Fields and Galois Theory

Rachel Epstein

September 12, 2006

All proofs are omitted here. They may be found in Fraleigh's *A First Course* in *Abstract Algebra* as well as many other algebra and Galois theory texts. Many of the proofs are short, and can be done as exercises.

1 Introduction

Definition 1. A **field** is a commutative ring with identity, such that every non-zero element has a multiplicative inverse. That is, a field is a commutative division ring.

Some people prefer to think of fields in terms of the field axioms:

- 1. Addition is commutative: a + b = b + a
- 2. Addition is associative: (a + b) + c = a + (b + c)
- 3. There is an additive identity 0: 0 + a = a = a + 0
- 4. Every element has an additive inverse: a + (-a) = 0 = (-a) + a
- 5. Multiplication is associative: (ab)c = a(bc)
- 6. Multiplication is commutative: ab = ba
- 7. There is a multiplicative identity 1: 1a = a = a1
- 8. Every non-zero element has a multiplicative inverse: $a(a^{-1}) = 1 = (a^{-1})a$
- 9. The distributive law holds: a(b+c)=ab+ac

Definition 2. A field E is an extension field of a field F if $F \leq E$.

2 Conjugate Elements

Definition 3. Let F[x] be the ring of polynomials with coefficients in F. A polynomial $p(x) \in F[x]$ is **irreducible over** F if it cannot be expressed as the product of two polynomials in F[x] of strictly lower degree.

Example 4. $x^2 - 2$ is irreducible over **Q**. $x^2 + 1$ is irreducible over **R**.

 $x^2 - 1$ is reducible over **Q**.

Definition 5. Let $F \leq E$, let $\alpha \in E$ be algebraic over F. Then the **irreducible** polynomial of α over F, irr (α, F) , is the unique monic polynomial p(x) such that p(x) is irreducible over F and $p(\alpha) = 0$.

Example 6. The irreducible polynomial of $\sqrt{2} \in \mathbf{R}$ over \mathbf{Q} is $x^2 - 2$.

Definition 7. Let $F \leq E$. Two elements $\alpha, \beta \in E$ are **conjugate over** F if they have the same irreducible polynomial over F.

Example 8. In C, some conjugates over Q are:

$$\begin{split} i, \ -i, \ p(x) &= x^2 + 1 \\ \sqrt{2}, \ -\sqrt{2}, \ p(x) &= x^2 - 2 \\ 2^{1/3}, \ 2^{1/3} e^{2\pi i/3}, \ 2^{1/3} e^{4\pi i/3}, \ p(x) &= x^3 - 2 \end{split}$$

Theorem 2.1. If α is algebraic over F, with $irr(\alpha, F)$ having degree $n \geq 1$, then the smallest field containing α and F, denoted $F(\alpha)$, consists exactly of elements of the form

$$\gamma = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}, \ b_i \in F.$$

Theorem 2.2. Let α, β be algebraic over F. Then the map $\psi_{\alpha,\beta} : F(\alpha) \to F(\beta)$ given by

$$\psi_{\alpha,\beta}(b_0 + b_1\alpha + \dots + b_{n-1}\alpha^{n-1}) = b_0 + b_1\beta + \dots + b_{n-1}\beta^{n-1}$$

is an isomorphism if and only if α and β are conjugate.

Example 9. $\psi_{\sqrt{2},\sqrt{3}}: \mathbf{Q}(\sqrt{2}) \to \mathbf{Q}(\sqrt{3})$ is not an isomorphism since $\sqrt{2}$ is not conjugate to $\sqrt{3}$ over \mathbf{Q} .

 $\mathbf{Q}(2^{1/3}) \simeq \mathbf{Q}(2^{1/3}e^{2\pi i/3})$ via the irreducible polynomial $x^3 - 2$.

3 Finite Extensions and Isomorphisms

Definition 10. If E is an extension field of F, then E is a vector space over F. If it has finite dimension n as a vector space over F, then E is a **finite** extension of degree n over F. We denote the degree of E over F as [E : F].

Example 11. C is a 2-dimensional vector space over \mathbf{R} , so $[\mathbf{C} : \mathbf{R}] = 2$.

 $\mathbf{Q}(\sqrt{2},\sqrt{3})$, the smallest field containing $\mathbf{Q}, \sqrt{2}$, and $\sqrt{3}$, is generated by $\{1,\sqrt{3}\}$ over $\mathbf{Q}(\sqrt{2})$. $\mathbf{Q}(\sqrt{2})$ is generated by $\{1,\sqrt{2}\}$ over \mathbf{Q} . So we can see that $\mathbf{Q}(\sqrt{2},\sqrt{3})$ is generated by $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ over \mathbf{Q} , and $[\mathbf{Q}(\sqrt{2},\sqrt{3}):\mathbf{Q}] = 4$.

Definition 12. An isomorphism of a field onto itself is called an **automorphism** of the field.

Definition 13. Let σ be an isomorphism of E on to some field, and let $\alpha \in E$ and $F \leq E$. Then σ fixes α if $\sigma(\alpha) = \alpha$, and σ fixes F if σ fixes each element in F.

