
AN INTRODUCTION TO THE THEORY OF FIELD
EXTENSIONS

SAMUEL MOY

Abstract. Assuming some basic knowledge of groups, rings, and fields, the

following investigation will introduce the reader to the theory of rings before
proceeding to elaborate, in greater depth, on the theory of field extensions.

Finally, a few consequences of the subject will be examined by solving classical

straightedge and compass problems in a manner that effectively utilizes the
material.
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1. The Basics

Definition 1.1. : A ring R is a set together with two binary operations + and ×
(addition and multiplication, respectively) satisyfing the following axioms:

(i) (R, +) is an abelian group,
(ii) × is associative: (a× b)× c = a× (b× c) for all a, b, c ∈ R,

(iii) the distributive laws hold in R for all a, b, c ∈ R:

(a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).
Definition 1.2. The ring R is commutative if multiplication is commutative.

Definition 1.3. The ring R is said to have an identity (or contain a 1) if there is
an element 1 ∈ R with

1× a = a× 1 = a for all a ∈ R
Definition 1.4. A ring R with identity 1, where 1 6= 0, is called a division ring
(or skew field) if ∀ nonzero element a ∈ R, ∃ b ∈ R such that ab = ba = 1.

Definition 1.5. A commutative division ring is called a field.

Example 1.6. Z is a commutative ring with 1(identity). Q, R, C, and Z/pZ (the
integers modulo p, where p is prime) are all fields.
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2. Ring Theory

Before beginning further study of fields, additional knowledge pertaining to rings
is necessary. Most notably, the topics of ideals, ring homomorphisms and isomor-
phisms, and quotient rings must first be approached.

Definition 2.1. A subring of the ring R is a subgroup of R that is closed under
multiplication (i.e. A subset S of a ring R is a subring if the operations of addition
and multiplication in R when restricted to S give S the structure of a ring).

Definition 2.2. Let R and S be rings.
(1) A ring homomorphism is a map ϕ : R→ S satisfying

(a) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R, and
(b) ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R.

(2) The kernel of the ring homomorphism ϕ, denoted kerϕ, is the set of ele-
ments of R that map to 0 in S.

(3) A bijective ring homomorphism is called an isomorphism.

Definition 2.3. Let R be a ring, let I be a subset of R and let r ∈ R.
(1) rI = {ra | a ∈ I} and Ir = {ar | a ∈ I}.
(2) A subset I of R is a left ideal (respectively right ideal) of R if

(a) I is a subring of R, and
(b) I is closed under left multiplication (respectively right multiplication)

by elements from R.
(3) A subset I that is both a left ideal and a right ideal is called an ideal (or,

a two-sided ideal) of R.

Definition 2.4. Let R be a ring and I an ideal of R. Then the quotient ring of R
by I, denoted R/I is the ring defined by the following binary operations:

(r + I) + (s+ I) = (r + s) + I and (r + I)× (s+ I) = (rs+ I) ∀r, s ∈ R.

Theorem 2.5. (The First Isomorphism Theorem for Rings)
(1) If ϕ : R→ S is a homomorphism of rings, then the kernel of ϕ is an ideal

of R, the image of ϕ is a subring of S and R/kerϕ is isomorphic as a ring
to ϕ(R).

(2) If I is any ideal of R, then the map

R→ R/I defined by r 7→ r + I

is a surjective ring homomorphism with kernel I (this homomorphism is
called the natural projection of R onto R/I). Thus, every ideal is the kernel
of a ring homomorphism and vice versa.

Proof. Let I be the kernel of ϕ. Then the cosets under addition of I are exactly
the fibers of ϕ (the sets of elements of R that map to a single element of S). In
particular, the cosets r+I, s+I, and rs+I are the fibers of ϕ over ϕ(r), ϕ(s), ϕ(rs),
respectively. Since ϕ is a ring homomorphism, ϕ(r)ϕ(s) = ϕ(rs), hence (r+ I)(s+
I) = rs+ I. Multiplication of cosets is well defined and so I is an ideal and R/I is
a ring. The correspondance r + I 7→ ϕ(r) is a bijection between the rings R/I and
ϕ(R) which respects addition and multiplication. Hence, it is a ring isomorphism.
If I is any ideal, then R/I is a ring (in particular is an abelian group) and the
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map π : r 7→ r + I is a group homomorphism with kernel I (natural projection for
groups). It remains to check that π is a ring homomorphism. This is immediate
from the definition of multiplication in R/I:

π : rs 7→ rs+ I = (r + I)(s+ I) = π(r)π(s)

�

Theorem 2.6 (The Lattice Isomorphism Theorem for Rings). Let R be a ring and
let I be an ideal of R. The correspondance A ↔ A/I is an inclusion preserving
bijection between the set of subrings A of R that contain I and the set of subrings
of R/I. Furthermore, A (a subring containing I) is an ideal of R if and only if
A/I is an ideal of R/I.

