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All proofs are omitted here. They may be found in Fraleigh’s A First Course
in Abstract Algebra as well as many other algebra and Galois theory texts. Many
of the proofs are short, and can be done as exercises.

1 Introduction

Definition 1. A field is a commutative ring with identity, such that every
non-zero element has a multiplicative inverse. That is, a field is a commutative
division ring.

Some people prefer to think of fields in terms of the field axioms:
1. Addition is commutative: a +b=b+a
2. Addition is associative: (a +b) +c=a+ (b+c)

There is an additive identity 0: 0 +a=a=a+0
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Every element has an additive inverse: a + (—a) =0 = (—a) +a
Multiplication is associative: (ab)c = a(bc)
Multiplication is commutative: ab = ba

There is a multiplicative identity 1: la = a = al
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Every non-zero element has a multiplicative inverse: a(a™!) =1 = (a"})a
9. The distributive law holds: a(b+c)=ab+ac

Definition 2. A field F is an extension field of a field F if F < FE.

2 Conjugate Elements

Definition 3. Let F[z] be the ring of polynomials with coefficients in F. A
polynomial p(z) € F[z] is irreducible over F if it cannot be expressed as the
product of two polynomials in F'[z] of strictly lower degree.



Example 4. 22 — 2 is irreducible over Q.
22 + 1 is irreducible over R.
22 — 1 is reducible over Q.

Definition 5. Let F' < E, let @ € E be algebraic over F'. Then the irreducible
polynomial of « over F, irr(«, F'), is the unique monic polynomial p(x) such
that p(x) is irreducible over F and p(«) = 0.

Example 6. The irreducible polynomial of v/2 € R over Q is 22 — 2.

Definition 7. Let F' < E. Two elements o, € E are conjugate over F if
they have the same irreducible polynomial over F'

Example 8. In C, some conjugates over Q are:
i, —i, p(x) =22 +1

V2, —V2, p(z) = 2% — 2

91/3  91/3,2mi/3  91/3 Ami/3 p(z) = 2% — 2
Theorem 2.1. If « is algebraic over F, with irr(a, F') having degree n > 1,

then the smallest field containing o and F, denoted F(«), consists exactly of
elements of the form

y=by+bia+-+b,_1a" 1 b eF.

Theorem 2.2. Let o, 8 be algebraic over F'. Then the map g 5 : F(a) — F(5)
given by

Yap(bo +bra+- -+ by 10" ) =bg+ b1+ + b1
s an isomorphism if and only if @ and B are conjugate.

Example 9. ¢ 5 3 : Q(Vv2) — Q(V/3) is not an isomorphism since /2 is not
conjugate to v/3 over Q.
Q(21/3) ~ Q(2'/3¢?>7/3) via the irreducible polynomial z% — 2.

3 Finite Extensions and Isomorphisms

Definition 10. If F is an extension field of F', then E is a vector space over
F. If it has finite dimension n as a vector space over F', then F is a finite
extension of degree n over F. We denote the degree of E over F as [E : F.

Example 11. C is a 2-dimensional vector space over R, so [C: R] = 2.
Q(v2,V/3), the smallest field containing Q, v/2, and /3, is generated by

{1,/3} over Q(v/2). Q(V/2) is generated by {1,v/2} over Q. So we can see that

Q(v/2,/3) is generated by {1,v/2,v3,v6} over Q, and [Q(v/2,V3) : Q] = 4.

Definition 12. An isomorphism of a field onto itself is called an automor-
phism of the field.



Definition 13. Let o be an isomorphism of E on to some field, and let o € F
and F < E. Then o fixes « if 0(a) = «, and o fixes F' if o fixes each element
in F.

Theorem 3.1. Let F' < E, and let o be an automorphism of E leaving F fized.
Let a € E. Then o(a) = 3 where 8 is a conjugate of o over F.