Theorem 3.1. Let $F \leq E$, and let σ be an automorphism of E leaving F fixed. Let $\alpha \in E$. Then $\sigma(\alpha) = \beta$ where β is a conjugate of α over F.

Theorem 3.2. Let $F \leq E$. The set G(E/F) of all automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E. We call G(E/F) the group of E over F.

Theorem 3.3. Let E_{σ} be the subset of E left fixed by an automorphism σ . Then E_{σ} is a field. We call this the **fixed field of** σ . Similarly, if S is a subgroup of G(E/F), then the set E_S is a subfield of E.

Theorem 3.4 (Isomorphism Extension Theorem). Let σ be an isomorphism from a field F to a field F', and let $\overline{F'}$ be an algebraic closure of F'. Let $F \leq E$. Then there exists at least one isomorphism τ of E onto a subfield $\overline{F'}$ such that for all $\alpha \in F$, $\tau(\alpha) = \sigma(\alpha)$.

Theorem 3.5. Let E be a finite extension of F. Let $\sigma : F \longrightarrow F'$ be an isomorphism. The number of extensions of σ to an isomorphism τ of E onto a subfield of $\overline{F'}$ is finite and depends only on E and F, not on σ or F'. We call this number $\{E : F\}$, the **index of** E **over** F.

Theorem 3.6. If E is a finite extension of F, then $\{E:F\}$ divides [E:F].

Definition 14. *E* is a separable extension of *F* if $\{E : F\} = [E : F]$. A field *F* is **perfect** if every finite extension of *F* is separable.

Perfect fields are in fact commonplace.

Theorem 3.7. Every field of characteristic 0 is perfect. Every finite field is perfect.

Definition 15. Let $\{p_i(x) : i \in I\}$ be a collection of polynomials in F[x]. Then $E \leq \overline{F}$ is the **splitting field** of $\{p_i(x) : i \in I\}$ over F if E is the smallest subfield of \overline{F} containing F and all the zeros of each $p_i(x)$ in \overline{F} .

Example 16. $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $\{x^2 - 2, x^2 - 3\}$, and also of $\{x^4 - 5x^2 + 6\}$.

 $\mathbf{Q}(2^{1/3})$ is not a splitting field because it does not contain the other two roots of $x^3 - 2$, which is irreducible.

Theorem 3.8. Let $F \leq E \leq \overline{F}$. Then E be a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself.

Corollary 3.9. If $E \leq \overline{F}$ and E is a splitting field over F of finite degree, then $\{E:F\} = |G(E/F)|.$

Theorem 3.10 (Primitive Element Theorem). Let *E* be a finite separable extension of a field *F*. Then there exists $\alpha \in E$ such that $E = F(\alpha)$.

Theorem 3.11. If E is a finite extension of F and is a separable splitting field over F, then $|G(E/F)| = \{E : F\} = [E : F].$

Definition 17. A finite extension K of F is a **finite normal extension** of F if K is a separable splitting field over F. In such a case, we call G(K/F) the **Galois group of** K over F.

4 Fundamental Theorem of Galois Theory

Theorem 4.1 (Fundamental Theorem of Galois Theory). Let K be a finite normal extension of F. For all E such that $F \leq E \leq K$, let $\lambda(E) = G(K/E)$. Then λ is a one-to-one map from the set of all intermediate fields onto the set of subgroups of G(K/F). The following properties hold:

- 1. $E = K_{G(K/E)} = K_{\lambda(E)}$. This is just saying that the field fixed by the set of automorphisms of K that fix E is E.
- 2. For $S \leq G(K/F)$, $\lambda(K_S) = S$. That is, $G(K/K_S) = S$, or the set of automorphisms fixing the field fixed by S, is S.
- 3. [K:E] = |G(K/E)|, and [E:F] = (G(K/F):G(K/E)).
- 4. E is a normal extension of F if and only if G(K/E) is a normal subgroup of G(K/F). If so, then $G(E/F) \simeq G(K/F)/G(K/E)$.
- 5. The diagram of subgroups of G(K/F) is the inverted diagram of the intermediate fields between F and K.

Example 18. Let $K = \mathbf{Q}(\sqrt{2}, \sqrt{3})$, and let $F = \mathbf{Q}$. Then each automorphism of K is determined by where it takes $\sqrt{2}$ and $\sqrt{3}$. Since each automorphism must take elements to their conjugates, the automorphisms are:

$$i(\sqrt{2}) = \sqrt{2}, i(\sqrt{3}) = \sqrt{3}$$

$$\sigma_1(\sqrt{2}) = -\sqrt{2}, \sigma_1(\sqrt{3}) = \sqrt{3}$$

$$\sigma_2(\sqrt{2}) = \sqrt{2}, \sigma_2(\sqrt{3}) = -\sqrt{3}$$

$$\sigma_3(\sqrt{2}) = -\sqrt{2}, \sigma_3(\sqrt{3}) = -\sqrt{3}$$

Here are the subgroup and intermediate field diagrams: