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All proofs are omitted here. They may be found in Fraleigh’s A First Course
in Abstract Algebra as well as many other algebra and Galois theory texts. Many
of the proofs are short, and can be done as exercises.

1 Introduction

Definition 1. A field is a commutative ring with identity, such that every
non-zero element has a multiplicative inverse. That is, a field is a commutative
division ring.

Some people prefer to think of fields in terms of the field axioms:

1. Addition is commutative: a+ b = b+ a

2. Addition is associative: (a+ b) + c = a+ (b+ c)

3. There is an additive identity 0: 0 + a = a = a+ 0

4. Every element has an additive inverse: a+ (−a) = 0 = (−a) + a

5. Multiplication is associative: (ab)c = a(bc)

6. Multiplication is commutative: ab = ba

7. There is a multiplicative identity 1: 1a = a = a1

8. Every non-zero element has a multiplicative inverse: a(a−1) = 1 = (a−1)a

9. The distributive law holds: a(b+c)=ab+ac

Definition 2. A field E is an extension field of a field F if F ≤ E.

2 Conjugate Elements

Definition 3. Let F [x] be the ring of polynomials with coefficients in F . A
polynomial p(x) ∈ F [x] is irreducible over F if it cannot be expressed as the
product of two polynomials in F [x] of strictly lower degree.
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Example 4. x2 − 2 is irreducible over Q.
x2 + 1 is irreducible over R.
x2 − 1 is reducible over Q.

Definition 5. Let F ≤ E, let α ∈ E be algebraic over F . Then the irreducible
polynomial of α over F , irr(α, F ), is the unique monic polynomial p(x) such
that p(x) is irreducible over F and p(α) = 0.

Example 6. The irreducible polynomial of
√

2 ∈ R over Q is x2 − 2.

Definition 7. Let F ≤ E. Two elements α, β ∈ E are conjugate over F if
they have the same irreducible polynomial over F .

Example 8. In C, some conjugates over Q are:

i, −i, p(x) = x2 + 1
√

2, −
√

2, p(x) = x2 − 2

21/3, 21/3e2πi/3, 21/3e4πi/3, p(x) = x3 − 2

Theorem 2.1. If α is algebraic over F , with irr(α, F ) having degree n ≥ 1,
then the smallest field containing α and F , denoted F (α), consists exactly of
elements of the form

γ = b0 + b1α+ · · ·+ bn−1α
n−1, bi ∈ F.

Theorem 2.2. Let α, β be algebraic over F . Then the map ψα,β : F (α) → F (β)
given by

ψα,β(b0 + b1α+ · · ·+ bn−1α
n−1) = b0 + b1β + · · ·+ bn−1β

n−1

is an isomorphism if and only if α and β are conjugate.

Example 9. ψ√2,
√

3 : Q(
√

2) → Q(
√

3) is not an isomorphism since
√

2 is not
conjugate to

√
3 over Q.

Q(21/3) ' Q(21/3e2πi/3) via the irreducible polynomial x3 − 2.

3 Finite Extensions and Isomorphisms

Definition 10. If E is an extension field of F , then E is a vector space over
F . If it has finite dimension n as a vector space over F , then E is a finite
extension of degree n over F . We denote the degree of E over F as [E : F ].

Example 11. C is a 2-dimensional vector space over R, so [C : R] = 2.
Q(
√

2,
√

3), the smallest field containing Q,
√

2, and
√

3, is generated by
{1,

√
3} over Q(

√
2). Q(

√
2) is generated by {1,

√
2} over Q. So we can see that

Q(
√

2,
√

3) is generated by {1,
√

2,
√

3,
√

6} over Q, and [Q(
√

2,
√

3) : Q] = 4.

Definition 12. An isomorphism of a field onto itself is called an automor-
phism of the field.
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Definition 13. Let σ be an isomorphism of E on to some field, and let α ∈ E
and F ≤ E. Then σ fixes α if σ(α) = α, and σ fixes F if σ fixes each element
in F .

Theorem 3.1. Let F ≤ E, and let σ be an automorphism of E leaving F fixed.
Let α ∈ E. Then σ(α) = β where β is a conjugate of α over F .

Theorem 3.2. Let F ≤ E. The set G(E/F )of all automorphisms of E leaving
F fixed forms a subgroup of the group of all automorphisms of E. We call
G(E/F )the group of E over F .

Theorem 3.3. Let Eσ be the subset of E left fixed by an automorphism σ. Then
Eσ is a field. We call this the fixed field of σ. Similarly, if S is a subgroup of
G(E/F ), then the set ES is a subfield of E.

Theorem 3.4 (Isomorphism Extension Theorem). Let σ be an isomorphism
from a field F to a field F ′, and let F̄ ′ be an algebraic closure of F ′. Let F ≤ E.
Then there exists at least one isomorphism τ of E onto a subfield F̄ ′ such that
for all α ∈ F , τ(α) = σ(α).

Theorem 3.5. Let E be a finite extension of F . Let σ : F −→ F ′ be an
isomorphism. The number of extensions of σ to an isomorphism τ of E onto a
subfield of F̄ ′ is finite and depends only on E and F , not on σ or F ′. We call
this number {E : F}, the index of E over F .

Theorem 3.6. If E is a finite extension of F , then {E : F} divides [E : F ].

Definition 14. E is a separable extension of F if {E : F} = [E : F ]. A
field F is perfect if every finite extension of F is separable.

Perfect fields are in fact commonplace.

Theorem 3.7. Every field of characteristic 0 is perfect. Every finite field is
perfect.

Definition 15. Let {pi(x) : i ∈ I} be a collection of polynomials in F [x]. Then
E ≤ F̄ is the splitting field of {pi(x) : i ∈ I} over F if E is the smallest
subfield of F̄ containing F and all the zeros of each pi(x) in F̄ .
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Example 16. Q(
√

2,
√

3) is the splitting field of {x2 − 2, x2 − 3}, and also of
{x4 − 5x2 + 6}.

Q(21/3) is not a splitting field because it does not contain the other two
roots of x3 − 2, which is irreducible.

Theorem 3.8. Let F ≤ E ≤ F̄ . Then E be a splitting field over F if and only
if every automorphism of F̄ leaving F fixed maps E onto itself.

Corollary 3.9. If E ≤ F̄ and E is a splitting field over F of finite degree, then
{E : F} = |G(E/F )|.

Theorem 3.10 (Primitive Element Theorem). Let E be a finite separable ex-
tension of a field F . Then there exists α ∈ E such that E = F (α).

Theorem 3.11. If E is a finite extension of F and is a separable splitting field
over F , then |G(E/F )| = {E : F} = [E : F ].

Definition 17. A finite extension K of F is a finite normal extension of F
if K is a separable splitting field over F . In such a case, we call G(K/F )the
Galois group of K over F .

4 Fundamental Theorem of Galois Theory

Theorem 4.1 (Fundamental Theorem of Galois Theory). Let K be a finite
normal extension of F . For all E such that F ≤ E ≤ K, let λ(E) =G(K/E).
Then λ is a one-to-one map from the set of all intermediate fields onto the set
of subgroups of G(K/F ). The following properties hold:

1. E = KG(K/E) = Kλ(E). This is just saying that the field fixed by the set
of automorphisms of K that fix E is E.

2. For S ≤G(K/F ), λ(KS) = S. That is, G(K/KS) = S, or the set of
automorphisms fixing the field fixed by S, is S.

3. [K : E] = |G(K/E)|, and [E : F ] = (G(K/F ):G(K/E)).

4. E is a normal extension of F if and only if G(K/E)is a normal subgroup
of G(K/F ). If so, then G(E/F )'G(K/F )/G(K/E).

5. The diagram of subgroups of G(K/F )is the inverted diagram of the inter-
mediate fields between F and K.

Example 18. Let K = Q(
√

2,
√

3), and let F = Q. Then each automorphism
of K is determined by where it takes

√
2 and

√
3. Since each automorphism

must take elements to their conjugates, the automorphisms are:

i(
√

2) =
√

2,i(
√

3) =
√

3

σ1(
√

2) = −
√

2,σ1(
√

3) =
√

3

σ2(
√

2) =
√

2,σ2(
√

3) = −
√

3

σ3(
√

2) = −
√

2,σ3(
√

3) = −
√

3
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Here are the subgroup and intermediate field diagrams:
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