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Abstract. The zeta function is an important function in mathe-
matics. In this paper, I will demonstrate an important fact about
the zeros of the zeta function, and how it relates to the prime
number theorem.
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1. Importance of the Zeta Function

The Zeta function is a very important function in mathematics.
While it was not created by Riemann, it is named after him because he
was able to prove an important relationship between its zeros and the
distribution of the prime numbers. His result is critical to the proof of
the prime number theorem.

There are several functions that will be used frequently throughout
this paper. They are defined below.

Definition 1.1. We define the Riemann zeta funtion as

ζ(z) =
∞∑
n=1

1

nz

when |z| ≥ 1.
1
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Definition 1.2. We define the gamma function as

Γ(z) =

∫ ∞
0

e−ttz−1dt

over the complex plane.

Definition 1.3. We define the xi function for all z with Re(z) > 1
as

ξ(z) = π−s/2Γ(s/2)ζ(s).

Lemma 1.1. Suppose {an} is a series. If
∞∑
n=1

an <∞, then the product

∞∏
n=1

(1 + an) converges. Further, the product converges to 0 if and only

if one if its factors is 0.

In the later proofs we will find a product form of the zeta function
more useful. The next lemma will use the fundamental theorem of
arithmetic which states that every positive integer, with the exception
of the number 1, can be written as a unique product of primes. This
was first proven by Euler showing, for the first time, that there is a
relationship between the prime numbers and the zeta function.

Lemma 1.2.

ζ(z) =
∏
p

1

1− p−z
.

Further, ζ(z) converges for all z with Re(z) >1.

Proof. First we notice that
∞∑
n=0

1
pnz

converges absolutely for all p greater

than 1. Through a simple manipulation, we see that
∞∑
n=0

1
pnz

can be
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rewritten as 1
1−p−z . This is shown below.

∞∑
n=0

1

pnz
= 1 +

1

pz
+

1

p2z
+ · · ·

1

pz

∞∑
n=0

1

pnz
=

1

pz
+

1

p2z
+

1

p3z
+ · · ·

1

pz

∞∑
n=0

1

pnz
=
∞∑
n=0

1

pnz
− 1

∞∑
n=0

1

pnz

(
1

pz
− 1

)
= −1

∞∑
n=0

1

pnz
=

1

1− p−z
.

Let M and N be positive integers such that M > N. Any positive
integer n with n ≤ N can be uniquely written as a product of primes
by the fundamental theorem of arithmetic. We know that each prime
number in this product must be less than or equal to N, else n > N as
all primes in the product are positive integers. Further, any prime in
this product is repeated less than M times. We can conclude this by
observing that the smallest prime is 2 and 2M > N as 2M < 2M since
2M > N.

We now wish to show that
∞∑
n=1

1
nz
≤
∏
p

(
1

1−p−z

)
.

N∑
n=1

1

nz
≤
∏
p≤N

(
1 +

1

pz
+

1

p2z
+ · · ·+ 1

pMz

)
needs justification

=
∏
p≤N

(
1

1− p−z
−

∞∑
n=Mz+1

1

pnz

)

≤
∏
p≤N

(
1

1− p−z

)
≤
∏
p

(
1

1− p−z

)
.

Now it is enough to prove that lim
N→∞

N∑
n=1

1
nz
≤
∏
p

(
1

1−p−z

)
. Suppose

this is not true. There exists an ε > 0 such that, for every integer L,
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there exists an integer s > L with
s∑

n=1

1
nz
>
∏
p

(
1

1−p−z

)
. But, this is a

contradiction, as our choice of N was arbitrary.
Finally we must show that the reverse inequality holds. We use the

fundamental theorem of arithmetic to see that
N∑
n=1

1

nz
≥
∏
p≤N

(
1 +

1

pz
+

1

p2z
+ · · ·+ 1

pMz

)

=
∏
p≤N

(
1

1− p−z
−

∞∑
n=Mz+1

1

pnz

)

≥
∏
p≤N

(
1

1− p−z

)
≥
∏
p

(
1

1− p−z

)
.

As before, we see that
∞∑
n=1

1
nz
≥
∏
p

(
1

1−p−z

)
in the limit. Together, these

two inequalities prove that ζ(z) =
∏
p

1
1−p−z .

Letting an = 1
nz

, it is clear that ζ(z) converges for all z with Re(z) >
1 by Lemma 1. Since none of the factors are 0 here, we see that ζ(z) 6= 0
when Re(z) > 1 by lemma1 concluding the proof. �

2. Trivial Zeros

The region 0 ≤Re(z) ≤ 1 is called the critical strip. We will soon
turn to the study of the zeros in the critical strip. The zeros of the
zeta function which lie outside the critical strip are called the trivial
zeros, and they are easily expressed in a simple formula. We derive
this formula in the lemma and theorem below. Before this, we will
state without proof, an essential Theorem about the Gamma function.

Theorem 2.1. The gamma function has an analytic continuation to
a meromorphic function on C whose only singularities are simple poles
at the negative integers.

Theorem 2.2. For all z ∈ C
Γ(z)Γ(1− z) =

π

sinπz

Lemma 2.1. 1/Γ(z) is an entire function of z with simple zeros (zeros
having a multiplicity of one) at z = 0,−1,−2, . . . , and it has zeros
nowhere else.
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Proof. Theorem 2.2 allows us to write 1
Γ(z)

= Γ(1 − z) sinπz
π
. Since,

by theorem 2.1 we know that the simple poles of Γ(1 − z) are any
z ∈ {n|n ∈ N}, we see that these cancel with the zeros of sinπz. Thus

1
Γ(z)

is entire with simple zeros in {0,−1,−2, . . .}.
�

Before the proof of the trivial zeros, we will state a theorem known
as the fundamental relation.

Theorem 2.3. ξ(z) = ξ(1− z) for all z ∈ C.

Theorem 2.4. The only zeros of the zeta function outside of the crit-
ical strip are the negative even integers.

Proof. We have already seen, in lemma 2.2 that the zeta function has
no zeros when Re(z) > 1. So, we will restrict our consideration to z < 0.
Using theorem 3.3 we see that

ζ(z) = πz−
1
2

Γ ((1− z)/2)

Γ(z/2)
ζ(1− z)

By lemma 2.2 we see that ζ(1− z) has no zeros when Re(z) < 0. Since
Γ(z) has no zeros, Γ ((1− z)/2) clearly has no zeros. By lemma 3.1,

1
Γ(z/2)

has zeros at z = −2,−4, . . . concluding the proof. �

3. Important Observations

Before we can prove a crucial theorem about the zeros of the zeta
function on the critical strip, we must prove a few more properties
about the zeta function.

Lemma 3.1. If Re(z) > 1, then

log ζ(z) =
∑
p,m

p−ms

m
=
∞∑
n=1

cnn
−s

for some cn ≥ 0.

Proof. First we will consider the case where Im(s) = 0. First we observe

that, through a Taylor expansion, log
(

1
1−x

)
=

∞∑
m=1

xm

m
for 0 ≤ x < 1.

Combining this fact with lemma 2.2 and a property of the logarithm
we see that

log ζ(z) = log
∏
p

1

1− p−z
=
∑
p

log

(
1

1− p−z

)
=
∑
p,m

p−mz

m
.
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We will now show that the above double sum converges absolutely.

It suffices to show that
∑
p

p−mz

m
and

∑
m

p−mz

m
both converge absolutely

when m, p ≥ 1.
To show that

∑
m

p−mz

m
converges absolutely we apply the ratio test.

lim
m→∞

p−(m+1)z

m+ 1

m

p−mz
= lim

m→∞

m

m+ 1
p−z

= p−z

≤ 1 as p ≥ 1 and z ≥ 1.

To show that
∑
p

p−mz

m
converges absolutely we observe that the quan-

tity mz is greater than one since m is at least one and z is greater
than one. Since the double sum converges absolutely the order of the
summation does not matter. The double sum converges absolutely, so
it converges whenever Re(z) > 1 giving us another analytic function.

By analytic continuation, we now have log ζ(z) =
∑
p,m

p−mz

m
whenever

Re(z) > 1. Now, if we let cn = 1
m

if n = pm and cn = 0 otherwise, we
have completed the proof.

�

Lemma 3.2. If σ > 1 and Im(t) = 0 then

log |ζ3 (σ) ζ4 (σ + it) ζ (σ + 2it) | ≥ 0.

Proof. We can let z = σ + it and observe

Re(n−z) = Re(n−σ−it)

= Re(e(−σ−it) logn)

= Re(e−σ logne−it logn)

= Re(e−σ logn(cos(t log n) + i sin(−t log n))

= e−σ logn cos(t log n)

= n−σ cos(t log n).

It now follows that

log |ζ3 (σ) ζ4 (σ + it) ζ (σ + 2it) | = 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3Re(log ζ(σ)) + 4Re(log ζ(σ + it)) + Re(log ζ(σ + 2it))

=
∞∑
n=1

cnn
−σ(3 + 4 cos(t log n) + cos 2t log n)

By lemma 3.1. It follows by calculation that this is positive. �
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4. Zeros on Re(z)=1

We are almost ready to prove an important theorem about the zeros
of the zeta function in the critical strip. Two important concepts used
in this proof are those of zeros and poles. A zero of a function is
a point at which that function vanishes. A pole of a functionf is a
point at which, if 1/f is defined to be zero, then 1/f is holomorphic at
this point. We will now state two important theorems about zeros and
poles.

Theorem 4.1. Let f be holomorphic in a connected open set Ω such that
it has a zero at z0 ∈ Ω, and f(z) 6= 0 for all z ∈ Ω. Then there exists a
neighborhood U ⊂ Ω of z0, a non-vanishing holomorphic function g on
U , and a unique positive integer n such that

f(z) = (z − z0)ng(z) for all z ∈ U .

Theorem 4.2. If f has a pole at z0 ∈ Ω then in a neighborhood of that
point there exist a non-vanishing holomorphic function h and a unique
positive integer n such that

f(z) = (z − z0)−nh(z).

We are now ready to prove our theorem.

Theorem 4.3. The zeta function has no zeros on the line Re(z) = 1.

Proof. Suppose that there exists a point z0 = 1 + it0 with t0 6= 0 such
that ζ(z0) = 0. ζ is homomorphic at z0, so, by theorem 4.1, there exists
a C > 0 such that

lim
σ→1

|ζ(σ + it0)|4

C(σ − 1)4
≤ 1.

Similarly, by theorem 4.2 (as z=1 is a simple pole), we know there
exists a C ′ > 0 such that

lim
σ→∞

|ζ(σ)|3

C ′(σ − 1)−3
≤ 1.

Since ζ is holomorphic at σ + 2it0 for all σ, |ζ(σ + 2it0) stays bounded
as σ approaches 1 by continuity. Thus

lim
σ→1
|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| = 0.

But this contradicts lemma 4.3 as the logarithm of a number less than
one is negative concluding the proof. �
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5. Estimating 1/ζ and ζ ′

The proof of the prime number requires knowledge of the rates of
growth of 1/ζ and ζ ′. We will now prove theorems that will deal with
this. First we will state a theorem given in Complex Analysis.[1] han-
dling the growth of ζ ′.

Theorem 5.1. Suppose s = σ+ it with σ, t ∈ R. Then for each σ0, 0 ≤
σ0 ≤ 1, and every ε > 0, there exists a constant cε, so that

(1) |ζ(z)| ≤ cε|t|1−σ0+ε, if σ0 ≤ σ and |t| ≥ 1
(2) |ζ ′(z)| ≤ cε|t|1−σ0+ε, if 1 ≤ σ and |t| ≥ 1

Now we prove a theorem dealing with the growth of 1/ζ. With this
theorem and the ones preceding it we will finally be able to analyse the
theorems which eventually lead to the prime number theorem.

Theorem 5.2. For every ε > 0, we have 1/|ζ(z)| ≤ cε|t|ε when z =
σ + it, σ ≥ 1, and |t| ≥ 1.

Proof. From the poof of Theorem 5.3 we know that |ζ3(σ)ζ4(σ+it)ζ(σ+
2it)| ≥ 1 when σ ≥ 1 else we end up with a contradiction. Applying
theorem 6.1 we get

|ζ4(σ + it)| ≥ c|ζ−3(σ)||t|−ε ≥ c′(σ − 1)3|t|ε for all σ ≥ 1 and |t| ≥ 1.

By taking the a fourth root we arrive at the equation

(1) |ζ(σ + it)| ≥ c′(σ − 1)3/4|t|ε/4 when σ ≥ 1 and |t| ≥ 1.

We will choose a constant A later in the proof. Now We look at two
cases. The first is the case where σ − 1 ≥ A|t|−5ε holds. (1) now gives
us |ζ(σ + it)| ≥ A′|t|−4ε.

If the inequality does not hold, then we take σ′ > σ with σ′ − 1 =
A|t|−5ε. This now implies

|ζ(σ + it)| ≥ |ζ(σ′ + it)| − |ζ(σ′ + it)− ζ(σ + it)|.

Now we use the mean value theorem with theorem 6.1 to get

|ζ(σ + it)− ζ(σ + it)| ≤ c′′|σ′ − σ||t|ε ≤ c′′|σ′ − 1||t|ε.

using (1) and setting σ = σ′ we see that

ζ(σ + it)| ≥ c′(σ′ − 1)3/4|t|−ε/4 − c′′(σ − 1)|t|ε.

Now choosing A =
(
c′

2c′′

)4
we get c′(σ′− 1)(3/4)|t|−ε/4 = 2c′′(σ′− 1)|t|ε.

Thus, we have |ζ(σ + it)| ≥ A′′|t|−4ε completing the proof.
�
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6. The ψ Function

Finally we will look at a function which imitates the distribution of
the primes. It was created by Tchebychev. We define

ψ(x) =
∑
pm≤x

log p.

In this notation, p is a prime number and m is a positive integer. We
can now create two other definition. We define Λ = log p if n = pm for
some prime p and m ≥ 1, and 0 otherwise.now we have

ψ(x) =
∑

1≤n≤x

Λ(n)

and

ψ(x) =
∑
p≤x

[
log x

log p

]
log p

where [x] is the greatest integer function. We will now prove just how
closely related the ψ function is to the distribution of prime numbers.
In the following theorems π(x) denotes the number of primes less than
or equal to x.

Theorem 6.1. If ψ(x) ∼ x as x→∞, then π(x) ∼ x/ log x as x→∞.

Proof. We will prove this by showing that the following two inequalities
hold

1 ≤ lim
x→∞

inf π(x)
log x

x
and lim

x→∞
sup π(x)

log x

x
≤ 1.

Now notice the following bound on the ψ function which comes from
the definition of the greatest integer function.

ψ(x) =
∑
p≤x

[
log x

log p

]
log p ≤

∑
p≤x

log x

log p
log p = π(x) log x.

Now we divide by x to find ψ(x)
x
≤ π(x) log x

x
. Since ψ(x) ∼ x, we have

lim
x→∞

ψ(x)
x

= 1. Thus, the first inequality is clearly true.

Now, fix 0 < α < 1, and notice that ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x
log p ≥

(π(x)− π(xα)) log xα. So, now

ψ(x) + απ(xα) log x ≥ απ(x) log x.
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dividing by x gives

ψ(x)

x
+
απ(xα) log x

x
≥ απ(x) log x

x

1 +
απ(xα) log x

x
≥ απ(x) log x

x
since ψ(x) ∼ x

1 ≥ α
logx(π(x)− π(xcantarellα

x

1 ≥ α lim
x→∞

supπ(x)
log x

x
as α < 1.

This concludes the proof. �

It is actually easier to work with the ψ1 function. We define

ψ1(x) =

∫ x

1

ψ(u)du.

We will now show that the same asymptotic properties applies to this
function.

Theorem 6.2. If ψ1(x) ∼ x2/2 as x→∞, then ψ(x) ∼ x as x→∞,
and therefore π(x) ∼ x/logx as x→∞

Proof. By theorem 6.1 we only need to prove that ψ(x) ∼ x as x→∞.
If α < 1 < β, then we have the following as ψ is an increasing function

1

(1− α)x

∫ x

αx

ψ(u)du ≤ ψ(x) ≤ 1

x(β − 1)

∫ βx

x

ψ(u)du.

We now immediately have ψ(x) ≤ 1
(β−1)x

(ψ1(βx)−ψ1(x)). Thus ψ(x)
x
≤

1
(β−1)x

(ψ1(βx)
(βx)2

− ψ1(x)
x2

).And so we have

lim
x→∞

sup
ψ(x)

x
≤ 1/2(β + 1)

Thus, we have proved that lim
x→∞

supψ(x)/x ≤ 1. Similarly, we can show

lim
x→∞

inf ψ(x)/x ≥ 1 concluding the proof. �

We now state a lemma from Complex Analysis.[1].

Lemma 6.1. For all c > 1

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds

With this theorem we are now ready to prove the fact about the zeta
function which lead to the prime number theorem.

Theorem 6.3. ψ1 ∼ x2

2
as x→∞.
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Proof. By lemma 6.1 we know ψ1(x) = 1
2πi

∫ c+i∞
c−i∞

xs+1

s(s+1)

(
− ζ′(s)

ζ(s)

)
ds. In

this integral, we integrate on the line Re(s) = c. We will now transform
this to integrate over Re(s) = 1. when c > 1. For now we assume that
x ≥ 2.

Let F (s) =
xs+1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
.

We define the paths below using T to determine the size of the “box”
containing the point s.

q q qs = 1 s = 1 s = 1

Re(s) = 1 γ(T) γ(T, δ)

c+ i∞ 1 + i∞ 1 + i∞

c− i∞ 1− i∞ 1− i∞

γ1

γ2
γ3

γ4

γ5

An application of Cauchy’s theorem shows that

1

2πi

∫ c+i∞

c−i∞
F (s)ds =

1

2πi

∫
γ(T )

F (s)ds.

Now we need to show the equivalence of the integral over γ(T, δ). For
any T, we can pick a δ greater than zero such that the zeta function
has no zeros when |Im(s)| ≤ T and 1 − δ ≤ Re(s) ≤ 1 as the zeta
function has no zeros on Re(s) = 1. F (s) has a simple pole at s = 1.

By calculation, the residue of F (s) at s = 1 is x2

2
. Thus we find

1

2πi

∫
γ(T )

F (s)ds =
x2

2
+

1

2πi

∫
γ(T,δ)

xs+1

s(s+ 1)
F (s)ds.

If we let s ∈ γ1, we see that |x1+s|
∫
γ1
F (s)ds| ≤ ε

2
x2| = x2. By

theorem 5.2 we can find a C such that

|
∫
γ1

F (s)ds| ≤ Cx2

∫ ∞
T

|t|1/2

t2
dt.

Since this converges we can find T large enough so that |
∫
γ1
F (s)ds| ≤

ε
2
x2 and |

∫
γ5
F (s)ds| ≤ ε

2
x2. We fix a T to satisfy this and pick a δ

small enough as well.
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Since, on γ3, we have |x1+s| = x1+1−δ = x2−δ, we can find a C ′ such
that |

∫
γ3
F (s)ds| ≤ C ′x2−δ.

We can also approximate γ2 and γ4 by

|
∫
γ2

F (s)ds| ≤ C ′′
∫ 1

1−δ
x1+σdσ ≤ C ′′

x2

log x
.

Thus, we now have

|ψ1(x)− x2

2
| ≤ εx2 + C ′x2−δ + C ′′

x2

log x
.

Thus, we have

|2ψ1(x)

x2
− 1| ≤ 4ε

�
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