
characterizations like those in Theorems 6.1.1 and 6.1.2 to rely on. However,
using the characterization of completion in terms of mod p homology, we can
obtain correct statements simply by completing the constructions that fail to
be complete. We obtain the following conclusions.

PROPOSITION 11.41. IfX, Y, and X V'Y are nilpotent spaces, then (X v Y),, is
naturally equivalent to ()A(p \Y% ?p);,.

PROOF. ¢ Vp: XVY —> }Zp \% ffp is an Fp-equivalence, but its target need
not be p-complete. The composite of the displayed map with a completion of
its target is a completion of its source. O

The proofs of the next few results are of exactly the same form.

PROPOSITION 11.42. If X is nilpotent, then (£X), is naturally equivalent to
(ZXp)p-

PROPOSITION 11.43. Leti: A —> X beacofibrationandf: A —> Y bea map,

where A, X, Y, X /A, and X Ua Y are nilpotent. If we choose completions such that
ip: Ap — }A(p is a cofibration, then ()A(p Ui, f/p);, is a completion of X U4 Y.
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PROPOSITION 11.44. Let f: X —> Y be a map such that X, Y, and Cf are
nilpotent and let v be a fill-in in the map of canonical cofiber sequences

f i b4
X Y cf X
|
¢ l ¢ l Iy l ¢
\i
X, — Y, — Cf =X,
5 i

in which the given maps ¢ are completions at p. Then the composite of ¥ with a
completion of its target is a completion of Cf.

PROPOSITION 1145 If X is the colimit of a sequence of cofibrations
X; —> Xi11 between nilpotent spaces, and if completions are so chosen that the
completions (X;), —> (Xi41)p are cofibrations, then (colim (X;)p)p is a comple-
tion of X.

PROPOSITION 146 If X, Y, and X AY are nilpotent, then (X AY), is
naturally equivalent to ()?p A ?p);.

Clearly, in view of these results, it is unreasonable to expect to have a
cellular construction of completions analogous to the cellular construction of
localizations given in §6.5.

11.5. Completions of H-spaces

It is also unreasonable to expect to have naive constructions of completions
of H-spaces and co-H-spaces analogous to the constructions for localiza-
tions given in §6.6, and we cannot expect completions of co-H-spaces to be
co-H-spaces. However, completions of H-spaces behave well.

PROPOSITION 11.5.1. IfY is an H-space with product 1, then EA’p is an H-space
with product fL, such that¢: Y —> f/p is a map of H-spaces.

PROOF. Themap¢p x¢p: Y XY — f/p X f/p is a completion at p, so there
is a map fip, unique up to homotopy, such that i, o (¢ x ¢) is homotopic to
¢ o u. Left and right multiplication by the basepoint of f/p are each homotopic
to the identity by another application of the universal property. O
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There is a large body of interesting work on p-complete H-spaces. Here
again, some of the interest is in seeing how much like compact Lie groups they
are. For that comparison, one wants them to satisfy some reasonable finiteness
condition, but in the absence of a cell structure it is not entirely obvious how
to specify this. One also wants them to be equivalent to loop spaces. Of course,
this holds for any topological group G, since G is equivalent to the loops on
its classifying space BG. This leads to the following notion.

DEFINITION 11.5.2. A p-compact group is a triple (X, BX, ¢), where BX is a
p-complete space, : X —> QBX is a homotopy equivalence, and the mod p
cohomology of X is finite dimensional. It is often assumed that BX is simply
connected, so that X is connected.

This notion was introduced and studied by Dwyer and Wilkerson [44], who
showed how remarkably similar to compact Lie groups these X are. The com-
pletion of a compact Lie group is an example, but there are many others.
Like compact Lie groups, p-compact groups have versions of maximal tori,
normalizers of maximal tori, and Weyl groups. A complete classification, anal-
ogous to the classification of compact Lie groups, has recently been obtained
4, 5].

11.6. The vanishing of p-adic phantom maps

In parallel with 6.8, we give an observation that shows, in effect, that phantom
maps are usually invisible to the eyes of p-adic homotopy theory. The proof
relies on results from the literature about the vanishing of higher-derived
functors of lim. Their proofs are not hard, but they would take us too far afield
to give full details here.

LEMMA 11.6.1. Let X be a connected CW complex of finite type. If Z is
fZr-nilpotent then
lim!'[=X;, Z] = 0

and
(X, Z] — im[X;, Z]

is a bijection.

The conclusion is similar to that of Lemma 6.8.1, but that result was proven
using a cellular decomposition of X, whereas this result is proven using
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a cocellular decomposition of Z. Recall the definition of a % -tower from
Definition 3.3.1.

PROOF OF LEMMA 11.6.1. By Corollary 11.1.3 we may assume without loss
of generality that T = {p}. Let f.o/, denote the collection of finite abelian
p-groups; we could equally well replace f.o7, by the single group Z/p in the
argument to follow.

We can construct the spaces K(Z/p4, n) and K(Zj, n) as f.o/,-towers. To be
precise about this, we use that the group H"*1(K(Z/p%, n), F,) is a copy of F,
generated by B4(tn), where 1, € H"(K(Z/p?, n); Fp) is the fundamental class
and

Bg: H'(—Z/p) — H"(=Z/p)

is the ¢*" Bockstein operation. That operation is obtained as the connecting
homomorphism associated as in [93, p. 181, #3] to the short exact sequence
0 — 2/p! — Z/p" — Z/p — 0,
followed by reduction mod p. Viewing B, (tx) as a map
K(z/p%,n) — K(Z/p,n+1),
its fiber is a space K(Z/p?*!, n). The limit of the resulting fibrations
K(z/p"n) — K(Z/p",n)

is a space K(Zy, n).

In view of Remark 3.3.2, it follows that for any finitely generated Z,-module
B, the space K(B, n) can be constructed as a % f.o7,-tower with countably may
cocells. By Theorem 3.5.4, the fZ,-nilpotent space Z can be taken to be a
Postnikov fZy-tower. Using Remark 3.3.2 again, it follows that all terms of
the tower and Z itself are % f.o7)-towers with countably many cocells. The
commutations with sequential limits used in the construction give the more
precise information that Z is the limit of countably many quotient towers W,
each of which has finite homotopy groups. For a finite complex K, [K, W}]
is finite and, by Theorem 2.3.3, lim! vanishes on inverse sequences of finite
groups. Thus, for each fixed i,

s 1l
lim[2'X;, Wj] = 0.

If we assume that the groups [2X;, W;] are abelian, then a result of Roos
[119, Thm. 3] (see also [120]) gives a spectral sequence that converges from

EY? = lim! 1imj‘? [ZX;, W]
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to the derived functors lim" of the bi-indexed system {[ZX;, Wjl} of finite
groups. Since our limit systems are sequential or have cofinal sequential sub-
systems, the E, terms with p > 1 or g > 1 are zero, as are the terms with
g = 1, and the lim" groups to which the spectral sequence converges are zero
forn > 1. This forces E; = E,, and Ezl’0 = 0, thatis limi1 [XX;, Z] = 0. Adirect
adaptation of Roos’s arguments starting from the explicit definition of lim!
given in Definition 2.1.8 allows us to draw the same conclusion even when
the groups [XX;, W}] are not abelian. O
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FRACTURE THEOREMS FOR
COMPLETION: GROUPS

In this chapter we describe how to construct a global nilpotent group from
a complete nilpotent group, a rational nilpotent group, and a compatibility
condition. The compatibility condition involves a notion of formal completion,
and we also give a brief discussion of what we call the adelic genus of a nilpotent
group. We describe the corresponding constructions for nilpotent spaces in
the next chapter. The results in these chapters parallel those in Chapters 7 and
8, but the proofs are quite different. For example, at one key spot in this chapter
we use a space-level result from the next chapter to prove a general algebraic
result about completions of nilpotent groups. In turn, we use that algebraic
result to prove a general topological result about completions of spaces in the
next chapter, carefully avoiding circularity. This contrasts with Chapters 7 and
8, where we consistently used results for groups to prove the corresponding
results for spaces.

More fundamentally, the algebra is here much less predictive of the topol-
ogy. Many of the algebraic results require completability restrictions on the
given groups, whereas the analogous topological results apply without any
such restriction. Conceptually, the point is that the group theory knows only
about Filenberg-Mac Lane spaces K(G, 1), but the topology knows how to use
two-stage Postnikov towers to construct completions of Eilenberg-Mac Lane
spaces K(G, 1) for nilpotent groups G that are not completable algebraically.
Since we are interested primarily in the topology, we shall not be overly thor-
ough in our treatment of the algebra. However, we shall be quite carefully
pedantic about those results that are not well documented in other sources,
since it is quite hard to determine from the literature precisely what is and is
not true.

We let T be any nonempty set of primes. The focus is on the case when T
is the set of all primes and the case when T consists of a single prime p. Since
completions at T split as the products of the completions at p € T, the reader

226
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may wonder why we don’t just work one prime at a time. The answer is that
since we are relating global to local phenomena, these splittings do not imply
that our results for the primes p € T imply our results for T itself. We shall
say a bit more about this at the end of {12.2.

All given groups are to be nilpotent in this chapter, even when we neglect
to say so. Recall from Lemma 5.4.6 that T-local groups are the same as
Zr-nilpotent groups, as defined in Notation 4.5.1. Similarly, recall from
Proposition 5.6.5 that finitely T-generated T-local groups are the same as
fZt-nilpotent groups.

12.1. Preliminaries on pullbacks and isomorphisms

We begin by showing that completion preserves certain pullbacks. This is
in contrast to the case of localization, where all pullbacks are preserved. Of
course, the difference is a consequence of the failure of exactness for com-
pletion. We then give a criterion for a map between T-local groups to be an
isomorphism and show by example that its restrictive hypotheses cannot be
eliminated.

LEMMA 12.1.1. Let

aq
W< >

C
|
_ D
h
be a pullback diagram of abelian groups, where D is rational. Then ETA is iso-
morphic to ETB@®ErC and, if B and C are completable at T, then so is A.

PROOF. Since D is rational, ErD = 0 by Proposition 10.1.11 and the first
claim can be viewed as saying that the functor ET preserves the displayed
pullback. We are given the exact sequence

(f:8) h—k

0 — A —— BeC —— D,

and we let I C D be the image of h — k. We then have a short exact sequence
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(£ h—k

00— A —— BpC —— ] —— 0.

By Proposition 10.4.4 (taking products over p € T), it gives rise to an exact
sequence

0 — Hr4) — HrB®C) — Hr(l) — Er4) — Er(Be&C) — Er(I) — 0.

Since D is rational, so is I, hence Hr(I) =0 and Er(I) =0, by Proposi-
tion 10.1.11. Therefore the sequence says that E7(A) = E7(B) @ Er(C) and
Hr(A) = 0if Hr(B@ C) = 0. O

LEMMA 12.1.2. Let : H —> G be a homomorphism between T-local groups,
where G is completable at T. Then  is an isomorphism if and only if

Yo: Hy— Go and Ery:ErH — ErG

are isomorphisms.

PROOF. The forward implication is obvious. Assume that y9 and Ery are
isomorphisms. Since v is an isomorphism, Proposition 5.5.4 implies that
the kernel and cokernel of i are T-torsion groups.

Let im(1/) be the kernel of the cokernel of ¥, that is, the normal subgroup
of G generated by im (). The exact sequence

1 im(v) G coker () ——1
gives an exact sequence
I%HTﬁ(w)aHT(G)%HT coker (w)%ETﬁ(y/)%ET(G)aET coker () —1.

Since the isomorphism E1 factors through the map Et(im(/))—E1(G),
thismap mustbeanepimorphism, hence the epimorphism Er G—Er coker ()
must be trivial. This implies that Er coker () =1. By Proposition 10.4.7,
coker () is T-divisible. Since it is also a T-torsion group, it is trivial. Thus ¥
is an epimorphism. Now the exact sequence

1—— ker (y) H G 1

gives an exact sequence

1R

1——Hr ker (¥) HtH HrG Er ker (y) ErH ErG 1.
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Since Hr(G) = 0 by hypothesis, this exact sequence shows that Er ker (y) = 1.
By Proposition 10.4.7 again, ker (y) is T-divisible. Since it is also a T-torsion
group, it is trivial and ¢ is an isomorphism. O

EXAMPLE 12.1.3. The completability hypothesis is essential. The abelian group
B = @perZ/p™ satisfies By = 0 and ErB = 0. Therefore, for any abelian
group A, for example A = 0, the inclusion and projection A — A® B — A
are examples of maps that induce isomorphisms after rationalization and
application of Et but are not themselves isomorphisms.

12.2. Global to local: abelian and nilpotent groups

We agree to write ¢¢ for rationalization and qu for completion at T in this
section. Example 12.1.3 shows that we cannot expect to recover a global T-local
group G from Go and ET G unless Hr G = 0. Because the technical hypotheses
differ, we consider monomorphism, isomorphism, and epimorphism condi-
tions separately.

LEMMA 12.2.1. If an abelian group A is completable at T, then the kernel of the
completion ¢: A — ErA is Hom (Z[T~'1, A). If G is an fZr-nilpotent group,
then the completion ¢: G — ErG is a monomorphism.

PROOF. The firststatement holds by Remark 10.1.21. While Hom (Z[T~'], A)
is often nonzero, for example when A = Q, it is easily seen to be zero when
A is a finitely generated Zr-module. The second statement follows by the five
lemma since all of the subquotients of any central series of an f Zr-nilpotent
group are finitely T-generated, by Proposition 5.6.5. O

Finite generation hypotheses will shortly enter for another reason. Recall
that quotients of T-completable groups need not be T-completable in gen-
eral, as the example B = Z1/Z illustrates. However, we have the following
observation.

LEMMA 12.2.2. Forany set of primes T’ D T, all subquotients of all f Z1+-nilpotent
groups are completable at T. In particular, all subquotients of f Z-nilpotent groups

are completable at T

PROOF. Since completion at T is the composite of localization at T and
completion at T, this is implied by Proposition 5.6.5. O
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The following ad hoc definition encodes greater generality.

DEFINITION 1223. A nilpotent group G is nilpotently completable at T if
it has a central series all of whose subquotients (including G itself) are

completable at T.

In the abelian case, the following result is best possible. In the nilpotent
case, the completability hypothesis is not actually essential, as we shall see
from an alternative proof in the next section, but it is a natural condition to
assume and is needed for our first proof.

THEOREM 12.2.4. If G isa T-local group that is nilpotently completable at T, then
the diagram

is a pullback.

PROOF. Changing notation to G = A, we first prove this when G is abelian.
Let B be the pullback displayed in the diagram

B —— ETA

L

Ay —— (ETA)o.
(®)o

The universal property gives a map y: A — B that factors both the comple-
tion A —> ETA and the rationalization A — Ag. Since rationalization is

exact,

By —— (ETA)o

.

Ay —— (ETA)o

“530-46909_Ch12_5P.tex” — 8/19/2011 — 11:24 — page 230



12.2. GLOBAL TO LOCAL: ABELIAN AND NILPOTENT GROUPS / 231

is a pullback whose right vertical arrow is an isomorphism. Therefore,
By — Apisanisomorphismandsois yg: A9 — Bo. Similarly, since Et(Ao) =0,
Lemma 12.1.1 shows that B is completable at T and E7y: ETA — ErBisan
isomorphism. By Lemma 12.1.2, ¥ is an isomorphism.

Reverting to our original notation, the general case is proven by induction
on the nilpotency class of G, using Lemma 7.6.2. To see this, choose a central
series

(1=G4CG-1C...CG=G

for G where G;_1 and G/G4_1 are completable at T. The base case and the
inductive hypothesis imply that the diagrams

(G/Gg-1) ——— Er(G/Gg-1) (Gg-1) ——— E1(Gg-1)
(G/Gg-1)0 —— (ET(G/Gg-1))o (Gg-1)o —— (ET(Gg-1))o

are pullbacks. Since rationalization is exact,

1 —— (Gg-1)o Go (G/Gg-1)0 —— 1

is exact. Since G/Gy1 is completable at T,

1 — E1(G4-1) —— Er(G) —— Er(G/Gy-1) — 1
is exact. This exact sequence and the exactness of rationalization imply that
1 —— ([Er(Gg-1))o —— ([E1(G))o —— [ET(G/Gg-1))0 —— 1
is exact. The claimed pullback follows from Lemma 7.6.2(i). O

The next result is the one proven topologically.! In turn, this algebraic
result will later be used in the proof of our topological global to local fracture
theorem.

1. The result is stated in [39, Prop. 3.5], but without details of proof.
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PROPOSITION 12.2.5. For any T-local group G, every element z € (ETG)o is a
product z = ¢o(x)do(y) for some x € ETG andy € Go.

PROOF. Incontrastto the analogue forlocalization, we prove this using topol-
ogy. Again, we first prove this in the abelian case, writing G = A. We have
K(A, 2) available to us, and we let P be the homotopy pullback displayed in the
diagram

n
P —— = K(A2%

| B

K(A,2)0 — (K(A,2)%)o.
(®)o

Since the other three spaces in the diagram are simply connected, the descrip-
tion of the homotopy groups of P in Corollary 2.2.3 ensures that P is connected.
By Theorem 13.1.5 (or Lemma 13.2.3) below, v is a rationalization and u
is a completion at T, hence the induced map «: K(A,2) — P becomes an
equivalence upon rationalization and completion at T. Therefore, by Corol-
lary 13.2.2 below, « is an equivalence. In particular, 771 (P) = 0. The conclusion
follows from Corollary 2.2.3 and the description of the homotopy groups of
completions in Theorem 11.1.2.

The general case is again proven topologically, by specializing Lemma 13.2.4
below. Briefly, let Y be the fiber of a map X — K(A4, 2), where X is one stage
in the inductive construction of K(G, 1) and Y is the next stage. Let P be the
homotopy pullback displayed in the diagram

P

-

A

Yo —— (Yr)o.
%o
By Lemma 13.2.4, the canononical map Y — P is an equivalence. Since Y
is connected, so is P, and the conclusion again follows from Corollary 2.2.3
and Theorem 11.1.2. The reader may feel, as the authors do, that this is a
rather mysterious way to prove something as concrete and algebraic as the
result we are after. She might prefer an algebraic proof that just applies the
elementary Lemma 7.6.1. Choosing a central series for G as in the proof of
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Theorem 12.2.4 above and using the right exactness of the functor Er, we do
obtain a commutative diagram with exact rows

ErG;/Giy1 — ErG/Giyy —— ErG/G; —— 1

| | |

(ETGi/Git1)0 —— Er(G/Giy1)0 — (ETG/Gi)o —— 1

| | T

(Gi/Git1)o ——— (G/Giyr)o —— (G/Gi)o —— 1.

However, to be able to quote Lemma 7.6.1, we need an intuitively obvious
but technically elusive detail. We leave it as an exercise for the dissatisfied

reader. a

EXERCISE 12.26. Let0 > A - G —> H — 1be a central extension of nilpo-
tent (or T-local) groups. Then the image of the induced map ETA — ETG
is a central subgroup, hence so is the image of the induced map
(ErA)y —> (ETG)o.

It is natural to think of completion at p as the composite of localization at p
and completion at p, and it is also natural to ask how Theorem 12.2.4 correlates
with its analogue for localization, part (ii) of Theorem 7.2.1. Again assuming
that G is T-local and using notations and constructions cognate with those in
Theorem 7.2.1(ii), we have the following commutative diagram. It should be
compared with the key diagram (7.1.4) of §7.1, in which G is compared with
the pullbacks P and Q that are implicit in the top left square and its composite
with the triangle in the diagram.

(¢p) ey
G —m> HpeT G(p) l_[peT EpG
o) l o o)
(@p)o (Tdp)o

Go ———— (Ilper Gp)o (Iper E»Glo

(7p) (7Tp)

A

l_[peT Go l_[peT ((EpG)o)
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The vertical maps ¢o are rationalizations. The map 7, at the bottom right
is obtained by rationalizing the projection IT,eTE,G — E,G, and the map
7Ty at the bottom center was defined similarly above (7.1.4). The two vertical
composites 77, o ¢ are rationalizations G, —> Go and E,G — (E,G)o.
The upper left square is a pullback, by Theorem 7.2.1(ii), and so sometimes
is the left part of the diagram with its middle horizontal arrow (¢,)o erased, by
Proposition 7.1.7 (see also Proposition 7.4.4 and Remark 7.4.6). The right part
of the diagram with its middle horizontal arrow ((;Abp)o erased is a pullback when
each Gy satisfies the hypothesis of Theorem 12.2.4 (for the case T = {p}).
This certainly holds when G is finitely T-generated, which is the main case
of interest. We conclude that Theorem 12.2.4 for T is often but not always
implied by Theorem 12.2.4 applied to the singleton sets T = {p}. As we have
seen in Chapter 8, the divergence between the two pullbacks, Pand Q, induced
by the left part of the diagram becomes greater in the topological analogues.

12.3. Local to global: abelian and nilpotent groups

Our algebraic local to global result reads as follows. Its hypotheses seem to be
minimal, but it is instructive to compare it with Theorem 13.3.1, where the
topology allows us to generalize to groups that are not completable at T.

THEOREM 123.1. Let

be a pullback square of nilpotent groups such that

(i) J is T-complete;
(it) ¢o: ] —> Jo is a rationalization of J; and
(iii) H is rational.
Then G is T-local and completable at T, w: G — | is a completion at T, and

v: G — H is a rationalization. Therefore w is the rationalization of u.

PROOF. Since J, Jo, and H are T-local, G is T-local by Lemma 5.5.7. We
first prove the rest in the abelian case, and we change notations in accord with
Lemma 12.1.1, letting G = A, H = B,and | = C. Since Bisrational, HyB =0
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and ErB = 0. Since C is T-complete, HrC = 0 and E7C = C. Therefore, by
Lemma 12.1.1, A is completable at T and ETA — E7C = C is an isomor-
phism. Similarly, since rationalization preserves pullbacks, rationalization of
the given pullback square shows that A —> B = Bis an isomorphism. This
proves the result in the abelian case. We can now change our point of view and
think of the pullback A as a given T-local and T-completable abelian group that
gives rise to our original pullback diagram via rationalization and completion
at T. Therefore the abelian case of Proposition 12.2.5 applies. We will use that
in our proof of the generalization to the nilpotent case.

Returning to the original notations, we prove the nilpotent case by induc-
tion on the larger of the nilpotency classes of J and H. The argument is
similar to the proof of Proposition 7.4.3. To exploit naturality, we start with
the lower central series of | and H. Rationalization gives a map from the lower
central series of J to its rationalization, which is a lower central series of Jo
and so contains termwise the lower central series of Jo. The lower central
series of H is already rational, and « maps it into the lower central series
of Jo and thus into the rationalization of the lower central series of J. Since
rationalization commutes with quotients, for each j we obtain a commutative
diagram

1 —— Hj/Hj —— H/Hj —— H/H — > 1

i S

1 —— (/Jjt)o —— (U/Jjt)o —— (J/Jo —— 1

! I

1 —— Jilliyn ——— Jjs1 ——— J/j] —— 1

of central extensions. We denote the resulting sequence of pullbacks by
1——=A[j]|——G[j + 1] —G[j]—1.

By Lemma 7.6.2(ii), whose key epimorphism hypothesis we verified in our
discussion of the abelian case, this is an exact sequence and in fact a central
extension. We know the result for A[j] and assume it inductively for G[j].
This clearly implies that Hr G[ j 4+ 1] = 0, and five lemma arguments give that
the associated maps v and u for G[j+ 1] are a rationalization and a comple-
tion at T. O
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As promised, this allows us to reprove and improve Theorem 12.2.4.

THEOREM 123.2. If G is a T-local group that is completable at T, then the
following diagram is a pullback.

¢
G — ErG

N

Gy ——= (ETG)o
b0

PROOF. Take H = Gp and | = ETG, with ¢ a rationalization of | and
® = ¢o. Let P be the pullback of ¢ and w. The universal property of P
gives a map a: G —> P that induces an isomorphism upon rationalization
and completion at T. Since P is completable at T, « is an isomorphism by
Lemma 12.1.2. (|

12.4. Formal completions and the adélic genus

We have emphasized the fully general nature of the local to global fracture the-
orems. That is both a virtue and a defect. For example, @ in Theorem 12.3.1
can have a large kernel, or can even be zero. In the latter case, letting
K =ker (¢o: ] — Jo), wehave G = H x K, Gop = H,andETG = E7K. Noth-
ing like that can happen in the cases of greatest interest, where all groups in
sight satisfy finite generation conditions over the appropriate ground ring and
H and ] are related by nontrivial rational coherence data.

We first develop conditions on the input that ensure that our local to
global fracture theorem delivers f Z-nilpotent groups as output. This is sub-
tle since finite generation conditions on the input are not always sufficient.
There are finitely generated T-complete groups that cannot be realized as the
completions of finitely generated T-local groups.

Specializing to the set of all primes, we then define and say just a little
about the calculation of “adelic” and “complete” variants of the (local) genus
that we defined in §7.5. Here, assuming that we are given an fZ-nilpotent
group that can be realized as the completion of an f-nilpotent group, we ask
whether such a realization is unique and how to classify all such realizations.

To give a naive framework for dealing with these questions, we introduce
an analogue of the notion of a formal localization of a rational nilpotent group
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that is naturally dictated by our cocellular constructions of localizations and
completions. That motivation takes a global to local point of view, but the
essential point is that the definition formalizes what is needed to go from
finitely generated local data to finitely generated global data. Let Qr denote
the ring Zr ® Q. Written that way, we think of first completing and then
rationalizing. But we have Or = Q® Zr. Written that way, we think of first
rationalizing and then rationalizing completion maps. That makes good sense
even though first rationalizing and then completing groups gives the trivial
group.

Recall the notions of an R-map of R-nilpotent 7-groups and of an fR-map
of fR-nilpotent 7-groups from Definition 4.3.1 and Notation 4.3.3. By the
cocellular functoriality of our constructions of localizations and completions,
localizations and completions of maps are R-maps for the appropriate ground
ring R, as observed in Lemmas 6.2.1, 11.2.1, and 11.2.2. A formal completion
is a particular kind of Q-map. Before giving the full definition, we note the
following analogue of the cited lemmas, which deals with a subsidiary part of
the definition.

LEMMA 1241, If ] is Z-nilpotent, then its rationalization ¢o: | —> Jo is a
Zr-map. Moreover, if | is f Zr-nilpotent and its torsion subgroup is finite, then
J and Jo admit central series { J;} and {K;} such that ¢o(J;) C K; and the induced
map of Zr-modules Ji/Jis1 — K;/ K41 is isomorphic as a Qr-module under the
ZT-module]i/]iH tothe canonical map n: J;/Jix1 —> Ji/Jic1 ® Q. Thatis, there
is a commutative diagram

JilJiva
N
Ki/Kiyq JilJit1®Q

of 2 -modules in which the isomorphism is a map of Qr-modules.

PrROOF. The first statement is easily proven by induction, using our cocel-
lular constructions. For the second statement, the kernel of ¢y is the torsion
subgroup of ], which is finite by assumption and therefore an fZr-nilpotent
group. We may start our central series for | and Jo with a central series for
ker ¢p and the constant central series K; = K of the same length. Thus we
may as well replace J by J/ ker ¢o and so assume that ¢ is a monomorphism.
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Then the subquotients J;/J; 1 are finitely generated free Zr-modules and the
conclusion follows. O

Of course, even if ] is f Zr-nilpotent, ¢y is not an fZr-map since its target
is not fZr-nilpotent. It is fQr-nilpotent, and we must use the ring Qr for
algebraic understanding. The group 7 in the following definition plays no role
in this section, but the generality will be relevant to the space-level analogue.
We are only interested in the cases when either 7 is trivial or all given groups

are abelian.

DEFINITION 124.2. Let w be a group, H be an fQ-nilpotent 7-group, and
J be an fZr-nilpotent 7-group with rationalization ¢g: ] —> Jo. A formal
completion of H at T associated to ¢o is a homomorphism w: H — Jo of
w-groups with the following property. There exists an f Q-central -series { H;}
for H, an fZT-central w-series { J;} for J, and an f@r-central m-series {K;}
for Jo such that the w-equivariant conclusion of Lemma 12.4.1 holds for ¢
and each induced homomorphism H;/H;,1 —> K;/K;;1 of Q[rr]-modules is
isomorphicasa Q[ ]-module under the Q[ -module H;/ H; 1 tothe natural
homomorphism

n: Hi/His1 = Hi/Hipn ® Z1 — Hi/Hip @ Zr.
Thus w(H;) C K; and we have a commutative diagram
Hi/Hi
/ \
Ki/Kit1 Hi/Hip ® Lt

of maps of Q[x]-modules such that the isomorphism is a map of
Qr[r]-modules. Observe that a formal completion w is necessarily a
monomorphism. Observe too that when the given groups are abelian, the
only requirement on the map w is that there must be a commutative diagram

H
7 \
Jo —————— H®Zr

£

of Q[mr]-modules
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in which & is an isomorphism of Qr[r]-modules. No compatibility with the
map ¢y is required.

From a global to local point of view, we have the following observation.
As in Lemma 12.2.2, we use that completion at T factors through localization
atT.

PROPOSITION 12.43. For any T' D T, the rationalization (¢)o of the comple-
tion ¢: G —> BTG at T of an f Zy -nilpotent group G is a formal completion
Go — (E1G)o.

From a local to global point of view, we have the following addendum to
Theorem 12.3.1.

THEOREM 12.4.4. Let

n
G — ]

l |«

H— Jo

w

be a pullback square of nilpotent groups such that

(i) ] is fZ1-complete and its torsion subgroup is finite;
(i1) ¢o: J —> Jo is a rationalization of J;
(iii) H is rational; and
(iv) w is a formal completion associated to ¢o.

Then G is f Zr-nilpotent.

PROOF. The kernel of ¢q is the torsion subgroup of J, which is finite by
assumption and therefore an f Zr-nilpotent group. It coincides with the kernel
of v, and, arguing as in Proposition 12.4.3 we may as well replace G and | by
their quotients by ker ¢o. That is, there is no loss of generality if we assume
that G and | are torsion free.

We look first at the abelian case. Then H is just a finite dimensional ratio-
nal vector space with an inclusion w: H — Jo of abelian groups and thus of
rational vector spaces that is equivalent under H to the canonical inclusion
H — H®Zt. Then the pullback G is a torsion-free Zr-module whose ratio-
nalizationis H and whose completion at T is J. We may choose basis vectors for
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H thatare in G and are not divisible by any p € T. Let F be the free Zr-module
on these generators and (: F — G the canonical map of Zr-modules. Since:
rationalizes to the identity map of H, G is torsion free, and G/F is torsion free,
¢ is an isomorphism. By a pedantically careful diagram chase that we leave to
the reader, our pullback diagram in this case is isomorphic to the canonical
pullback diagram

F —— F®2r

|

FRQ — F®Or.

For the inductive step, we choose central series {H;}, {J;}, and {K;} for
H, ], and Jo, respectively, as in the definition of a formal completion. As
usual, these assemble into a sequence of pullback diagrams of central exten-
sions. The sequence of pullback groups induced by each of these pullback
diagrams is short exact by Lemma 7.6.2(ii); the epimorphism hypothesis in
that result is satisfied by the abelian case of Proposition 12.2.5, which is
quite easy to reprove algebraically under the finite generation hypotheses
we have here. These extensions show that the pullbacks G; of the diagrams
H; —— K; <—— J; displayacentral Zr-series for G with finitely gene-
rated subquotients, and the last statement follows by inspection. O

REMARK 12.4.5. The notion of formal completion used in Theorem 12.4.4 may
seem fussy. However, some such hypothesis is needed since Belfi and Wilk-
erson [10] have given an example of a finitely generated Zp-nilpotent group J
with mod p homology of finite type over F, and with nilpotency class two such
that there is no finitely generated Z, -nilpotent group G whose completion
Cp is isomorphic to J, hence there is no finitely generated nilpotent group G
whose completion is isomorphic to J.

We now specialize T to be the set of all primes. We have two alternative
notions of genus.

DEFINITION 12.46. The adélic genus of a finitely generated nilpotent group
G is the set of isomorphism classes of finitely generated nilpotent groups G’
such that Gy is isomorphic to Gj, and @p is isomorphic to @; for all primes p.
The complete genus of G is defined by dropping the requirement that Gy be
isomorphic to Gj,.
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The name “adélic” is suggested by Sullivan’s analogy [133, 135] with the
theory of adeles in number theory. There do not seem to be standard names
for these notions in the literature, although the adelic genus has been stud-
ied, in particular by Pickel [112]. The previous proof gives the analogue of
Proposition 7.5.6.

PROPOSITION 12.4.7. The isomorphism class of A is the only element of the adélic
genus of a finitely generated abelian group A.

REMARK 12.4.8. In analogy with Example 7.5.7, Belfi and Wilkerson [10, 4.2]
have given examples of non-isomorphic finitely generated nilpotent groups G
and G’ that are in the same adélic genus but whose localizations G, and G},
are not isomorphic for some prime p, so that G and G’ are not in the same
genus.

We sketch briefly a naive approach to the study of the adeélic genus of a
fixed f -nilpotent group G. We ignore the question of change of chosen central
series in the definition of a formal completion. We may as well fix ] = G and
H = Gy. Then G is the pullback of a certain formal completion

® o

H— Jo =— ]

The results of this section imply that we can construct any other group G’ in
the same adélic genus as a pullback of a formal completion

o 8
H— Jo =— ]

There is a unique automorphism £: Jo —> Jo of Q-modules such that
£ o, = ¢o, and the pullback of

ow' $o

H— Jo =— ]

is isomorphic to G’. Thus we may as well fix ¢y and consider all possible
choices of w. Two choices differ by a Q-automorphism of Jo. Let Aut (Jo)
denote the group of such automorphisms. We send an automorphism & to the
isomorphism class [£] of the pullback of & o w and ¢g. This is a well-defined
surjective function from Aut ( o) to the adelic genus of G. A Z-automorphism
¢ of J induces a Q-automorphism ¢ of Jo such that £ o ¢g = ¢ o ¢. It follows
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that [ 0&] = [£]. We would like to say that a @-automorphism e of H
induces a Q-automorphism € of Jo such that € o w = w o &. It would follow that
[£ o &] = [£]. The conclusion would be that the adeélic genus of G is in bijective
correspondence with the double cosets

Aut H\ Aut (Jo)/ Aut]J.

REMARK 12.4.9. This sketch is incomplete since we have not shown that w
is functorial on automorphisms, but the conclusion is correct by results of
Pickel [112]. Moreover, combining with results of Auslander and Baumslag
[7, 8] and Borel [13], one can prove the remarkable result that the adelic genus
and complete genus of G are both finite sets. A summary of how the argument
goes is given in [144, {1].
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FRACTURE THEOREMS FOR COMPLETION:
SPACES

In this chapter we prove analogues of the results of the previous chapter for
nilpotent spaces. As in Chapter 8, we begin with a fracture theorem for maps
from finite CW complexes into f-nilpotent spaces. Aside from its restriction
to f-nilpotent spaces, some such restriction being necessary, its proof is so
precisely similar to the analogous arguments of §8.2 that we feel comfortable
in leaving the details to the reader.

We then consider fracture theorems for nilpotent spaces, stating them in
§13.1 and proving them in §13.2 and §13.3. The exposition follows the order
given in the analogue for localization, starting with global to local results.
However, these results are deduced from local to global results that are proven
topologically, making minimal use of the corresponding results for groups.
More straightforward inductive proofs based on the results for groups work
under completability assumptions.

The last three sections are of a different character. In {13.4, we give an
informal notion of the tensor product of a space and a ring. We have seen
two examples. All localizations fit into this framework, and completions of
f-nilpotent spaces do too. This gives a context in which to discuss Sullivan’s
formal completions in {13.5. These are extensions of tensor products with
the rings Zr from simple spaces of finite type to more general simple spaces.
Using these preliminaries, we return to the notion of genus in §13.6, where
we describe two variants of the notion of genus that we discussed in §8.5.

Throughout this chapter, T denotes a fixed set of primes. The set of all
primes and the set consisting of just one prime are the most interesting cases,
and the reader may prefer to focus on those. We let ¢ denote completion at T
and ¢ denote rationalization. All given spaces are to be nilpotent, even when
we neglect to say so, and we understand T-local and T-complete spaces to be
nilpotent. We may identify X7 with [lper X,.

243
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13.1. Statements of the main fracture theorems

The following result is a consequence of Theorems 11.1.2, 11.3.2, and 12.3.2
via arguments exactly like those in §8.2.

THEOREM 13.1.1. Let X be an f Zr-nilpotent space and K be a finite CW complex.
Then the function
¢s: [K, X] — [K, X1]

is an injection and the function
(&, ¢o): [K, XT —> [K, X711 X 1 517101 [K: X0]
is a bijection. Moreover, the formal sum
[£K, Xr] x [EK, Xo] — [£K, (X7)o]

is a surjection.

The examples K = §" and X = K(Z/p*°, n) or X = K(Q, n) show that the
injectivity statement no longer holds when X is Zr-nilpotent (= T-local),
rather than fZr-nilpotent. The surjectivity statement is analogous to Proposi-

tion 8.2.7. The following consequence of the injectivity statement is analogous
to Corollary 8.2.4.

COROLLARY 13.1.2. Letf,g: K —> X be maps, where K is a nilpotent finite CW
complex and X is an f-nilpotent space. Then f ~ g if and only if f, ~ g, for all

primes p.

REMARK 13.1.3. Asin Remark8.2.8, the previous results apply more generally,
with K taken to be any space with finitely generated integral homology.

Surprisingly, the fracture theorems for spaces, as opposed to maps, require
no f Zr-nilpotency assumptions.

THEOREM 13.1.4. Let X be a T-local space. Then the following diagram is a homo-
topy pullback.

X — %

|

X() E—— (XT)O
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THEOREM 13.1.5. Let

m
P —— [lper %

T

Y —— ([lper Xp)o
®

be a homotopy pullback of connected spaces in which

(i) the space X, is p-complete;

(i) the map ¢ is a rationalization of [ [ 1 Xp; and

peT
(iii) the space Y is rational.

Then the space P is T-local, the map [ is a completion of P at T, and the map v is
a rationalization of P. Therefore the map w is a rationalization of the map 1.

Theorem 13.3.1 below gives a restatement that may make the comparison
with the algebraic analogue, Theorem 12.3.1, more transparent.

REMARK 13.1.6. By Corollary 2.2.3, the hypothesis that P is connected in Theo-
rem 13.1.5 is equivalent to saying that every element z € 71 (([ [ ,e1 Xp)o) is the
product of an element ¢y, (x) and an element w,(y) where x € 71([] X;) and
y € m1(Y). This means that » must satisfy the analogue of (ii) in the definition
of a formal localization, Definition 8.1.5. However, we require no hypothesis
analogous to (i) there. We will add such a hypothesis in §13.6, where we fix
Y and assume finite generation conditions. It is remarkable and illuminat-
ing that no connection between Y and the X, other than the condition given
by requiring P to be connected is needed for the validity of Theorem 13.1.5.
Of course, that condition always holds when the X, and Y are simply con-
nected.

REMARK 13.1.7. We shall derive Theorem 13.1.4 from Theorem 13.1.5, where-
as we gave an independent proof of the analogue for localization. Since X is
connected, the homotopy pullback to which Theorem 13.1.4 compares it must
also be connected, as in the previous remark. The algebraic result Proposi-
tion 12.2.5 proves this, and Theorem 13.1.4 depends on that result. However,
the proof of Proposition 12.2.5 referred forward to the topology. We shall care-
tully avoid circularity.
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13.2. Global to local fracture theorems: spaces

The following general observation is elementary butimportant. It helps explain
why one should expect to be able to reconstruct T-local spaces from their
rationalizations and their completions at T.

LEMMA 13.2.1. Let f: X —> Y be any map. Then f,.: Ho(X;Z1) — Hy(Y;Z7)
is an isomorphism if and only if f.: Hy(X; Q) — Hy(Y;Q) and, forallpe T,
Set Ho(X;Fp) —> Hy(Y;Fp) are isomorphisms.

PROOF. Since Qand F, are modules over the PID Zr, the universal coefficient
theorem gives the forward implication. For the converse, the Bockstein long
exact sequences of homology groups induced by the short exact sequences

00— Z/p”_1 — Z/p" — Z/p — 0

show that f.: Hy(X;Z/p") — H.(Y;Z/p") is an isomorphism for n>1
since it is an isomorphism when n =1. Since Z/p*>* = colimZ/p" and
Q/Zt = @pe1Z/p™°, this implies that f,: Hy(X;Q/Z1) — H.(Y;Q/Z7)
is an isomorphism. Indeed, homology commutes with sums and colimits
of coefficient groups since this already holds on the chain level. Now the Bock-
stein long exact sequence induced by the short exact sequence

00— Zr — Q— Q/ZT — 0
shows that f,.: Hy(X;Z1) — H«(Y; Z7) is an isomorphism. O
Since maps of T-local, rational, and T-complete spaces are equivalences if

and only if they induce isomorphisms on homology with coefficients in Zr,
Q, and F for p € T, the following result is an immediate consequence.

COROLLARY 13.22. Let f: X —> Y be a map between T-local spaces. Then f
is an equivalence if and only if its rationalization fo: Xo — Yo and completion
fr: Xr — Yrat T are equivalences.

Now the global to local fracture theorem, Theorem 13.1.4, is a direct con-
sequence of the local to global fracture theorem, Theorem 13.1.5.

PROOF OF THEOREM 13.1.4, ASSUMING THEOREM 13.15. Let P be the
homotopy pullback of the diagram
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Xr

|

Xo — (Xr)o.
(@1)o

Since 1 (X7) = Er71(X), Proposition 12.2.5 implies that P is connected.
Therefore Theorem 13.1.5 implies that the induced map «: X — P becomes
an equivalence when rationalized or completed at T. By Corollary 13.2.2, « is
an equivalence. O

An alternative inductive argument is possible. Its first steps are given
in the following two lemmas, which are also the first steps in the proof of
Theorem 13.1.5. The following result is analogous to Lemma 8.3.3.

LEMMA 13.2.3. Theorem 13.1.4 holds when X = K(A,n), where n > 1 and A is
abelian.

PROOF. We construct the pullback P in the diagram of Theorem 13.1.4 and
obtain a map «: X —> P. We check that «g and & are equivalences using
Proposition 6.2.5 for the rationalization and Proposition 11.2.5 for the com-
pletion. Corollary 13.2.2 completes the proof. This outline is a complete proof
when n > 2, but it hides a subtlety when n = 1. To apply the cited results,
we need to know that P is connected. The already proven case n = 2 of the
present result implies the abelian group case of Proposition 12.2.5, and that
result implies that P is connected. O

The proof of the inductive step of the alternative proof of Theorem 13.1.4
is essentially the same as the proof of the analogous inductive step in the
alternative proof of Theorem 8.1.3 given in §8.6. We need to induct up the
Postnikov tower of a given nilpotent space, and the following result enables
us to do so. The proof is an application of Proposition 8.6.1. Applied to the
inductive construction of K(G, 1) for a nilpotent group G, the argument has
already been used to prove Proposition 12.2.5. Therefore a special case of this
proof is used implicitly to get started with our first proof of Theorem 13.1.4.

LEMMA 13.2.4. Suppose that Theorem 13.1.4 holds for X and let Y be the fiber of
a map k: X — K, where K is a simply connected T-local Eilenberg-Mac Lane
space. Then Theorem 13.1.4 holds for Y.
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PROOF. Consider the following homotopy commutative diagram. The homo-
topy pullbacks of its rows are as indicated in the column at the right since
localizations and completions preserve fibers. The homotopy pullbacks of its
columns are as indicated in the row at the bottom, by Lemma 13.2.3 and

asssumption.
A i% A A
Xr — Kpr =— * Yr
o) o o
A i;o A A
(Xt)o > (K)o =—— * (Yr)o
(®)o (®)o o
Xo Ko * Yo
ko
X K *

By Proposition 8.6.1, Y is equivalent to the homotopy pullback of the right
column. In particular, since Y is connected, that homotopy pullback is con-
nected. O

13.3. Local to global fracture theorems: spaces

In this section we prove the local to global result, Theorem 13.1.5. The argu-
ment is a specialization of the proof of a more general result of Dror, Dwyer,
and Kan [39] in which nilpotency is relaxed to “virtual nilpotency”. We abbre-
viate notation by letting Z = [[ X, and Zy = (][ Xp)o. Equivalently, Z is any
T-complete space and Z is its rationalization. Thus Theorem 13.1.5 can be
restated as follows.

THEOREM 13.3.1. Let

P —— Z

i | »

Y*>Zo
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be a homotopy pullback of connected spaces in which

(i) the space Z is T-complete;
(ii) the map ¢o: Z —> Zy is a rationalization of Z; and
(iii) the space Y is rational.

Then the space P is T-local, the map n: P —> Z is a completion at T, and
the map v: P —> Y is a rationalization of P. Therefore w is a rationalization

of L.

As noted in Remark 13.1.6, the assumption that P is connected means that
every element of 71 (Z) is a product of an element in the image of w, and an
element in the image of ¢y,. Observe that no such hypothesis was needed in
the analogous algebraic result, Theorem 12.3.1.

The proof of the theorem is based on the following lemma. It is convenient
to use the language of fiber squares, which are just pullback squares in which
one of the maps being pulled back is a fibration.

LEMMA 13.3.2. For a homotopy pullback P as displayed in Theorem 13.3.1 there is
an integer n > 1 and a factorization

Mn 0i—1
P Zn c. Z; Zi4 —> - —> 73
v J/ l Vn l v l Vi i $o
Y Vu Vi Vii — -+ —> V] —
o Ti—1

of the homotopy pullback square such that

(i) each Z; and V; is connected and nilpotent;
(ii) each V; is rational;
(iii) there are maps w;: Y —> V; and 1;_q: V; —> V;_q such that o1 = @
and 1,_1ow; = w;_1;
(iv) there are maps p;: P —> Z; and 0;_1: Z; —> Z;_1 such that u1 = p
and oj_y0p; = Wi_q;
(v) each map ¥;: Z; —> V; is a Q-homology equivalence;
(vi) each map o;_1: Z; —> Z;_1 is an Fr-homology equivalence;

(vii) the following are fiber squares
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i Oi—1

P Z; Zi_q

Rt

Y — Vi, — Vi g
w;j Ti—1

(viii) the map wuy: 1Y —> 11V, is surjective.

PROOF OF THEOREM 13.3.1, ASSUMING LEMMA 133.2. Since Y and Z
are rational, they are T-local. Since Z is T-complete, it is T-local. By Propo-
sition 6.2.5, P is nilpotent and T-local. With n as in Lemma 13.3.2, let F
be the common fiber of the maps u, and w, and consider the following
diagram.

MHn
F —— P — Z,

R

F—Y —V,
(27

Since Y and V,, are connected, nilpotent, and rational and wy, : w1(Y) — 71(Va)
is a surjection, F is connected, nilpotent, and rational by Proposition 6.2.5.

By Proposition 4.4.1, w1 V,, and 71 Z,, act nilpotently on the rational homol-
ogy of F. Applying Theorem 24.6.2 to the map of rational homology Serre
spectral sequences induced by the displayed map of fibration sequences, we
see that v is a rational homology isomorphism since v, is a rational homology
isomorphism.

Since F is rational, Theorem 6.1.1 implies that I:Iq(F ;Z) is uniquely
divisible for each g, hence the universal coefficient theorem implies that
H;(F; Fr) = 0 for each i. Therefore the Fp-homology Serre spectral sequence
of the fibration sequence

MHn
F —— P —— Z,

collapses to show that p,: P — Z, is an Fr-homology equivalence. Since
each of the maps o, is an Fr-homology equivalence, u: P — Z is an
Fr-homology equivalence. O
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PROOF OF LEMMA 133.2. We may assume that ¢ is a fibration, and we
agree to arrange inductively that the map ¢y: Z, — V; is a fibration for
each i. That is, we arrange that the squares in our factorization are fiber
squares.

We proceed by induction on i. Suppose that we have constructed spaces Z;
and V; and maps ¥, 0;_1, Tj_1, i4;, and w; for 1 < i < j such that (i) through
(vii) are satisfied. If ;_: m1Y —> m1V} is surjective, there is nothing to prove.
Otherwise let C; be the cokernel of the map

w;, - Hi(Y;Z) — H1(V}; Z).

Observe that the abelian group C; is rational.
Let F be the fiber of the map v;: Z; —> V;. Since

P
V\L
Y

is a fiber square of connected spaces, for every element x € 71(V}) there are

¢
— Z;

i

[

v

—_—
@

elements y € m1(Y) and z € m1(Z;) such that x = w;_(y)¥;, (2)-
Let §; be the composite surjection

§i: mV; — H1(Vj;Z) — G

obtained from the Hurewicz homomorphism. Precomposing, we obtain a
map

8,
)
& mzj — mV; — G,

and it is also surjective since the naturality of the Hurewicz homomorphism
implies that, with the notations above, w;_(y) maps to 0 in C; and thus x and
V¥j, (2) have the same image in C;. Let D; be the kernel of §; and E; be the kernel
of ;.

Define 7;: Viyy —> V; to be the fiber of the map o;: V; — K(C;, 1),
unique up to homotopy, that realizes the epimorphism §; on 1. The image of
m1(Y)is contained in Dj, sothemapw;: Y — Vjliftstoamapwjy1: Y — Vjiq
such that 7jo wjy1 = wj.

Observe that ajoy;: Zj —> K(Cj, 1) is the map that realizes the epi-
morphism & on m and define 0j: Ziy1 — Zj to be the fiber of oo ;.
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Equivalently, Z; 4 is the pullback Z; xv; V1 (compare Lemma 1.2.7), and
this description gives a map ¥j1: Zj; 1 —> Vj;1 such that the right square
commutes in the following diagram. The universal property of the pullback
gives a map pjy1: P —> Zj; such that ojouj q = pj and the left square

commutes.
Hjt1 0j
P Zj1 Z;
v l i Vit l ]
Y Vit \
@j+1 Ej

This gives the spaces and maps required at the next stage. We must verify
(i)—(vii) with i replaced by j + 1, and we must see how the construction leads
inductively to (viii).

(i) Since Z; and V; are connected and ¢;: m1Z; —> Cjand §;: mV; —> C;
are surjective, the exact sequences

€
J
7'[1Zj E— CJ E— 7'[on+1 E— JTOZJ‘

%

TV, —— CJ —— Vi1 —— mV;

imply that Z;, and V; are connected. Since Z;, V;, and K(Cj, 1) are
nilpotent, Proposition 4.4.1 implies that Z;,; and V}; are nilpotent.
(ii) Since C; is rational, K(Cj, 1) is rational. Since V; and K(C;, 1) are nil-
potent and rational and Vj,; is connected, Vj, is rational.
(iif) and (iv) The required maps and relations are part of the construction.
(v) Since Z;, V;, and K(Cj, 1) are nilpotent and Z;, ; and V; are connected
liroposition 4.4.1 implies that C; acts nilpotently on H(Zj;1;Q) and
H,(Vj41; Q). In the map of rational homology Serre spectral sequences
induced by the map of fiber sequences
%

Zip —> Zj —> K(G,1)

SN

Vin —> VY —— K(G.1)

K
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the maps
i, Ho(Z; Q)= Ho(V;;Q) and id: Hy(K(C}, 1);Q)— HA(K(C;, 1); Q)
are isomorphisms. Therefore Theorem 24.6.2 implies that

Vi, Hu(Zjy1;Q) — He(Vir1;Q)

is an isomorphism.

(vi) Since C; is rational, Hy (K (Cj,1);F1) = 0 by the universal coefficient
theorem. With Fr coefficients, the Serre spectral sequence of the fi-
bration

o

Zi — Z — K(G, 1)

collapses, and its edge homomorphism is an isomorphism
041 Hi(Zj11;Fr) — Ha(Z;Fr).

(vii) The right square in the diagram in (vii) is a pullback by construction.
For the left square, recall that P = Z; xy, Y. Therefore

P=2z Xv; Y
= 2% (Vi Xy, Y)
=Zj11 Xy, Y.
(viii) The group C; is the cokernel of the map
mY/[mY,mY] — m1Vj/[mVj, 11 Vjl.

The short exact sequence
%
1= w1 (Vi) > mi(V)) > G —> 1

gives an isomorphism 71(V;y1) — ker§;. Applied with G; = 71V; and
H = mY, Lemma 13.3.3 below implies that there is an integer n > 1
such that m;;V,, = m1Y. ]

LEMMA 133.3. Let G be a nilpotent group and let H C G be a subgroup. Let
G1 = G and, inductively,

Giy1 = ker (G; — coker (H/[H, H] — G;/[G;, G;])).

Then there is an integer n > 1 such that G; = H forj > n. 0
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PROOF. Clearly H C G; for each i. We claim that G; is contained in the sub-
group of G generated by H and I'; G, the i*" term of the lower central series of
G. Since G is nilpotent, this gives the conclusion.

We prove the claim by induction on i, the case i = 1 being trivial since
I'1G = G. Thus suppose that G; is contained in the subgroup of G gener-
ated by H and I';G. Let g € G, 1. By definition, there are elements h € H and
k € [G;, G;] such that g = hk. To show that g is in the subgroup generated
by H and I'; G, it suffices to show that [G;, G;] is contained in that sub-
group. An element in [G;, G;] is the product of elements in [H, H], [H, I';G],
and [I;G, T;G]. Since I';;1G =[G, I';G], such elements are all in H or in
i1 G. O

13.4. The tensor product of a space and a ring

We describe an old idea in a general way. While the idea deserves further
exploration, we use it only to establish an appropriate context for understand-
ing a functor that we will use in our discussion of the complete genus of a
space. We saw in §12.4 that the lack of a functorial formal completion of nilpo-
tent groups impeded the naive analysis of the complete genus of f-nilpotent
groups. This section and the next will solve the analogous problem for (simple)
spaces.

The idea is to form the tensor product of a space X and a ring R to obtain
a space “X ® R” such that 7,.(X ® R) is naturally isomorphic to 7.(X) ® R.
Remember that our default is that ® means ®y. Of course, some restrictions
must be placed on X and R. Since we would not want to try to understand
R-nilpotent groups in this generality, we insist that fundamental groups be
abelian. We could allow nontrivial actions of the fundamental group on higher
homotopy groups, but we prefer to forego that complication. Therefore we
restrict to simple spaces X.

Although not essential to the general idea, we also assume that the homo-
topy groups of X, or equivalently the integral homology groups of X, are finitely
generated over Zt for some set of primes T. In the rest of this chapter, we
agree to say that a simple T-local space with this property is T-local of finite
type. Our main interest is the set of all primes, when X is simple and of
finite type, and the empty set of primes, when X is simple and rational of fi-
nite type. Since we want tensoring over R to be an exact functor on abelian
groups, we also insist that the underlying abelian group of R be torsion free.

We have already seen two examples of the tensor product of a space and a
ring. For any set of primes S C T, the localization of X at S can be thought
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of as X ® Zs and the completion of X at S can be thought of as X ® 7s. We
didn’t need the finite type hypothesis to conclude that 7, (Xs) = 7.(X) ® Zs,
but we did need it to conclude that 7, (Xs) = 7, (X) ® Zs. In both cases, with
our X ® R notation, we started with K(A, n) ® R = K(A® R, n) and inducted
up the Postnikov tower of X to obtain the construction. We explain how the
same construction goes in our more general situation. When we localized
or completed k-invariants, we exploited universal properties special to those
contexts. In general, we need some substitute to allow us to tensor k-invariants
with R.

Although we shall not make explicit use of it, we observe that our finite type
hypothesis simplifies the task of finding such a substitute. For any finitely gen-
erated free Zr-module F, any Z7-module B, not necessarily finitely generated,
and any abelian group A, the natural map

a: Hom (F, B)® A — Hom (F, B® A)

specified by (¢ ® a)(f) = ¢(f) ® aisanisomorphism. Here again, by default,
Hom means Homy,, but Hom is the same as Homy,. when its arguments are
T-local. Therefore our claimed isomorphism is a tautology when F is free on
one generator, and it follows by induction when F is free on a finite number
of generators. Applying this to the cellular cochains of X with coefficients in
B and passing to homology gives the following result.

LEMMA 13.4.1. If X is f Zr-nilpotent, B is a T-local abelian group, and A is any
abelian group, then the canonical map

a: H(X;B)®@ A — H*(X;BQ A)
is an isomorphism of graded T -local abelian groups.

Now restrictto A = R. TheunitZ —> Rinduces a natural homomorphism
v: B—> B® R for T-local abelian groups B. Let X; ® R = K(71(X) ® R, 1).
Inducting up the Postnikov tower of X, we try to construct X, 1 ® R as the fiber
k?;z

of an induced k-invariant in the following diagram, where B = m,41(X).

. P Ent2

K(B,n+1) X1 X, K(B,n+2)

v i \L Ont1 l n l v
l b4 kﬁ+z

K(B®Rn+1) —> X,y1®R —> X,®R — > K(BQRn+2)
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We mneed a class k’[;rz € H"2(X, ® R my11(X) ® R)  such  that
Prlki"?) = vi(k™H2).

The difficulty is that, in this generality, the cohomology of the Eilenberg-
Mac Lane spaces K(B® R, n) can be quite badly behaved. Thus we may not
have enough cohomological control to start and continue the induction. If we
can do so, then cocellular approximation of maps gives the functoriality of
the construction. We urge the interested reader to follow up and determine
conditions under which the construction can be completed. The cases R = R
and R = C would be of particular interest. When T is the empty set, the
realification of rational spaces case has been studied using the algebraization
of rational homotopy theory [23, 35].

However, what is relevant to our work is that if one can construct a tensor
product functor F by some other means, then it must in fact be constructible
in the fashion just outlined. To be precise about this, suppose that we have a
functor

F: Ho}rﬂ — Hor7,

where Ho%..7 is the homotopy category of simple T-local spaces and Ho} 7
is its full subcategory of spaces of finite T-type. Let I: HO}T,? —> HorJ
be the inclusion and suppose that we have a natural transformation n: I — F.
Suppose finally that the functor 7, F takes values in the category of R-modules
and therefore of Z7 ® R-modules and that we have a natural iso-
morphism

En: mpFX — ma(X)®R
of Z1 ® R-modules such that the following diagram of Zr-modules com-
mutes.
T (X)
N
m, FX mu(X)® R
&n

Since we are working up to homotopy, we may write FK(B,n) = K(B® R, n),
where B is a finitely generated Zr-module and n > 1. Using &,, we may then
identify n: K(B,n) — K(B® R, n) with the map induced by n: B— B® R.
Inductively, we can identify F(X,) with the n'" stage (FX),, of a Postnikov tower
for FX. To see this consider the following diagram, where again B = my,11(X).
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. T knt2

K(B,n+1) Xt X, K(B,n+2)

n \L \L n i n l n
Fu Fr Fknt2
FK(B,n+1) —— F(Xy41) —— F(Xs) —— FK(B,n+2)

l Mn+1 i MHn
ln+2
L g R

K(B®Rn+1) —> (FX)py1 —> (FX), —> K(B®R,n+2)

The top three squares commute by the naturality of 5. Suppose inductively
that we have an equivalence . Define k%“ to be the composite Fk"2 o !
for a chosen homotopy inverse u~!. Since Fk"*2? o Fr ~ %, there is a map
tns1 such that 7 o fip41 > ppo Frr. Since (—)® R is an exact functor, a
five lemma argument shows that u,11 is an equivalence. Arguing the same
way, we obtain an equivalence v: FK(B,n+1) — K(B® R, n+ 1) such that
LoV = puyq o Fr. But we may as well replace the bottom arrow ¢ by ¢ o v since
fibration sequences are defined up to equivalence in the homotopy category.
Then the diagram commutes, as desired.

We conclude that the construction of a tensor product functor F implicitly

constructs the required k-invariants k’f{’z.

13.5. Sullivan's formal completion

We take R =7 = l_[p Zp and construct a tensor product functor on the cate-
gory of simple spaces equivalent to CW complexes with countably many cells,
following Sullivan [133, 135]. Of course, it suffices to define the functor on
countable CW complexes since we are working in homotopy categories. Since
T-local spheres are constructed as countable cell complexes, any simply con-
nected T-local space of finite type for any set of primes T will be in the domain
of the construction, but since we are not insisting on T-local cells the domain
also includes all simple T-local spaces of finite T-type.

DEFINITION 135.1. Let X be a countable CW complex. Choose a cofinal
sequence of finite subcomplexes X; and define the formal completion FX to
be the telescope of the completions X;. Passage to telescopes from the comple-
tion maps ¢: X; — X; induces a map n: X ~tel X; — FX. If f: X — Y
is a cellular map between countable CW complexes, choose a cofinal sequence
(i) suchthatf (X;) C Y, and define Ff : FX —> FY by passage to telescopes
from the completions X; —> Y,(; of the restrictions of f.
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It is tedious but elementary to check that different choices of cofinal
sequences lead to equivalent spaces and maps. The point is that the telescopes
depend up to equivalence only on choices of cofinal sequences.

PROPOSITION 13.5.2. Let Ho%,.7 be the full subcategory of Ho*.7 whose objects
are the simple spaces that are equivalent to countable CW complexes and let
I: Ho},.7 —> Ho°.7 be the inclusion. Then Definition 13.5.1 gives a functor
F: Ho},.7 —> Ho'.7 and a natural transformation n: I —> F. The composite
functor w, F takes values in Z-modules and there are natural isomorphisms

A

Eni mpFX — my(X)Q Z
of Z-modules such that the following diagram of abelian groups commutes.
n(X)
N
1, FX T0(X) ® Z
&n

PROOF. Itis routine to check that F is a functor and 7 is natural. It is part of
Theorem 11.1.2 that the homotopy groups 7,(X;) are Z-modules in a natural
way and that they are naturally isomorphic under 7,,(X;) to 7,(X;) ® Z. Since
the homotopy groups of telescopes are the colimits of the homotopy groups
of their terms and tensor products commute with colimits, the last statement
follows. O

In effect, at least for countable complexes (and use of more general col-
imits could eliminate the countability restriction), we now have two different
extensions of the restriction of the completion functor on finite complexes to a
functor defined on more general spaces, namely the original completion func-
tor X of Chapter 10 and the formal completion FX. The latter does not satisfy
a universal property, but the previous section gives it a general conceptual
home. Restricting F to T-local spaces, it gives a tensor product functor of the
sort discussed there for every set of primes T. We are particularly interested in
the set of all primes. Completion is trivial when restricted to rational spaces,
but the functor

F: Ho}Qﬂ — Horo
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on the homotopy category of simple rational spaces of finite type fits into the
following result, in which the fact that F is already defined on all simple spaces
of finite type plays a central role.

THEOREM 135.3. Let X be a simple space of finite type with rationalization
¢o: X —> Xo. Then the map n: X —> FX is a completion of X and the map
F(¢po): FX —> F(Xy) is a rationalization of FX. Therefore the naturality diagram

"
X — FX

%o \L l F(¢o)

Xo —— F(Xo)
n

can be identified naturally with the homotopy pullback diagram

N

Xo —— (FX)o.
(®)o

In particular, F(Xo) and (FX)o may be identified.

PROOF. The first statement means that n: X — FX satisfies the universal
property that characterizes n: X —> X. The last statement is intuitively obvi-
ous. One composite first tensors with Q and then tensors with 7, while the
other first tensors with Z and then tensors with Q. Thus both composites
amount to tensoring with Q. Thinking cocellularly and using the cocellular
description of F given in the previous section, we see by induction up the
Postnikov tower of X that the two composites are tensor products of X with Q
and can be specified by the same k-invariants.

We work with the cellular definition to give a formal proof. Remember that
localizations and completions are defined by universal properties in the homo-
topy category and so are not uniquely specified. Choose a cofinal sequence
of finite subcomplexes X; of X. With any construction of X the inclusions
X; —> X induce maps X; —> X under X;, well defined up to homotopy.
These maps induce a map «: tel X; — X under X which on homotopy
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groups induces the isomorphism colim 77, (X;) ® Z = 1, (X) ® Z. Therefore «
is an equivalence under X, hence n: X — FX satisfies the defining univer-
sal property of a completion of X. Similarly, since F(Xp) is rational, with any
construction of (FX)y its universal property gives a map 8: (FX)o —> F(Xo)
under FX that induces the isomorphism 77,(X) @ Z® Q — m,(X) @ Q® Z
on homotopy groups. Therefore 8 is an equivalence under FX and F(¢o) sat-
isfies the defining universal property of a rationalization of FX. Since the
first diagram commutes, its lower arrow 7 satisfies the defining property of a
localization of ¢ in the second diagram. O

13.6. Formal completions and the adélic genus

We have defined the formal completion functor in Definition 13.5.1. We dif-
ferentiate between the formal completion, as defined there, and a formal com-
pletion as specified in the following definition, which is restricted to rational
spaces. Recall the algebraic notion of a formal localization of an f Q-nilpotent
w-group from Definition 12.4.2.

DEFINITION 13.61. Let Y be an fQ-nilpotent space, Z be an fZr-nilpotent
space, and ¢o: Z —> Zg be a rationalization. A formal completion of Y at T
associated to ¢ is a map w: Y —> Zj with the following properties. Let 7 be
the pullback of 1 (Y) and 71 (Z) over 71(Zo).

(i) The homomorphism w,: 71(Y) — 71(Zp) is a formal completion asso-
ciated to (¢o)«: 71(Z) —> m1(Zo).

(i) For n > 2, the homomorphism w,: m,(Y) —> mu(Zo) of m-groups is a
formal completion associated to (¢o)«: 7n(Z) —> wn(Zo)-

When Y, Z, and therefore Z are simple, the only requirement on the map w
is that for each n > 1, there must be a commutative diagram of Q-modules

u(Y)
7u(Zo) . 7n(Y) ® Zt

in which & is an isomorphism of Q7-modules. No compatibility of w with the
map ¢y is required.
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As in algebra, this notion encodes what we see in our cocellular construc-
tions of localizations and completions. From a global to local point of view, we
have the following analogue of Lemma 6.2.1.

PROPOSITION 13.62. Forany T’ D T, the rationalization (¢)o of the completion
¢: X —> Xt of an f Zp-nilpotent space X is a formal completion Xo —> (Xr)o.

From a local to global point of view, we have the following addendum to
Theorem 13.3.1.

THEOREM 13.6.3. Let

m
P —— Z

g s

Y — 2
w

be a homotopy pullback of nilpotent spaces such that

(i) Z is f Zr-complete and the torsion subgroup of each 7,(Z) is finite;
(it) ¢po: Z —> Zy is a rationalization of Z;
(iii) Y is rational; and
(iv) w is a formal completion associated to ¢y.

Then P is f Zr-nilpotent.

pRoOF. This holds by its algebraic analogue Theorem 12.4.4 and the abelian
m-group analogue of that result, which admits essentially the same proof. O

REMARK 13.6.4. In view of Remark 12.4.5, some such hypotheses as in Theo-
rem 13.6.3 are needed to construct global spaces of finite type from f Z-spaces.
There are f Zp-spaces Z such that there is no f Z p)-space P whose completion
at p is equivalent to Z.

We now specialize T to be the set of all primes. We again have two alter-
native notions of genus, in analogy with Definition 12.4.6.

DEFINITION 13.6.5. The adélic genus of an f-nilpotent space X is the set of

homotopy types of f- mlpotent spaces Y such that Xj is equivalent to Yy and
X, is isomorphic to Y, for all primes p. The complete genus of X is defined

“530-46909_Ch13_5P.tex” — 8/19/2011 — 11:24 — page 261



262 | FRACTURE THEOREMS FOR COMPLETION: SPACES

by dropping the requirement that Xo be isomorphic to Y. Write Go(X) for the
adelic genus of X and G(X) for the complete genus. Recall that G(X) denotes
the (local) genus of X. If two spaces are in the same local genus, they are in
the same adelic genus, and if two spaces are in the same adélic genus they are
in the same complete genus. Therefore we have inclusions

G(X) c Go(X) C G(X).

We can carry out the naive analysis of the adelic genus exactly as in the alge-
braic analogue discussed in §12.4. Fixing a rationalization ¢p: X —> (X)o the
results above imply that all elements of G (X) can be constructed as homotopy
pullbacks of formal completions w: X — (X)o associated to ¢y.

However, we can obtain a precise analysis by restricting to simple spaces,
which we do henceforward. Thus we now require all spaces in a given genus
to be simple. When X and therefore Xj is simple, the argument of §13.4
shows that Sullivan’s formal completion n: Xo — F(Xp) is a formal com-
pletion of Xj in the sense of Definition 13.6.1. Theorem 13.5.3 leads to an
easy proof of the following description of the adelic genus G(X). We agree
to write FX instead of X in what follows, regarding X as the homotopy pull-
back displayed in the upper diagram of Theorem 13.5.3, and we agree to write
FXy for both F(Xp) and (FX)o since Theorem 13.5.3 shows that they can be
identified.

Let hAut(FXo) denote the group of self-homotopy equivalences via Q-maps
(equivalently, Z-maps) of FX, let hAut(FX) denote the group of self-homotopy
equivalences via Z-maps of FX, and let hAut(Xp) denote the group of self-
homotopy equivalences of Xp. Since F is a functor and 7 is natural, we have a
homomorphism

F: hAut(Xp) — hAut(FXo)

such that (Fe) on >~ noe. Similarly, by the universal property of localization
we have a homomorphism hAut(FX) —> hAut(FXp), denoted ¢ > ¢, such
that ;: oo = ¢oo ¢, where ¢po = Fopp: FX —> FXj.

THEOREM 13.6.6. Fora simple space X of finite type, there is a canonical bijection
between Go(X) and the set of double cosets

hAut(Xo)\hAut(FXo) /hAut(FX).

PROOF. We define a function W from the set of double cosets to Go(X) by
sending & € hAut(FXp) to the homotopy pullback of the diagram
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n & $o
X() FX() FX() <—— FX.

A little diagram chasing shows that varying & within its double coset gives
equivalent pullback diagrams and hence equivalent homotopy pullbacks.

If W(&) and ¥ (0) are equivalent, say by an equivalence y, then we obtain
equivalences yp and Fy, unique up to homotopy, such that the left and top

Y

squares are homotopy commutative in the diagram

v(§) FX

W (0) FX
i $o
n &
Xo FXo FXp ®o
\ \Fio \f}
Yo
Xo FXo FXp.
n [

As above, these induce equivalences Fyy and f;/ such that the bottom left
square and the right square are homotopy commutative. It follows that 6 is
homotopic to f)\/ o0& o (Fyo)~! andis thus in the same double coset as £. There-
fore W is injective.

We can construct any simple space Y of finite type as the homotopy pullback

of the maps

n $o
Yo FYy FY.

Suppose that Y is in the same genus as X. Then we have equivalences
a: Yo — Xo and B: FY — FX. Define & = fo(Fa)~!. Another little
diagram chase shows that Y is equivalent to W (&). Therefore W is surjective. O

Recall that the function space F(X, Y) is nilpotent when X is finite and Y
is of finite type. Taking Y = X, this suggests that the automorphism groups
above should be nilpotent, or nearly so, when X is finite and that their analysis
should be closely related to the algebraic analysis of the genus of a finitely
generated nilpotent group (see Remark 12.4.9). This idea was worked out in
detail by Wilkerson [144], who proved the following theorem.
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THEOREM 13.6.7. If X is a simply connected finite CW complex, then G(X) and
therefore Go(X) and G(X) are finite sets.

It is natural to ask whether these three notions of genus are genuinely
different. The question was answered by Belfi and Wilkerson [10], and we
merely record their answers. Say that X is 7,-finite or H-finite if it has only
finitely many nonzero homotopy groups or only finitely many nonzero homol-
ogy groups, all of them assumed to be finitely generated.

THEOREM 13.68. Let X be an f-nilpotent space. If Xo admits an H-space struc-
ture, then Go(X) = G(X). If, further, X is either m,-finite or Hyfinite, then
G(X) = G(X). However, there are simply connected examples such that
Go(X) # G(X), and these can be chosen to be . finite or H,finite. Similarly,
there are simply connected examples such that G(X) # Go(X), and these too can
be chosen to be m.-finite or H-finite.
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AN INTRODUCTION TO MODEL
CATEGORY THEORY

We now switch gears and consider abstract homotopy theory. Here we adopt
a more categorical perspective than earlier in the book. To prove that localiza-
tions and completions exist in full generality, we make use of model category
theory. Since its use pervades modern algebraic topology and since some
aspects of the theory that we believe to be important are not in the existing
expository works on the subject, we give a treatment here. Model category
theory is due to Quillen [113]. Nice introductions are given in [43, 54], and
there are two expository books on the subject [65, 66]. Given these sources
and the elementary nature of most of the basic proofs, we leave some of the
verifications to the reader. The literature on the subject is huge and grow-
ing. Just as Hopf algebras began in algebraic topology and then were seen
to be fundamental in other subjects, homotopy theoretic methology, such as
model category theory, began in algebraic topology and then was seen to be
fundamental in other subjects.

In fact, by now the very term “homotopy theory” admits of two interpreta-
tions. There is the homotopy theory of topological spaces, which is the core of
algebraic topology, and there is also homotopy theory as a general methodology
applicable to many other subjects. In the latter sense, homotopy theory, like
category theory, provides a language and a substantial body of results that are
applicable throughout mathematics. The two are intertwined, so that there is
a subject of categorical homotopy theory (studied by algebraic topologists) and
of homotopical category theory (a closely related subject studied by category
theorists). Model category theory provides a central organizational principle
for this branch of mathematics. To explain properly the ideas that are involved,
we outline some categorical concepts that appear wherever categories do and
give just a hint of the higher categorical structures that begin to emerge in the
study of model categories.

267
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In part to emphasize this categorical perspective, we develop the definition
of a model category in its modern conceptual form in §14.1 and {14.2. We
focus on weak factorization systems (WFSs), since they are the conceptual key
to the efficacy of the definition. We discuss homotopies and the homotopy
category of a model category in §14.3 and {14.4.

We deliberately give an uninterrupted development of the theory in this
and the following two chapters, reserving all discussion of examples to the
two chapters that follow. The reader is encouraged to skip directly from this
chapter to Chapter 17 to begin looking at the examples before seeing the rest
of the theory.

14.1. Preliminary definitions and weak factorization systems

Let ./ be a category. We insist that categories have sets of morphisms between
pairs of objects; category theorists would say that .# is locally small. Similarly,
we understand limits and colimits to be small, meaning that they are defined
with respect to functors out of small categories 2. We assume once and for
all that ./ is bicomplete. This means that .# is complete (has all limits) and
cocomplete (has all colimits). In particular, it has an initial object ¢ and a
terminal object * (the coproduct and product of the empty set of objects re-
spectively).

A model structure on .# consists of three interrelated classes of maps
(W, €6, F), called the weak equivalences, the cofibrations, and the fibrations.
The weak equivalences are the most important, since the axioms are designed
tolead to a well-behaved homotopy category Ho.# thatis obtained by inverting
the weak equivalences. This is a localization process that is analogous to the
localization of rings at multiplicatively closed subsets, and it is characterized
by an analogous universal property. Formally, this means that there must be
a functor y: .# — Ho.# such that y(w) is an isomorphism if w € # and
y is initial with respect to this property. We shall require in addition that the
objects of Ho.# are the objects of .# and that y is the identity on objects.!
Thatis, if F: .# — ¢ is any functor such that F(w) is an isomorphism for
w € ¥, then there is a unique functor F: Ho.#/ —> # suchthat Fo y = F.
It follows that F = F on objects. We say that such a functor y is a localization
of .4 at W'. Since it is defined by a universal property, it is unique up to
canonical isomorphism.

1. The addition is an inessential convenience. The literature is divided on this point. Some
authors do and others do not insist that the objects of .# and Ho.# coincide.
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One might attempt to construct Ho.# by means of words in the morphisms
of .# and formal inverses of the morphisms of 7, but the result of such a
construction is not locally small in general. Moreover, it would be very hard to
“do homotopy theory” in a category constructed so naively. The cofibrations
and fibrations are extra data that allow one to do homotopy theory, and there
can be many model structures on .# with the same weak equivalences. We
prefer to build up to the definition of model categories by first isolating its key
categorical constituents. The three classes of maps turn out to be subcategories
that contain all isomorphisms and are closed under retracts.

DEFINITION 14.1.1. Aclass # of mapsin .# is closed under retracts if, when
given a commutative diagram

i r

A— X —> A roi=id
A EE

j s
B——=Y —— B soj=1id

with g € &, it follows that f € J#". The special case when ior =id and
jos=id shows that every map isomorphic to a map in ¢ is also in %"
It follows that if all identity maps are in ., then so are all isomorphisms. It
is conceptually helpful to think in terms of the arrow category of .#, denoted
o/ r. M , whose objects are the maps of .# and whose morphisms f — g are

Y

e ——> @,

the commutative squares

The following observation is often applied to classical homotopy cate-
gories, where it shows that a retract of a homotopy equivalence is a homotopy
equivalence.

LEMMA 14.1.2. Inany category, if f is a retract of g and g is an isomorphism, then
f is an isomorphism.

PROOF. Adopting the notations of the diagram in Definition 14.1.1, define
f~1 =rg71j. Then f~! is the inverse isomorphism of f. O
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REMARK 14.1.3. Observe that for any maps f: X — Yandg: Y — X such
that fg = id, f is tautologically a retract of g f via the diagram

ARt

Y — X — Y.

DEFINITION 14.1.4. Asubcategory # of ./ qualifies as a subcategory of weak
equivalences if all identity maps in ./ are in #, # is closed under retracts,
and # satisfies the two out of three property: for a composite w = vo u, if any
two of u, v, and w are in %, then so is the third.

The original source of the following basic idea goes back to Lemma 1.1.1.

DEFINITION 14.1.5. Consider commutative squares

A E
A

il e ip
7/

X

—> B.
f

lw

\

Say that (i, p) has the lifting property if for every such square there is a lift A
making the triangles commute. For a class of maps .2, we say that p satisfies
the rightlifting property (RLP) with respect to .Z if (i, p) has the lifting property
for every i € .&; we let ¥ denote the class of all such maps p. Dually, for a
class of maps #, we say thati satisfies theleftlifting property (LLP) with respect
to Z if (i, p) has the lifting property for every p € %; we let Y% denote the class
of all such maps i. We write £1Z if (i, p) has the lifting property whenever
i € % and p € Z. This means that & C Y% or, equivalently, Z C .£?.

Of course, these last inclusions can be proper. When they are equalities,
the resulting classes have some very useful properties, which are catalogued
in the following definitions and result. Here we mention transfinite colimits
for the first time since §2.5. We shall make little use of them until §19.3, before
which we only need sequential colimits. Transfinite colimits play a substan-
tial role in the foundational literature of model category theory, and they are
crucial to the construction of Bousfield localizations, but they play little if any
direct role in the calculational applications.
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DEFINITION 14.16. Let A be a (nonempty) ordinal. We may regard A as an
ordered set and hence as a small category. A A-sequence is a colimit-preserving
functor X,: A — #, so that Xg = colimy.g X for B < A. The transfinite
composite of X is the induced map

Xo —> colimy <) X,.

