
THE TURING DEGREES AND THEIR LACK OF LINEAR

ORDER

JASPER DEANTONIO

Abstract. This paper is a study of the Turing Degrees, which are levels of

incomputability naturally arising from sets of natural numbers. I explore the

structure of the Turing Degrees, concluding with a proof that there exist Turing
Degrees which are not comparable so as to illustrate the nonlinearity of the

Turing Degrees.

Contents

1. An Introduction to Computability 1
2. Computably Enumberable Sets and K0 3
3. Computing with Oracles and the Turing Equivalence 6
4. The Turing Degrees are not Linearly Ordered by the Relation ≤ 9
Acknowledgments 11
References 11

1. An Introduction to Computability

Computability Theory is the study of degrees of computability. For this paper,
we shall specifically study the computability of sets of the natural numbers. Intu-
itively, a computable set is a set whose elements can be determined with finitely
many precise directions, i.e., with a computer program. Thus, one can determine
both what is and what is not in the set in finitely many steps. So, for a set to be
computable, the complement of the set must also be computable. For instance, the
prime numbers are computable: if we fix n ∈ N, we simply check every number less
than n and greater than 1 to see if that number divides n. So, in n − 2 steps, we
know whether or not n is prime. Thus, the primes are computable; for any nat-
ural number, we can, in finitely many steps, tell whether or not the number is prime.

In order to rigorously define this intuitive notion, we shall use a structure called
the Turing Machine:

Definition 1.1. Turing Machine
A Turing machine uses five substructures:

• A Tape T : An infinite strip with an infinite line of boxes on it. Each box
can contain a symbol.

Date: September 24, 2010.

1



2 JASPER DEANTONIO

• Tape Symbols S = {s1, s2, s3, ..., sn}: These symbols are the only things
which can appear on the tape. There are only finitely many symbols al-
lowed.
• A Reading Head: The reading head is positioned at one box on the tape. It

is the only object that can move and perform actions in the Turing machine.
• List of Internal States Q = {q1, q2, q3, ...}: These internal states are nec-

essary for the reading head to act. At the start of any given step of a
computation, in addition to being at a box on the tape, the reading head
must be in one and only one of the internal states.
• Action Symbols: These are symbols used to represent the actions which the

reading head can take. These actions are: L to move the reading head left,
R to move it right, 0 to have it print s1 to the current place, 1 to print s2,
etc.

The Turing machine T ’s program consists of finite quadruples qiSAqj , where qi
and qj are internal states, S is a symbol on the tape, and A is an action. The
quadruple encodes the following process: if the reading head is at state qi reading
the symbol S, then perform action A and go to state qj . The Turing machine halts
when there is no applicable quadruple. We also require that a Turing machine be
consistent, i.e., if qiSAqj and qiSA

′qk both exist, then A = A′ and qj = qk. Because
the main difference between any two Turing machines is their program, we shall
commonly only define the program of a Turing machine when defining the Turing
machine and leave the rest of the definition to the reader to complete.

A Turing machine is like a function; in order to use it, one must give the Turing
machine a specific piece of tape as input and then read the tape afterwards to
receive the output. In order to have the Turing machine start with input n, we
give it a tape with n + 1 ones on it and start the machine at the left most one.
Then, if the Turing machine ever halts, we count the number of ones. This is the
output. Note that this is very similar to a function over the natural numbers; one
gives the Turing machine a tape representing a natural number and receive a tape
representing a natural number. To denote this function associated with a Turing
machine T , we write φT .

Note that the Turing machine mimics the actions of a computer running a pro-
gram very closely. Therefore, in order to define computability, we shall use this
Turing machine.

Definition 1.2. Computable Functions, Sets, and Relations
We define a computable function to be a function f : N→ N such that f = φT
for some Turing machine T .
We define a computable set to be a set A ⊂ N such that the characteristic function
of A, χA, is computable.
Recall that a relation can be considered as a set of n-tuples. Thus, we define a
computable relation to be a relation R whose corresponding set of n-tuples is
computable.

Example 1.3. The zero function is computable
Intuivitely, this is simple: consider the program which just returns 0. In order to
show this rigorously, we must create a Turing machine which takes any input and
returns zero.



THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER 3

Let T be a Turing machine with quadruples: q010q1 and q10Rq0. Now, consider
what happens at input n. We input a tape with n + 1 ones into the Turing ma-
chine. At q0, the starting state, the reading head encounters 1, so we use our first
quadruple. So, we write 0 on the tape and move to state q1. Next, we use our
second quadruple because we encounter q1 and 0. This causes us to move right,
where we’ll find another 1. Thus, one can see how this process can turn any tape of
consecutive ones into a tape containing only zeros, making the output zero, which
is precisely what we desire.

How does the intuitive computability described at the beginning of this section
relate to Turing computable? One might think that the intuitive idea is more broad.
In fact, by the Church-Turing Thesis, these two notions are equivalent. Therefore,
we shall justify computability from now on using our intuitive notion as opposed
to Turing computability.

Next, we consider how many computable functions there are.

Lemma 1.4. There are countably many computable sets.

Proof. Every computable set has a unique computable function. Every computable
function is expressible as a Turing machine. Every Turing machine has a program
which is composed of finitely many quadruples of the form qiSAqj where qi and qj
are internal states, S is a symbol on the tape, and A is an action. There are count-
ably many internal states, finitely many symbols, and finitely many actions (L,R,
and one for each symbol). Thus, there are countably many quadruples available
and each Turing machine can only choose finitely many of these. Therefore, there
are only countably many Turing machines and thus countably many computable
sets.
Note that we could also prove this lemma using the intuitive computability dis-
cussed earlier with a very similar argument. �

Because there are countably many computable functions, we can put these func-
tions into a one-to-one correspondence with the natural numbers as follows:

Definition 1.5. φi and Wi

We define φi to be the i-th computable function.
We define Wi to be the domain of φi.

Using this defintion, we can enumerate all computable functions and domains of
these functions, giving us much more control over these computable functions.

2. Computably Enumberable Sets and K0

Having considered what is computable, we now explore what is not computable.
In order to do so, we define a new notation:

Definition 2.1. The pairing function
We define a pairing function to be a computable bijection function <,>: N2 → N.

Using these pairing functions, we can examine subsets of N2 as subsets of N and
thus study their computability. In fact, using multiple pairing functions, for any k,
we can consider the computability of subsets of Nk.



4 JASPER DEANTONIO

Specifically, we study the set K0 = {〈i, x〉|φi(x) halts }. This set is known as the
Halting Problem.

At first one may be confused about why we even consider programs which don’t
halt. Recall that one can easily write a computer program which does not halt;
a simple example is any loop that has no end condition. These are still computer
programs and can be encoded as Turing machines. Thus, there exists m ∈ N such
that φm is exactly a program which, given every input, loops infinitely. Therefore,
in studying the computable functions, we must be aware of functions which do not
halt, which is one reason why we shall study K0.

Theorem 2.2. K0 is not computable

Proof. Assume K0 is computable. Then, χK0(i, n) = 0 or 1 for all i, n ∈ N, i.e., for
all i, n, we can computably tell whether or not n ∈ Wi. Therefore, we can define
the function H : N→ N as follows:

H(i) =

{
1 χK0

(i, i) = 0
0 χK0(i, i) = 1

H is computable since χK0 is. Therefore, there exists e ∈ N such that H = φe
because we can enumerate all the computable functions. We then consider H(e).

H(e) =

{
1 χK0

(e, e) = H(e) = 0
0 χK0

(e, e) = H(e) = 1

Either way, H(e) = 1 6= 0 = H(e), which is a contradiction. This illustrates that
K0 cannot be computable. �

Remark 2.3. Since K0 is not computable, what is it? It seems like K0 is almost
computable, as we can enumerate the elements of K0 using the following process:
Step through the triples 〈i, x, s〉, running φi(x) for s steps. If φi(x) halts in s steps,
add φi(x) to K0.
Unfortunately, this is not all we need for K0 to be computable. The problem is
that we cannot computably determine if any pair is not in K0. On a pair 〈i, x〉, if
φi(x) has not halted in s steps, we don’t know if it will halt on the (s+ 1)-th step
or never halt. Thus, we can never state that a pair 〈i, x〉 is not in K0 because we
cannot look ahead an infinite number of steps to see if φi(x) ever halts. Intuitively,
this is why K0 is not computable.

Because K0 is incomputable, it cannot be generated by any computer. No possi-
ble algorithm could give the exact set which is K0. Yet, K0 is a relatively standard
set in the sense that it is easy for mathematicians to understand and simple for us
to construct. This illustrates the hidden difficulty of actually creating many of the
sets which mathematicians commonly use.

Definition 2.4. Computably Enumerable
We define a computably enumerable set (abbreviated c.e. set) to be a set A ⊂ N
such that A = range(f) for some computable function f . Intuitively, this means
that the elements of A can be enumerated using f . So, for every a ∈ A, there are
n, s ∈ N such that, after s steps, f(n) halts and f(n) = a.

Example 2.5. K0 and Wi are c.e.
K0 is a c.e. set, since, using the process described in Remark 2.3, the elements of
K0 can be enumerated.



THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER 5

Let g : N2 → N such that g(x, s) does the first s steps of φi on input x, returning
x if φi halts.
Let h : N→ N2 such that h is bijective. Then, if we run (g ◦ h)(n) for each n ∈ N
starting with n = 1, we will be able to enumerate the elements of Wi. Therefore,
Wi is c.e.

Next we provide a few theorems about computably enumerable sets to give the
reader a better understanding of them.

Theorem 2.6. Every computable set is c.e.

Proof. Let A be a computable set. We want to show that A is c.e. so we will find
a computable f such that f(N) = A.
If A = ∅, then let f be the Turing machine that just loops infinitely for any input.
Then, f never returns any value. Thus, f(N) = ∅.
Now, assume A 6= ∅. Let a ∈ A. Then, since χA is computable (because A is a
computable set), consider the function g : N→ N:

g(n) =

{
n χA(n) = 1
a χA(n) = 0

Then g(N) = A. g is computable since χA is computable. Thus, A is c.e. �

There is another way to describe sets which are c.e., as we illustrate below:

Definition 2.7. Existential Sets
We define an existential set to be a set A ⊂ N such that for all x, x ∈ A if and
only if there exists y such that R(x, y) holds for some computable relation R.

Example 2.8. K0 is an existential set.
〈i, x〉 ∈ K0 if and only if there exists s ∈ N such that φi(x) halts in s steps. Thus,
our relation here is composed of three variables i, x, s. So, 〈i, x〉 ∈ K0 exactly when
(i, x, s) is in this relation R. Note that R is computable since we only run the
algorithm s times on the given input, then see if it has halted or not.

Theorem 2.9. A set A ⊂ N is c.e. iff A is a existential set.

Proof. First we show that if A ⊂ N is c.e., then A is a existential set.
If A is c.e., then A is the range of some computable function f . So,

x ∈ A⇐⇒ (∃s)[f(s) = x]

Since f is computable, this relation is computable as well. Therefore, A is existential
due to this relation.
Next, we show that if A is a existential set, then A ⊂ N is c.e.
If A is an existential set, then we have, for some computable relation R,

x ∈ A⇐⇒ (∃s)[R(s, x)]

Define the function ψ : N→ N as follows:

ψ(x) =

{
0 (∃s)[R(s, x)]
loop infinitely otherwise

ψ is an algorithm a computer could reproduce given the relation R. But the relation
R is computable. So, ψ is also computable. Therefore, the domain of ψ, which is
the set A, is equal to We for some e ∈ N. But, as stated in example 2.5, We is c.e.
Therefore, A is also c.e. �



6 JASPER DEANTONIO

3. Computing with Oracles and the Turing Equivalence

Not only does Computability Theory study computable and incomputable sets, it
also examines computability in relation. Two incomputable sets can have different
degrees of incomputability. Intuitively, we want to be able to tell whether or not,
given two subset of the natural numbers, A,B, if A is computable using B as a
black box or vice versa. Our intuitive program would be able to ask if an element
n of N is in B and make computable choices based on the answer. This is how
the black box mechanism would work. Here, B is called an oracle. We revise our
Turing machine to rigorously allow for this type of relative comparison.

Definition 3.1. Oracle Turing Machine
We define an oracle Turing machine to be a Turing machine with an additional
type of quadruple, called a query quadruple, which is defined below:
We define a query quadruple to be a quadruple of the form qiSkqjql where Sk
is a tape symbol and qi, qj , and ql are internal states. If the reading head gets to
internal state qi with tape symbol Sk, the reading head counts the number of ones
on the tape (say, n). Then, it queries to the oracle, say A, if n ∈ A. If yes, then
the reading head goes to state qj , otherwise it goes to state ql.
These query quadruples do exactly what we intuitively wanted to do; they allow the
Turing machine to ask questions about the oracle and make a decision based upon
this input. As stated by the Relativised Church-Turing Thesis, again our intuitive
definition aligns with our Turing machine defintion of relatively computable. So,
while this definition is provided to lend rigor to the argument, we will not reference
the actual quadruples of a oracle Turing machine and instead use intuitive programs.

Remark 3.2. As in Lemma 1.4, there are countably many A-computable sets for
any A ⊂ N (when we create our Turing machine, we have the exact same number
of characters, except we can also ask the oracle. But this is only one additional
operation, so there are still only countably many programs). Thus, we enumerate
these A-computable sets as follows:

Definition 3.3. φAi and WA
i

We define φAi to be the function computed by the i-th Turing machine with oracle
A.
We define WA

i to be the domain of φAi .

Definition 3.4. Relative Computability and Turing Equivalence
Given A,B ⊂ N, we say A is B-Turing computable if A is computable with
oracle B. We write this A ≤T B.
We say that A is Turing equivalent to B, denoted A ≡T B, if A ≤T B and
B ≤T A.

Example 3.5. For any computable set A, A ≤T B for all B ⊂ N.
Fix B ⊂ N.
We need to show that A is B-computable, i.e., that there exists a computable
function which uses B as an oracle and is the characteristic function of A. But,
since A is computable, there already exists a computable function f which is the
characteristic function of A. Then, we can let B be an oracle for f , but compute f
the exact same way. Thus, A ≤T B.



THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER 7

Example 3.6. For all e ∈ N, We ≤T K0

If x ∈ N, x ∈ We if and only if 〈e, x〉 ∈ K0. Therefore, We is K0-computable, and
We ≤T K0

We can now generalize the notion of the Halting Problem, or K0, as shown below.

Definition 3.7. The Jump Operator
We define the jump of a set A ⊂ N to be A′ = {〈i, x〉 : WA

i (x) halts}
Specifically, note that K0 = ∅′
Also, given that K0 = ∅′, we can then take the jump of K0 = ∅′′. We can continue
this process indefinitely, yielding countably many sets, {∅(n)}n∈N. Similar to the
proof of ∅ < ∅′ as seen in Theorem 2.1, for every n ∈ N, ∅(n) <T ∅(n+1). Therefore,
each ∅(n) is less computable than every ∅(m), where m < n. So, we have a sequence
{∅(n)}n∈N which gets less and less computable without ever stopping.

Lemma 3.8.
(1) Relative computability is a transitive relation, as is Turing equivalence.
(2) The Turing equivalence is well defined, i.e., if A ≤T B and A ≡T C and
B ≡T D, then C ≤T D
Proof. (1)Let A ≤T B and B ≤T C. Then, for any n ∈ N, we can computably
determine whether or not n ∈ A using answers to finitely many questions “Is
m0 ∈ B?”’, “Is m1 ∈ B?”’,...“Is mk ∈ B?”’. Since each of these questions can
be computably answered using answers to finitely many questions “Is p0 ∈ C?”’,
“Is p1 ∈ C?”’, ... “Is pl ∈ C?”’, we can computably determine whether or not
n ∈ A using answers to finitely many questions about elements of C. Thus, A is
C-computable, and A ≤T C.
As Turing equivalence is based upon relative computability, it follows immediately
that if A ≡T B and B ≡T C, then A ≡T C.
(2)If A ≤T B, then there exists a computable function f using B as an oracle which
computes A. So, for any n ∈ N, f(n) B-computably returns a 1 or a 0 if n ∈ A or
n /∈ A, respectively. Similarly, since A ≡T C and B ≡T D, C ≤T A, A ≤T B, and
B ≤T D. Therefore, by part 1 of this lemma, C ≤T D. �

Example 3.9. Let L = {e : We 6= ∅}. Then, K0 ≡T L.
First we show that K0 ≤T L.
Consider the pair 〈i, n〉. We want to know L-computably if 〈i, n〉 ∈ K0, i.e., if n is
in the domain of φi. In order to do so, we computably define a function φ′i as follows:

φ′i(k) =

{
Loop infinitely k 6= n
φi(n) k = n

Because this program φ′i is Turing computable (due to the fact that φi(n) is), there
exists an e ∈ N such that φe = φ′i. So, We is the domain of φ′i. For every natural
number x that is not equal to n, φ′i(x) does not halt, so x /∈ We. If φi(n) halts,
then {n} is the domain of φ′. Therefore, We 6= ∅, and so e ∈ L. Otherwise We = ∅,
so e /∈ L. So, to determine if 〈i, n〉 ∈ K0, we need only ask if e is in L. Thus,
K0 ≤T L.
Next, we show that L ≤T K0

Note that x ∈ L if and only if there exists 〈n, s〉 such that φx(n) halts in s steps.
Therefore, L is an existential set. By Theorem 2.7, there exists e ∈ N such that
We = L. Since We ≤T K0 for all e, L ≤T K0.
Therefore, L ≤T K0 and K0 ≤T L, so K0 ≡T L.



8 JASPER DEANTONIO

Remark 3.10. Since L ≡T K0 and ∅ <T K0, ∅ <T L. Therefore, L is not com-
putable. Yet, we can compute L from K0. This illustrates the power of relative
computability. It allows us to use the otherwise-inaccessible information of K0

to computably generate incomputable sets. So, we could say that K0 has some
computing ability, or information, stored in its set. In fact, any incomputable set
A has some of this information, as there are other incomputable sets which can
be A-computed. Since any two Turing equivalent sets can generate each other
computably, any two Turing equivalent sets have the same amount of information.
Thus, we shall shift our study to these sets of Turing equivalent sets so as to better
understand these varying degrees of information.

Definition 3.11. Turing Degrees
(1) We define the Turing Degree of a set A ⊂ N, denoted deg(A), to be the set
{X ⊂ N : X ≡T A}.
(2) We define deg(∅) to be the Turing degree of the computable sets.
(3) We define D to be the set of all Turing degrees, i.e., D = {deg(A) : A ⊂ N}
(4) We define the operator ≤ for Turing Degrees A and B as follows:
A ≤ B if there exists X ∈ A and Y ∈ B such that X ≤T Y . Note that for all
X ′ ∈ A, Y ′ ∈ B, X ′ ≤T Y ′ by Lemma 3.8 so long as X ≤ Y . So, when A ≤ B,
every set in A is B-computable.

Example 3.12. The Least Turing Degree
We show that deg(∅) is the least Turing Degree, i.e., that deg(∅) ≤ deg(A) for all
A ⊂ N.
Let X be a computable set and A ⊂ N. Then, X ≤T A by Example 3.4. Therefore,
since X ∈ deg(∅), deg(∅) ≤ deg(A) forall A ⊂ N.

Theorem 3.13. D has uncountably many degrees.

Proof. For ease of notation in this proof, for any set A, let car(A) be the cardinality
of A.
We prove this theorem by contradiction. Assume that D has countably many
degrees.
Then, note that for every A ⊂ N, A ∈ deg(B) for some B ⊂ N. Therefore,

car(P(N)) ≤ car(D)× sup{car(deg(A)) : A ∈ N}

As stated in Remark 3.2, for any set A ⊂ N, the set of A-computable sets is count-
able. So, sup{car(deg(A)) : A ∈ N} is countable since each deg(A) is countable.
Thus, D × sup{deg(A) : A ∈ N} must be countable, as a countable set cross a
countable set is still countable. Then, P(N) must also be countable. This is a
contradiction, as P(N) is uncountable. Therefore, D must have uncountably many
degrees. �

Corollary 3.14. D has no greatest element.

Proof. We prove this by contradiction. Assume that D has a greatest element.
Then, there exists A ∈ D such that B ≤ A for all B ∈ D. Let X ∈ A. The set of
X-computable sets is countable. Therefore, the set of Turing degrees less than A is
also countable. However, the set of Turing degrees less than A is D. By the above
theorem, D is uncountable. Thus, we arrive at a contradiction. So, D cannot have
a greatest element. �



THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER 9

4. The Turing Degrees are not Linearly Ordered by the Relation ≤

In order to prove that the Turing Degrees are not linearly ordered by ≤, we will
first need some more definitions.

Definition 4.1. Strings
(1) We define a string, generally denoted σ or τ , to be a finite sequence of 0’s and
1’s. For example 01001010 is a string. Note that a string can also be considered
as the beginning of a characteristic function of a set. For example, for some set A,
the string 01001010 would designate that 0 /∈ A, 1 ∈ A, 2 /∈ A, 3 /∈ A, etc.
(2) We define the length of a string σ, denoted |σ|, to be the number of entries in
σ. For example, |010101| = 6.
(3) We define the concatenation of two strings σ and τ , denoted σ _ τ , to be
the string σ followed by τ . For example, if σ = 01010 and τ = 11111, σ _ τ =
0101011111.
(4) We say that τ is an extension of σ, denoted σ ⊆ τ , if in every place in which
σ is defined, τ has the same value, and |σ| ≤ |τ |. For example, 0100010 is an
extention of 010.

Definition 4.2. The Use of a Computation
Let A be an expression whose computation involves a finite set of queries n0, ..., nk
to oracle A. We define the use of A to be the maximum of the set {ni : 0 ≤ i ≤ k}.
Intuitively, the use is the largest element of A one needs to compute A. Since every
computation is only finitely many steps long, there is always a use for an expression.

Finally, we prove that the Turing Degrees are not linearly ordered by the oper-
ation ≤:

Theorem 4.3. The Turing Degrees are not linearly ordered - that is, there exist
C,E ∈ D such that neither C ≤ E nor E ≤ C.

Proof. In order to show that there exist C,E ∈ D such that neither C ≤ E nor
E ≤ C, we will construct two sets, A,B ⊂ N, such that A is not B-computable
and B is not A-computable. Given these sets A and B, let C = deg(A) and E =
deg(B). Next, assume, without loss of generality, that C ≤ E. Then, as illustrated
in Definition 3.11.4, A ≤T B, which would be a contradiction. Therefore, neither
C ≤ E nor E ≤ C. So, if we can construct A and B, then the theorem is proven.
We constructA,B ⊂ N such thatA is notB-computable andB is notA-computable.
Recall that there are countably many A-computable sets and countably many B-
computable sets. So, to ensure that A is not B-computable and B is not A com-
putable, we will satisfy the following relations:

R2i : χA 6= φBi

R2i+1 : χB 6= φAi
With these relations satisfied, A cannot be B-computable because A is not any of
the B-computable sets. Similarly, B cannot be A-computable.
To construct A and B, we shall use sequences of strings {σi}i∈N and {τi}i∈N, where
σ0 ⊂ σ1 ⊂ σ2 ⊂ . . . and τ0 ⊂ τ1 ⊂ τ2 ⊂ . . .
Then, we shall define the characteristic functions of A and B by:

χA =
⋃
i∈N

σi



10 JASPER DEANTONIO

χB =
⋃
i∈N

τi

In order to satisfy the relations, at stage i+ 1, we will define σi+1 and τi+1 in such
a way as to ensure that the i-th requirement is satisfied.

The Construction

Stage 0:
Define σ0 = τ0 = ∅.

Stage i+ 1 = 2e+ 1:
We specifically handle R2e and leave R2e+1 to the reader as the process is exactly
the same.
Assume σ0 ⊂ σ1 ⊂ σ2 ⊂ . . . ⊂ σi and τ0 ⊂ τ1 ⊂ τ2 ⊂ . . . τi are already defined.
Let xi = |σi|
We look for a string τ ⊃ τi such that φτe (xi) halts.

CASE I: If τ exists
Then computably choose a τ and let k = φτe (xi). Then define:

σi+1 = σi _ (1− k)

τi+1 = τ

We show that φBe (xi) = φτe (xi) by contradiction.
Assume φBe (xi) 6= φτe (xi). Then, since τ is the beginning of the characteristic func-
tion of B, τ and B agree up to |τ |. Therefore, there must exist k ∈ N such that
k > |τ | and the k-th value of B changes the output of φBe (xi) so that it is not equal
to φτe (xi). Then, φτe (xi) must query the k-th value of τ as well. However, as τ is
not defined at this value, φτe (xi) could not halt. This would be a contradiction of
our initial assumption, which states that φτe (xi) halts.
Therefore, φBe (xi) = φτe (xi), and so φBe (xi) = φτe (xi) = k 6= (1− k) = χA(xi). The
characteristic functions of φBe and A disagree on input xi and thus A cannot be the
i-th B-computable set. Therefore, the relation R2e is satisfied.

CASE II: If τ does not exist
Then define

σi+1 = σi _ 0

τi+1 = τi _ 0

I claim that, regardless of how τn, n > i, are picked, φBe (xi) will not halt. Given
that φBe (xi) does not halt, our relation is satisfied because φA(xi) = 0 but φBe (xi)
is undefined. So A is not the i-th B-computable set, as the characteristic functions
disagree at input xi. Thus, the relation R2e is satisfied.

Proof of Claim
We prove this claim by contradiction. Assume that φBe (xi) halts.
Let w be greater than |τi| and the use of φBe (xi). Then, for τ equal to the first w
elements of B, φBe (xi) = φτe (xi) because for every element of B used to compute
φBe (xi), τ has the exact same elements. Note also that τ ⊃ τi. We have found



THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER 11

a τ such that φτe (xi) halts, so we cannot be in Case II. Therefore, we arrive at a
contradiction. By this contradiction, φBe (xi) cannot halt. �

Corollary 4.4. In fact, we can find A,B ⊂ N such that A,B ≤T K0 and A is not
B-computable and B is not A-computable. So, not even the computably enumerable
sets are linearly ordered.

Proof. We need to verify that the construction in the above theorem can be carried
out computably using an oracle V which is K0-computable (because then A,B ≤T
V ≤T K0).
Note that the only part of the above construction which is not computable is in
determining whether or not there exists τ such that τ extends τi and φτe (xi) halts.
Therefore, we need to be able to tell V -computably whether or not τ exists.
Note that τ exists if and only if there exists a pair 〈s, τ〉 such that τ ⊃ τi and φτe (xi)
halts in s steps. Define

V = {〈π, π′〉 : (∃〈s, τ〉)[τ ⊃ π and φτe (|π′|) halts in s steps]}
Then, τ exists at stage e+ 1 if and only if 〈τe, σe〉 ∈ V
Note that V is an existential set, so V is equal to some We, e ∈ N, as illustrated
by Theorem 2.7. Then, by Example 3.4, We ≤T K0, so V ≤T K0. Therefore,
A,B ≤T K0. �

Conclusion
The above theorem and associated corollary give us a very interesting result: there
exist sets which are not Turing comparable. Note that neither of the two sets A
and B generated are computable (if, say A, was computable, then by Example
3.5, A ≤T B, which is a contradiction). This means that both A and B are sets
which hold some computing information. Since each A and B hold computing
information, but A is not B-computable and B is not A-computable, both A and
B have some computing information which the other does not. Thus, there must
be at least two different kinds of this computing information: a set does not have
just an amount of computing information but also a kind. The above corollary is
surprising because it shows that there are different kinds of information even in the
computably enumerable sets. Thus, this division of information is immediate.

Acknowledgments. It is my pleasure to thank my mentors, Damir Dzhafarov
and Eric Astor, for their help in my studies. They guided me towards useful books,
helped me write this paper, and weathered my questions which were both frequent
and at times more obscure than the concept I had questions about.

References

[1] Barry Cooper. Computability Theory. Chapman and Hall/CRC. 2004.
[2] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company. 1997.