The proof for this theorem will not be provided. However, it follows almost
immediately from the Lattice Isomorphism Theorem for Groups. (In addition,
rather than considering subgroups, we must consider ideals).

Definition 2.7. Let I and J be ideals of R.

(1) Define the sum of I and J by I + J = {a+ b | a ∈ I, b ∈ J}.
(2) Define the product of I and J , denoted by IJ , to be the set of all finite

sums of elements of the form ab with a ∈ I and b ∈ J .

Definition 2.8. Let A be any subset of the ring R. Let (A) denote the smallest
ideal of R containing A, called the ideal generated by A,

(A) =
⋂
I⊇A

I.

Definition 2.9. An ideal M in an arbitrary ring R is called a maximal ideal if
M 6= R and the only ideals containing M are M and R.

Definition 2.10. Assume R is a commutative ring. An ideal P is called a prime
ideal if P 6= R and whenever the product ab of two elements a, b ∈ R is an element
of P , then at least one of a and b is an element of P .

The following two propositions will be useful for later theorems regarding fields.
Only Proposition 2.12 will be proved now (Proposition 2.11 will appear as a Lemma
for a later theorem and will be proved then).

Proposition 2.11. Assume R is a commutative ring. Then R is a field if and only
if its only ideals are 0 and R.

Proposition 2.12. Assume R is a commutative ring. The ideal M is a maximal
ideal if and only if the quotient ring R/M is a field.

Proof. This follows from the Lattice Isomorphism Theorem for Rings along with
Proposition 2.11. The ideal M is maximal if and only if there are no ideals I with
M ⊂ I ⊂ R. By the Lattice Isomorphism Theorem the ideals of R containing M
correspond bijectively with the ideals of R/M , so M is maximal if and only if the
ideals of R/M are 0 and R/M . By Proposition 2.11 we see that M is a maximal
ideal if and only if R/M is a field. �
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Example 2.13. To assist in the understanding of what an ideal is, we will consider
ideals in the commutative ring with 1, Z. An example of an ideal in this ring is
(2) = {2a | a ∈ Z} = multiples of 2 (the ideal generated by the element 2 ∈ Z).
Now, it should not be difficult to see that the only prime ideals in Z are those
generated by prime numbers:
Suppose we have the ideal (n), n composite (and positive) (i.e. n = ab, 0 < a, b 6= 1).
WLOG, assume a < b < n. Clearly a · n ∈ (n) ⇒ a · a · b = a2 · b ∈ (n). However,
0 < a2 < n and 0 < b < n ⇒ neither a2 nor b ∈ (n). Therefore, (n) is not a prime
ideal. Now take the ideal (p), p prime. Suppose ab ∈ (p). Then p | ab ⇒ p | a or
p | b (in other words, a = n · p, n ∈ N or b = n · p, n ∈ N) ⇒ a ∈ (p) or b ∈ (p) ⇒
(p) must be a prime ideal.
In addition, we see that the only maximal ideals in Z generated by a single element
are, again, those generated by prime numbers. To see why this is true, choose
some ideal (p), p prime. The only ideals that contain the element p ∈ Z are (1)
and (p). But (1) = Z! Thus, (p) must then be a maximal ideal. And if we have
some maximal ideal (p

′
) generated by a single element, then it is contained only in

Z = (1) and (p
′
). But this implies that p

′ ∈ Z is divisible by only 1, p
′ ∈ Z ⇒ p

′
is

prime.
Finally, if we take Proposition 2.12 into consideration, we obtain the result that,
of the ideals for Z generated by a single element, those that are fields are exactly
the quotients: Z/pZ, p a prime. That these quotients are fields is a result from
Example 1.6.

With these theorems and propositions regarding rings at our disposal, we may
now proceed to study the more specific case of fields and the field extensions that
arise from them.

3. Fields and Field Extensions

Definition 3.1. The characteristic of a field, F , denoted ch(F ), is defined to be
the smallest positive integer p such that p · 1F = 0 if such a p exists and is defined
to be 0 otherwise.

Remark 3.2 (Definition 3.1). The characteristic of a field F , ch(F ), is either 0 or a
prime p. If ch(F ) = p, then for any α ∈ F ,

p · α = α+ α+ . . .+ α︸ ︷︷ ︸
p times

= 0.

Proof. Suppose ch(F ) = n ∈ N, n not prime (i.e. n composite). Then ∃ a, b ∈ N
such that n = ab a, b 6= 1.

0 = n · 1 = (ab) · 1 = (a · 1) · (b · 1)⇒ a · 1 = 0 or b · 1 = 0.
But a, b < n⇒ ch(F ) 6= n. Contradiction! �

Definition 3.3. The prime subfield of a field F is the subfield of F generated by
the multiplicative identity 1F of F . It is isomorphic to either Q (if ch(F ) = 0) or
Fp (if ch(F ) = p).

Definition 3.4. If K is a field containing the subfield F , then K is said to be
an extension field (or simply an extension) of F , denoted K/F . This notation is
shorthand for “K over F .”
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Definition 3.5. The degree of a field extension K/F , denoted [K : F ], is the
dimension of K as a vector space over F . The extension is said to be finite if
[K : F ] is finite and is said to be infinite otherwise.

Example 3.6. The concept of field extensions can soon lead to very interesting
and peculiar results. The following examples will illustrate this:

(1) Take the field Q. Now, clearly, we have the polynomial p(x) = x2−2 ∈ Q[x];
however, it should be evident that its roots, ±

√
2 /∈ Q. This polynomial is

then said to be irreducible over Q.
Thus, by considering the quotient ring Q[x]/(x2−2), we find that we obtain
another field, denoted Q(

√
2) (or Q(−

√
2), which just so happens to be

isomorphic to Q(
√

2) | this, of course, is no coincidence).
(2) Take the field R. Again, we may easily find a polynomial, which is irre-

ducible over our field. Choosing p(x) = x2 + 1 ∈ R[x], it is obvious that
the roots, ±i /∈ R. Thus, if we consider the quotient ring, R[x]/(x2 + 1),
we obtain the field R(i) (∼= C!).

Since both of the given examples are of polynomials that are irreducible over
the particular fields, it will be of great benefit to examine the subject of irreducible
polynomials (and the criteria to label them as irreducible) more closely.

Definition 3.7. A polynomial p(x) ∈ R[x], a polynomial ring, is said to be irre-
ducible if it cannot be factored as the product of two other polynomials of smaller
degrees, both in the polynomial ring, R[x].

Proposition 3.8. Let F be a field and let p(x) ∈ F [x]. Then p(x) has a factor of
degree one if and only if p(x) has a root in F , i.e. there is an α ∈ F with p(α) = 0.

Proposition 3.9. A polynomial of degree two or three over a field F is reducible
if and only if it has a root in F .

Notation 3.10. If the polynomial is of degree ≥4, then it may still be reducible
without necessarily having roots in the field (i.e. the polynomial may have factors of
degree ≥2, yet still have no factors of degree 1). Fortunately, the explicit examples
that will be shown will only require testing for the irreducibility of polynomials of
degrees 2 and 3. In addition, the polynomials that will be tested for irreducibility
will be elements of Q[x]; therefore, the actual procedure of checking for irreducibility
will be trivial.

Theorem 3.11. Let ϕ : F → F
′

be a homomorphism of fields. Then ϕ is either
identically 0 or is injective, so that the image of ϕ is either 0 or isomorphic to F .

Lemma 3.12. Let F be a field. Then its only ideals are 0 and F .

Proof. Let F be a field. Suppose ∃ a nonzero ideal I for F . Let 0 6= a ∈ I.
F a field ⇒ ∃ a−1 such that a · a−1 = a−1 · a = 1. Thus, ∀ r ∈ F , we have
r = r · 1 = r · (a−1 · a) = (r · a−1) · a ∈ I (because r · a−1 ∈ F ). Hence, I = F .
This leaves I = {0} as the only other possible ideal for F (it is very easy to check
that this is ideal). �

Lemma 3.13. If F is a field, then any nonzero ring homomorphism from F into
another ring is injective.
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Proof. Let ϕ : F → F
′

be a nonzero ring homomorphism. Since kerϕ is an ideal,
and because ϕ is a nonzero ring homomorphism, then kerϕ is a proper ideal. As F
is a field, then kerϕ = 0 (because 0 is the only proper ideal of a field F ).
Therefore, ϕ : F → F

′
is injective. �

Proof of Theorem 3.11. Proving this theorem requires only combining the results
of Lemmas 3.12 and 3.13. As F is a field, then its only ideals are 0 and F . Now,
if ϕ : F → F

′
is any nonzero ring homomorphism, by Lemma 3.13, it is injective,

implying that the image of ϕ is isomorphic to F (i.e. ϕ(F ) ∼= F ). And if we take ϕ to
be a homomorphism that is not nonzero, then, it must be the zero homomorphism
and therefore must be identically 0. �

Theorem 3.14. Let F be a field and let p(x) be an irreducible polynomial. Then
there exists a field K containing an isomorphic copy of F in which p(x) has a root.
Thus, there exists an extension of F in which p(x) has a root.

Proof. Define K = F [x]/(p(x)). As p(x) is irreducible over F , the ideal (p(x)) is a
maximal ideal in F [x] ⇒ K = F [x]/(p(x)) is a field (by the Lattice Isomorphism
Theorem for Rings). Let π be the natural projection (described in Theorem 2.5)
of F [x] to the quotient F [x]/(p(x)) restricted to the domain F ⊆ F [x]. We now
have ϕ = π |F : F → K a nonzero homomorphism, and thus, ϕ(F ) is an isomorphic
copy of F contained in K. Last, it must be shown that p(x) has a root in K. Let
x = π(x) be the image of x in the quotient field K.

p(x) = p(x) (as π is a homomorphism)

= p(x)(modp(x)) (in K = F [x]/(p(x)))

= 0 (in F [x]/(p(x)))

Therefore, K is a field that contains an isomorphic copy of F in which p(x) has
a root. �

Theorem 3.15. Let p(x) ∈ F [x] be an irreducible polynomial of degree n over the
field F and let K be the field F [x]/(p(x)). Let θ = x(modp(x)) ∈ K. Then the
elements

1, θ, θ2, . . . , θn−1

form a basis for K as a vector space over F so the degree of the extension is n.
Hence,

K = {a0 + a1θ + a2θ
2 + . . .+ an−1θ

n−1 | a0, a1, a2, . . . , an−1 ∈ F}
consists of all polynomials of degree < n in θ.

Proof. Let a(x) ∈ F [x]. Dividing a(x) by p(x), we obtain

a(x) = q(x) · p(x) + r(x)
r(x), q(x) ∈ F [x], and the remainder r(x) with degree < n.

Now, since q(x) ∈ F [x], then q(x) · p(x) ∈ (p(x)), the ideal of p(x), thus implying

a(x) ≡ r(x)(modp(x)).



AN INTRODUCTION TO THE THEORY OF FIELD EXTENSIONS 7

Since r(x) is of degree< n, we now have every residue class in F [x] represented by
a polynomial of degree < n ⇒ 1, θ, θ2, . . . , θn−1, with θ ≡ x(modp(x)), spans K =
F [x]/(p(x)) as a vector space over F . It now remains to show that 1, θ, θ2, . . . , θn−1

are linearly independent. Suppose 1, θ, θ2, . . . , θn−1 are not linearly independent.
Then ∃ b0, b1, b2, . . . , bn−1 ∈ F such that

b0 + b1θ + b2θ
2 + . . .+ bn−1θ

n−1 = 0 not all bi = 0

⇒ b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1 ≡ 0(modp(x)) not all bi = 0

⇒ p(x) divides the polynomial b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1.

But p(x) is of degree n whereas b0 + b1x + b2x
2 + . . . + bn−1x

n−1 is of degree
strictly less than n. Contradiction! Thus, 1, θ, θ2, . . . , θn−1 is a linearly independent
spanning set (and thus a basis) for K as a vector space over F ⇒ [K : F ] = n. �

Theorem 3.15 then leads to the following corollary.

Corollary 3.16. Let K be as in Theorem 3.15, and let a(θ), b(θ) ∈ K be two
polynomials of degree < n in θ. Then addition in K is defined simply by usual
polynomial addition and multiplication in K is defined by

a(θ)b(θ) = r(θ)

where r(x) is the remainder (of degree < n) obtained after dividing the polynomial
a(x)b(x) by p(x) in F [x].

Since the residue classes of F [x]/(p(x)) are all r(θ) of degree < n, we again see
that K defined as K = F [x]/(p(x)) is a field over our chosen operations described
above.

Definition 3.17. Let K be an extension of the field F and let α, β, . . . ∈ K be a
collection of elements of K. Then the smallest subfield of K containing both F and
the elements α, β, . . ., denoted F (α, β, . . .) is called the field generated by α, β, . . .
over F .

Definition 3.18. If the field K is generated by a single element α over F , K =
F (α), then K is said to be a simple extension of F and the element α is called a
primitive element for the extension.

Theorem 3.19. Let F be a field and let p(x) ∈ F [x] be an irreducible polynomial.
Suppose K is an extension field of F containing the root α of p(x), p(α) = 0. Let
F (α) denote the subfield of K generated by α over F . Then

F (α) ∼= F [x]/(p(x)).

Proof. Consider the function

ϕ : F (x)→ F (α)

a(x) 7→ a(α)

This function can easily be shown to be a ring homomorphism by considering
properties of polynomials:
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ϕ(a(x)+b(x)) = ϕ((a+b)(x)) = (a+b)(α) = a(α)+b(α) = ϕ(a(x))+ϕ(b(x)), and

ϕ(a(x) · b(x)) = ϕ(a(b(x))) = a(b(α)) = a(α) · b(α) = ϕ(a(x)) · ϕ(b(x)).

Now, α a root of p(x ) ⇒ p(α) = 0. Thus, p(x ) ∈ kerϕ, allowing us to obtain
the induced homomorphism

ϕ
′

: F [x]/(p(x))→ F (α)

As p(x) is irreducible, then F [x]/(p(x)) is a field. Thus, since ϕ
′

is a nonzero
ring homomorphism, then ϕ

′
is injective and F [x]/(p(x)) ∼= ϕ

′
(F [x]/(p(x))). But

F [x]/(p(x)) contains the root α in addition to an isomorphic copy of F (if we
consider the natural projection from F to F [x]/(p(x))). Hence, ϕ

′
: F [x]/(p(x))→

F (α) is surjective in addition to being injective. Therefore, ϕ
′

is an isomorphism.
�

Corollary 3.20. Suppose in Theorem 3.19 that p(x) is of degree n. Then

F (α) = {a0 + a1α+ a2α
2 + . . .+ an−1α

n−1 | a0, a1, a2, . . . , an−1 ∈ F} ⊆ K

We obtain this corollary from Theorem 3.19 (where 1, θ, θ2, . . . , θn−1 is a basis
for F [x]/(p(x)) with θ ≡ x(mod(p(x)))). By applying the previously described map
ϕ

′
: F [x]/(p(x))→ F (α), we see that

r(θ) = a0 + a1θ + . . .+ an−1θ
n−1 7→ a0 + a1α+ . . .+ an−1α

n−1 = r(α).

Example 3.21. In order to make sense of all the previous theorems regarding field
extensions, we will work with a simple example. Consider p(x) = x3 − 2 ∈ Q[x].
Having been exposed to the fields R and C, we are well aware that @ α ∈ Q such
that p(α) = 0.
Since p(x) has no roots in Q and is of degree 3, then by our divisibility criteria,
p(x) must be irreducible over Q.
Therefore, by Theorem 3.14, ∃ an extension of Q in which p(x) has a root. Moreover,
this extension may be written as the quotient Q[x]/(x3 − 2). By Theorem 3.19,
Q[x]/(x3 − 2) ∼= Q(α), α a root of p(x) = x3 − 2.
If we now use our knowledge of R, we may let this root, α, of p(x) be α = 3

√
2.

Thus, we obtain Q( 3
√

2), which is spanned by the basis {1, 3
√

2, 3
√

22 = 3
√

4} over Q.
⇒ Q( 3

√
2) is an extension of degree 3 over Q.

Remark 3.22. The polynomial p(x) = x3 − 2 has three roots over C:

3
√

2, e2πi/3 3
√

2, e4πi/3 3
√

2.

A somewhat peculiar result is that an extension of Q by any one of these roots
is isomorphic to the others. However, this result may be very easily justified if one
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considers that by Theorem 3.19, we have:

Q[x]/(x3 − 2) ∼= Q( 3
√

2),

Q[x]/(x3 − 2) ∼= Q(e2πi/3 3
√

2),

Q[x]/(x3 − 2) ∼= Q(e4πi/3 3
√

2).

It then seems only natural that all of these extensions are isomorphic to one another.
Thus, the three roots of x3− 2 are said to be algebraically indestinguishable, which
makes sense, considering they are roots of the same irreducible polynomial!

4. Algebraic Field Extensions

Definition 4.1. The element α ∈ K is said to be algebraic over F if α is a root of
some nonzero polynomial f(x) ∈ F [x]. If α is not algebraic over F , then α is said
to be transcendental over F . The extension K/F is said to be algebraic if every
element of K is algebraic over F .

Example 4.2. The number
√

2 is algebraic over the field Q. The extension
Q(
√

2)/Q is algebraic. Since every element α ∈ Q(
√

2) can be expressed as α =
a+ b ·

√
2, a, b ∈ Q, it can very easily be seen that α is the root of some polynomial

in Q[x] (Simply take the polynomial p(x) = x2−2ax+a2 +b2. Its roots are a+b
√

2
and a− b

√
2). On the other hand, the extension R/Q is not algebraic (because of

the existence of transcendental numbers such as e and π which are not the roots of
any polynomials in Q[x]).

Proposition 4.3. Let α be algebraic over F . Then there is a unique monic irre-
ducible polynomial mα,F (x) ∈ F [x], which has α as a root. Furthermore, a polyno-
mial f(x) ∈ F [x] has α as a root if and only if mα,F (x) divides f(x) ∈ F [x].

Proof. Let g(x) be a polynomial of minimal degree such that it has α as a root.
We may multiply g(x) by some constant to obtain a monic polynomial. Now,
suppose this polynomial is reducible over F . Then ∃ a(x), b(x) ∈ F [x] such that
g(x) = a(x)b(x), deg(a(x)), deg(b(x)) < deg(g(x)). Now 0 = g(α) = a(α)b(α).
Since F is a field (and thus has no zero divisors), then a(α) = 0 or b(α) = 0. But
this contradicts the minimality of the degree of g(x) having α as a root. Therefore,
we have obtained g(x), a monic irreducible polynomial with α as a root.

Now suppose ∃ f(x) ∈ F [x] with α as a root. We can express f(x) as f(x) =
q(x)g(x) + r(x), deg(r(x)) < deg(g(x)) ⇒ f(α) = q(α)g(α) + r(α) ⇒ r(α) = 0.
But this contradicts the minimality of g(x) unless r(x) = 0. Hence, g(x) divides
f(x). To show the converse also holds, suppose g(x) divides f(x). Then ∃ a(x) ∈
F [x] such that f(x) = a(x)g(x)⇒ f(α) = a(α)g(α) = a(α) · 0 = 0 ⇒ α is a root of
f(x), thus proving the theorem. �

Definition 4.4. The polynomial mα,F (x) in Proposition 4.3 is called the minimal
polynomial for α over F . The degree of mα,F (x) is called the degree of α.

Proposition 4.5. Let α be algebraic over the field F and let F (α) be the field
generated by α over F . Then

F (α) ∼= F [x]/(mα(x))

or, in other words,
[F (α) : F ] = degmα(x) = degα.
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Proof. This proposition follows immediately from the result of Proposition 4.3.
Since we saw [K : F ] = n, where K = F [x]/(p(x)), p(x) of degree n, then, as mα(x)
is the unique minimal monic polynomial, we easily obtain the result (after redefining
K to be equal to F [x]/(mα(x)) that [F (α) : F ] = [K : F ] = degmα(x) = degα. �

Proposition 4.6. The element α is algebraic over F if and only if the simple
extension F (α)/F is finite.

Proof. Suppose α is algebraic. Then ∃! mα(x) ∈ F [x] irreducible over F of degree
n ∈ N.

F (α) ∼= F [x]/(mα(x))⇒ [F (α) : F ] = n, n ∈ N⇒ F (α)/F is finite.

Suppose F (α)/F is finite, [F (α) : F ] = n, n ∈ N. Considering α ∈ F (α), then
1, α, α2, . . . , αn form a linearly dependent set in the vector space F (α) over the field
F (since the degree of F (α) as a vector space over F is n). Thus, ∃ b0, b1, . . . , bn−1

not all 0 such that

b0 + b1α+ b2α
2 + . . .+ bn−1α

n−1 = 0

⇒ ∃ some b(x) ∈ F [x] of degree ≤ n for which α is a root ⇒ α is algebraic over
F . �

Theorem 4.7. Let F ⊆ K ⊆ L be fields, [L : K], [K : F ] finite. Then,

[L : F ] = [L : K][K : F ].

Proof. Suppose [L : F ] = m and [K : F ] = n n,m finite. L a vector space over K
⇒ ∃ a basis α1, α2, . . . , αm for L, and, similarly, K a vector space over F ⇒ ∃ a
basis β1, β2, . . . , βn for K. Now, every element of L may be expressed as a unique
linear comination:

a1α1 + a2α2 + . . .+ amαm a1, a2, . . . , am ∈ K
And as a1, a2, . . . , am ∈ K, they may each be expressed as by some linear com-

bination:

ai = bi1β1 + bi2β2 + . . .+ binβn i = 1, 2, . . . ,m
Thus, every element of L may be expressed as a linear combination:∑

i=1,...,m
j=1,...,n

bijαiβj

Thus, the mn elements, αiβj , form a spanning set for L as a vector space over
F (i.e. [L : F ] ≤ mn). It remains to be shown that the set of all αiβj is linearly
independent. Suppose ∑

i=1,...,m
j=1,...,n

bijαiβj = 0

Since bijβj ∈ K ∀i, j, then we may view this summation as:

a1α1 + a2α2 + . . .+ amαm = 0 ⇒ a1, a2, . . . , am = 0
since α1, α2, . . . , αm are linearly independent. This then implies
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bi1β1 + bi2β2 + . . .+ binβn = 0, i = 1, 2, . . . ,m.
But β1, β2, . . . , βn forms a basis (and thus linearly independent set) for K as a

vector space over F ⇒

bi1 = bi2 = . . . = bin = 0, i = 1, 2, . . . ,m.
Therefore, the mn elements, αiβj form a linearly independent spanning set for

L as a vector space over F ⇒ [L : F ] = mn = [L : K][K : F ]. �

Corollary 4.8. Suppose L/F is a finite extension and let K be any subfield of L
containing F , F ⊆ K ⊆ L. Then [K : F ] divides [L : F ].

Proof. From the previous theorem, [L : F ] = [L : K][K : F ] (F ⊂ K ⊂ L fields
with [L : K], [K : F ] ∈ N). Therefore, quite clearly, [K : F ] | [L : F ]. �

Definition 4.9. An extension K/F is finitely generated if there are elements
α1, α2, . . . , αk in K = F (α1, α2, . . . , αk).

Lemma 4.10. F (α, β) = (F (α))(β). (i.e. The field generated over F by α and β
is the field generated by β over the field F (α) generated by α over F ).

Proof. F (α, β) contains F and the element α⇒ F (α) ⊆ F (α, β). Moreover, F (α, β)
contains the element β as well ⇒ (F (α))(β) ⊆ F (α, β) by the minimality of the
field (F (α))(β) (over F (α) generated by β). Similarly, (F (α))(β) contains F and
both the elements α and β, which implies F (α, β) ⊆ (F (α))(β) by the minimality
of F (α, β) (over F generated by α, β). Therefore, F (α, β) = (F (α))(β). �

Theorem 4.11. The extension K/F is finite if and only if K is generated by a
finite number of algebraic elements over F . More precisely, a field generated over
F by a finite number of algebraic elements of degrees n1, n2, . . . , nk is algebraic of
degree ≤ n1n2 . . . nk.

Proof. Suppose the extension K/F is finite. Let [K : F ] = n. Now take some basis
for K over F , α1, α2, . . . , αn. If we consider the extension F (αi) over F , we see
that

[K(αi) : F ] | [K : F ] ∀i = 1, 2, . . . , n
Thus, by Proposition 4.5, each αi is algebraic. Now, since α1, α2, . . . , αn are a basis
for K over F , we obviously can generate K over F by the elements α1, α2, . . . , αn.
Thus, K is generated by a finite number of algebraic elements over F . To prove
the converse, suppose that K is generated by a finite number of algebraic elements
over F : α1, α2, . . . , αn. Then

K = F (α1, . . . , αn) = (F (α1, . . . , αn−1)(αn) = . . . = (

F2︷ ︸︸ ︷
(

F1︷ ︸︸ ︷
F (α1))(α2)) . . . (αn)︸ ︷︷ ︸

Fn

Thus, we have the fields F, F1, F2, . . . , Fn satisyfing F ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn =
K. Therefore, we have that

[K : F ] = [Fn : Fn−1][Fn−1 : Fn−2] . . . [F1 : F ]

where [Fi : Fi−1] is finite for i = 1, 2, . . . , n⇒ the extension K/F is finite, conclud-
ing the proof. �
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Proposition 4.12. Let K1 and K2 be two finite extensions of a field F contained
in K. Suppose that [K1 : F ] = n, [K2 : F ] = m, where n,m are relatively prime
(i.e. (n,m) = 1). Then [K1K2 : F ] = [K1 : F ][K2 : F ] = nm.

Proof. Since K1 and K2 are both subfields of K1K2, then we know

[K1 : F ]‖[K1K2 : F ] and [K2 : F ]‖[K1K2 : F ]

But by assumption, gcd(n,m) = 1 ⇒ [K1K2 : F ] must be divisible by lcm(n,m) =
nm (i.e. [K1K2 : F ] ≥ [K1 : F ][K2 : F ]) To prove the equality of the expres-
sion, it must also be shown that [K1K2 : F ] ≤ [K1 : F ][K2 : F ]. Consider
the fields K1K2, K1, K2, and F . Let α1, α2, . . . , αn be a basis for K1 over F
and let β1, β2, . . . , βm be a basis for K2 over F . Since K1K2 is the composite
field of K1 and K2, then it is the smallest field containing both K1 and K2.
Hence, K1K2 = F (α1, α2, . . . , αn, β1, β2, . . . , βm) = K1(β1, β2, . . . , βm). Thus,
[K1K2 : K1] ≤ m = [K2 : F ]. Since F ⊆ K1 ⊆ K1K2, then [K1K2 : F ] =
[K1K2 : K1][K1 : F ] ⇒ [K1K2 : F ] ≤ [K1 : F ][K2 : F ].
Combining both inequalities, we obtain [K1K2 : F ] = [K1 : F ][K2 : F ]. �

5. Classical Straightedege and Compass Constructions

With all of these theorems now available to us, we may utilize the information
on field extensions to prove the impossibility of certain classical straightedege and
compass constructions. The problems we will consider are the following:

I. Is it possible using only straightedge and compass to construct a cube with
precisely twice the volume of a given cube?

II. Is it possible using only straightedge and compass to trisect any given angle
θ?

III. Is it possible using only straightedege and compass to construct a square
whose area is precisely the area of a given circle?

Before we may answer these questions (all in the negative), we must first identify
what it means for us to construct with only straightedege and compass. To begin,
let us start with the distance 1 and the Cartesian plane R2. A point (x, y) ∈ R2 is
constructible if and only if its coordinates, x and y, are both constructible elements
of R. Let us now consider which elements of R are constructible through a finite
number of straightedege and compass operations.

By basic geometry, given two lengths a and b (and the assumed length of 1), we
may construct a±b, ab, and a/b. Thus, quite clearly, we may construct all elements
of R2 whose coordinates are rational.
Given lengths a and b, the construction of a ± b is quite obvious. The lengths ab
and a/b may be obtained by constructing parallel lines.
For ab, the picture is a triangle with one side length of ab and another side length
of a. The angle formed by these two sides is also the angle of another (perhaps
smaller) similar triangle with side length 1 on the same line as the length a and
side length b on the same line as the length ab (the construction of parallel lines
is necessary because these triangles are similar to one another and also share an
angle).
For a/b, the picture is a triangle with one side length of a and another side length
of b. The angle formed by these two sides is also the angle of another (perhaps
smaller) similar triangle with side length 1 on the same line as the length b and
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side length a/b on the same line as the length a.

In addition, again by basic geometry, we may construct
√
a given any length a.

The diagram for this may be described as follows: Construct a circle of diameter
1+a and find the point on the diameter that separates into two segments of lengths
1 and a. Now, construct the perpendicular from this point to the edge of the circle.
The length of this segment is

√
a.

We now have a field of constructible elements (a subset of R) that is strictly larger
than Q. Let us call this field of constructible elements F .

Before proceeding to the problems, we must finally consider what sorts of exten-
sions of our present field of constructible elements may be obtained by making our
straightedege and compass operations, which are of the following four types:

(1) Connecting two given points by a straight line.
(2) Finding a point of intersection of two straight lines.
(3) Drawing a circle with given radius and center.
(4) Finding the point(s) of intersection of a straight line and a circle or the

intersection of two circles.

If we consider operations of type (1), then we easily see that they will never
extend our field because, by connecting two points, (a, b) and (c, d) (with a, b, c, d
elements of our field), we must obviously end up with a length for the connecting
segment that is already constructible.

If we consider operations of type (2), then we again see that they will also never
extend our field (i.e. allow for the construction of any additional elements) because
we are simply solving two linear equations simultaneously to find the point of inter-
section of the two lines. However, the coordinates of this point of intersection must
already by elements of our field, meaning that the point is already constructible.

As we have shown, straightedge operations will not extend our field. On the
other hand, compass will prove to be a bit more interesting.

Consider operations of type (3). In constructing a circle with center at (h, k)
and radius r, we obtain the equation:

(x− h)2 + (y − k)2 = r2

If we consider what effect this has on our field of constructible elements, we are
essentially examining the case of the point(s) of intersection between a straight
line and a circle. However, the the simultaneous solutions of a linear equation,
ax+ by− c = 0, and the circle, (x−h)2 + (y− k)2 = r2 (with a, b, c, h, k, r ∈ F ) are
simply the simultaneous solutions of two quadratic equations. Thus, operations of
type (3) result in at most an extension of degree 2.

Finally, consider operations of type (4). Again, we see that this results in at
most a quadratic extension. Take two circles:
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(x− h)2 + (y − k)2 = r2

and (x− h
′
)2 + (y − k

′
)2 = r

′2

Subtracting the second equation from the first and then proceeding to manipulate
the terms, we see that we obtain the same points of intersection with the following
equations:

(x− h)2 + (y − k)2 = r2

and 2(h
′
− h)x+ 2(k

′
− k)y = r2 − h2 − k2 − r

′2
+ h

′2
+ k

′2

This, however, is simply the intersection of a line and a circle, which, as previ-
ously shown, is at most a quadratic extension.

These results then lead us to the following proposition, which will allow us to
show that none of the three classical straightedge and compass constructions is
possible.

Proposition 5.1. If the element α ∈ R is obtained from a field F ⊂ R by a series
of compass and straightedge operations, then [F (α) : F ] = 2k for some integer
k ≥ 0.

Theorem 5.2 (Classical Straightedge and Compass Problems). None of the clas-
sical straightedge and compass problems (I. Doubling the Cube, II. Trisecting an
Angle, III. Squaring the Circle) is possible.

Proof. I. Doubling the cube in essence is just the construction of 3
√

2 ∈ R starting
from the unit 1. However, the extension Q( 3

√
2) is an extension of degree 3 over Q.

Thus, by Proposition 5.1, this is impossible.

That certainly seemed like an excessive amount of exposition for such a short
proof! Fortunately, the other two problems are a bit more interesting.

II. In order to prove that trisecting any arbitrary angle is impossible, we need
only provide one counterexample. Now, if an angle θ can be constructed, then we
can construct cos θ by determining the point at distance 1 from the origin at angle
θ from the positive x-axis. And, if cos θ can be constructed, then, quite easily,
sin θ can be constructed. Additionally, the converse holds, i.e. if cos θ, sin θ can be
constructed, then the angle θ can be constructed. Now, let us consider θ = 60◦. To
show that this angle is not constructible, we need only show that, given cos 60◦, it
is impossible to construct cos 60/3◦ = cos 20◦.
If θ = 60◦, then cos θ = 1/2. Now, by the triple angle formula for cosines (this may
be obtained by considering cos(2θ + θ):

cos θ = 4 cos3 θ/3− 3 cos θ/3

Substituting θ = 60◦, we see that β = cos 20◦ satisfies the equation

4β3 − 3β − 1/2 = 0
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or 8(β)3 − 6β − 1 = 0. This can be written (2β)3 − 4(2β)− 1 = 0. Let α = 2β.
Then we are left with:

α3 − 3α− 1 = 0
However, by the rational root theorem, we can easily see that this has no roots
in Q and, by Proposition 3.9, is therefore irreducible over the field Q. Thus, an
extension of the field Q by the root α will be of degree 3. Thus, by Proposition
5.1, α is not constructible, and thus, β = cos 20◦ is not constructible. Therefore,
an arbitrary angle cannot be trisected by straightedge and compass constructions.

III. Finally, we must show that it is impossible to square the circle with straight-
edge and compass operations. In order to do so, we must be able to construct some
s such that s2 = πr2, r ∈ F . Hence, we must be able to construct

√
π, which

would also mean that we could construct π. However, π is a transcendental num-
ber (a fact that we shall assume in this situation), and therefore the extension of
Q by the element π is not finite (and certainly not a power of 2!). Thus, π is not
constructible, which implies that

√
π is not constructible. As a result, our desired

element s is not constructible, proving that this third straightedge and compass
problem is also impossible. �
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