When 2 is a regular cardinal (see Definition 2.5.2) viewed as a category, it
is clearly a A-filtered category in the sense of Definition 2.5.3, and it has all
colimits. The role of the colimit condition is illustrated in Proposition 2.5.4.

DEFINITION 14.1.7. Let .Z be a class of maps in .#. We say that . is left
saturated if the following (redundant) closure properties hold.

(i) -Z is a subcategory of .# that contains all isomorphisms.
(i) -Z is closed under retracts.
(iii) Any coproduct of maps in .Z isin .Z.
(iv) Any pushout of a map in .Z is in .Z’; that is, if the following diagram is
apushoutand iisin.%, thenjisin .Z.

A B
X Y

(v) If & is an ordinal and X is a A-sequence such that X, — X,41 isin ¥

—_—

_

for all @« + 1 < A, then the transfinite composite of X is in .Z.

The dual properties specify the notion of a right saturated class of maps. Here
coproducts, pushouts, and transfinite composites must be replaced by
products, pullbacks, and transfinite sequential limits.

PROPOSITION 14.18. Let & be any class of maps in M. Then B is left
saturated and 22 is right saturated.

PROOF. The reader is urged to carry out this categorical exercise. For (i),
successive lifts show that a composite of maps in ¥.%" is in Y.¢, so that 2.¢
is a subcategory, and it is obvious from the definition of the lifting property
that isomorphisms are in ©.7. For the other parts, given a lifting problem
for the relevant categorical colimit, the hypothesis gives lifts in induced lifting
problems that by the universal property of the relevant colimit fit together to
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give a solution of the original lifting problem. It is instructive to understand
why the conclusion does not imply that ©.%" is closed under all colimits in
/v . For example, (iii) and (iv) do not imply that a pushout in &/r.# of
maps in Y7 is again in @.¢; compare Exercise 1.1.2. O

We often use the result above together with the following evident inclusions.
LEMMA 14.19. Foranyclass %, % C D(HP).If # C K, then g9 D XD

DEFINITION 14.1.10. An ordered pair (£, %) of classes of morphisms of .#
factors .# if every morphism f: X — Y factors as a composite

itf) p(f)
X—>Z(f)—>Y

with i(f) € £ and p(f) € Z. Let dom and cod denote the domain and
codomain functors «/r.#/ —s> /. The factorization is functorial? if i and
p are functors &/r.# —> </ r.# such that

domoi=dom, codoi=domop, codop=cod

andp(f) oi(f) = f. Equivalently, a functorial factorization consists of a functor
Z: dr.M — A and natural transformations i: dom — Z and p: Z — cod
such that the composite natural transformation poi: dom — cod sends

ftof.

Mapping cylinders and mapping path fibrations [93, pp. 43, 48] give the orig-
inal source for the following idea, but it also arises from analogous categorical
contexts.

DEFINITION 14.1.11. A weak factorization system, abbreviated WFS, in ./ is
an ordered pair (.Z, %) of classes of morphisms of .# that factors .# and
satisfies both

L =9% and % =<9

The required equalities say that the maps in £ are precisely the maps that
have the LLP with respect to the maps in & and the maps in & are precisely
the maps that have the RLP with respect to the maps in .#. A WFS is functorial
if the factorization is functorial.

2. The definition given in some standard sources is not correct.
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Category theorists also study strong factorization systems, for which the
relevant lifts A are required to be unique.? The difference is analogous to the
difference between the class of fibrations and the class of covering maps as
the choice of Z. Our focus on weak rather than strong factorization systems is
illustrative of the difference of focus between homotopical categorical theory
and classical category theory. There is an equivalent form of the definition of
a WES that is generally used in the definition of model categories. We give
it in Proposition 14.1.13 below, using the following observation to prove the
equivalence.

LEMMA 141.12 (THE RETRACT ARGUMENT). Letf =qoj: A —> Bbea fac-
torization through an object Y. If f has the LLP with respect to q, then f is a retract
of j. Dually, if f has the RLP with respect to j, then f is a retract of q.

PROOF. A lift k in the square

J
A—Y
gives a retraction

A A——A
S I P
q
B Y B.

[

lw

d

PROPOSITION 14.1.13. Let (£, %) factor 4 . Then (£, %) isa WES if and only
if YIAK and £ and X are closed under retracts.

PROOF. If (£, %) is a WEFS, then certainly Z1Z. Suppose that f is a retract
of g, where g € .Z. Let p € # and assume that £ and k make the right-hand
square commute in the following diagram. We must find alift in the right-hand
square, and there is a lift A as drawn since g € .Z.

3. They write (&, .#), thinking of these as classes & of epimorphisms and .# of monomor-
phisms [11, §5.5]. Reversing the order, in many categories (.#, &) is a weak but not a strong
factorization system. We think of cofibrations as analogous to monomorphisms and fibrations as
analogous to epimorphisms.
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i r 4
A X A E roi=id
/7/
x -7
~—~ 3B c soj=id
J s k

The composite A o gives a lift in the right-hand square. Therefore .# is closed
under retracts. Dually, Z is closed under retracts. For the converse, we have
L CBR and Z C £P and must show that equality holds. Let f € 2%.
Factor f as qoj with j € £ and q € #Z. By Lemma 14.1.12, f is a retract of
j and is thus in .Z. Dually, Z = .£%. Therefore (£, %Z) is a WFS. O

14.2. The definition and first properties of model categories

DEFINITION 14.2.1. A model structure on .# consists of classes (¥, ¢, %)
of morphisms of ./, the weak equivalences, cofibrations, and fibrations, such
that

(i) # has the two out of three property.
(i) (¥,.Z N¥)is a (functorial) weak factorization system.
(iii) (¥ N#,.7)is a (functorial) weak factorization system.

We emphasize that this is a general definition in which the three classes
of maps need not have anything to do with the classes of maps with the same
names in the classical topological setting. The parenthetical (functorial) in
the definition is a matter of choice, depending on taste and convenience.
Quillen’s original definition did not require it, but many more recent sources
do. There are interesting model categories for which the factorizations cannot
be chosen to be functorial (see, for example, [71]), but they can be so chosen
in the examples that are most commonly used. We will not go far enough into
the theory for the difference to matter significantly. Observe that the model
axioms are self-dual in the sense that the cofibrations and fibrations of .Z are
the fibrations and cofibrations of a model structure on the opposite category
A °P that has the same weak equivalences. Therefore results about model
categories come in dual pairs, of which it suffices to prove only one.

The maps in .# N# are called acyclic (or trivial) fibrations; those in € N'%
are called acyclic (or trivial) cofibrations. The definition requires every map to
factor both as the composite of a cofibration followed by an acyclic fibration
and as an acyclic cofibration followed by a fibration; we will say a little more
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about that in Remark 14.2.6 below. It also requires there to be a lift in any

A
‘l/
L

s

X

in which i is a cofibration, p is a fibration, and either i or p is acyclic. More

commutative square

N

oo <— m
=

|

precisely, it requires the following two pairs of equalities.

1422 ¢ =2FnNW) and FNHW = ¢

1423 F=(ENW)? and ¥NW =87

Proposition 14.1.8 shows that ¥ and € N#  are left saturated and .# and
F NW are right saturated, which is one motivation for our original definition
of a WEFS.

By (14.2.2) and (14.2.3), to specify a model structure on a category with a cho-
sen class of weak equivalences that satisfies the two out of three property, we
need only specify either the cofibrations or the fibrations, not both. Moreover,
by Proposition 14.1.13, the equalities (14.2.2) and (14.2.3) are equivalent to the
statement that the relevant four classes are closed under retracts and satisfy

14.2.4 ca(FnNW) and FRAECNKH).

It is usual to define model categories by requiring (14.2.4) and requiring .%,
%, and # to be closed under retracts. The following observation (due to Joyal
and Tierney*) shows that our axioms imply that # is closed under retracts
and are therefore equivalent to the usual ones.

LEMMA 14.2.5. The class # as well as the classes €, € N\ W, F, and F O W in
a model structure are subcategories that contain all isomorphisms and are closed
under retracts. Therefore W is a subcategory of weak equivalences in the sense of
Definition 14.1.4.

PROOF. Proposition 14.1.8 implies that €, ¥ N¥/, F, F N'W are subcate-
gories that contain all isomorphisms and are closed under retracts. The two out
of three property implies that # is closed under composition, and, together

4. It is Proposition 7.8 of A. Joyal and M. Tierney. Quasi-categories vs Segal spaces. Categories
in algebra, geometry and mathematical physics, 277-326. Contemp. Math., 431. Amer. Math. Soc.,
Providence, 2007.
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with either factorization property, it also implies that # coincides with the
class of composites poi such thati €e ¥N% and p € F N . Since all iden-
tity maps are in both ¥ N# and .# N#, they are in /. It remains to show
that # is closed under retracts. Suppose given a retract diagram

k

e —> o6 —> o

ol

o — 06 —> 0

with w € /. Firstassume thatf € .% and use either factorization and the two
out of three property to factor w as vou, where u € €N¥ andve FNY.
Let s = u o k in the following expansion of the previous diagram.

k
— > °

[ ]
\\ \ %
s ‘3// t
f | f
| w
[ ] [ ]

R

N

4 e
o <—— ©

R

Sincef € .Z and u € € N¥ there is alift t that makes the diagram commute.
Thentos = id. Thus f isaretractof v, hence f isin.# N # sincevisin.# N¥.

For the general case, factor f as poi where i € ¥N# and p € .F and
construct the following expansion of our first diagram.

e —> o — — > o
B

Here the top left square is a pushout and, by three applications of the universal
property of pushouts, there is a map r such that the upper right square com-
mutes and r o £ = id, there is a map g such that the lower left square commutes
and goj = w, and the lower right square commutes. By Proposition 14.1.8,
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jisin €N since it is a pushout of a map in ¥N¥ and ¥NY = 9.7.
Therefore, g is in # by the two out of three property. The diagram shows that
the fibration p is a retract of g, hence p is in # by the first part. Since i is in
¢ NW,itfollows that f = poiisin /. O

The following evident observation is often used but seldom made explicit.

REMARK 14.2.6. The definition of a model category implies that for any map

f: X — Y, wehave the following commutative solid arrow diagram in which
i(f) is an acyclic cofibration, p(f) is a fibration, j(f) is a cofibration, and q(f)
is an acyclic fibration. Therefore there is a lift £(f) that makes the diagram
commute.

w(f) ————— Y

p(f)

If f is a weak equivalence, then this is a diagram of weak equivalences.
When the factorizations can be chosen to be functorial, one can ask whether
they can be so chosen that & () is natural.> As we explain in Proposition 15.1.11
and Remark 15.2.4, they often can be so chosen, although they usually are not
so chosen.

DEFINITION 14.2.7. An object X of a model category .# is cofibrant if the
unique map ¥ —> X is a cofibration. An acyclic fibration q: QX — X in
which QX is cofibrant is called a cofibrant approximation or cofibrant replace-
ment® of X. We can obtain g by factoring ¢ — X. Dually, X is fibrant if X — *
is a fibration. An acyclic cofibration r: X —> RX in which RX is fibrant is a
fibrant approximation or fibrant replacement of X. We can obtain r by factoring

5. As far as we know, this question was first raised by Emily Riehl; it is considered in her paper
[118], which studies model categories categorically.

6. The words “approximation” and “replacement” are both in common use; we usually use
the former when thinking about a single object and the latter when thinking about a functorial
construction.
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X —> . We say that X is bifibrant” if it is both cofibrant and fibrant. Let .,
//f, and //lcf denote the full subcategories of cofibrant, fibrant, and bifibrant
objects of .#, respectively.

Cofibrant and fibrant replacements are very important to the theory. Even
when they are functorial, they are not unique, and there often are several
different cofibrant or fibrant replacement functors with different good proper-
ties. Given two cofibrant replacements q: QX — X and q': Q'X — X, the
lifting property gives a weak equivalence £ : QX — Q'X suchthatq o& =gq.
The following remark plays a role in the construction of the homotopy category
Ho.# .

REMARK 14.2.8. Itis central to the theory that we can replace objects by ones
that are both fibrant and cofibrant. The two obvious composite ways to do
this are weakly equivalent as we see from the following diagram, in which the
labeled arrows are weak equivalences. Here the maps Qr and Rq are given if
we have functorial factorizations Q and R. If not, we obtain them by applying
lifting properties to the acyclic fibration g on the right or the acyclic cofibration r
on the left; the unlabeled arrows from ¢ and to * are included in the diagram to
clarify that application of the lifting properties. The difference is an illustrative
example of why it is often convenient but usually not essential to include the
functoriality of factorizations in the definition of a model category.

7. This term is nonstandard,; it is usual to write fibrant and cofibrant instead.
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The lifting property gives a weak equivalence & that makes the diagram
commute.?

In many model categories, either all objects are fibrant or all objects are
cofibrant (but rarely both). For example, all objects are fibrant in the model
structures that we shall define on %, and all objects are cofibrant in the usual
model structure on simplicial sets. In such cases, many results and arguments
simplify. For example, the following result becomes especially helpful when
all objects are cofibrant or all objects are fibrant.

LEMMA 1429 (KEN BROWN'S LEMMA). Let F: .# — AN be a functor,
where A is a model category and A is a category with a subcategory of weak equiv-
alences. If F takes acyclic cofibrations between cofibrant objects to weak equivalences,
then F takes all weak equivalences between cofibrant objects to weak equivalences.
Dually, if F takes acyclic fibrations between fibrant objects to weak equivalences,
then F takes all weak equivalences between fibrant objects to weak equivalences.

PROOF. Letf: X —> Y be a weak equivalence between cofibrant objects of
. The map f and the identity map of Y specifyamap X LI Y — Y, and we
factor it as the composite of a cofibration j and an acyclic fibration p to obtain
the following commutative diagram in ..

X
f
i
J p

@ Xuy — Z —=Y

: T
id
Y

The left square is a pushout, hence i; and i, are cofibrations, and this implies
that XLI'Y and Z are cofibrant. By the two out of three property in ./, ji;
and jij are weak equivalences and thus acyclic cofibrations between cofibrant
objects. By hypothesis, F takes them to weak equivalences. By the two out
of three property in ./, F(p) is a weak equivalence since F(p)F(ji,) = id and
F(f) is a weak equivalence since F(f) = F(p)F(ji1). O

8. Similarly to footnote 5, when our factorizations are functorial it is natural to ask whether &
can be chosen to be natural. The question is answered in [118].
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REMARK 14.2.10. The weak equivalences in .#” might be the isomorphisms.
For example, .#” might be the homotopy category of a model category.

14.3. The notion of homotopy in a model category

As will be formalized in Addendum 16.4.10, in most examples there is a famil-
iar and classical notion of a homotopy between maps. It is defined in terms of
canonical cylinder and path objects, such as X x I and Map (I, X) in the case
of spaces. Quillen [113] developed a notion of homotopy in general model cat-
egories and showed how to derive many familiar results using the model theo-
retic notion. However, in the examples, it turns out that the classical notion of
homotopy suffices to describe the model theoretical notion. We shall make this
assertion precise at the end of §16.4. Therefore, when actually working with
model categories, one usually ignores the background material on the model
theoretical notion of homotopy. For that reason, we just describe how the gen-
eral theory goes, emphasizing the model theoretic analogue of the Whitehead
theorems but leaving some detailed verifications to the reader. We largely
follow [43, §4].

We consider a fixed model category .# throughout this section. There
are several variant model theoretical notions of cylinder and path objects that
abstract the properties of the classical cylinder and path objects.

DEFINITION 143.1. A cylinder object for X € .# is an object Cyl X together
with maps ip: X — Cyl X, i1: X — Cyl X, and p: Cyl (X) —> X such that
poip =id = poi; and p is a weak equivalence; by the two out of three prop-
erty, ig and i; are also weak equivalences. A cylinder object is good if the
map i =ip+i1: XX — Cyl(X) is a cofibration. A good cylinder object
Cyl (X) is very good if p is an acyclic fibration. Factorization of the folding map
XX — X shows that every X has at least one very good cylinder object. A
left homotopy between maps f,g: X — Y is a map h: Cyl (X) — Y such
that hoip = f and hoi; = g, where Cyl (X) is any cylinder object for X; h is
good or very good if Cyl (X) is good or very good. Define ¢(X, Y) to be the
set of equivalence classes of maps X —> Y under the equivalence relation
generated by left homotopy.

LEMMA 143.2. If X is cofibrant and Cyl X is a good cylinder object, then iy and iy
are cofibrations and thus acyclic cofibrations.

PROOF. The inclusions tg and (1 of X in X II1 X are cofibrations since the
following pushout diagram displays both of them as pushouts of ¥ — X.
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) — X

L

X — XUIX

to

Therefore their composites ip and i; with i are cofibrations. a

LEMMA 1433. If h is a left homotopy from f to g and either f or g is a weak
equivalence, then so is the other.

PROOF. By the two out of three property, f is a weak equivalence if and only
if h is a weak equivalence, and similarly for g. O

We emphasize that the definition of left homotopy allows the use of any
cylinder object and that the notion of left homotopy and its good and very good
variants are not equivalence relations in general. Even in some categories with
canonical cylinders, such as the category of simplicial sets, homotopy is not
an equivalence relation in general. If we were only interested in model cate-
gory theory, we could restrict attention to very good cylinder objects. However,
the canonical cylinder objects in the examples are generally not very good,
so we must allow the more general versions in order to make the promised
comparisons. For example, in the standard model structure on topological
spacesof §17.2, X x Iisacylinder object, butitis not good unless X is cofibrant,
and similarly for categories of chain complexes. We shall return to this point
in Addendum 16.4.10.

DEFINITION 143.4. Dually, a path object? for X is an object Cocyl X together
with maps pg: Cocyl X —> X, p1: Cocyl X — X, andi: X —> Cocyl X such
that ppoi =1id = p; oi and i and hence py and p; are weak equivalences. A
path object is good if the map p = (po, p1): Cocyl X —> X x X is a fibration.
A good path object is very good if i is an acyclic cofibration. Factorization of
the diagonal map X — X x X show that every X has at least one very good
path object. There are evident dual definitions of right homotopies, good right
homotopies and very good right homotopies. Define 7" (X, Y) to be the set of
equivalence classes of maps X — Y under the equivalence relation generated
by right homotopy.

Of course, the following duals of Lemmas 14.3.2 and 14.3.3 hold.

9. The term “cocylinder” is also used and, inconsistently, we use notation that reflects that term.
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LEMMA 1435, If X is fibrant and Cocyl X is a good path object, then po and p1
are fibrations and thus acyclic fibrations.

LEMMA 143.6. If h is a right homotopy from f to g and either f or g is a weak
equivalence, then so is the other.

Lemmas 14.3.5 and 14.3.2 have the following immediate consequences.

LEMMA 14.3.7 (HEP). Leti: A —> X be a cofibration and Y be a fibrant object.
Then i satisfies the right homotopy extension property with respect to Y. That is,
for any good path object Cocyl Y and any maps f and h that make the following
square commute, there is a lift h that makes the triangles commute.

h
A — CocylY

h /1
i V \LPO
s
s

X —> Y

f

LEMMA 1438 (CHP). Let p: E —> B be a fibration and X be a cofibrant object.
Then p satisfies the left covering homotopy property with respect to X. That is, for any
good cylinder object Cyl X and any maps f and h that make the following square
commute, there is a lift h that makes the triangles commute.

f

X — E

D 4
i b
L] Va2 P
7/

CY]X — B
h

We record several further easily proven observations about these notions.

PROPOSITION 14.3.9. The notion of left homotopy satisfies the following prop-
erties. The notion of right homotopy satisfies the dual properties. Consider maps
f,g: X — Y and, for (iii),e: W — X.

(i) There is a left homotopy between f and g if and only if there is a good left
homotopy between f and g.

(ii) If'Y is fibrant, there is a good left homotopy between f and g if and only if
there is a very good left homotopy between f and g.
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(i) IfY is fibrant and f is left homotopic to g, then f o e is left homotopic to g o e.
(iv) If X is cofibrant, then left homotopy is an equivalence relation on .4 (X, Y).

PROOF. We give the reader the essential ideas in the following sketch
proofs.

(i) Factori: X LI X —> Cyl X to obtain a good cylinder Cyl'X with an acyclic
fibration to Cyl X; composition with a homotopy gives a good homotopy.

(i) Factor the weak equivalence p: Cyl X —> X to obtain a very good cylin-
der Cyl'X together with an acyclic cofibration j: Cyl X — Cyl'X. Since
Y is fibrant, a left homotopy h defined on Cyl X in the diagram

h
CylX —— Y

7
) s
J s
v n

Cyl’X —— =

lifts to a left homotopy h’ defined on Cyl'X.

(iif) Useavery good cylinder Cyl X to define a homotopy h: f >~ g and choose
a good cylinder Cyl W. Use the lifting property to obtain A making the
following diagram commute. Then ho A gives the required homotopy

foex~goe.

elle i
WHW —— XIIX —— CylX

_ 7
A -
i _ -7 p

—

Cylw w X

(iv) f is left homotopic to f since X itself gives a cylinder for X. If f is left
homotopic to g, use of the interchange map on X L1 X shows that g is
left homotopic to f. For transitivity, observe that the pushout of a pair
of good cylinders Cyl X and Cyl’'X along the cofibrations i; and iy in the
diagram

i io
CylX<——X——>Cyl'x
gives another good cylinder Cyl”X. Given left homotopies f ~ g and
g = hdefined on Cyl X and Cyl'X, use the universal property of pushouts
to obtain a homotopy f ~ h defined on Cyl"X. O
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COROLLARY 143.10. IfY is fibrant, then composition in .# induces composition
74X Y) x 78(W, X) — 74(W, Y).

If W is cofibrant, then composition in .4 induces composition

"X, Y)x 7" (W,X) — n"(W,Y).

PROOF. Ife,¢': W — X and f,f': X — Y are left homotopic, then foe
and f’ o e are left homotopic by (iii) and f o e and f o ¢’ are left homotopic by
composing a homotopy Cyl W — X with f. This implies the first part. The
second is dual. O

The previous results give properties of left homotopies and of right homo-
topies, thought of separately. Perhaps the real force of Quillen’s approach to
homotopies is the comparison between left and right homotopies.

PROPOSITION 143.11. Consider mapsf,g: X — Y.

(i) If X is cofibrant and f is left homotopic to g, then f is right homotopic to g.
(it) IfY is fibrant and f is right homotopic to g, then f is left homotopic to g.

PROOF. For (i), there is a left homotopy h: CylX — Y defined on some
good cylinder object Cyl X. Choose any fixed good path object Cocyl Y. Since
ip is an acyclic cofibration, by Lemma 14.3.2, and p is a fibration, there is a lift
A in the following diagram.

f i
X Y Cocyl Y
_ 7
A -
io l -7 l P
i T
X CylX XxCylX —— YxY
(pid) (fh

The composite Ai; is a right homotopy from f to g. The proof of (ii) is dual. O
DEFINITION 14.3.12. When X is cofibrant and Y is fibrant, we say that f is
homotopic to g, written f ~ g, if f is left or, equivalently, right homotopic to g.

We then write (X, Y) for the set of homotopy classes of maps X — Y.

The previous proof has the following consequence, which is the key to
comparing classical homotopies with model theoretic homotopies.
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COROLLARY 14.3.13. Let X be cofibrant and Y be fibrant. Fix a good cylinder object
Cyl X and a good path object Cocyl Y. If f >~ g, then f is left homotopic to g via a
homotopy defined on Cyl X and f is right homotopic to g via a homotopy mapping
to Cocyl Y.

The following result can be viewed as giving weak model theoretic ana-
logues of the dual Whitehead theorems. Another variant is given in Theo-
rem 14.4.8 below.

THEOREM 14.3.14. The following versions of the dual Whitehead theorems hold.

(i) If X is cofibrant and p: Z — Y is an acyclic fibration, then the function
ps: T4X, Z) — 7% (X, Y) is a bijection.

(i1) If Y is fibrant and i: W — X is an acyclic cofibration, then the function
i*: (X, Y) — n"(W,Y) is a bijection.

PROOF. For a map f: X —> Y and for a left homotopy h between maps
k,¢: X —> Z that is defined on a good cylinder Cyl X, lifts in the diagrams

k+¢
and XUX — Z

@ Z
7
A L
s v
X Y

CylX —— Y
h

N

-

show that p, is surjective and injective, respectively. Here we have used that
po (k+ ¢) restricts to pk and p¢ on the two copies of X in X L1 X. d

The topological analogue of (i) does not require a fibration hypothesis and
therefore has one of the implications in the following result as a formal conse-
quence [93, pp. 73-74]. In the model theoretical version, neither implication
is obvious.

THEOREM 143.15. Letf: X —> Y be a map between bifibrant objects X and Y.
Then f is a homotopy equivalence if and only if f is a weak equivalence.

pPROOF. Factor f as the composite of an acyclic cofibration i: X — Z
and a fibration p: Z —> Y and observe that Z is also bifibrant. By Theo-
rem 14.3.14(ii), the functions

i*: 7(Z,X) — 7(X,X) and i*: 7w (Z,Z) — 7(X,Z) — 0
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are bijections. Choose j: Z — X such thati*(j) = idx, so thatji ~ idx. Then
i*(ij) = iji = i and therefore ij >~ idz. Thus i is a homotopy equivalence with
homotopy inverse j. If f is a weak equivalence, then p is an acyclic fibration
and the dual argument gives that p is a homotopy equivalence with a homo-
topy inverse q: Y — Z. The composite g = jq is then a homotopy inverse
tof.

Conversely, assume that f is a homotopy equivalence with homotopy in-
verse g. Since i is a weak equivalence, it suffices to prove that p is a weak
equivalence to deduce that f is a weak equivalence. Let h: CylY — Y be a
good left homotopy from fg = pig to the identity map of Y. Choose a lift k in
the diagram

Cle — Y
h

and let g = ki;: Y — Z. Then k is a good homotopy from ig to g such that
pq = idy. Moreover, p >~ pij = fj and therefore

qp ~ igp >~ ig fj >~ idz.

By Lemma 14.3.3, this implies that gp is a weak equivalence. By Remark 14.1.3,
p is a retract of gp since pq = id. Therefore p is also a weak equivalence. [

REMARK 14.3.16. We have used HELP and coHELP in several places, notably
§3.3. The first author has long viewed them to be a central organizational con-
venience in classical homotopy theory. Implicitly and explicitly, we shall again
use HELP in developing the g-model structures on spaces in §17.2 and on chain
complexes in §18.4. These generalizations of the HEP and CHP in classical
homotopy theory are themselves specializations of dual model theoretic gen-
eralizations of HELP and coHELP that were introduced and given the names
left and right HELP by Vogt [139]. He used them to give a characterization of
the weak equivalences in any model cateogory in terms of lifting properties.

14.4. The homotopy category of a model category

To begin with, we reconsider the cofibrant and fibrant replacements of Defi-
nition 14.2.7 from a homotopical point of view. In the definition of a model
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category, we built in the choice of having functorial factorizations. When we
have them, we have cofibrant and fibrant replacement functors Q and R. In
general, we have functors up to homotopy. To make this precise, observe
that the results of the previous section, in particular Corollary 14.3.10 and
Proposition 14.3.11, validate the following definitions of homotopy categories.

DEFINITION 14.4.1. Consider the full categories ./, //lf, and ///cf of cofi-
brant, fibrant, and bifibrant objects of .#Z, respectively. Define their homotopy
categories h.#;, h.#y, and h.# to be the categories with the same objects
and with morphisms the equivalence classes of maps with respect to right
homotopy, left homotopy, and homotopy, respectively. In the first two cases,
we understand equivalence classes under the equivalence relation generated
by right or left homotopy.

Consider a map f: X — Y. Choose cofibrant replacements q: QX — X
and q: QY — Y and fibrant replacements r: X — RX andr: Y — RY. Then
we can obtain lifts Q f: QX —> QY and Rf: RX —> RY in the diagrams

14.4.2
f r
? QY and X —> Y ——> RY
Qf /7 /7
l /// q rl /// l
// /// Rf
0).¢ X Y RX ————— *%

Thus we have a kind of point set level naturality of q and r even when we
do not have functors Q and R. These constructions enjoy the following prop-
erties.

LEMMA 14.4.3. Consideramapf: X — Y.

(i) f is a weak equivalence if and only if Q f is a weak equivalence.
(ii) The left (and hence right) homotopy classes of Q f depend only on the left
homotopy class of the composite fg.
(iii) If Y is fibrant, the right homotopy class of Q f depends only on the right
homotopy class of f.
(iv) f is a weak equivalence if and only if Rf is a weak equivalence.
(v) The right (and hence left) homotopy classes of Rf depend only on the right
homotopy class of the composite rf .
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(vi) If X is cofibrant, the left homotopy class of Rf depends only on the left
homotopy class of f.

PROOF. Statements (iv)—(vi) are dual to statements (i)—(iii). Parts (i) and (iv)
hold by the two out of three property. Parts (ii) and (v) hold by Theorem 14.3.14
and Proposition 14.3.11, applied with X replaced by the cofibrant object QX
or Y replaced by the fibrant object RY. If Y is fibrant, then so is QY, and if X
is cofibrant, then so is RX. Parts (iii) and (vi) hold by two more applications of
Theorem 14.3.14. O

Lemma 14.4.3 and Remark 14.2.8, the latter elaborated to show that &
becomes natural on passage to the homotopy category h.#, imply the follow-
ing statement.

PROPOSITION 14.4.4. Cofibrant and fibrant replacement induce functors
Q: M — htt; and R: M — hty.

When restricted to fibrant and cofibrant objects, respectively, these functors factor
through homotopy categories to induce functors

hQ: htly —> htlyy ond hR: htl; —> hty.
Moreover, bifibrant replacement RQ and QR induce naturally equivalent functors

hRoQ, hQoR: M —> h.tly.

The notations hQ, hR, and analogues are generally abbreviated to Q
and R, by abuse of notation, and we agree to write RQ for the functor
hRo Q: .#—h.#y induced by chosen objectwise cofibrant and fibrant
replacements, as above, or by chosen functorial replacements if we have them.
By a similar abuse of notation, we write RQ f for either a map in .y obtained
by successive lifts in (14.4.2) or for its homotopy class (which is well-defined),
letting the context determine the meaning.

DEFINITION 14.45. Define the homotopy category Ho.# to have objects the
objects of .# and morphism sets

Ho.# (X, Y) = h.#;(ROX, RQY) = 7 (RQX, RQY),
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with the evident composition. Definey : .# —> Ho.# (X, Y) to be the identity
on objects and to send a map f to RQ f. Observe that Ho.# is equivalent to
h#y via the functor that sends X to RQX and f to RQ f.

PROPOSITION 14.4.6. The class of maps f such that y(f) is an isomorphism is
precisely W, and every map in Ho.# is a composite of morphisms in y (.#) and
inverses of morphisms in y (¥).

PROOF. By Lemma 14.4.3, if f: X — Y is a weak equivalence, then so is
RQf. By Theorem 14.3.15, RQ f is then a homotopy equivalence and hence
an isomorphism in h.#s. Conversely, if RQ f is an isomorphism in h.Z,
then RQ f is a homotopy equivalence and therefore a weak equivalence, again
by Theorem 14.3.15. This implies that f is a weak equivalence.

For the second part, note that for any X we have weak equivalences

q r
X<——QX—>ROQX,

and these induce an isomorphism &x =y (r)y (q) ™' : ¥ (X)—y (RQX) in Ho.Z .
When X € .4, q and r are homotopy equivalences and thus &x is a map
in Ay. If Y is also in ., the maps &x and &y in Mef induce an isomor-
phism of 7 (X,Y) with 7(RQX, RQY). For any X and Y, this identifies

Ho.# (RQX, RQY) = 7 (RQRQX, RQRQY) with Ho.# (X, Y) = 7 (RQX, RQY).

Since passage to homotopy classes of maps is a surjection
M (RQX, RQY) —> 7(RQX, RQY) = Ho.# (X, Y),

every map f: X — Y in Ho.# (X, Y) is represented by a composite &y logy
for some map g: RQX — RQY in /. O

THEOREM 14.4.7. The functor y : A4 —> Ho.# is a localization of 4 at W .

PROOF. Let F: .# —>  De a functor that sends weak equivalences to iso-
morphisms. We must construct F: Ho.# —s # such that Foy = F.
We let F=F on objects. With the notations of the proof of Proposi-
tion 14.4.6, we can and must define F on morphisms by sending a map &x
to F(r)F(q)~! and sending a map f € Ho.# (X, Y) represented by E;lgg‘x to
F(§y) "' F(g)F(x). 0

Alternative versions of the dual Whitehead theorems drop out formally
from the construction of Ho.Z.
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THEOREM 1448 (WHITEHEAD). The following versions of the dual Whitehead
theorems hold.

(i) Amap p: Z —> Y between fibrant objects is a weak equivalence if and only
ifps: (X, Z) — (X, Y) is a bijection for all cofibrant objects X.

(ii) Amapi: W —> X betweeen cofibrant objects is a weak equivalence if and
only if i*: m(X,Y) — w(W,Y) is a bijection for all fibrant objects Y.

PROOF. Inany category ¢, amap f: A —> Bisan isomorphism if and only
if either f.: ¢(C,A) — %(C,B) or f*: ¥(B,C) — % (A, C) is an isomor-
phism for one C in each isomorphism class of objects in €. In fact, we need
only test on objects C and D that are isomorphic to A and B. Recalling that
amap f in ./ is a weak equivalence if and only if y(f) is an isomorphism
in Ho.# , we apply this categorical triviality in the homotopy category Ho.Z .
Here every object is isomorphic to a cofibrant object and Ho.# (X, Y) can be
identified with 7 (X, Y) when X is cofibrant and Y is fibrant. For (i), it suffices
to use cofibrant approximations of Z and Y as test objects and for (ii), it suffices
to use fibrant approximations of W and X. O

It is important to understand when functors defined on .# are homo-
topy invariant, in the sense that they take homotopic maps to the same map.
There are three results along this line, the most obvious of which is the least
useful.

LEMMA 1449. Any functor F: .# —> 5 that takes weak equivalences to
isomorphisms identifies left or right homotopic maps.

PROOF. Foracylinder Cyl X, Fiy = Fi; since both areinverse to Fp. Therefore,
for a homotopy h: CylX — Y from f to g,

Ff = F(I’Llo) = FhFio = Fh,Fil = F(hil) = Fg
The proof for right homotopies is dual. O
However, the hypothesis on F here is too strong and rarely holds in practice.
The following dual pair of lemmas often do apply. Ken Brown’s lemma (14.2.9)

is relevant to these results and to their applications in the next chapter.

LEMMA 14.4.10. Any functor F: .4, —> J¢ that takes acyclic cofibrations to
isomorphisms identifies right homotopic maps.
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PROOF. By (i) and (ii) of the dual of Proposition 14.3.9, if f, g are right homo-
topic maps X —> Y where X and Y are cofibrant, then there is a very good
homotopy h: X —> Cocyl Y between them. Then i: Y — Cocyl Y is an
acyclic cofibration, hence Cocyl Y is also cofibrant. Therefore Fi is defined
and is an isomorphism, hence so are Fpy and Fp;. The conclusion follows as
in Lemma 14.4.9. g

LEMMA 144.11. Any functor F: .My —> € that takes acyclic fibrations to
isomorphisms identifies left homotopic maps.
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15

COFIBRANTLY GENERATED AND PROPER
MODEL CATEGORIES

This chapter develops several disparate basic features of model category theory.
There is a standard construction of WFSs and model categories, which is
based on Quillen’s “small object argument”. The latter is a general method for
starting with a set, Z say, of maps of .# and constructing from 7 a functorial
WFS (?(Z9), I%). We explain this construction of WFSs in §15.1.

The method has the attractive feature that @(Z¥) is constructed from Z in
a concrete cellular fashion. The reader should have in mind the set Z of inclu-
sions S® — D" used to construct cell complexes of spaces. The method in
general involves transfinite colimits, although Quillen [113] originally con-
sidered only sequential colimits. The transfinite version of the argument
was implicit in Bousfield [16], but was only later codified in the notion of
a cofibrantly generated model category. That notion offers a very convenient
packaging of sufficient conditions to verify the model axioms, as we explain
in §15.2.

The small object argument is often repeated in the model category liter-
ature, but it admits a useful variant that we feel has not been sufficiently
emphasized in print.! We call the variant the compact object argument. In
many basic examples, such as topological spaces, chain complexes, and sim-
plicial sets, only sequential colimits are required. When this is the case, we
obtain a more concrete type of cofibrantly generated model category called
a compactly generated model category. In such cases we are free to ignore
transfinite cell complexes. Compactly generated model categories are attrac-
tive to us since the relevant cell theory is much closer to classical cell theory
in algebraic topology (e.g., [93]) and in homological algebra (e.g., [77]) than
the transfinite version. Appreciation of the naturality of the more general
notion can best be obtained by reading §19.3, where we construct Bousfield

1. It is discussed in [97], but that is not a book for those new to the subject.

292
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localizations of spaces at homology theories. The examples of cofibrantly gen-
erated model categories that we construct before that section are compactly
generated.

We feel that the general case of cofibrantly generated model categories is
overemphasized in the model category literature, and we urge the reader not
to get bogged down in the details of the requisite smallness condition. At least
on a first reading, it suffices to focus on the simpler compactly generated case.
As we observe at the end of {15.2, there is an attractive intermediate notion
that arises when cofibrations are constructed using sequential colimits and
acyclic cofibrations are constructed using transfinite colimits. It is that kind
of cofibrantly generated model category that appears in §19.3.

We describe model structures in over and under “slice categories” in §15.3.
This gives a frequently used illustration of how one creates new model struc-
tures from given ones. We then describe left and right proper model structures
in §15.4. These conditions on a model structure are central to the applications
of model category theory, and they play an important role in the development
of Bousfield localization in Chapter 19. We illustrate their use in the relatively
technical §15.5, which is best skipped on a first reading. It uses properness to
relate lifting properties to hom sets in homotopy categories.

15.1. The small object argument for the construction of WFSs

The essential starting point is to define Z-cell complexes. When Z is the set
{S" —s D"*1} of standard cell inclusions, all CW complexes will be examples
of Z-cell complexes as we define them. However, for reasons we will explain,
that fails with the usual model theoretic definition of an Z-cell complex. Recall
Definition 14.1.6.

DEFINITION 15.1.1. Let Z be a set of maps in .#. For an object X € .# and
an ordinal A, a relative Z-cell A-complex under X isamap g: X — Z thatisa
transfinite composite of a A-sequence Z, such that Zy = X and, for a successor
ordinal @ +1 < X, Zy41 is obtained as the pushout in a diagram
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wherethei,: A; — B, runthroughsomeset S, of mapsin Z. The restrictions
of j to the A; are called attaching maps, and the restrictions of k to the By
are called cells. We say that f is a simple relative Z-cell A-complex under X
if the cardinality of each S, is one, so that we adjoin a single cell at each
stage. Define €'(Z) to be the class of retracts of relative Z-cell complexes in .Z.
An object X € .4 is an Z-cell complex if there is a relative Z-cell complex
¥ — X.

DEFINITION 15.1.2. Arelative Z-cell w-complex is called a sequential, or clas-
sical, relative Z-cell complex. Here the indices « just run over the natural
numbers, so that Z = colim Z, as in the classical definition of CW complexes.

In the model category literature, relative Z-cell complexes are generally
defined to be simple, so that they are transfinite composites of pushouts of
maps in Z. Coproducts are then not mentioned in the definition, but they
appear in its applications. Using coproducts in the definition keeps us closer
to classical cell theory, minimizes the need for set theoretic arguments, and
prescribes Z-cell complexes in the form that they actually appear in all versions
of the small object argument. Note that we have placed no restriction on the
cardinality of the sets S,. Such a restriction is necessary if we want to refine a
given Z-cell complex to a simple Z-cell A-complex for some prescribed value of
A, but we shall avoid use of such refinements. We digress to say just a bit about
how the comparison of simple and general Z-cell complexes works, leaving
the details to the literature [65, Ch. 10], but we will make no use of simple cell
complexes and therefore no use of the comparison.

PROPOSITION 15.1.3. By ordering the elements of coproducts along which push-
outs are taken, a relative Z-cell A-complex f: X —> Z can be reinterpreted as a
simple relative Z-cell complex. That is, we can reinterpret the maps Z, —> Zy11
as simple relative cell complexes, obtained by attaching one cell at a time, and then
reindex so as to interpolate these simple cell complexes into the original cell complex
to obtain a simple cell k -complex for some ordinal k > A.

We can determine the cardinality of k in terms of the cardinalities of A and
the sets S,. Recall the definition of a regular cardinal from Definition 2.5.2.

DEFINITION 15.1.4. A relative Z-cell A-complex is regular if 1 is a regular

cardinal and the indexing sets S, for the attaching maps all have cardinality
less than that of A.
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There is no real loss of generality in indexing Z-cell complexes on regu-
lar cardinals since we can add in identity maps to reindex a relative Z-cell
A-complex to a relative Z-cell k-complex that is indexed on a regular cardinal
k > A. There is real loss of generality in restricting the cardinalities of the sets
Sa- The point of the restriction is that we can now apply Proposition 15.1.3
without increasing the cardinality of the ordinal A that we start with.

COROLLARY 15.15. A regular Z-cell A-complex can be reinterpreted as a simple
relative Z-cell A-complex.

That ends the digression. We now offer two parallel sets of details. One
focuses solely on sequential colimits, that is, on Z-cell w-complexes. The other
makes use of Z-cell A-complexes for larger ordinals A. We argue that the latter
should be used when necessary, but that their use when unnecessary only
makes arguments unaesthetically complicated. As already noted, we shall
arrange our work so that we have no need to make explicit use of ordinals
larger than w until Chapter 19.

DEFINITION 15.1.6. An object A of .# is compact with respect to Z if for every
relative Z-cell w-complex f : X — Z = colim, Z,, the canonical map

colim, A (A, Zn) — M (A, Z)

is a bijection. The set Z is compact, or permits the compact object argument,
if every domain object A of a map in Z is compact with respect to Z. When
7 is compact, we interpret %'(I) to mean the class of retracts of relative Z-cell
w-complexes, excluding the relative Z-cell A-complexes for A > w.

DEFINITION 15.1.7. Let ¥ be a cardinal. An object A of .# is k-small with
respect to Z if for every cardinal A > « and every relative Z-cell A-complex
f: X — Z = colimg.;, Zg, the canonical map

COlil’l’lﬂ<)L .//(A, Zﬁ) —_—> ﬁ(A, Z)

is a bijection. An object A is small with respect to Z if it is x4-small for some
k. The set 7 is small, or permits the small object argument, if every domain
object A of a map in 7 is small with respect to Z.

LEMMA 15.1.8. If T is small, there is a regular cardinal A such that every domain
object A of a map in T is A-small.
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PROOF. Take A to be any regular cardinal that contains all k4. O

REMARK 15.1.9. In Definition 15.1.6, we do not restrict to regular Z-cell
w-complexes. The cardinalities of the sets S, of attaching maps are unre-
stricted, just as in the usual definition of CW complexes. The regular Z-cell
w-complexes are the complexes with finite skeleta, and we can order their cells
to make them simple w-complexes. We cannot so order general w-complexes
without increasing the cardinality. Observe that “compact” and “w-small” are
very different notions: “compact” nowhere mentions cardinalities greater than
o, whereas w-small refers to all cardinalities greater than w. In marked con-
trast, Proposition 15.1.3 implies that the notion of A being x-small with respect
to Z is unchanged if we restrict attention to simple relative Z-cell complexes
in Definition 15.1.7, as is generally done in the literature [65, 66].

For clarity, we isolate the central construction of the small object argument.

CONSTRUCTION 15.1.10. Letf: X — Y be a map in .#. Let S be the set of
all commutative squares

Bq*>Y,

Jg

where iy is a map in Z. We construct the single step factorization diagram for f:

k=]1kq
]_[q ]_[Sq Aq X
11T l i l
¢ f
]_[q ]_[Sq Bq Z p

Y.

The square is a pushout diagram that defines Z, i, and ¢, and the map p s given
by the universal property of pushouts. The diagram displays a factorization
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of f as pi, where i is a one step relative Z-cell complex and the map ¢ can be
viewed as solving the lifting problem for ( Ll iy, p) defined by the maps ik and j.

PROPOSITION 15.1.11 (THE SMALL OBJECT ARGUMENT). Assume that a
set Z of maps in A is either compact or small. Then there is a functorial WFS
(€(T), IP). Moreover, the construction is functorial with respect to inclusions of
subsets J C T.

PROOF. Let A = w in the compact case and let A be the regular cardinal of
Lemma 15.1.8 in the small case. Let f: X —> Y be a map in .#. We shall

construct a functorial factorization X > Z % Y in which i is a relative Z-cell
A-complex and pis in Z¥. With the language of Definition 14.1.6, we construct
a A-sequence Z, of objects over Y, and we then definei: X — Zandp: Z - Y
by taking the transfinite composite of this A-sequence. We set Zy = X and let
ip=1d: X — Zp and po = f: Zop —> Y. Inductively, suppose that we have
completed the construction up through Z,, so that we have a relative Z-cell
complexiy: X — Zyandamappy: Zy —> Y suchthatpy oiy = f. We con-
struct Zy41 together with a factorization Z, — Zy41 Py of Po by
applying the single step factorization diagram to the map p,. The compos-

ite X 2% Zy —> Zy41 is a relative Z-cell complex iy41, and py41 solves a
lifting problem as specified in Construction 15.1.10. We define Zg, ig, and
pp on limit ordinals B by passage to colimits. With 8 = A, this completes the
construction of the factorization.

To see that p is in Z¥, consider the following diagram, in which ¢ € Z and
maps k and j are given such that the outer square commutes.

A Z
X 77
Zy
L i p
ZOH-l
e
B Y
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Since Z is compact or small, k factors through some Z,, giving maps « and p
making the top triangle commute, and then the arrows ¢, j, «, and pp display
one of the squares used in the single step construction of Z, 1 from Z,. The
single step construction gives the map ¢, and the diagonal composite gives the
required lift.

To see that we have a WFS (%'(Z), Z¥), we must show that

€T =279 and €@O)° =1

If f: X —> Y is in ©(Z¥) and we factor f as above, then the retract argu-
ment of Lemma 14.1.12 shows that f is a retract of i and is therefore in €' (Z).
Conversely, since Z is contained in the left saturated class ¥ (Z¥) (see Defini-
tion 14.1.7, Proposition 14.1.8, and Lemma 14.1.9), we see that €’ (Z) C 2(Z9).
By Lemma 14.1.9, 7% > €(Z)¥ and ¢ (2)? > (P(Z¥))? = 1%

To see the functoriality of the factorization, consider a commutative square

f

X — Y

X — Y.

f/

Constructa factorization X' — Z' & Y’ inthe same way as above. Inductively,
assume that we have obtained a map t,: Z, —> Z/, that makes the following

diagram commute.

lo Pa
X Zy Y
r l l to l s
X’ Z& Y’
™ Pa

For the next stage, the composite with s of a square used to construct Z, 1
from Z, gives one of the squares used to cons