Theorem 3.2. Let F < E. The set G(E/F)of all automorphisms of E leaving
F fixed forms a subgroup of the group of all automorphisms of E. We call
G(E/F)the group of E over F.

Theorem 3.3. Let E,; be the subset of E left fized by an automorphism o. Then
E, is a field. We call this the fixed field of o. Similarly, if S is a subgroup of
G(E/F), then the set Eg is a subfield of E.

Theorem 3.4 (Isomorphism Extension Theorem). Let o be an isomorphism
from a field F to a field F', and let F' be an algebraic closure of F'. Let F < E.
Then there exists at least one isomorphism T of E onto a subfield F' such that
foralla € F, 7(a) = o(a).

Theorem 3.5. Let E be a finite extension of F. Let 0 : F — F' be an
isomorphism. The number of extensions of o to an isomorphism 7 of E onto a
subfield of F' is finite and depends only on E and F, not on o or F'. We call
this number {E : F'}, the index of E over F.

Theorem 3.6. If E is a finite extension of F, then {E : F} divides [E : F).

Definition 14. FE is a separable extension of F if {E : F} = [F : F|. A
field F' is perfect if every finite extension of F' is separable.

Perfect fields are in fact commonplace.

Theorem 3.7. Fvery field of characteristic 0 is perfect. Every finite field is
perfect.

Definition 15. Let {p;(x) : i € I} be a collection of polynomials in F[z]. Then
E < F is the splitting field of {p;(x) : i € I} over F' if E is the smallest
subfield of F' containing F' and all the zeros of each p;(z) in F.



Example 16. Q(v/2,1/3) is the splitting field of {z? — 2,22 — 3}, and also of
{x* — 522 + 6}.

Q(2'/3) is not a splitting field because it does not contain the other two
roots of 3 — 2, which is irreducible.

Theorem 3.8. Let '< E < F. Then E be a splitting field over F if and only
if every automorphism of F' leaving F' fixred maps E onto itself.

Corollary 3.9. If E < F and E is a splitting field over F of finite degree, then
[E:F} = |G(E/P)|.

Theorem 3.10 (Primitive Element Theorem). Let E be a finite separable ex-
tension of a field F. Then there exists a € E such that E = F(«).

Theorem 3.11. If E is a finite extension of F' and is a separable splitting field
over F, then |G(E/F)|={FE:F}=[E:F].

Definition 17. A finite extension K of F'is a finite normal extension of F'
if K is a separable splitting field over F. In such a case, we call G(K/F)the
Galois group of K over F.

4 Fundamental Theorem of Galois Theory

Theorem 4.1 (Fundamental Theorem of Galois Theory). Let K be a finite
normal extension of F. For all E such that F < E < K, let \(E) =G(K/E).
Then X is a one-to-one map from the set of all intermediate fields onto the set
of subgroups of G(K/F). The following properties hold:

1. F = Kgx/p) = Kxg)- This is just saying that the field fived by the set
of automorphisms of K that fir E is E.

2. For S <G(K/F), \M(Kg) = S. That is, G(K/Kg) = S, or the set of
automorphisms fixing the field fized by S, is S.

3. [K:E] = |G(K/E)|, and [E : F] = (G(K/F):G(K/E)).

4. E is a normal extension of F if and only if G(K/E)is a normal subgroup
of G(K/F). If so, then G(E/F)~G(K/F)/G(K/E).

5. The diagram of subgroups of G(K/F)is the inverted diagram of the inter-
mediate fields between F and K.

Example 18. Let K = Q(\/ﬁ, \/g)7 and let F' = Q. Then each automorphism
of K is determined by where it takes /2 and /3. Since each automorphism
must take elements to their conjugates, the automorphisms are:

i(V2) = V2,i(vV3) = V3
o1(V2) = —v2,01(V3) = V3
73 (V2) = V2,05(V3) = —
03(\/5) \/503 \/§) ==
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Here are the subgroup and intermediate field diagrams:



